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Abstract
The risk assessments during the COVID-19 pandemic were primarily based on dose–
response models derived from the pooled datasets for infection of animals susceptible
to SARS-CoV. Despite similarities, differences in susceptibility between animals and
humans exist for respiratory viruses. The two most commonly used dose–response
models for calculating the infection risk of respiratory viruses are the exponential
and the Stirling approximated β-Poisson (BP) models. The modified version of the
one-parameter exponential model or the Wells–Riley model was almost solely used
for infection risk assessments during the pandemic. Still, the two-parameter (α and
β) Stirling approximated BP model is often recommended compared to the exponen-
tial dose–response model due to its flexibility. However, the Stirling approximation
restricts this model to the general rules of β ≫ 1 and α ≪ β, and these conditions are
very often violated. To refrain from these requirements, we tested a novel BP model
by using the Laplace approximation of the Kummer hypergeometric function instead
of the conservative Stirling approximation. The datasets of human respiratory airborne
viruses available in the literature for human coronavirus (HCoV-229E) and human rhi-
novirus (HRV-16 and HRV-39) are used to compare the four dose–response models.
Based on goodness-of-fit criteria, the exponential model was the best fitting model for
the HCoV-229E (k = 0.054) and for HRV-39 datasets (k = 1.0), whereas the Laplace
approximated BP model followed by the exact and Stirling approximated BP models
are preferred for both the HRV-16 (α = 0.152 and β = 0.021 for Laplace BP) and the
HRV-16 and HRV-39 pooled datasets (α = 0.2247 and β = 0.0215 for Laplace BP).
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1 INTRODUCTION

Although the current COVID-19 pandemic has once again
brought dose–response models into prominence (Van Damme
et al., 2021; Zhang & Wang, 2021), there is a long history
of the use of mathematical frameworks to model the infec-
tion risk of respiratory diseases. In general, the dose–response
models predict the probability of an infection or illness of a
proportion of the susceptible population when exposed to a
given dose, that is, the number of viral copies of a specific

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2023 The Authors. Risk Analysis published by Wiley Periodicals LLC on behalf of Society for Risk Analysis.

respiratory virus. These models are based on two principles:
the estimation of the intake dose of the infectious agent and
the estimation of the probability of infection under a given
intake dose. The two most commonly used dose–response
models for calculating the infection risk of respiratory viruses
are the exponential and β-Poisson (BP) models. Both models
assume a random distribution of the number of copies in the
exposed medium described by the Poisson probability dis-
tribution. The main difference between the exponential and
BP models is in the probability defining the host suscepti-

Risk Analysis. 2023;1–10. wileyonlinelibrary.com/journal/risa 1

https://orcid.org/0000-0003-0873-3201
https://orcid.org/0000-0002-5067-5538
mailto:amar.aganovic@uit.no
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/risa
http://crossmark.crossref.org/dialog/?doi=10.1111%2Frisa.14178&domain=pdf&date_stamp=2023-06-15


2 AGANOVIC AND KADRIC

bility p (%). The exponential model assumes that each host
has an equal probability of getting infected with a single dose
defined as

k =
1
p

(1)

where p (-) is defined as the number of ingested TCID50 doses
that will cause an infection, that is the infectious dose (ID). If
the exposed dose contains some number of d (TCID50) doses,
the total infection probability defined by the exponential
model is calculated according to the following exponential
equation:

P = 1 − e−k⋅d (2)

The modified exponential version known as Wells–Riley is
the classical and widely used model to quantitatively assess
airborne infection risk (Riley et al., 1978; Wells, 1955). The
Wells–Riley model implicitly calculates the airborne infec-
tion risk using the concept of quantum—one quantum is
defined as the number of inhaled IDs required to infect 63.2%
of susceptible persons in an enclosed space (d = p). The
exponential Wells–Riley model has extensively been used
to evaluate the airborne infection risk of respiratory dis-
eases (Azimi et al., 2020; Gao et al., 2016; Patterson et al.,
2017; Wagner et al., 2009). Although the exponential model
assumes that all people are equally susceptible to infection
(i.e., p = constant), the BP function assumes that the host
susceptibility p holds a value between 0 and 1 and follows the
β distribution. Using the Kummer confluent hypergeometric
function 1F1(𝛼, 𝛼 + 𝛽,− d), the final expression of the exact
BP model is

P = 1 − 1F1
(
𝛼, 𝛼 + 𝛽,− d

)
(3)

Due to the numerical complexity in its model specifica-
tion and the difficulty in parameter estimation in the exact
BP model, an approximate version of the BP model was sim-
plified by Furmoto and Mickey (1967) using the following
Stirling approximation:

P(k > 0) = 1 −

(
1 +

d
𝛽

)−𝛼

(4)

Although the approximate BP model provides more flexi-
bility compared to the exponential model due to the increased
number of parameters, the Stirling approximation restricts
this model to the general rules of 𝛽 ≫ 1 and 𝛼 ≪ 𝛽. How-
ever, this approximation accuracy remained largely ignored
in practice as the rules were considered too general to follow.
Not until exactly 50 years after the approximate model
was published by Xie et al. (2017) provide specific rules for
which the approximate BP model worked with high accuracy.
Namely, when validated against 85 datasets, the study by
Xie et al. (2017) showed that an accurate approximation

was achieved under the following constraints: 𝛽 > (22 ⋅ 𝛼)0.5

for 0.02 < 𝛼 < 2. While revisiting studies applying and
recommending the Stirling approximated BP model for
some human respiratory viruses (Jones & Su, 2015), it was
observed that the majority of the approximate BP did not
comply with the requirements defined by Xie et al. (2017).
To refrain from these requirements while also preserving the
simplicity of an approximate model without sacrificing the
quality of adequacy, this study attends to exploit the Laplace
approximation of Kummer hypergeometric function in the
exact BP model rather than adhering to the conservative
Stirling approximation. The explicit and relatively simple
analytical solution to the Laplace approximation of the Kum-
mer hypergeometric function was introduced by Buttler and
Wood (2002). This study also demonstrated that the Laplace
approximation generates relative errors of no more than 0.1%
compared to the exact Kummer hypergeometric function,
even for a wide range of conditions, including quite small
values of 𝛼 and 𝛽 near 1 (Butler & Wood, 2005). Therefore,
one of the objectives of this study is to utilize the Laplace
approximation of the Kummer hypergeometric function in
the exact BP model and compare this novel approach to
the Stirling approximated BP model and exponential model
for dose–response datasets of human respiratory viruses
when the requirements set by Xie et al. (2017) are not met.
The datasets of human respiratory airborne viruses avail-
able in the literature for human coronavirus (HCoV-229E)
and human rhinovirus (HRV-16 and HRV-39) are used
to compare the four dose–response models. For practical
purposes, the outputs of the four dose–response models are
also compared when coupled with a mass-balance model to
simulate the long-distance airborne infection risk inside a
classroom.

2 METHODS

2.1 Data selection

The outcome of interest was human challenge studies report-
ing dose–response data for infectious respiratory viruses.
Publications with datasets that facilitated further analysis
included the exposure doses, the total inoculated humans per
dose, and the number of infected humans per dose, or the pub-
lications had sufficient data to determine these parameters.
Data met the following conditions for dose–response analy-
sis: (i) At least three dose levels were used and (ii) the number
of doses with a response rate other than 0% or 100% was
equal to or greater than the number of dose–response model
parameters. These conditions are consistent with recommen-
dations by Haas et al. (1999). Studies were identified through
searches of the PubMed and Web of Science databases and by
cross-referencing cited references. Amar Aganovic reviewed
all studies to assess whether studies met the data conditions
for dose–response analysis. The search procedure resulted in
finding two studies reporting dose–response models derived
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COMPARISON OF FOUR DOSE–RESPONSE MODELS 3

TA B L E 1 Dose–response datasets selected from the literature.

Type (Reference) Age Dose (TCID50) Tested Positive Negative

HCoV-229E
(Bradburne et al.,
1967)

18–50 4.0 5 2 3

5.0 6 1 5

15.8 9 6 3

31.6 6 4 2

HRV-39 (D’Alessio
et al., 1984)

>18 0.01 5 1 4

0.1 2 0 2

1.1 5 3 2

2.2 3 3 0

110 5 5 0

1100 15 15 0

11,000 3 3 0

HRV-16 (Hendley
et al., 1972)

>21 (antibody-free
volunteers)

0.05 2 0 2

0.15 4 1 3

0.5 7 5 2

1.5 19 18 1

5 1 1 0

50 20 19 1

HRV-16 (Hendley
et al., 1972)

>21 (low antibody
volunteers)

0.05 6 0 0

0.15 6 2 4

0.5 13 7 6

1.5 26 21 5

5 8 5 3

50 37 33 4

from intranasal inoculation of human coronavirus (HCoV-
229E) and human rhinovirus (HRV-16 and HRV-39). The
data consisting of the number of exposed doses, totally
exposed, and infected individuals in each trial are presented in
Table 1.

2.2 Laplace approximation of the Kummer
hypergeometric function

The Laplace approximation of the Kummer hypergeometric
function when applied to the exact BP will have the following
form (Butler & Wood, 2002):

P (k > 0) = 1 − 1F1
(
𝛼, 𝛼 + 𝛽,−d

)
(5)

where the Laplace approximation of the Kummer hypergeo-
metric function [6]:

1F1
(
𝛼, 𝛼 + 𝛽,−d

)
=
(
𝛼 + 𝛽

)𝛼+𝛽−0.5
⋅ z−0.5 ⋅

( y
𝛼

)𝛼
⋅

(
1 − y

𝛽

)𝛽

⋅ e−de⋅y

(6)

and

y =
2 ⋅ 𝛼

𝛼 + 𝛽 + d +
√(

𝛼 + 𝛽 + d
)2
− 4 ⋅ 𝛼 ⋅ d

(7)

z =
y2

𝛼
+

(1 − y)2

𝛽
(8)

2.3 Dose–response model fit and evaluation

The model parameters k, α, and β were determined by
fitting compiled experimental datasets using the follow-
ing maximum likelihood estimation (Holcomb et al., 1999;
McCullagh & Nelder, 1989):

Y = 2 ⋅
∑
i=1

(mi ⋅ ln

(
mi

ni ⋅ Pi

)
+ (ni − mi) ⋅ ln

(
ni − mi

ni − Pi ⋅ ni

)

(9)
where for each trial i, we have a dose 𝑑𝑖 and a group of 𝑛𝑖 vol-
unteers of which 𝑚𝑖 are infected. Pi is the value obtained from
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4 AGANOVIC AND KADRIC

the exponential and the BP models. The goodness-of-fit esti-
mates of the model parameters are those values that minimize
Y . The performance of the neural network is then compared
to the better fit model by the following Akaike information
criterion (AIC) (Akaike, 1974):

AIC = 2 ⋅ k − 2 ⋅ l (10)

where k is the number of parameters in the model, and l is the
log-likelihood:

l =
∑
i=1

(mi ⋅ ln (Pi) + (ni − mi) ⋅ ln (1 − Pi) (11)

To determine whether one model mi is statistically bet-
ter than other models, we will use the relative likelihood by
exponentiation of the ΔAIC = AICi − AICmin:

li = e

(
−

1

2
⋅ΔAIC

)
(12)

This allows us to calculate the relative probability of each
model by normalizing each likelihood value:

p (mi) =
li∑M
j li

(13)

where M is the total number of candidate models (Burnham
& Anderson, 2004). If p(mi) > 0.95, then candidate model mi
is considered significantly better than the other. The ability
to pool data for the exponential and BP model is assessed
via the difference between the deviance of the pooled dataset
𝑌𝑝𝑜𝑜𝑙 and the sum of each individual optimized deviance
(𝑌1, 𝑌2, …) and Δ is compared to a Χ2 distribution with
df = (sum of the number of parameters used in fitting indi-
vidual datasets) ‒ (the number of parameters used in fitting
the pooled dataset) (Watanabe et al., 2010):

Δ = Ypool − (Y1 + Y2 +⋯) (14)

Confidence intervals for parameters for each model were
determined with bootstrapping methods.

2.4 Airborne infection risk

Typically indoor airborne transmission risk models are either
created using a simplified approach by analytically solving
the conservation of viral concentration equations for the con-
taminants under quasi-ideal and quasi-uniform assumptions
while not considering the airflow dynamics inside the box
(Aganovic et al., 2021; Aganovic, Bi, et al., 2022; Aganovic,
Cao et al., 2022; Aganovic et al., 2023). The main assump-
tion of this mode is that the virus-carrying aerosols uniformly
and instantaneously dispersed across space. If n denotes the
number of RNA viral copies in the ambient air, the unique
solution of viral concentration in an indoor environment with

complete mixing ventilation at time t, n(t) is calculated as

n (t) = n0 ⋅ e−(
∑
𝜆)⋅t +

S
V
⋅

{
1∑
𝜆
−

1∑
𝜆
⋅ e−(

∑
𝜆)⋅t

}

(15)
where n0 is the initial viral concentration (

RNA

m3
) at time

t = 0. The removal terms due to ventilation 𝜆vent(h
−1), the

aerosol deposition rate 𝜆dep(h−1), the viral inactivation rate
𝜆inact(h

−1), and respiratory absorption 𝜆abs(h
−1) are summed

into one term called the infectious virus removal rate for
complete mixing

∑
𝜆(h−1):

∑
𝜆 = 𝜆vent + 𝜆dep + 𝜆inact + 𝜆abs (16)

while S (
RNA

h
) is the source emission rate of aerosolized

RNA copies. For the sake of brevity, the equations for cal-
culating the removal terms and the source emission rate
are not repeated here. All the equations can be found in
recent publications (Aganovic et al., 2023). In the absence
of data on the relationship between TCID50 and the number
of RNA copies for HCoV-229E and HRV 39 and 16, we used
data for the SARS-CoV-2 wild strain for which 1 TCID50 ≈

104 RNA copies (Sender et al., 2021) for human coronavirus
and rhinovirus FEB 3 for human rhinovirus for which 1
TCID50 = 53797 RNA copies (Parker et al., 2015). Thus,
the airborne dose (TCID50) after a time interval t(s) can be
calculated as d(t) = 10−4 ⋅ n(t) for human coronavirus and
d(t) =

1

53797
⋅ n(t) for human rhinovirus. To determine the

probability of infection (P, %) as a function of the exposure
time (t) of susceptible people, the inhaled viral concentra-

tion IR ⋅
T
∫
0

d(t)dt was integrated over time and then input into

the three infection risk (Equations 2–5). IR is the inhalation
rate of the exposed subject, which was assumed to be the
inhalation rate for resting and standing averaged at 0.52 m3/h
(Adams, 1993).

To assess the relative impact of different models on air-
borne transmission risk, a simple case study was investigated
with the same dimension characteristics and the number of
persons present for each case considered. The simple scenario
consisted of a classroom with an area of 64 m2 and 3 m height
with 1 infected and 20 susceptible persons present. As only
long-distance airborne transmission risk is considered, all the
persons were distanced 1.5 m. The time exposure considered
was 180 min. The indoor temperature was in the range of
20–25◦C (Aganovic et al., 2023).

3 RESULTS

3.1 Dose–response model for human
coronavirus HCoV-229E

The exponential model was the best fitting model for the
HCoV-229E datasets from the study by Bradburne et al.
(1967) and significantly better (p = 0.99) fit than the second-
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COMPARISON OF FOUR DOSE–RESPONSE MODELS 5

TA B L E 2 Comparison of estimated dose–response models based on goodness-of-fit to the observed human coronavirus.

Dataset Model Y AIC Critical χ2 Good fit? Parameters ID50 Best fit model rank

HCoV-229E
(Bradburne
et al., 1967)

Exponential 2.41 37.64 7.81 Yes k = 0.054 12.83 1

Stirling
BP

1.45 48.68 5.99 Yes 𝛼 = 0.7858 10.785 4

𝛽 = 7.6162

Exact
BP

1.44 48.67 5.99 Yes 𝛼 = 0.7269 10.67 2

𝛽 = 7.23

Laplace
BP

1.44 48.67 5.99 Yes 𝛼 = 0.7306 10.67 3

𝛽 = 6.5534

Abbreviations: AIC Akaike information criterion; BP, β-Poisson.

F I G U R E 1 The dose–response model fitted to the dataset for human coronavirus. BP, β-Poisson.

best ranked model—the Stirling approximated BP model
(Table 2). The Stirling approximated BP model complied
with the specific rules provided by Xie et al. (2017) for
accurate approximation. There was no significant differ-
ence among the exact, Stirling, and Laplace approximated
BP models for this dataset (p < 0.95), as shown by the
dose–response lines overlapped in Figure 1.

The dose–response models for the HCoV-229E datasets
from the study by Bradburne et al. (1967) are shown in
Figure 1.

3.2 Dose–response model for the pooled
datasets of human rhinovirus HRV-39 and
HRV-16

The exponential model was the best fitting model for the
variant HRV-39 (Hendley et al., 1972), but it was not signif-
icantly a better fit than the rest of the BP models (p < 0.95),
as shown in Table 3. The Stirling approximated BP model
did not comply with the specific rules provided by Xie
et al. (2017) for accurate approximation. On the contrary,
for both the antibody and low antibody HRV-16 datasets,
the goodness-of-fit criteria did not approve the exponential

model (Y= 41.27> χ2 = 11.07), whereas the Laplace approx-
imated BP model was the best fitting model. For both the
antibody-free and low body HRV-16 datasets, there was no
significant difference between the Laplace approximated BP
model and Stirling approximated BP model; however, in the
Stirling approximated BP 𝛼 was larger than 𝛽. As the differ-
ence between the pooled model’s deviance and the sum of
the individual models’ deviances was larger than the critical
χ2 for the exponential model, both the HRV-39 and HRV-
16 datasets could not be pooled for the exponential model.
For the rest of the three BP models, this was not the case as
there was no statistically significant evidence to reject the null
hypothesis.

The dose–response models for the pooled datasets of
human rhinovirus are shown in Figure 2. The Laplace BP
model was the best fitting model for the pooled datasets
with a deviance of Y = 2.0. There was no significant dif-
ference between the Laplace and Stirling approximated BP
models (p < 0.95). The Stirling approximated model did
not again meet the criteria for an accurate approximation
(𝛼 > 𝛽). The fit for the exact BP model was rejected for
the pooled dataset. Therefore, the Laplace approximate is the
final recommended model for the dose–response assessment
of human rhinovirus.
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6 AGANOVIC AND KADRIC

TA B L E 3 Comparison of estimated dose–response models based on goodness-of-fit to the observed human rhinovirus.

Dataset Model Y AIC Critical χ2 Good fit? Parameters ID50

Best fit model
rank

HRV-39
(D’Alessio
et al., 1984)

Exponential 5.5 20.03 12.59 Yes k = 1.0 0.693 1

Stirling BPa 4.87 23.61 11.07 Yes 𝛼 = 0.7251 0.278 2

𝛽 = 0.1734

Exact BP 5.5 24.23 11.07 Yes 𝛼 = 0.00003 0.692 4

𝛽 = 0.00003

Laplace BP 5.0 23.74 11.07 Yes 𝛼 = 1.4814 0.696 3

𝛽 = 0.01

HRV-16
(D’Alessio

et al., 1984)b

Exponential 41.27 72.92 11.07 No k = 1.0 0.693 4

Stirling BPa 4.95 41.59 9.48 Yes 𝛼 = 0.701 0.189 2

𝛽 = 0.1123

Exact BP 9.41 46.05 9.48 Yes 𝛼 = 0.0582 0.722 3

𝛽 = 0.06

Laplace BP 1.47 38.13 9.48 Yes 𝛼 = 0.2795 0.313 1

𝛽 = 0.0072

HRV-16
(Hendley

et al., 1972)c

Exponential 106.4 196.40 11.07 No k = 0.1384 5.0 4

Stirling BPa 5.80 100.77 9.48 Yes 𝛼 = 0.3738 0.408 2

𝛽 = 0.0758

Exact BP 9.67 104.65 9.48 Yes 𝛼 = 0.02 0.834 3

𝛽 = 0.022

Laplace BP 3.54 98.52 9.48 Yes 𝛼 = 0.152 0.296 1

𝛽 = 0.0213

Pooled Exponential 202.1 331.74 28.86 Rejected k = 0.2031 3.413 4

Stirling BPa 20.48 152.59 27.57 Yes 𝛼 = 0.4554 0.289 2

𝛽 = 0.0807

Exact BP 31.15 163.26 27.57 No 𝛼 = 0.0241 0.767 3

𝛽 = 0.0259

Laplace BP 18.68 150.79 27.57 Yes 𝛼 = 0.2247 0.334 1

𝛽 = 0.0215

aDid not comply with rules provided by Xie et al. (2017) for accurate approximation of the Stirling function.
bAntibody-free volunteers.
cLow antibody volunteers.
Abbreviations: AIC Akaike information criterion; BP, β-Poisson.

F I G U R E 2 The dose–response model fitted to the pooled datasets for human rhinovirus. BP, β-Poisson.
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COMPARISON OF FOUR DOSE–RESPONSE MODELS 7

F I G U R E 3 Long-distance airborne cross-infection risk for human
coronavirus calculated based on four different dose–response models at two
different viral loads. BP, β-Poisson.

3.3 Airborne infection risk

We compared the different dose–response models for evalu-
ating airborne infection risk for the case scenario explained in
Section 2.3. Figure 3 shows the four different dose–response
models for two different viral loads of human coronavirus:
(i) cv = 109 RNA∕mL, corresponding to doses in the range
d = 0.02 − 0.17 TCID50 and (ii) cv = 1011 RNA∕mL cor-
responding to doses in the range d = 2 − 17 TCID50,
respectively. As may be seen from Figure 2, for the lower
viral load cv = 109 RNA∕mL, the differences between the
three BP models are relatively large, whereas for higher viral
loads cv = 109 RNA∕mL, these differences almost become
negligible. On the other hand, regardless of the dose range,
the exponential model that did not comply with the goodness-
of-fit criteria for the pooled data underestimated the airborne
cross-infection risk substantially compared to the BP models.

The reason for this may be explained by the differences in
the steepness of the gradients of the dose–response curves for
human coronavirus at lower doses d = 0.02 − 0.17 at cv =

109 RNA∕mL versus the gradient steepness at higher doses
d = 2 − 17 TCID50 at cv = 1011 RNA∕mL. The differences
in the gradient steepness of the four models at low doses can
be observed in Figure 1.

Figure 4 shows the four different models for
human rhinovirus for two different viral loads: (i)

F I G U R E 4 Long-distance airborne cross-infection risk for human
rhinovirus calculated based on four different dose–response models at two
different viral loads. BP, β-Poisson.

cv = 109 RNA∕mL, corresponding to doses in the range
d = 0.0038 − 0.0303 TCID50 and (ii) cv = 1011 RNA∕mL
corresponding to doses in the range d = 0.38 − 3.03 TCID50,
respectively. Similarly, as for the human coronavirus, the
lower viral load cv = 109 RNA∕mL, the differences between
the three BP models are relatively large, whereas for higher
viral loads cv = 109 RNA∕mL, these differences almost
become negligible (Figure 4). Although rejected for the
pooling criteria, we compared the exponential model to the
BP models, and as in the case of the human coronavirus, it
underestimated the airborne cross-infection risk substantially
when compared to the BP models.

Again, the reason for this may be explained by the differ-
ences in the steepness of the gradients of the dose–response
curves for human rhinovirus at lower doses versus the
gradient steepness at higher doses, as shown in Figure 2.

4 DISCUSSION

To control a pandemic outbreak, it is necessary to under-
stand how the virus transmits to a susceptible individual
and eventually infects the community. To accurately quan-
tify transmission risk, a dose–response function should be
based on experimental data that represent this process. In the
case of coronaviruses and rhinoviruses, transmission occurs
through exposure to respiratory fluids carrying the infectious
virus (Leung, 2021). The virus-carrying respiratory droplets
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8 AGANOVIC AND KADRIC

and aerosols can be produced through all expiratory activ-
ities, including breathing, talking, coughing, and sneezing,
from both symptomatic and asymptomatic individuals. These
infectious aerosols and droplets may come into direct con-
tact with susceptible individuals by being inhaled from the
surrounding air or by indirect contact when the suscepti-
ble individual touches a surface contaminated by infectious
respiratory fluid (Wang et al., 2021).

Once recognized as the main route of COVID-19 spread,
identifying the relative importance of different engineering
controls targeting the spread of COVID-19 in indoor environ-
ments requires accurate prediction of the transmission risk.
In this context, there is a need for predictive risk assess-
ment tools for better understanding when planning effective
strategies to minimize risks associated with airborne trans-
mission. The concept behind the mathematical tools used so
far for modeling airborne transmission risk is based on cou-
pling dose–response models with a box model containing a
source and sink of contaminants (Aganovic et al., 2023). The
infection risk inside the box can be modeled with a simplified
approach by analytically solving the conservation of mass
equations for the contaminants under quasi-ideal and quasi-
uniform assumptions/conditions, as shown in Section 2.3. On
the other hand, the two most extensively used dose–response
models for calculating the infection risk of respiratory viruses
are exponential and the Stirling approximated BP models
(Watanabe et al., 2010; To & Chao, 2010).

It is important to emphasize the difference between
the exponential and BP models at higher doses as the
exponential-based Wells–Riley model was almost exclu-
sively used during the pandemic for both prospective and
retrospective risk assessments. The exponential Wells–
Riley model does not take into account the variation in
host susceptibility; rather it assumes that all individu-
als exposed to a respiratory virus respond equally to the
same amount of the intake dose, which is not the case
in reality (van Slujis et al., 2017). Unlike the exponential
model, the BP model accounts for interindividual variabil-
ity of the immune status and the host’s sensitivity to the
pathogen.

The only existing dose–response model for SARS-CoV
far originated from datasets for mice and not for humans
(Watanabe et al., 2010). In the absence of human challenge
data for SARS-CoV-2 during the pandemic, the exponen-
tial dose–response model derived by Watanabe et al. (2010)
served as a base for the many risk assessments based on
the exponential Wells–Riley models (Buonanno, Morawska
et al., 2020; Bazant & Bush, 2021; Buonanno, Stabile et al.,
2020; Cortellessa et al., 2021; Schijven et al., 2021) How-
ever, In studies with animal models, there are additional
host-specific concerns. Despite similarities differences in
susceptibility between mice and humans exist for respira-
tory viruses (Heykers et al., 2019; Zhang et al., 2021),
including SARS-CoV-2. Therefore, a fundamental dose–
response relation is missing for a more realistic evaluation
of the human-to-human transmission risk of coronavirus. On
the other hand, rhinovirus dose–response models based on

datasets from human challenge studies have been developed
(Patterson et al., 2017). However, the datasets were tested for
an approximate BP dose–response model that did not comply
with the Stirling approximation that restricts this model to the
general rules of 𝛽 ≫ 1 and 𝛼 ≪ 𝛽. Furthermore, the existing
human rhinovirus dose–response models (Jones & Su, 2015)
did not even follow the requirements for an accurate approx-
imation under the following requirements: 𝛽 > (22 ⋅ 𝛼)0.5 for
0.02 < 𝛼 < 2 as defined by Xie et al. (2017). To refrain
from these requirements, we developed and tested a novel BP
model by using the Laplace approximation of the Kummer
hypergeometric function instead of the conservative Stirling
approximation. The models were additionally compared to
the BP model based on an exact calculation of the hyper-
geometric function. Based on currently available data, and
based on AIC, the BP exponential model was the best fitting
model for the HCoV-229E and for HRV-39 datasets, whereas
the Laplace approximated BP model followed by the exact
and Stirling approximated BP models are preferred for both
the HRV-16 and the HRV-16 and HRV-39 pooled datasets.
Still, as the Stirling approximated dose–response model did
not even follow the requirements for an accurate approxima-
tion, the novelty of applying the relatively simple Laplace
approximation has the added advantage of not being subject
to such restrictions. If it is supported or favored based on AIC
or some other objective criterion, the Laplace approximated
BP should be utilized to assess infection risk. However, all
three BP models varied substantially in between for very low
doses. Although this was not the case at higher doses, the
relatively low doses based due to assumed lower viral loads
present a more realistic scenario compared to the high dose
super-spreading events. On the other hand, the convention-
ally used exponential dose–response model generated lower
infection risk compared to the BP models by a substantial
amount for all datasets.

A methodological issue with the study is the low number
of human datasets for corona- and rhinovirus available in the
literature for modeling. However, human challenge studies
are rarely very large, and despite the small group numbers,
the dose–response relations are well defined. This study does
by no means offer a conclusive dose–response model for
either of the two viruses considered but rather amplifies the
importance of the differences between dose–response mod-
els, especially for low doses. Another limitation of this study
is that the human volunteers from the datasets used in this
study were administered through intranasal instillation. Still,
given sufficient fluid volume, intranasally instilled materials
have been shown to move to the lungs (Southam et al., 2002;
van Slujis et al., 2017). In studies with human volunteers, this
means the exposure conditions and doses administered should
reflect natural transmission conditions.

The case study presented in this analysis also highlights
some of the knowledge gaps that still need to be addressed in
terms of human corona- and rhinovirus exposure risks. Future
human challenge data studies should focus more on low-dose
data due to the following two reasons: (i) It is in low-dose
ranges that the dose–response models differ; (ii) low doses
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COMPARISON OF FOUR DOSE–RESPONSE MODELS 9

present a more realistic scenario compared to high doses for
risk assessment of airborne cross-infection risks.

5 CONCLUSION

The objective of this study was to fit dose–response models
for selected viruses capable of infecting the respiratory
tract to facilitate infection risk estimates. The datasets of
human respiratory airborne viruses available from the lit-
erature for human coronavirus (HCoV-229E) and human
rhinovirus (HRV-16, and HRV-39) are used to compare
the four dose–response models. BP. Based on goodness-
of-fit criteria, the exponential model was the best fitting
model for the HCoV-229E and for HRV-39 datasets,
whereas the Laplace approximated BP model followed by
the exact and Stirling approximated BP models are pre-
ferred for both the HRV-16 and the HRV-16 and HRV-39
pooled datasets. Despite negligible differences between
the BP models at higher doses, there were considerable
differences at low doses (n < 5.0 TCID50 for human coro-
navirus and n < 1.0 TCID50 for human rhinovirus). As
low doses present a more objective scenario compared to
the high dose super-spreading events, future human chal-
lenge data studies should focus more on low inoculation
doses.
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