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Abstract: Computer vision in consideration of automated and robotic systems has come up as a
steady and robust platform in sewer maintenance and cleaning tasks. The AI revolution has enhanced
the ability of computer vision and is being used to detect problems with underground sewer pipes,
such as blockages and damages. A large amount of appropriate, validated, and labeled imagery
data is always a key requirement for learning AI-based detection models to generate the desired
outcomes. In this paper, a new imagery dataset S-BIRD (Sewer-Blockages Imagery Recognition
Dataset) is presented to draw attention to the predominant sewers’ blockages issue caused by grease,
plastic and tree roots. The need for the S-BIRD dataset and various parameters such as its strength,
performance, consistency and feasibility have been considered and analyzed for real-time detection
tasks. The YOLOX object detection model has been trained to prove the consistency and viability
of the S-BIRD dataset. It also specified how the presented dataset will be used in an embedded
vision-based robotic system to detect and remove sewer blockages in real-time. The outcomes of an
individual survey conducted at a typical mid-size city in a developing country, Pune, India, give
ground for the necessity of the presented work.

Keywords: sewer monitoring; S-BIRD dataset; object detection; computer vision; YOLOX training;
AI techniques

1. Introduction

An underground sewerage system is an essential feature of town planning as it
transports the wastewater away from its source for safe disposal in the environment
with minimum impact on the surroundings. However, underground pipe systems have
maintenance problems. Sewer blockages and various damages such as cracks, fractures,
joint displacement, etc. all can cause overflow, leaching of sewage into soil and inter-
ference with drinking water supply lines. Poor maintenance also leads sewer pipes to
deteriorate early.

Therefore, it is important for any responsible authority to ensure that sewers are in
good condition and run properly. The Ministry of Housing and Urban Affairs conferred
Standard Operating Procedure (SOP) for cleaning sewers and septic tanks in November
2018 [1]. Regular inspections are necessary to identify any event of crack or blockage so
that corrective measures are taken in time to avoid a crisis. In the past, manual inspection
was often used followed by circuit television (CCTV) which has been one of the most used
methods in the US and European municipalities in recent decades. However, these methods
are labor-intensive and error-prone.

Artificial Intelligence (AI) is used in computer vision technology that consists of
intelligent algorithms to interpret meaningful digital information from images and videos,
which, when combined with automated robotic systems, provide powerful vision and
intelligence to detect various sewer problems and to plan corrective actions. However,
training AI-based Deep Neural Object Detection Models and achieving sewer inspection
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objectives based on them requires large amounts of appropriate and labeled data. A dataset
is a collection of featured and significant information in any field that is used to learn AI
models for purposes such as detection, classification, regression, clustering, segmentation,
etc. Data is usually in the form of images, text, numbers, time series, graphs, etc. The
performance of the best detection model trained using a poor dataset is always inferior
to the performance of a poor detection model trained using a highly featured and quality
dataset. At the center of every object detector, whether single-stage or two-stage, is a
classifier that secures the identities of all desired object classes. Clearly, the accuracy rate
and performance of any detection model are highly dependent on the quality of the input
imagery dataset.

Therefore, relevant dataset collection is a very important prerequisite for any AI model
to predict outcomes with the desired accuracy and also has emerged as a prominent research
theme in respective research communities. This involves data acquisition or collection,
appropriately labeling the data and finally enhancement of obtainable data or models [2].
Due to the open-access research policy of many funding agencies, a large amount of data
pertaining to many fields is available on various platforms. In many instances data may
be available from data-sharing platforms like DataHub [3], Kaggle datasets [4], Mendeley
Data [5], etc. and data searching platforms like Google Dataset Search [6], IEEE DataPort [7],
etc. After tackling several challenges in data search, a researcher can succeed in obtaining
the required dataset [8]. However, the European Commission recognized the difficulties in
obtaining and tracing open data in 2011 and started to regulate data publishing activities in
Europe [9]. Six snags in obtaining and tracing open data were identified: deficient details
about the existence and accessibility of data, ambiguity about data ownership by public
authorities, ambiguity about reuse terms, critical nature and cost of data, complex licensing
processes and restrictive fees, specific reuse agreements with commercial members and
reuse restrictions for state-owned companies.

Specifically, data acquisition includes tasks such as searching, augmenting and gen-
erating as needed, and in our case, the dataset is not only created due to unavailability
but also prepossessed, augmented and labeled individually for classification and detection
tasks. Manual or automated techniques are used for dataset generation, while synthetic
data is generated to fill the lacking portion of the dataset. A standardized or benchmark
dataset is always a central aspect to obtain the best-fit learning models and the application
of transfer learning techniques with the developed dataset plays an important role in the
advancement of AI-based models [10]. In computer vision, a dataset of digital images
containing object class information is grouped as needed into a training set, validation
set, and test set to serve as input to a detection model for learning, evaluation, and testing
purposes, respectively. A workflow with decision-making for the S-BIRD dataset presented
in this paper is shown in Figure 1, which displays the process from generation requirements
to the training results.

In this paper, a new critical multi-class imagery dataset S-BIRD (Sewer-Blockages
Imagery Recognition Dataset) is presented to identify sewer blockages caused by grease,
plastics and tree roots. The lack of a standardized matrix for algorithms applied in the
real-world development of sewer monitoring and maintenance systems is a critical issue,
and the submitted dataset addresses this. So, the S-BIRD sets the standard for detection
outcomes in real-time scenarios. Validation results of the S-BIRD dataset are given and
development on an embedded vision platform to overcome actual sewer blockages problem
is considered. In the conferred work, all computer vision and model training operations are
implemented using Python programming, OpenCV, PyTorch framework, and some other
machine learning libraries on the DGX workstation system including the Linux platform.
Both the presented dataset and the corresponding results highlight the importance and
necessity of such research work for the treatment of wastewater sewer blockages.
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sewer inspection works was carried out and that gave information about practical issues 
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It was concluded that sewer blockage is the main issue of sewers in Pune and to date, 
there is no robust algorithm and robotic system available for both real-time detection and 
removal of sewer pipe blockages. 

Unlike many Western countries, India has single sewer lines for both sewage and 
stormwater. Thus, this combined drainage system is a big problem, particularly for clean-
ing and removing blockages. 

In order to develop the function of detecting and identifying sewer blockages in real 
time, authenticated datasets are a prerequisite. Thus, all available means were used to 
search for datasets. Several municipalities and various authorities were also contacted for 
relevant data information, but no concrete work and datasets that may be used for real-
time detection of sewer blockages were available. Furthermore, it was not possible to ac-
quire a specific dataset for Indian conditions focusing on the issue of sewer blockages. The 
harmful, unhygienic and foul smell of a sewer environment is always a major concern 
when capturing frames of sewer problems for dataset generation. It is appropriate to im-
ply that independent binding, copyright or confidentiality issues relating to earlier works 
are also responsible for the unavailability of the datasets. 

Sewer blockages are mainly caused by grease, plastic and tree roots. Other elements 
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Figure 1. Workflow diagram of the presented S-BIRD dataset.

2. Needs of the S-BIRD Dataset

In earlier work, a survey on sewer robotic systems and computer vision practices in
sewer inspection works was carried out and that gave information about practical issues
concerning sewerage systems under the Pune Municipal Corporation (PMC), India [11]. It
was concluded that sewer blockage is the main issue of sewers in Pune and to date, there is
no robust algorithm and robotic system available for both real-time detection and removal
of sewer pipe blockages.

Unlike many Western countries, India has single sewer lines for both sewage and
stormwater. Thus, this combined drainage system is a big problem, particularly for cleaning
and removing blockages.

In order to develop the function of detecting and identifying sewer blockages in real
time, authenticated datasets are a prerequisite. Thus, all available means were used to
search for datasets. Several municipalities and various authorities were also contacted
for relevant data information, but no concrete work and datasets that may be used for
real-time detection of sewer blockages were available. Furthermore, it was not possible to
acquire a specific dataset for Indian conditions focusing on the issue of sewer blockages.
The harmful, unhygienic and foul smell of a sewer environment is always a major concern
when capturing frames of sewer problems for dataset generation. It is appropriate to imply
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that independent binding, copyright or confidentiality issues relating to earlier works are
also responsible for the unavailability of the datasets.

Sewer blockages are mainly caused by grease, plastic and tree roots. Other elements
inside the sewer mix up with the black water and become difficult to identify. So, other
elements are usually treated as a blackish sewer blockage, which is identified as black
grease in the dataset. We also considered imagery data of grease, plastic and tree roots
as mentioned above in the dataset S-BIRD, which is used for training of object detection
model to locate and recognize the sewer blockages in real-time.

Obviously, blind systems cannot be as efficient as vision-based sewer robotic systems.
Figure 2 shows the concept of constructing the S-BIRD dataset that takes grease, plastic and
tree roots into account.
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Figure 2. S-BIRD dataset for main sewer blockages.

3. Tools in S-BIRD Dataset Creation

In this section, the tools involved in creating the S-BIRD dataset are provided for
detailed viewing.

3.1. Sewer Pipeline

In an unhygienic, muddy and smelly sewer pipe environment due to sewage, toiletry,
sanitation, and stormwater from combined drainage systems, capturing real-time frames of
sewer issues was a very difficult task for an individual. For simulating a sewer network,
PVC pipelines of 200 mm diameter, which are widely used in residential sewers, were used
to construct a typical sewer network. The constructed sewer pipeline is shown in Figure 3.
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In this case, there is no big difference between a real sewer environment and a labo-
ratory setup or simulated sewer network. Exactly the same blockage types with inherent
nature have been created inside the sewer network consisting of all featured information.
The only difference was that the simulated sewer network did not have the stench and
noxious atmosphere. The detection model trained using the developed S-BIRD dataset in
the respective sewer network is capable to work in practical situations.

3.2. Sewer Inspection Camera

Real-time frames of sewer barriers that include grease, plastics, and tree roots are
captured by the watertight sewer camera shown in Figure 4, and its characteristics are
given in Table 1.
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Table 1. Specifications of a utilized sewer camera.

Facets Details

camera dimension 23 mm × 120 mm

camera light 12 modifiable white LEDs

watertight grade IP68

vision angle 140 degree

This camera sensor is capable of capturing real-time frames at different angles not only
for the intended aspect ratio but also for varying brightness due to attached modifiable
white LEDs.

4. A Novel S-BIRD and Corresponding Results

This section discusses compiled imagery data (Section 4.1), its arithmetic details
(Section 4.2), preprocessing and augmentation techniques applied to captured frames
(Section 4.3), and annotated heatmap and object count histograms (Section 4.4).

4.1. Imagery Data Collection

All images of sewer blockages are captured under different lighting conditions and
from different angles to gather the necessary perceptions and features. Figure 5 reveals
some blockage frames of tree roots in the newly created dataset.

Dissimilar colored plastic is captured in the picture and key information for the
detection and recognition task is achieved as shown in Figure 6.

There could be other elements within the black sewage mass such as plastic bags or
other debris, but they look completely blackish as they are often mixed with black water
and grease.

Figure 7 exhibits grease blockage frames capturing diverse and significant colored
information. There are a number of sources for grease-type sewer blockages which mainly
include wastage from domestic and high- or low-density production plants that produce
huge chemical and processed waste.
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4.2. Arithmetic Details of Captured Frames

The arithmetic details of the captured frames are listed in Table 2 for further imple-
mentation. Certainly, annotating the objects in each captured frame was time-consuming
but the task was still performed individually with high skill and accuracy without labeling
errors. The annotations contain information about the location, i.e., center x, center y, width,
height and class of objects present in each frame of the S-BIRD dataset.

Table 2. Arithmetical details of captured frames.

Captured frames

Object Class (Sewer Blockage Type) Captured Frames

Tree roots 2295

Plastic 2392

Grease 2353

Total frames 7040

Annotations 10,233 (Average = 1.5 per frame)

Average frame size 0.08 Megapixels

Mean frame ratio 352 × 240 (wide)

Angle of diagonal 0.598 radian = 34.3◦

Length of diagonal 426 pixels

Aspect ratio Class 1.467:1

Pixel density 9 pixels/mm or 230 pixels/inch

Figure 8 stipulates the total number of annotations for class balance, i.e., annotations
for each sewer block type and these are 4131 for grease, 3471 for tree roots and 2631
for plastic.
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Figure 8. Annotation figures for class (sewer blockage type) balance.

The location of annotations, i.e., bounding boxes for considered blockage types in all
captured frames is shown by heatmap in Figure 9. A heatmap represents informative data
in a graphical or two-dimensional form where a color-coding system is used to represent
values, and in the above heatmap, values are annotation details. It confers a quick visible
summary to perceive the intricate nature of the dataset. Here, the correlation between
annotated values is made easier to understand using colors in a heatmap compared to
numerical tables. The yellow color denotes a highly positioned region of annotations
whereas the light green color indicates lower positioning. All depicted heatmaps show that
the locations of annotations are mostly in the center of the frames of object classes.
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The imagery data is balanced into three groups such as training data with 4928 frames
(70%), validation data with 1408 frames (20%) and testing data with 704 frames (10%) as
shown in Figure 10.
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Table 3 provides annotation details for the classes in the training data.

Table 3. Annotations for training data.

Object Class (Sewer Blockage Type) Annotations

Grease 2920

Tree roots 2455

Plastic 1821

Total 7196 (Average = 1.5 per frame)
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4.3. Preprocessing and Augmentation Techniques

Here, two preprocessing techniques have been implemented on captured frames such
as auto-orientation of pixel data, i.e., discarding the EXIF rotation and validating the pixel
sort as well as resizing to 416 × 416 (px) by stretching the frame without losing source
frame information. An image preprocessing benefits to reduce model training time and
speed up inference of detection models.

Here, two preprocessing techniques have been implemented on captured frames such
as auto-orientation of pixel data, i.e., discarding the EXIF rotation and validating the pixel
sort as well as resizing to 416 × 416 (px) by stretching the frame without losing source
frame information. Image preprocessing benefits from reduced model training time and
sped-up inference of detection models.

Figure 11 shows the aspect ratio distribution graph for the S-BIRD dataset and makes
clear that all frames are 416 × 416 (px), i.e., square in size.
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Further, image-level augmentation techniques have also been implemented to generate
new training instances from existing training data.

Figure 12a shows the output frame of the gray scaling applied 25 percent to the input
training frame which helps to increase the training variation but does not remove the color
information when making inferences. Salt and pepper noise, also known as impulse noise,
is applied to 5 percent of the pixels of the input frames as shown in Figure 12b which helps
the detection model to turn out to be more flexible for camera artifacts through training.
This noise involves adding some bright pixels to dark regions and some dark pixels to
bright regions of the frames. It also helps to prevent adverse effects and avoid overfitting.

To strengthen the detection model against light and camera setting changes, random
exposure adaptations were instigated between −25 and +25 percent for the input frame as
shown in Figure 12c.

Two advanced augmentation techniques, namely cutout and mosaic, were exploited as
shown in Figures 13a and 13b, respectively. Adding cutouts to training frames is extremely
useful for the detection model to be strong against the object occlusion state. For this, three
cutouts were inserted in 10 percent of each of the total sizes of the input frames. Next, the
mosaic technique helps the detection model to work well on small objects by joining several
images from the training set in collage [12]. In this, four different sewer block frames were
added in a single frame.
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Augmentation techniques facilitate enhancing the efficiency of the object detection
model by increasing the number and variegation of learning instances and related annota-
tions. These techniques also reduce training time and costs for search detection models. So,
discrete output versions have been generated for source frames.

In Table 4, the numerical details of training frames in S-BIRD are demonstrated after
applying preprocessing and augmentation techniques.

Table 4. Arithmetical details of training frames in S-BIRD after preprocessing and augmentation.

Terms Details

Total frames 14,765

Annotations 69,061 (Average = 4.7 per frame)

Average frame size 0.173 Megapixels

Mean frame ratio 416 × 416 (square)

Aspect ratio Class 1:1

Angle of diagonal 0.785 radian = 45◦

Length of diagonal 588 pixels

Pixel density 12 pixels/mm or 290 pixels/inch

The graph in Figure 14 shows the escalated annotations for each sewer block
type in S-BIRD’s training data, after using annotation techniques. Now there are
26,847 annotations for grease, 21,553 for tree roots and 20,661 for plastics making a total of
69,061 augmented annotations, i.e., bounding boxes. Total annotations have increased
by 61,865, i.e., 859.714%. Both preprocessing and augmentation techniques have been
implemented using OpenCV, a computer vision and machine learning library, along with
Python programming on the Linux platform from scratch to achieve the desired results.
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4.4. Annotated Heatmap and Object Count Histogram

Two important parameters, namely the annotated heatmap and the object count
histogram have been examined to assess the efficacy of the training data. The location of the
entire annotations for grease, plastic and tree roots in S-BIRD’s training data is illustrated
by heatmaps in Figure 15. The specified heatmap informs us of the utmost generic position
and weightage of all the annotations for revealed classes. From the color information of the
heatmaps, it can be seen that most of the annotation locations are at the far left and right of
both the top and bottom sides of the frames of object classes.
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A histogram is a chart that plots numeric data into bins represented by individual
columns. Figure 16 details the number of frames on the y-axis and bins, i.e., the number of
corresponding objects for all classes on x-axis, with the help of the object count histogram.
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The number of objects, i.e., annotations for both grease and tree roots blocks are
up to nine shreds as shown in Figure 16a,b. There is obviously one grease object for
1730 frames andfour to five grease objects for 1400 to 1600 frames as given in Figure 16a. In
total, 1926 frames contain a single tree root object and about 1500 frames contained three to
four tree root objects as shown in Figure 16b. The number of plastic objects varies up to
seven shreds as shown in Figure 16c in which four plastic objects are in 2494 frames and
perceptibly one plastic object in about 2200 frames.

Figure 16d represents the object count histogram of all classes where 11,339 frames
contain four to five objects. It also shows details for a much lower aggregate overall for
a single object in frames as compared to the ratio for 69,061 annotations. The findings
obtained for both parameters such as the annotated heatmap and the object count histogram
prove the high veracity and standard for each imagery data class in S-BIRD.

5. Training of Object Detection Model
5.1. Insight on Conformation of Object Detector Models

Ordinarily, object detectors have two important segments, the backbone with pretrain-
ing to extract the features of input frames and the head which utilizes feature maps to
predict classes and bounding boxes. Some layers are placed between the backbone and
the head of recent object detectors to collect feature maps from distinct phases known
as the neck. Object detectors with a backbone and densely predicted head are known as
single-stage detectors, such as YOLO and SSD, while two-stage detectors have a backbone
and head with dense and sparse predictions such as R-FCN, Faster R-CNN as shown in
Figure 17. However, since single-stage detectors are faster than two stage detectors, they are
used for multifarious real-time embedded applications. These object detectors embedded
in robotic artifices are utilized to detect various faults in the sewerage system [13,14].
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Table 5 lists some instances of the conformation parts in the object detector models.

Table 5. Instances of conformation parts in the object detector models.

Conformation Parts Details

Input frames, multi-scaled frames, frame patches

Backbones
CSPDarknet-53 [15], Darknet53 [16], ResNet-50, ResNet-152,

ResNet-10, GoogLeNet, Inception-ResNet-V2, EfficientNet-B0/B7,
DetNet-59, ThunderNet, CBNet, VGG16, ViT, etc.

Neck Bi-FPN, FPN, SFAM, PAN, etc.

Heads
Dense YOLO [17], SqueezeDet, DetectNet, SSD, RetinaNet, MatrixNet,

CenterNet, etc.

Sparse Mask R-CNN, R-FCN, Faster R-CNN [18], Cascade R-CNN, etc.
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The popular one-stage YOLO detection model is constantly being improved for better
performance. An advanced version of the YOLO detection model is the recently introduced
YOLOX which comprises three different basic embarkations, such as (a) anchor-free design
which uses a center-based approach with each pixel detection mechanism for the selection
of just one positive instance which then estimate four distances such as left, top, right, and
bottom from positives to the border, i.e., prediction consists of a single 4D vector to encode
the location of the bounding box at every foreground pixel, (b) decoupled head for classi-
fication and regression, and (c) advanced label allocation tactics namely SimOTA which
lessen the training time and evade other clarifier hyperparameters in the SinkhornKnopp
algorithm, making it faster and more efficient than its equivalents [19]. The performance of
YOLOX has been improved with addition of mosaic and mixup augmentation. YOLOv3
and Spatial Pyramid Pooling (SPP) layers with Darknet53 are employed as baseline by
YOLOX. This detection model of different sizes has attained consistent improvements
against all compatible counterparts when tested on modified CSPNet backbone in addition
to the Darknet53 backbone.

5.2. Training of YOLOX Using S-BIRD

So, the small YOLOX detection model in PyTorch framework allowing mobile deploy-
ment has been trained to detect the main types of sewer blockages such as grease, plastic
and tree roots using the newly developed S-BIRD. Annotations for sewer block types in
S-BIRD were implemented in Pascal VOC format as per the requirement to advance the
training process. The Tesla V100-DGXS-32GB GPU workstation was used as a training
platform via Docker Container with a defined image.

Table 6 makes available particulars on crucial traits in the YOLOX-s training process.

Table 6. Crucial traits in training.

Traits Values

learning model YOLOX-s

Annotation data type VOC

max_epoch 300

batch_size 16

fp16 True

num_classes 3

Params 8.94 M

Gflops 26.64

depth 0.33

width 0.5

input_size (640, 640)

random_size (14, 26)

nmsthre 0.65

degrees 10.0

translate 0.1

scale (0.1, 2)

mscale (0.8, 1.6)

shear 2.0

warmup_epochs 5

weight_decay 0.0005

momentum 0.9
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The results obtained for the timing and precision of the YOLOX-s trained model for
S-BIRD are given in Tables 7 and 8, respectively.

Table 7. Time results of the trained model.

Timing Parameters Outturns (Milliseconds)

Average forward time 3.19 ms

Average NMS time 0.88 ms

Average inference time 4.07 ms

Table 8. Precision results of the trained model.

Class (Sewer Block Type) Average Precision Map_5095 Map_50

grease 0.9004

0.7885 0.9005tree roots 0.8930

plastic 0.9081

From Table 7 and Figure 18, YOLOX-s has achieved 90.04% AP for grease blocks,
90.81% AP for plastic blocks, 89.30% AP for tree root blocks, and 90.05% mean-AP computed
at IoU (Intersection over Union) threshold 0.5. Another m-AP calculated over different
IoU thresholds, from 0.5 to 0.95 with a step of 0.05 is 78.85%. The best-fit model is selected
using cross-validation or rotation estimation technique [20]. The visual upshots of precisely
detected sewer blocks such as tree roots, plastic and grease, are delineated in Figure 19. Of
course, multiple sewer blockages in the same frame have also been considered for real-time
detection purposes. Overall, the obtained results of the YOLOX-trained model prove the
consistency and viability of the new S-BIRD dataset presented.
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5.3. Embedded Vision with S-BIRD

The embedded vision is a pioneering and comprehensive platform for real-world
visual implementations in the areas of home life equipment, health, daily services, security
through detection and tracking, etc. [21,22]. So, the object detection model trained using S-
BIRD will be a significant addition to existing or newly developed embedded vision-based
sewer robotic systems.
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PIRAT [23], KARO [24], KURT [25], MAKRO [26], KANTARO [27], SIAR [28], etc. are
some of the popular developments in the field of sewer robotics that serve the purpose
of sewer inspection. Figure 20 shows the block diagram of an automated system that
has a power-driven cutting tool to remove sewer blocks located by a detector trained
using S-BIRD.
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Here, Jetson nano has been selected as the embedded platform having a 4 GB GPU
card of 128-Cuda cores and is suitable for running deep neural-network-based object
detector models and for processing contiguous frames in real-time. Cameras such as a
webcam, arducam, or raspicam are used to capture the surrounding frames for the purpose
of navigation and processing, and then the output frames of detected sewer blockages are
displayed on the screen to a remote location as shown in Figure 21.

In order to solve the recurring problem of underground sewer barriers in the practical
world, a smart and comprehensive vision-based automation system with an AI detector
trained using S-BIRD is certainly capable of meeting the needs of responsible authorities of
any country.
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6. Conclusions

In conclusion, a new critical multi-class imagery dataset S-BIRD which includes frames
of main sewer blocks such as grease, plastic and tree roots is introduced to fulfill the need
for implementing computer vision to automated robotic systems for identifying blockages
in the sewerage pipes.

Arithmetic details for both compiled, as well as preprocessed and augmented data
are discussed. The obtained results for preprocessing and augmentation demonstrate the
increased number and variegation of learning instances and related annotations for the
efficient performance of the object detection model. The procured details of heatmaps and
object count histograms prove the high strength, veracity and standard for each imagery
data class in S-BIRD.

The trained small YOLOX model achieved 90.04% AP for grease blocks, 90.81% AP for
plastic blocks, 89.30% AP for tree root blocks, 90.05% Mean-AP at 0.5 IoU threshold, and
78.85% Mean-AP at 0.5 to 0.95 IoU thresholds for 300 epochs using S-BIRD. The relevant
outcomes prove the consistency and viability of the new S-BIRD dataset presented. The
object detectors trained using the presented S-BIRD will be a valuable addition to the
existing or newly developed embedded vision-based sewer monitoring and maintenance
systems for detecting sewer blockages in real-time scenarios.
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