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4 LIST OF FIGURES

0.1 Abstract

Alarge-scale system that prioritizes high availability over extensive synchroniza-
tion must make a design trade-off and implement a weaker form of consistency.
Conflict-free Replicated Data Types(CRDTs) can enable replicas in the sys-
tem to communicate asynchronously and achieve strong eventual consistency.
SynQLite aims to implement CRDTs on top of relational databases with its
addition of Conflict-free Replicated Relation CRR. SynQLite enforces integrity
constraints defined by an application, in a strictly automatic manner. However,
enabling user-aware conflict resolution, where the user can make application
specific altercation to conflict resolution, can remedy some of the limitations
of the last-write-protocol used in SynQLite.



Introduction

This thesis introduces the proposed concept of user-aware conflict resolution,
an extension to SynQLite’s automatic conflict resolution that addresses some
limitations.

The thesis discusses trade-offs between availability, partition tolerance, and
consistency, as defined by the CAP theorem. It explores the challenges that occur
when prioritizing availability and partition tolerance over strict consistency.
CRDTs are introduced as a solution to achieve strong eventual consistency. The
concept of CRDT is discussed, highlighting applications in distributed systems
through the SynQLite system design.

Additionally; the thesis explores the enforcement of integrity constraints through
conflict resolution mechanisms. It discusses the use of automatic conflict res-
olution and its limitations, including potential undesired outcomes. Finally,
it introduces the proposed concept of user-aware conflict resolution, which
allows users to participate in the resolution process and influence the outcome

based on their preferences. Some limitation to this solutions and use cases are
described.






Technical Background

2.1 The CAP Theorem

In computer science, the CAP theorem[2] is a popular theory that states that
any distributed system can only ever fully achieve two of the following guar-
antees;

* Consistency(C)
* Availability(A)
¢ Partition Tolerance(P)

In an arbitrary system, high consistency ensures that when a user requests
data from a site, the response will be accurate and up-to-date. However, if
the system also guarantees partition tolerance, such as through distributed
replicas of data, additional measures must be taken to maintain consistency
across replicas. It becomes crucial that a user, whether accessing data from one
site, denoted as S;, or another replicated site, denoted as S, receives the same
response. Synchronous communication between sites is a common solution to
achieve this goal. Whenever an update occurs at S;, S; also needs to receive the
same update before responding to any requests. However, if the system aims to
be highly available, problems may arise. Prioritizing consistency and partition
tolerance leads to longer response times due to synchronization. Therefore,
it is essential for any distributed system to carefully consider trade-offs in its
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design.

2.2 Weaker levels of consistency
Eventual consistency

Stronger forms of consistency are often prioritized in systems that require
strictly serialized operations, such as banking. Inconsistent ordering of oper-
ations may result in incorrect calculations, inaccurate account balances, or
violations of business rules. Such variations can damage the reliability and
trustworthiness of the system, potentially compromising the integrity of the
system’s design.

However, for systems where fast access is deemed crucial, a weaker form
of consistency is required to be implemented. A system designed for an e-
commerce web application, such as Amazon’s Dynamo [1], is an example of the
prioritization of fast user access to enable instant updates without significant
synchronization delays. In Dynamo, servers are strategically replicated in close
proximity to their respective users, ensuring minimal response times. This
trade-off is made based on the fact that ensuring that the website is available
for customers to make purchases is an important objective for Amazon. While
data consistency is still important, the impact of a slow website or a website
prone to synchronization delays outweighs the consequences of temporary
inconsistencies. This approach prioritizes availability and partition tolerance,
at the cost of adopting a weaker form of consistency. The weaker form of
consistency used in Dynamo is known as eventual consistency, which guarantees
that updates will eventually propagate to all replicas, in a lazy fashion, resulting
in a convergence toward a consistent state. this effectively means that sites in
a distributed system will eventually be consistent with each other if further
updates were to halt.

Strong eventual consistency

Strong eventual consistency is another form of implementing weaker consis-
tency in a distributed system. This alternative adds the guarantee that sites
that have received the same updates, will be in the same state. This allows
systems that require a high level of availability to still offer a significant level
of consistency, although it does not guarantee that operations are performed
in the same order as the sequential consistency mentioned earlier. This added
focus on consistency makes it particularly useful for distributed database appli-
cations that offer a cloud-based solution. With added guarantees comes added



2.3 / LAST-WRITE-WINS 9

complexity to a system that chooses this approach. A major challenge is how
updates are communicated to replicas and as well as to be ensured maintain
causal relationships.

Mixed levels of consistency

A more adaptive approach is to utilize both a strong and weak consistency
model. For example, implementing support for altering consistency require-
ments based on what the overlaying user application needs. A successful
implementation can Potentially yield performance gains in areas that allow
for weaker consistency. This form of consistency is difficult to implement as it
requires a set protocol for switching between consistency models to prevent
the balancing between the two to result in a performance loss. "Making geo-
replicated systems fast as possible, consistent when necessary"[3] proposes a
"RedBlue" consistency, where the goal is to reduce the complexity of designing
such a system by coloring operations that require stronger consistency, red,
and coloring operation that allows for weaker consistency, blue.

Causal consistency

In contrast to the sequential consistency briefly mentioned in our banking
example is causal consistency[4]. In a system that is causally consistent, oper-
ations are observed in a consistent order across replicas rather than that the
same operations happens in the same order. This guarantee works well with
weaker forms of consistency, as not every operation has to be executed in the
same order, sequentially, across replicas.

2.3 Last-write-wins

In distributed systems operating across network partitions, conflicts can occur
due to replicas performing conflicting operations concurrently. To maintain
eventual consistency, it becomes necessary for the system to establish an agree-
ment on which operations to retain and which to discard when the replicas
eventually synchronize. In such scenarios, the last-write-wins (LWW) strat-
egy is used as a reliable approach for conflict resolution, offering consistent
and deterministic outcomes. The principle of the IWW strategy is relatively
straightforward, the latest update is considered as the winner in any conflict
resolution. To determine the "latest" update, timestamps or version numbers
are commonly used. Timestamps provide a chronological order to updates, al-
lowing replicas to establish the relative recency of each operation. Alternatively,
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version numbers can be assigned to updates, enabling replicas to identify the
update with the highest version as the winner. Figure 2.1 shows two replicated
sites that both performs an two concurrent operations on the value A. On
synchronization, the most recent timestamp ¢, is kept while the operation with
timestamp t; is discarded.

Figure 2.1: Last-write-wins conflict resolution

A limitation of the IWW protocol is potential loss of data. To address this,
it is common to combine it with additional techniques such as conflict detec-
tion, where the system identifies conflicts and flags them for resolution by
applications or users. Advanced conflict resolution strategies, such as merg-
ing conflicting updates or application-specific logic, can be used to handle
conflicts.

2.4 CRDT

Conflict-free Replicated Data Types(CRDTs)[6] add metadata to replicated data
in the form of tuples. The additional metadata can be seen as causal context
that helps maintain causal consistency, often causal length or timestamps. This
abstraction of data is designed to ease the implementation of strong eventual
consistency. CRDTs inherently convey the principles of the last-write-wins
strategy through their construction. The metadata reflects the ordering and
causal relationships among updates, enabling replicas to determine the most
recent update and resolve conflicts accordingly.

In the case of CRDT, causal history is acting as a mechanism for version control.
It maintains a historical record of states and tracks the causal relationships
between updates. Notably, lookup queries do not impact the causal history
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and are excluded from the count. Causal history represents a sequence of
states, allowing replicas to maintain a comprehensive understanding of the
history of the data. During the synchronization process, replicas merge their
respective causal histories. This merging operation has the effect of merging the
updates themselves, resulting in replicas reaching the same state. By tracking
the causality of updates, replicas can independently perform necessary updates
while monitoring the potential conflicts that may occur. In a large-scale system,
where updates are eventually propagated to all replicas, the causal histories
also converge and merge over time. As updates and their associated causal
histories are spread across replicas, the convergence process ensures that all
replicas eventually reach a consistent state.

This convergence of causal histories and the resulting convergence of data states
enables the achievement of strong eventual consistency in CRDT-based systems.
By tracking causality and merging updates during synchronization, CRDTs
enable replicas to independently handle concurrent updates and eventually
converge towards a consistent state. Later in Section 3.2, it is described how
SynQLite[7] uses causal length as a form of causal history to keep track of the
causality between insertion and deletion operations.






The SynQLite System
Design

In pursuit of its objective to ensure strong eventual consistency while maintain-
ing high availability and partition tolerance, SynQLite utilizes CRDTs. CRDTs
play a crucial role in facilitating automatic conflict resolution during merging of
updates across sites in a multi-synchronous environment where asynchronous
communication is vital. SynQLite extends the conventional (key, attribute) re-
lational database system by incorporating a CRR (conflict-free relations) layer
implemented by CRDTs, introducing causal context to enhance conflict resolu-
tion capabilities.

While the utilization of CRDTs has been successfully demonstrated in small-
scale systems by other solutions [5], the challenge lies in extending support
to integrity constraints in a multi-synchronous system that employs relational
databases. Ensuring data integrity and consistency across distributed replicas
in a multi-synchronous context presents unique complexities that need to be
addressed to fulfill the requirements of a robust and reliable system.

By adopting CRDTs within its architecture, SynQLite aims to overcome these
challenges and provide comprehensive support for integrity constraints in a
multi-synchronous setting. The integration of CRDTs with relational databases
enables SynQLite to achieve strong eventual consistency while enforcing the
integrity of the data across distributed sites, even in the face of concurrent

13
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updates and asynchronous communication.

3.1 Two layered design

SynQLite extends on SQLite and operates on a relational database that consists
of two layers;

* Application Relation(AR) layer
* Conflict-free Replicated Relation(CRR)

The AR layer of SynQLite serves as an intermediary between the application
and the underlying system, providing an API that closely resembles the well-
established SQLite framework. Within this layer, applications have the ability to
define their desired integrity constraints based on their specific requirements
and preferences.

When performing a lookup or query operation on a specific entry, the entire
process can be executed exclusively within the AR layer, specifically on the
Application Relation denoted as R. As these operations do not impact the
overall state of the site, they can be efficiently handled within the AR layer
itself. The AR-layer requests operate on the familiar key, attribute relation
structure represented as R(K, A), allowing for seamless interaction with the
stored data.

By shrouding the interaction between the application and the underlying
system, the AR layer in SynQLite streamlines the integration process and
offers a familiar interface through which applications can define integrity
constraints. Such constraints are further discussed in 4.This layer also provides
a high performing and isolated environment for executing lookup and query
operations, with minimal impact on the overall system state.

CRR

While lookup operations are relatively straightforward, performing update
operations introduces complexities related to consistency. In SynQLite, these
challenges are addressed by using CRDTs (Conflict-Free Replicated Data Types)
[6]. By extending the standard application relations, SynQLite incorporates
conflict-free replicated relations (CRR) [7], enabled by CRDTs.

When an update request is received, SynQLite translates it into an operation on
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an augmented version of R in the CRR layer, denoted as R. This augmentation
involves the addition of a timestamp 7 and a causal length L" to the CRR layer.
Both the relation instances of the AR layer, denoted as r;, and the CRR layer,
denoted as 7;, maintain a history of updates. Through the merging process,
two sites can effectively combine their updates and eventually converge into a
consistent state.

Consistency between two sites is achieved when their relation instances are
observed as equivalent. This signifies that both sites have the same state after
synchronizing. By incorporating the CRR layer, SynQLite ensures that updates
from different sites are properly merged, leading to convergence and consistent
states across replicas. The addition of the CRR layer remains transparent to
the client application. The client only needs to be aware of how the AR layer
handles read and update operations. This design simplifies the integration
process and hides the underlying complexities of maintaining consistency in
distributed systems from the clients.

query(R) <———>

update(R)

AR-layer

\ CRR-layer

1

Figure 3.1: Flow of operations in two layer design

Figure 3.1 illustrates the two-layer design, where the AR layer accepts queries,
while updates are redirected to the CRR layer before they can execute at the
AR layer. This illustration is based on fig.1 from [7].

3.2 Updates

As mentioned in section3.1, an application sends update requests to the AR
layer. Before carrying out the update on the local instance of Application
Relation R, the update is first translated to an update on the CRR R. As
an example, an update u(r;, K,A) on the existing entry received from the
application. The update is first augmented, as discussed in the previous section,
into @i (7;, K, A, 7, L) before being carried out. Where causal length differentiates
between a row insertion and row deletion. Odd valued L means there has been
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an insertion, and even valued L means the previous operation was a row
deletion. Update requests are handled differently if it’s an insert, update or
delete.

Insert

Alocal row insertion at site S; is received as insert(r;, (K, A)) and augmented at
the CRR layer into insert(r;, (K, A)). If the key K is a new entry, the following
CRR operation is executed;

insert(fi (K: A, TeurrentTime, L = 1))

On the other hand, if K corresponds to an already existing entry, noted as 7#(K),
the following update is executed instead;

update(fi (K; A, TeurrentTimes L(f(K)) + 1)

Since there is issued an insert operation on an already existing entry, the entry
must have been previously deleted with an even causal length L mod 2 ==
An increment of the casual length adds the insert operation to the causal
history.

Delete

A local delete request is received as delete(r, K) at the AR layer and executed
at the CRR layer if 7#(K);

update(#(K, —, L(F(K)) + 1))

Where "-" denotes the attribute A at r(K, A) as deleted. Similarly to row
insertion, the causal length is incremented by one to add the row deletion to
the causal history. If r(K) does not exist, the operation is aborted.

Update

An attribute update request is received as update(r, K, A) and executed if r(K)
exists as such;

Update(f(Ks A, TeurrentTimes L(F(K)))

If r(K) does not correspond to an existing entry, the operation is aborted.
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An attribute update only executes on an existing entry from a previous row
insertion, therefore the causal length is not incremented as it does not affect
whether the last operation was a row insertion or a row deletion.

3.3 Synchronization

The two-layered design of SynQLite assumes a distributed system where sites
do not have shared memory. Updates that are executed locally at each site are
kept in a local queue. State updates are inflationary, meaning that updates
can only increase state values, in this case timestamp and causal length, such
that a agreement can be formed on merge and support the notion of strong
eventual consistency.

Synchronization at the individual replicas happens trough a pull request to all
other sites in the system. The local queue of each site is received and the site
can merge updates. At the merge, a site S; considers incoming updates and how
they will affect its local instance of 7;, by running it through the augmented
CRR layer before updating the application layer.

If an incoming update from S; has the state F(K,A s Tjs 3) and S; locally has
F(K, A;, 13, 5), the states are considered as an equivalent row insertion of A,
assuming A; == A;.

Any updates that violate integrity constraints are rolled back with an undo
operation. Integrity constraints and enforcement of these are described further
in chapter 4.

In a system where the network is unreliable, as is the case for cloud-edge
environments, strong eventual consistency is still supported. Sites store their
local queue of updates on solid memory such that if the site goes offline or
crashes, updates are not lost from the rest of the distributed system. Rather,
update queues are propagated once the site is back online, allowing the site
to conveniently execute updates locally while being blissfully unaware of its
connection to other replicas in the system.






Integrity Constraints and
Conflict Resolution

In a multi-synchronous system, sites are able to update without immediately
broadcasting their changes to other sites. This allows for not only fast access to
data, but also adds the ability to perform asynchronous updates. Asynchronous
updates are an advantage for clients with unreliable connections, but this
simultaneously adds complexity to keep the system consistent. To be able to
guarantee strong consistency under such conditions, predefined rules need to
be enforced to make sure every site will eventually converge into the same state
without communication, as is the case for cloud-edge environments. Integrity
constraints are rules that set the standard on how each site should resolve
conflicts at merging updates with other sites.

Integrity constraints in a system can be defined by an application, according to
what type of system the client aims to operate. Set integrity constraints can be
"violated" locally without a problem, as integrity constraints are only enforced
once a site merges with a different site’s updates. This resolution is resolved
using the causal context added through the previously discussed history of
augmenting update request r;(K, A) into 7;(K, A, 7, L), where timestamp ¢t
and causal length L is added to the relation. Resolution happens at the CRR
layer and offending updates are rolled back. When the incoming updates no
longer consist of any operations that lead to integrity violations, the updates
are translated back to the AR layer for a refresh of the local state.

19
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SynQLite aims to support the automatic resolution and enforcement of three
different types of integrity constraints;

* Uniqueness constraints: Constraints on a system having more than one
unique entry after a merge, defined by application based on id or value.

* Referential constraints: Constraints on a system updating a referenced
entry without updating its reference.

* Numeric constraints: Numeric boundaries to prevent a value or a
counter to exceed a set limit.

4.1 Uniqueness Constraints

Uniqueness constraints set a standard on how a system allows for non-unique
entries in a system. As an example on such a standard; lookup on r(K) should
only respond with a single entry. To solidify this as a consistent behavior
throughout the system, a uniqueness constraint that only allows for unique
keys needs to be set. In a system with an unreliable network, two sites may
execute a local row insertion consisting of the same key at both sites without
having to resolve a uniqueness violation. Another example of a uniqueness con-
straint could be that a user cannot have duplicate values, like home addresses,
associated with its key.

Resolving uniqueness constraints

The resolution of a uniqueness constraint is handled by comparing the causal
context among conflicting updates. The one update with the lowest timestamp
will be chosen as the winner, the lowest timestamp meaning the timestamp
that corresponds to the earliest time. The other violating operations are un-
done through an undo operation, described in section4.4. In the rare case of
concurrent updates, 7; == 7, it can be decided based on causal length, L, to
prioritize an outcome where most updates are kept, and the least updates need
to be undone

Figure 4.1illustrate a situation where site S; and S; both perform a row insertion
of an entry with key K, with K representing a non-unique entry. When the
two sites merge updates, a uniqueness violation is detected. Following the set
integrity constraints, both sites choose the update with the lowest timestamp,
where 79 < 77. S; performs an undo operation and accepts the incoming insert
update from S;, resulting in a consistent state between the two sites.
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S; 5;
RO O
| |
insert(S;(K,A;)) |
| insert(S-(K A))
~ JARNED|
R ((K,Ai,fo)) |
| (1 4ym)
|

T
(K, Ay, T) (KA )
) )
| I
7 (K, A, 70)) delete(Sj(K,Aj,rl))
|
insert(S;i{K, A;, o)

|
r (K, A1, 7o)

Figure 4.1: Uniqueness violation

4.2 Referential Constraints

Another type of constraint that is supported by SynQLite, is referential con-
straints. A referential constraint is set to prevent a referenced entry from being
updated, without updating a reference to that entry.

Resolving Referential constraints

Resolving a referential integrity violation is done by performing an undo on
the row insertion that added the invalidated reference. One could consider
undoing the deletion of the referenced entry if the timestamp allows it.

Figure 4.2 illustrate two sites, S; and S;, with tables Ty and T>. S; performs an
insert of foreign key reference r(K) at T2, while S; performs a row deletion
of K. When S; merges update with §;, the reference is referring to an entity
that has been deleted. To resolve the conflict, the insertion of reference R(K)
is undone. This results in a consistent state between the two sites after the
merge. The states are equivalent as the causal length at S; is even, which from
the perspective of the application, is the same as a removed entry.



22 CHAPTER 4 / INTEGRITY CONSTRAINTS AND CONFLICT RESOLUTION

S; S;
~ <T1{<K'Ar To, 1)}) - T1{<K, A, To, 1)}
. To{} R T,{}
| |
insert(T2 (r(K))) delete(T;(K))
| |
~ <T1{<K:Ar To, 1)}) ~ <T1{<K, _!T2l2>})
FATUr(K), 11, 1)) " T,{}

R

~ ( Tl{(KﬁA! To, 1)} Tl{(Kﬁ — T 2)}>

TZ{(T(K),Tl,l)}) TZ{}

delete(T(K)) _ (Ti{{K,—,72,2)}
| R T,{}
delete(T,(r(K)))
|
~ < Tl{(K: — T2, 2)} >
R\ {(r(K),73,2) }

Figure 4.2: Referential constraint violation

4.3 Numeric Constraints

Numeric constraints are set boundaries of numeric values. This boundary could
be a lower or upper boundary.

A violation can occur when different sites concurrently increment a value or a
counter through an update operation. Locally there is no sign of any violation,
but on merge, the increment operations could collectively cause a violation of
an application’s set numeric constraint.

Resolving Numeric Violations

The process of resolving a numeric violation is similar to the process of resolv-
ing a uniqueness violation. Out of the conflicting updates, the update with
the lowest timestamp is chosen as the winner. All other conflicting updates
are undone. An important difference between resolving a numeric violation
compared to a uniqueness violation is that sites are more likely to perform
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many value increments between each synchronization, for example, increment
operations on counters. This adds the possibility of having a long history of
updates that, in turn, have to be undone on a merge. This could be costly.

S
R((K, A, 1o, 1))
|
update({K, inc(4),1,))

|
update((K, inc(4), 13))
|

undo((K, inc(4),13))

|
update({K, inc(4),13))

Si
I;( (Kv A' TO' 1))
|
|
update({K, inc(4),1,))
|

|
update((K, inc(A), 1,))

|
update({K, inc(4), 1s))

undo((K, inc(4),1,))

|
undo({K, inc(4), 7,4))

|
undo((K, inc(4),7s))

|
update({K, inc(4),13))

Figure 4.3: Numeric constraint violation

Figure 4.3 illustrates a situation where site S; and S; both have the inserted
entry with key K and attribute A. The system has a numeric constraint for this
attribute to not exceed three more increments. At each site, increments are
performed to A. S; performs two updates while S; performs three. The merge
of updates between S; and S; results in a numeric violation. Out of all updates,
the ones that have the lowest timestamp are chosen as winners. The rest of
the updates are undone until the numeric violation is no longer present. This
results in a consistent state between S; and §;.

If the example system were to consist of additional sites, there could be a
chain of many undo operations between merges. It is not easy to estimate how
this will function in practice as there is not yet implemented support for the
resolution of numeric violations.

4.4 Undo Operation

In the previous sections, the first part of resolving an integrity constraint
violation was described, which is to pick a winner out of the offending updates.
After picking a winner, the rest of the offending updates are effectively undone
with an undo operation. How to perform an undo depends on which type of
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integrity constraint is enforced and what operation is to be undone. The goal
of the undo operation is to return to a consistent state and not just revert the
update.

Undo Uniqueness Violations

Update operations that violate uniqueness integrity constraints include row
insertion and attribute updates. These operations are effectively undone by a
row deletion or an attribute update. A row deletion resolves the issue illustrated
in figure 4.1, where out of offending insert operations, the lowest timestamp
wins. The other row insertion is undone by performing a row deletion on that
entry. This effectively rolls back the incoming updates from site S; to a state
where it would be globally consistent, as S; would not accept the request for
a row insertion if it would have been aware that the insertion was already
performed at site S;.

Undo referential Violations

Undo of violations of referential constraints are mainly handled by a row
deletion. As the example in section 4.2 illustrates, the row insertion of a
conflicting reference is to be undone. Row insertion is undone by a row
deletion. There could be situations where an undo of row deletion at S; would
be preferable, assuming a favored timestamp or causal length on the side
of site §5;. However, the row deletion at S; could be a result of a previous
resolution of a uniqueness violation. This cascades into an endless cycle of
undoing a row deletion that reinstates a uniqueness violation. This is not
likely to happen too often and can be avoided by taking into account the
history of integrity constraint enforcement. This workaround is more relevant
to implement for the user-aware conflict resolution discussed in chapter??.
The reason is that it adds unnecessary complexity to the automatic conflict
resolution, which prioritizes supporting a system that eventually converges
into a globally consistent state.

Undo numeric violations

Update operations that violate numeric constraints are either attribute updates
or counter increments. Attribute updates are undone by setting the attribute
to the older value, rolling back the effect of the update. Violating counter
increments are undone by creating and performing an inverse of each update.
This will in theory roll back the effect of counter increments. However, merges
between multiple sites can create a difficult situation where the inverse of
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increment updates are also performed concurrently at different sites.

4.5 Overlapping integrity constraints
S; S;

- (Th{} - (T}

: (le{}> R <T2{}>
|

| insert(Ty(K, A;, 7o, 1))
insert(Ty(K, A;,71,1)) |

| .
insert(T,(r(K))) ~ <T1{(K:r‘:g}70' 1>}>
I
~< Tl{(K:Aileﬂl)} > I
R T2{<T<K,Ai),'f2, 1)} |
I
N
_( Tk Aut, 1} Ti{(K, Aj,70, 1)}
FA\RUrK A) 1)) Tof)

|
delete(T,(K,A;,73,2)) T, {(K ,|4 7o, 1)}
1 r Aoy
( 7,0} )

| R
insert(Ty(K, A}, 70, 3))

|
~( Ty {(K, 4;,70,3)} >
R

Tz{(r(K,Ai>, T2, 1) }

|

delete (Tz <r<K, Aj>>)
|

- <T1{<K:Aj'70:3)}>

R\ (K),70,2) 3
Figure 4.4: Overlapping integrity constraints

Consider site S;, S; with T,T, as illustrated by fig 4.4. S; performs an insert
of A; with key K at T1 and adds a foreign key reference at T,. Additionally, S;
performs insert A; with key k at T;. locally there will be no violation of integrity.
At merge it is discovered that the insertion of K in both sites violates uniqueness
constraints set by the application. In this example, A; is timestamped with a
lower timestamp than A;. Following the automatic constraint resolution, the
insertion of A; will subsequently be undone. As a consequence, r(K) is reduced
to a foreign key to a value that no longer exists. Therefore, it creates a situation
where both a uniqueness constraint and referential that needs to be handled.
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Different approaches are available and should be considered. Undo entry A;
and reference r(K), undo A; ,or, delete all. If the only thing considered is that
the system enforces integrity constraint, option a is sufficient, as the system
will eventually converge into a consistent state.



User-aware conflict
resolution

So far, we have discussed the concept of automatic conflict resolution in achiev-
ing strong eventual consistency. However, it is important to acknowledge that
this approach has limitations and can sometimes lead to undesired outcomes.
As previously mentioned, the last-write-wins protocol, while effective in achiev-
ing strong eventual consistency, can potentially result in data loss. Certain
applications may prioritize different outcomes that differ from the automatic
resolution provided.

To address this issue, a user-aware conflict resolution is proposed, allowing
users to manually adjust the priority of conflict resolution. By introducing this
capability into SynQLite, users can integrate the system with applications that
require alternative resolution outcomes to the default automatic approach.
However, incorporating user-aware conflict resolution introduces complexities
to the overall scheme. Notably, a history of constraint enforcement needs to be
stored and consistently maintained across distributed sites. Additionally, sup-
port for queries on the history of conflict resolution becomes necessary.
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5.1 Query History of Operations

In order to enable user-aware conflict resolution, previous conflicts needs to be
queried and brought to reconsideration. SynQLite’s use of CRDTs implements
a stable history of operations across all replicas through the addition of the
augmented history table in the CRR layer.

AR Layer

CRR Layer
HISTORY CRR

RESOLUTION

Res_ID
Integrity_type

TBL
OP_ID

Figure 5.1: Relations between tables

To query for previous operations, the operation id(OP-ID) can be traced through
to find if the site has previous any interaction with the operation. Figure 5.1
provides an overview of the relevant relations involved in conflict resolution,
along with their corresponding keys. Expanding on the earlier discussed 3.1, in
the AR(Application Relation)-layer resides the AR table with the common rela-
tion(Key, Value). In the CRR (Conflict-Free Replicated Relations) layer resides
the CRR table which has additional metadata values. Any CRR relation involved
in an integrity violation has a corresponding resolution relation inserted into
the resolution(RES) table. A new relation inserted into the resolution table
will include what type of integrity is being enforced and priority from conflict
resolution.

There is a history table where a new relation is inserted for every operation
executed on the current site. This includes resolution operations, like an undo
operation. Inserted relations notably contain at which table the operation is
executed (TBL), OP-ID and Site-ID.
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AR

KEY
VAL

AR Layer

CRR Layer

HISTORY CRR

RESOLUTION

Res_ID
Integrity_type

Figure 5.2: Querying OP-ID to retrieve resolution info

To enable this process, the resolution information must be included when sites
synchronize. This ensures that the necessary resolution data is accessible and
utilized during rollback operations. By incorporating the resolution data into
the information, SynQLite enables retrieving and applying the correct historical
changes to achieve the desired rollback.

5.2 Pick new winner in conflict resolution
Resolution list

When an integrity constraint violation is detected, the conflicting operations
are evaluated to determine a winner. After calculating priority, considering
timestamp and causal length, operations are ordered in a resolution list. The
resolution list can contain different types of operation depending on the
different types of violations;

* Uniqueness violations: Insertion or deletion

* Referential violations: Deletion of entry or insertion of reference
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¢ Numeric violations: Increments or decrements

From the example displayed in 4.1, a conflict between two insert operations
at two different sites triggers a uniqueness violation at merge. The resulting
resolution list is processed by integrity constraint enforcement.

The OP-ID that has the highest priority will be considered the winner and
the rest is considered losers. Under the automatic violation resolution, the
winner is propagated to the AR layer whilst the rest of the list is iterated and
undone4.4. Support for user-aware conflict resolution demands the possibility
to choose another outcome than the one displayed by the automatic resolution.
Considering the same resolution list, the OP-ID of the previous loser is instead
defined as the winner in this instance. The value of priority is not changed, so
that the manual change of the winner does not affect the overall convergence
toward cross-site consistency.

Finally, the conflicts are resolved and inserted data is propagated back to the
AR layer. Before a relation can be inserted into AR, the existence of previous
operations on the relation needs to be considered. If the relation have previous
history and exists, it has been previously deleted and is stored in CRR as
(F(K,—, L), where causal length L mod 2 = 0. The causal length is then
incremented by one with the updated value and is reinserted into AR. If the
relation does not exist as an CRR, the relation is simply inserted.

5.3 Conflicts on rollback

The design of SynQLite’s conflict resolution defines rules that are consistently
enforced across replicas. An example is what to do when additional conflicts
can occur as a result of an undo operation. In the situation mentioned in 4.5,
violations of referential constraints are automatically resolved by undo on the
operation that inserted the reference. This is to prevent the possibility of an
endless cycle of uniqueness resolution. However, when a manual resolution
is an option, the outcome of choosing to keep needs to be implemented. For
example, if an application would rather keep the reference pair than delete
it due to many updates since the last merge. In this situation, there is still a
potential for an endless cycle. To prevent this as a possible outcome, additional
measures need to be implemented to scout ahead and recognize the possibility
of this happening. This can be done by iterating the list of conflicts before the
actual resolution.
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5.4 Resolution groups

User-aware conflict resolution introduces new challenges to the guarantee
of eventual consistency. In a network with multiple sites, different resolution
groups will be formed. A resolution group is the processed resolution list from
a conflict resolution and is a result of synchronization between different sites
in a multi-site environment. In a purely automatic implementation of conflict
resolution, the sites will converge into a consistent state by following the same
rules and merging resolution groups. A challenge arises in how sites follow the
same rules in an environment where the user can alter how sites behave.

A solution to this is to add relevant information about resolutions in the data
transmitted to requesting sites on synchronization. On merge, sites should also
merge resolutions history in addition to the local queue. This enables more
extensive considerations of previous enforcement of integrity constraints.






Discussion

6.1 Limitations

SynQLite is missing real-world use-cases to understand the frequency of in-
tegrity violations and conflict resolution, and the potential side effects and
challenges associated with user-aware conflict resolution.

To implement robust integrity enforcement, it is important to evaluate its per-
formance and effectiveness in real-world scenarios. By analyzing real-world
use-cases, the frequency of integrity violations and the subsequent frequency of
conflict resolution can be determined. This information is important in design-
ing a suitable solution that balances complexity and performance. If integrity
violations occur less frequently, more complex and resource-intensive solu-
tions can be considered without significant performance degradation. On the
other hand, if violations occur frequently, a lightweight solution that minimizes
performance impact becomes an option.

User-aware conflict resolution, proposed as a means to address the potential
data loss of automatic conflict resolution, introduces a new set of considera-
tions. While the thesis has explored the benefits and limitations of user-aware
conflict resolution, it is important to note that there may be additional side
effects that have not been discovered or discussed. The thesis has focused
on addressing the data loss issue by enabling manual divergence from the
automatic conflict resolution. However, user-aware conflict resolution may in-
troduce unintended consequences or conflicts that occur due to varying user
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preferences and priorities.

To prevent potential unwanted side effects, a comprehensive understanding of
previous integrity constraint enforcement is necessary. Keeping track of histor-
ical data on constraint enforcement allows for better prevention of unwanted
side effects, leading to the development of more robust conflict resolution
mechanisms. However, this introduces new challenges such as data storage
requirements, and the impact on system performance. Balancing the need for
historical is an important consideration in the design of user-aware conflict
resolution.

SynQLite’s integrity enforcement and user-aware conflict resolution offer promis-
ing solutions, further exploration is needed to address the frequency of integrity

violations and their impact on conflict resolution. Future research should fo-
cus on real-world use-cases, and defining strategies to minimize unwanted

side effects while ensuring the integrity and performance of distributed sys-
tems.

6.2 Use-cases of User-aware Conflict Resolution

User-aware conflict as a concept works well with systems where the limitations
of an strictly last-write-wins protocol creates issues. In these types of systems,
alternative conflict resolution strategies, such as application-specific conflict
resolution policies, may be more suitable to ensure data integrity and consis-
tency. Systems that involve concurrent updates to the same data from multiple
sources can have crucial faults when some data is overwritten.

For example in collaborative editing systems, such as document editing or
collaborative design tools. Multiple collaborators edit the same text or data,
and some changes from one collaborator can overwrite the work of another
collaborator working on the same data. It is then desirable to be able to
manually pick what data is overwritten. More relevant to relational databases,
such as designed for SynQLite, is version control while developing a system,
similar to git.



Conclusion

This thesis have explored the challenges and solutions associated with prioritiz-
ing availability and partition tolerance in distributed systems while enforcing
integrity constraints. We have discussed SynQLite’s use of Conflict-Free Repli-
cated Data Types (CRDTs) as a means to achieve strong eventual consistency,
even in the presence of network partitions and concurrent operations.

While automatic conflict resolution provides a baseline solution, we have iden-
tified its limitations, including potential undesired outcomes such as data loss.
To address these limitations, the proposed concept of user-aware conflict reso-
lution comes forward, enabling users to influence the resolution process based
on their preferences and specific application requirements.

SynQLite’s integrity enforcement and user-aware conflict resolution offer promis-
ing solutions as a concept. However, further exploration is needed to address

the frequency of integrity violations and their impact on conflict resolution.
Future research should focus on real-world use-cases, and defining strategies to

minimize unwanted side effects while ensuring the integrity and performance

of distributed systems.
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