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ABSTRACT
Scanning acoustic microscopy (SAM) is a non-ionizing and label-free imaging modality used to visualize the surface and internal structures
of industrial objects and biological specimens. The image of the sample under investigation is created using high-frequency acoustic waves.
The frequency of the excitation signals, the signal-to-noise ratio, and the pixel size all play a role in acoustic image resolution. We propose a
deep learning-enabled image inpainting for acoustic microscopy in this paper. The method is based on training various generative adversarial
networks (GANs) to inpaint holes in the original image and generate a 4× image from it. In this approach, five different types of GAN models
are used: AOTGAN, DeepFillv2, Edge-Connect, DMFN, and Hypergraphs image inpainting. The trained model’s performance is assessed
by calculating the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) between network-predicted and ground
truth images. The Hypergraphs image inpainting model provided an average SSIM of 0.93 for 2× and up to 0.93 for the final 4×, respectively,
and a PSNR of 32.33 for 2× and up to 32.20 for the final 4×. The developed SAM and GAN frameworks can be used in a variety of industrial
applications, including bio-imaging.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0139034

I. INTRODUCTION

High-frequency Scanning Acoustic Microscopy (SAM) is a
highly sensitive and precise technique for imaging the surface and
subsurface structures of various materials. It utilizes high-frequency
ultrasonic waves to gather information about a specimen, making
it a safe way to visualize the interior of objects without physically
exposing them. SAM has the capability for non-invasive micro-
structural characterization of different industrial objects and bio-
logical specimens.1,2 SAM is not only useful for visualizing surface
and subsurface structures, but it can also be used to characterize
and determine the mechanical properties of piezoelectric materi-
als, structural health monitor (SHM) of composite structures, detect
surface defects on polymer circuits, and study the propagation
of isotropic or anisotropic phonons.3–8 The microelectronics and
semiconductor industries are highly demanding and competitive
markets. In this context, SAM technology plays a critical role in
the development of improved mold designs for flip-chip packages.

Additionally, it is capable of handling the complexities involved
in miniaturized assemblies, such as chip-scale packages and 3D IC
stacks, making it an important tool in the industry.9,10 The quality of
images produced by SAM at a particular frequency depends on the
pixel size or scanning steps in both the x and y directions, as well as
the spot size of the acoustic beam. Low-resolution images at the same
frequency require fewer scanning points, thus reducing the amount
of time needed to complete the scanning process. In contrast, high-
resolution images at the same frequency require more scanning
points, which results in longer data acquisition times. When imaging
biological specimens, data acquisition is crucial, and high resolu-
tion with smaller step sizes is optimal. However, larger step sizes
in scanning can lead to reduced image quality due to less informa-
tion about the scanned objects. To address this issue, conventional
image interpolation or deep learning-based image inpainting tech-
niques can be used to improve image quality.11–13 To the best of our
knowledge, image inpainting in acoustic microscopy is absent from
the literature.
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The image inpainting technology is based on deep learning,
which has recently emerged as a research hotspot in computer
vision.14–17 Image inpainting is a commonly used technique in com-
puter vision for reconstructing or repairing images. It is used to
fix damaged or corrupted areas of an image, remove unwanted ele-
ments from photos, and fill in missing parts of an image that are
occluded. By utilizing the information already present in an image
to infer missing information, this method has addressed the lim-
itations of traditional inpainting methods that have persisted for
a long time. As a result, it has significantly improved the quality
of the final output. There are two major aspects for generating a
contextually plausible and realistic image: (a) global semantic struc-
ture and (b) finely detailed texture surrounding the gaps. Image
inpainting can be performed by (i) content/texture adapting meth-
ods and (ii) generative network-based approaches. The first kind of
method uses a simple patching technique of copying the features
of surrounding non-hole regions into the holes. Some applications
of this kind of patch-matching algorithm that iteratively fills the
missing pixels by searching for similar patches among the non-
hole pixels in the image are described in Refs. 18–21. However, the
limitation of these methods is that they fail to identify the global
context or semantics of the image and hence produce implausible
results.

There exist various generative network-based approaches for
different computer vision applications, such as image super-
resolution, image inpainting, image de-blurring, image colorization,
etc.22–30 These approaches use Generative Adversarial Networks
(GANs). GANs are an effective approach for generative model-
ing using deep learning, like convolutional neural networks. It is
an unsupervised learning technique that intelligently discovers and
learns the features and patterns in inputs and generates outputs
that could plausibly belong to the original dataset. The GAN model
consists of two main components: a generator that is trained on
a dataset to create new examples and a discriminator that distin-
guishes between the generated examples and the real ones in the
dataset. The discriminator helps to ensure that the generator pro-
duces plausible outputs that belong to the same domain as the orig-
inal data. GAN-based approaches have been used for the purpose
of image-inpainting for the last several years.24,31–33 Pathak et al.
first developed the GAN-based image-inpainting techniques, whose
core idea was a channel-wise fully connected layer.24 This model
was considered a baseline for many subsequent models. Iizuka et al.
uplift the image inpainting to the next level.34 The model included
two types of discriminator networks: a global discriminator net-
work that examined the entire image to ensure overall consistency
and a local discriminator network that focused on the details and
pixels surrounding the filled hole in the center of the image. This
multi-scale discriminator design is adopted by almost all the fol-
lowing image-inpainting papers. The next major breakthrough was
in 2018 in the paper “Generative Image Inpainting with Contextual
Attention” (also known as DeepFillv1) by Yu et al.14 This model was
an improvement over the previous “Shift-Net” model35 as it used a
contextual attention (CA) layer, which is a differential and fully con-
volutional layer that assigns weights to individual features that show
their contribution to each location in the gap/missing region. A sub-
sequent enhanced version of this model was introduced in 2019 in
the paper “Free-Form Image Inpainting with Gated Convolution”
(also known as DeepFillv2) by Yu et al.25 The most important aspect

of this model is gated convolutions. So far, the focus has been on
applying image inpainting methods to optical images, and there is
a lack of research on applying these methods to scanning acoustic
microscopic images.

The model we utilized in our work is based on the approach
presented in “Hyperrealistic Image Inpainting with Hypergraphs” by
Wadhwa et al. (2021).36 The model leverages Hypergraph structures
to identify and incorporate similar features from the background
in order to reconstruct the missing regions. The model consists of
two stages, coarse and fine, which aim to produce results that accu-
rately capture the overall context and finer details of the image. This
model has the implementation of a trainable method to compute a
data-dependent incidence matrix for the Hypergraph convolutions.
The local consistency of the image is ensured by gated convo-
lution rather than the regular convolution in the discriminator
network.

In this paper, we applied this model to a large dataset of SAM-
generated images. Due to variations in image size and aspect ratios,
the images were cropped to a uniform size of 96 × 96 pixels. Instead
of using an irregular or center mask as described in Ref. 36, we have
used a grid mask of alternately white and black pixels for training
the model on our dataset. This is performed to “inpaint” every alter-
nate pixel to increase the overall resolution of the image by a factor
of 2 times. This process was repeated once more on the modified
dataset to achieve a total of four times the resolution. The results of
our implementation of the Hypergraph convolution network on the
SAM-recorded image dataset are impressive, with structural similar-
ity index measure (SSIM) scores reaching up to 0.93 for 2× and up to
0.93 for the final 4× as well as a peak signal-to-noise ratio (PSNR) of
32.33 for 2× and up to 32.20 for the final 4×, indicating high-quality
state-of-the-art image inpainting output. This technique opens up
the possibility of removing the barriers imposed by the step-size
limitations of high-speed imaging for biological samples. Figure 1
depicts the overall strategy used in this paper.

FIG. 1. The overall strategy used in this paper. We use the alternate hole mask to
create an input image for the model and create a high-resolution image with the
help of image inpainting.
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II. METHOD
Image inpainting refers to the task of reconstructing miss-

ing regions of an image. This work aims to use image inpainting
techniques for image high-resolution. This has been performed by
employing mask creation. The mask used for training the dataset
is a matrix of black pixels for every three white pixels. The lower
resolution image is increased in size by four times by incorporating
three white pixels in between each recorded data point. Training and
using the model directly for 4× inpainting does not give state-of-the-
art results. Hence, the model was first trained to perform a 2× up-
sampling followed by a subsequent 2× up-sampling to provide an
overall 4× up-sampled result. For this, the approach to mask creation
was similar. Initially, the lower resolution image is increased two
times by incorporating one white pixel between each recorded data
point. Then the white pixels are filled using image inpainting tech-
niques. This process is repeated to achieve the resultant 4× image.
For this purpose, various image inpainting approaches, namely,
AOTGAN,21 DeepFillv2,37 Edge-Connect,26 DMFN38 and Hyper-
graphs image inpainting,39 have been implemented. These were ini-
tially tested using the CelebA-HQ dataset40 and pre-trained models.
It was observed that the Hypergraphs image inpainting technique
provided the best results for our approach. Hence, Subsection II A
describes the Hypergraph image inpainting architecture.

A. Hypergraphs
A Hypergraph, defined by G = (V , E, W), consists of hyper-

edges that connect two or more vertices. Here, V = v1, . . . , vn is
the set of vertices, E = e1, . . . , en is the set of hyperedges, and
W ∈ RM×M is a diagonal matrix containing the weight of each
matrix. The Hypergraph G can also be defined by the incidence
matrix H ∈ RN×M , which is defined as follows:

h(v, e) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if v ∈ e,

0 if v ∉ e.

Given a Hypergraph G, vertex degree D, D ∈ RN×N , and
hyperedge degree B ∈ RM×M , we have

Dii =
M

∑
e=1

WeeHie, (1)

Bee =
N

∑
i=1

Hie. (2)

In addition, the normalized Hypergraph Laplacian matrix,
Δ ∈ RN×N , is given as

Δ = I −D
1
2 HB−1HTD−

1
2 . (3)

The above matrix is symmetric positive semi-definite,41 and its
Eigen decomposition is given by

Δ = ΦΛΦT. (4)

The above decomposition is used to get the orthogonal eigen-
vectors Φ = {ϕ1, . . . , ϕN} and diagonal matrix Λ = diag (λ1, . . . , λN,
which contains the corresponding non-negative eigenvalues. The

Hypergraph Fourier transform is given by x̂ = ΦTx. The convolution
on the signal x ∈ RN is defined as

g ⊙ x = Φg(Λ)ΦTx, (5)

where g(Λ) = diag (g(λ1), . . . , g(λN) is a function of Fourier coeffi-
cients. Parameterizing g(Λ) with truncated Chebyshev polynomials
up to Kth order, the convolution operation on the Hypergraph signal
can be defined as

g ⊙ x =
K

∑
k=0

θkTk(Δ)x, (6)

g ⊙ x = θD−
1
2 HWB−1HTD−

1
2 x. (7)

For a given Hypergraph signal Xl ∈ RN×Ct , where Ct is the
dimension of the feature vector l, the convolution operation can be
generalized to the multi-layer Hypergraph convolution network as

Xl+1
= σ(D−

1
2 HWB−1HTD−

1
2 XlΘ), (8)

where Θ ∈ RCl×Cl+1 is the learnable parameter, and σ is the non-linear
activation function.

B. Hypergraphs convolution on spatial features
Simple graphs can be considered a special case of Hypergraphs,

where each hyperedge connects only two nodes. They can easily
represent the pair-wise relationship among data, but it is difficult
to represent the spatial features and their relationship in an image,
which is why Hypergraphs are used instead of graphs. To trans-
form the spatial features Fl ∈ Rhw×c into the graph-like structure,
each spatial feature is considered as a node having a feature vector of
dimension c, Xl ∈ Rhw×c.

For the incidence matrix H, instead of using the Euclidean
distance42,43 between features of images, cross-correlation of the spa-
tial features is used to calculate each node’s contribution to the
hyperedge. Therefore, we have

H = Ψ(X)Λ(X)Ψ(X)TΩ(X), (9)

where Ψ(X) ∈ RN×C is the linear embedding of the input features
followed by the ReLU activation function, and Ĉ is the dimension of
the feature vector after the linear embedding. λ(X) ∈ RĈ×Ĉ is a diag-
onal matrix that helps in learning a better distance metric among the
nodes for the incidence matrix H, Ω(X) ∈ RN×M helps to determine
the contribution of each node for each hyperedge, and m is the num-
ber of hyperedges in the Hypergraph. Ψ(X) is implemented by 1 × 1
convolution on the input features; Λ(X) is implemented by channel-
wise global average pooling followed by a 1 × 1 convolution, as in
Ref. 44; and Ω(X) is implemented using a 7 × 7 filter.

Hence, we get

Hl
= Ψ(Xl

)Λ(Xl
)Ψ(Xl

)
TΛ(Xl

)
T , (10)

Ψ(Xl
) = conv(Xl, W l

Ψ), (11)
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Λ(Xl
) = diag (conv(X̂ l, W l

Λ)), (12)

Ω(Xl
) = conv(Xl, W l

Ω), (13)

where x̂ l ∈ ⊮ × ⊮ × Ĉ is the feature map produced after global
pooling of the input features, and W l

Ψ, W l
Λ, W l

Ω are the learnable
parameters for linear embedding. Absolute values are used in the
incident matrix to avoid using imaginary values in the degree matri-
ces. Hence, the Hypergraph convolution layer on spatial features can
be written as

Xl+1
= σ(ΔXlΘ), (14)

where Θ ∈ RCl×cl+1 is the learnable parameter, and σ is the ELU45

non-linear activation function.

C. Architecture and training parameters
Figure 2 depicts the architecture of the Hypergraphs image

inpainting model. The Hypergraphs image inpainting network con-
sists of a two-stage coarse-to-fine network architecture. While the
coarse network roughly fills in the missing region, which gets naively
blended with the input image, the refine network predicts the finer
results with sharp edges. Hypergraph layers with high-level feature
maps are used in the refine layer to increase the receptive field of

our network and obtain distant global information about the image.
Dilated convolutions34 are used to further expand the receptive fields
of the coarse and refine networks. In addition, gated convolutions37

are used to improve performance, which can be defined as

Gating = Conv(Wg , I), (15)

Features = Conv(Wf , I), (16)

O = ϕ(Features)⊙ σ(Gating), (17)

where W g and W f are two different learnable parameters for con-
volution operations, σ is the sigmoid activation function, and ϕ is a
non-linear activation function, such as ReLU, ELU, and LeakyReLU.
In addition, to prevent deterioration of the color coherency of the
completed image, batch normalization is removed.34 In this method,
the discriminator has an architecture similar to that of the Patch-
GAN.46 All batch normalization layers are removed, and all convo-
lution layers are replaced with a gated convolution, which enforces
local consistency in the completed image. The discriminator is
provided with both a mask and a completed/original image.

For an input image Iin with holes and a binary mask R (with 1
for holes), the network predicts Icoarse and Irefine from the coarse and
refine networks, respectively. For the corresponding ground truth
I gt , the model is trained on a combination of content loss, adversarial
loss, perpetual loss, and edge loss. L1 loss is used on both Icoarse and

FIG. 2. The architecture of the Hypergraphs image inpainting model. Its network consists of a two-stage coarse-to-fine network architecture. The coarse network roughly
fills the missing region, which gets naively blended with the input image, and the refined network predicts the finer results with sharp edges.
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Irefine to maintain pixel level consistency. Hence, the content loss is
defined as

Lhole = ∥R⊙ (Irefine − Igt)∥1 +
1
2
∥R⊙ (Icoarse − Igt)∥1, (18)

Lvalid = ∥(1 − R)⊙ (Irefine − Igt)∥1 +
1
2
∥(1 − R)⊙ (Icoarse − Igt)∥1,

(19)
where Lhole is the loss for the hole pixel values, and Lvalid is the loss for
the non-pixel values. The adversarial loss, which has been shown to
generate realistic and globally consistent images, can be formulated
as a min–max problem,

LGAN = max
D

min
G

E[log (D(Igt , R))] + E[log (1 −D(G(Iin), R) ],
(20)

where G denotes the image inpainting network, which predicts the
final image Irefine, and D is the discriminator. For a given input x,
let ϕl(x) denote the high-dimension features of the lth activation

layer of the pre-trained network, and then the perpetual loss is
defined as

Lp =∑
l
∥ϕl(G(Iim)) − ϕl(Igt)∥1. (21)

The perceptual loss for the final prediction Irefine and Icomp are
computed, where Icomp is the final prediction, but the non-hole pixels
are set directly to ground truth.46 Edge-preserving loss47 is used to
maintain edges in the predicted images, which can be defined as

Ledge = ∥E(Irefine) − E(Igt)∥1, (22)

where E(⋅) is the Sobel filter. Hence, the total loss Ltotal can be
written as

Ltotal = λholeLhole + λvalidLvalid + λadvLadv + λpLp + λedgeLedge, (23)

where λhole, λvalid, λadv, λp, and λedge are the weights for hole, valid,
adversarial, perceptual, and edge loss, respectively.

FIG. 3. The outputs of some of the CelebA-HQ dataset for all the models. (Portions of this page are modifications based on work created and shared by Google and used
according to terms described in the Creative Commons 4.0 Attribution License.)48,49
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TABLE I. The SSIM and PSNR scores of various models tested our dataset using the method stated in this paper.

Model AOT-GAN DeepFillv2 Edge-connect DMFN Hypergraphs

PSNR 7.72 11.99 12.48 10.84 22.36
SSIM 0.047 0.23 0.39 0.26 0.70

TABLE II. The SSIM scores of various models tested on the CelebA-HQ dataset using the method stated in this paper.

Image no. AOT-GAN DeepFillv2 Edge-connect DMFN Hypergraphs

1 0.056 0.25 0.31 0.29 0.74
2 0.067 0.28 0.31 0.22 0.72
3 0.038 0.21 0.44 0.25 0.74
4 0.027 0.18 0.38 0.30 0.74
5 0.047 0.23 0.49 0.26 0.80

TABLE III. The PSNR scores of various models tested on the CelebA-HQ dataset using the method stated in this paper.

Image no. AOT-GAN DeepFillv2 Edge-connect DMFN Hypergraphs

1 9.57 13.43 10.28 11.56 23.80
2 9.12 12.55 12.62 10.74 23.41
3 6.41 11.57 12.17 10.57 21.32
4 5.91 10.60 12.98 10.58 20.70
5 7.58 11.79 14.36 10.74 22.70

III. RESULTS ON THE CELEBA-HQ DATA SET
Initially, all the models were trained on the CelebA-HQ dataset

as a proof of concept using the masking and training strategy defined
in 2. Figure 3 shows the outputs of some of the CelebA-HQ dataset
for all the models.48,49 A PSNR score of 22.94 and an SSIM score
of 0.79 were obtained. The mean SSIM and PSNR scores of all the
models in the CelebA-HQ dataset are shown in Table I. The follow-
ing are some examples of the results obtained, as shown in Fig. 5 and
Tables II and III.

IV. EXPERIMENTAL DATASET
We used a high-resolution technique in scanning acoustic

microscopy to create 4× high-resolution images from low-resolution
images. There are a total of 33 high-resolution images recorded using
scanning acoustic microscopy. These images are measured with a
step size of 50 μm. The images are of various sizes and aspect ratios.
Each image is cropped into multiple images to create diversity and,
hence, more robust training of the network. Cropping is performed
by starting from the image’s top-left corner and striding in the
G and H directions. The resulting cropped image has a dimension
of 96 × 96 pixels. This was performed to maintain a uniform size for
training and ensure that the images’ overall semantics are somewhat
preserved. The training dataset consisted of 402 such 96 × 96 images.
During the training, the image’s values were scaled in the range
[0–1]. The motivation for choosing a mask is inspired by the fact that
the scanning acoustic microscope is operated at two different step

sizes. The low-resolution images are recorded as having a step size
of 200 μm in contrast to the 50 μm step size of the higher-resolution
images used for training the model.

V. MATERIALS AND METHODS
A. Experimental setup

The scanning acoustic microscope (SAM) has two operational
modes: reflection and transmission. Figure 4 presents a labeled
image of SAM that is utilized for image acquisition. Furthermore,
details regarding the working principles of these modes can be found
elsewhere. In this article, we have focused on the reflection mode

FIG. 4. A labeled image of SAM that is utilized for image acquisition. The exper-
imental setup demonstrates all the fundamental components that constitute a
SAM.
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FIG. 5. The output images of ten input images from the scanning acoustic microscopy dataset and the corresponding outputs of the five models using our super-resolution
method.
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to scan the samples. To focus acoustic energy through a coupling
medium (in this case, water), a concave spherical sapphire lens rod
is commonly used. Next, ultrasound signals are generated from a
signal generator and transmitted to the sample. The reflected waves
are then recorded, and the resulting digitized signal from the sample
is referred to as an A-scan or amplitude scan. To obtain a C-scan of
the sample, this process is repeated at various points in the XY plane.
Alternatively, a C-scan can be viewed as the summation of A-scans
in two dimensions.

The experimental data were collected using a custom-built
SAM (shown in Fig. 5) that included a high-precision scanning stage
from Standa (8MTF-200, Motorized XY Microscope Stage) and was
controlled by a LabVIEW program.50 Previous work from the same
group utilized a similar experimental setup to correct for inclined
samples.51 The acoustic imaging features were implemented using
National Instruments’ PXIe FPGA modules and FlexRIO hardware,
which were housed in a PXIe chassis (PXIe-1082) that included
an arbitrary waveform generator (AT-1212).52 The transducer was

excited with Mexican hat signals and transmitted through an RF
amplifier (AMP018032-T) to amplify the ultrasonic signals. The
resulting acoustical reflections from the sample surface were then
amplified with a custom-designed amplifier, and these signals were
further amplified using a custom-designed pre-amplifier and digi-
tized with a 12-bit high-speed (1.6 GS/s) digitizer (NI-5772). For
ground truth, a 50 MHz focused transducer manufactured by Olym-
pus was employed, featuring a 6.35 mm aperture and a 12 mm focal
length. The transducer was used to scan both the coin and the bio-
logical specimen. During scanning, the acoustic energy was focused
on the top surface of the coin, and the sample was scanned in the
x and y directions with 50 μm steps. Low-resolution images were
obtained using a 20 MHz transducer with a focal length of 50 mm.
All experiments were conducted in distilled water while maintain-
ing a constant room temperature of ∼22 ○C. To evaluate the models,
a discarded reindeer antler collected from the jungle in Tromsø,
Norway, was used as a biological sample for imaging. Prior to
scanning, the moss on the antler was removed by cleaning it with

TABLE IV. The SSIM and PSNR scores of various models tested our dataset using the method stated in this paper.

Model AOT-GAN DeepFillv2 Edge-connect DMFN Hypergraphs

PSNR 22.47 18.09 20.64 19.46 27.96
SSIM 0.56 0.43 0.54 0.50 0.82

TABLE V. The SSIM scores of various models tested on our dataset using the method stated in this paper.

Image no. AOT-GAN DeepFillv2 Edge-connect DMFN Hypergraphs

1 0.35 0.27 0.28 0.27 0.61
2 0.44 0.22 0.41 0.31 0.76
3 0.62 0.41 0.65 0.59 0.85
4 0.47 0.22 0.47 0.37 0.79
5 0.53 0.17 0.53 0.38 0.80
6 0.69 0.63 0.74 0.70 0.91
7 0.59 0.46 0.58 0.55 0.84
8 0.70 0.77 0.82 0.80 0.92
9 0.40 0.28 0.46 0.35 0.86
10 0.70 0.60 0.68 0.61 0.88

TABLE VI. The PSNR scores of various models tested on our dataset using the method stated in this paper.

Image no. AOT-GAN DeepFillv2 Edge-connect DMFN Hypergraphs

1 21.27 17.29 15.19 15.91 24.35
2 20.86 16.27 18.82 16.22 25.81
3 21.68 16.31 20.33 19.32 26.34
4 22.00 14.43 18.11 16.81 26.70
5 23.04 13.79 19.69 15.56 26.47
6 23.53 17.39 23.27 22.28 29.81
7 20.65 14.00 19.95 17.23 26.17
8 25.39 23.56 25.50 25.08 31.31
9 21.63 13.94 19.44 16.75 27.04
10 21.55 19.88 20.30 19.66 27.38
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lukewarm water and 96% ethanol. Next, the sample was diced and
boiled in distilled water at 100 ○C to eliminate any undesired biolog-
ical substances from the antler. Finally, the sample was placed on the
sample holder and allowed to dry before being scanned.

VI. RESULTS AND DISCUSSION
In this work, the model was successfully able to upsample a low-

resolution (bigger step size) image four times using our mask. The

SSIM and PSNR scores of all five models in our dataset are given in
Table IV.

As stated earlier, out of the five models tried, the Hypergraphs
image inpainting model gave the best results, as evident from the
SSIM and PSNR scores given in Tables V and VI as well as a visual
inspection in Fig. 6. A PSNR score of 27.96 and an SSIM score of
0.8234 were obtained using the Hypergraphs model. In our com-
parison, AOT-GAN was second best, but both the SSIM and PSNR
scores for AOT-GAN are very low as compared to the Hypergraphs

FIG. 6. Some of the outputs of the Hypergraphs image and the corresponding output from conventional digital resolution enhancement techniques.
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model. Hence, the Hypergraphs model was best able to learn to fill
up the missing pixels in our mask and generate 4× larger images.

Although by visual inspection, the resultant images are better
than the CelebA-HQ dataset results. The resultant images are more
comparable between the models in this case than for the CelebA-
HQ dataset. This might be because all the images in our dataset have
many similar characteristics. However, a closer look will reveal that
indeed Hypergraphs model gave results that were the closest to the
ground truth as compared to other models that we tried.

VII. COMPARISON WITH CONVENTIONAL DIGITAL
RESOLUTION ENHANCEMENT TECHNIQUES

We compared the results obtained in this paper with some
conventional digital resolution enhancement techniques: bicubic,
Lanczos, and nearest neighbor. The SSIM and PSNR scores have
been shown in Table VII.

Some of the results are shown in Fig. 6, and their SSIM and
PSNR scores have been tabulated in Tables VIII and IX, respectively.
It can be seen from the results that the results of the Hypergraphs
model were very close to those of the conventional techniques. How-
ever, it should be noted that the main purpose of the work was to
compare AI-based inpainting models with our new grid mask, which
can mimic super-resolution to a large extent.

TABLE VII. The SSIM and PSNR scores of various models tested on the CelebA-HQ
dataset using the method stated in this paper.

Method Bicubic Lanczos Nearest neighbor Hypergraphs

PSNR 30.34 30.54 28.87 27.96
SSIM 0.91 0.92 0.88 0.82

TABLE VIII. The SSIM scores of various models tested on the CelebA-HQ dataset
using the method stated in this paper.

Image no. Bicubic Lanczos Nearest neighbor Hypergraphs

1 0.81 0.83 0.74 0.61
2 0.88 0.90 0.84 0.76
3 0.92 0.93 0.91 0.85
4 0.90 0.91 0.86 0.79
5 0.91 0.91 0.86 0.80

TABLE IX. The PSNR scores of various models tested on the CelebA-HQ dataset
using the method stated in this paper.

Image no. Bicubic Lanczos Nearest neighbor Hypergraphs

1 26.80 27.04 25.17 24.35
2 28.17 28.36 26.65 25.81
3 28.83 29.12 27.79 26.34
4 29.21 29.29 27.74 26.70
5 28.79 28.90 27.49 26.47

VIII. CONCLUSION
In this paper, we have developed an acoustic microscopy sys-

tem assisted with deep learning to improve the image resolution of
industrial and biological samples with the help of image inpainting.
Deep learning was employed to fill the gaps in the SAM images. This
work compared five deep learning models: AOT GAN, DeepFillv2,
Edge-Connect, DMFN, and Hypergraphs. All five models were
trained and tested on test images, and the results in terms of PSNR
and SSIM scores were compared. The Hypergraphs model presented
the best results in terms of SSIM and PSNR. The Hypergraphs image
inpainting network consists of a two-stage coarse-to-fine network
architecture. While the coarse network roughly fills in the missing
region, which gets naively blended with the input image, the refine
network predicts the finer results with sharp edges. Transfer learn-
ing was considered in the process. This was to prevent the model
from over-fitting, as limited (800) images were used for training
purposes.

In this work, we made a mask of alternate data points and white
pixels. Later on, we filled those white points to create a 2× image. By
repeating this process again on the 2× image, we were able to create a
4× image. In this process, the Hypergraphs model was the most suc-
cessful, giving SSIM and PSNR scores of 0.70 and 22.36, respectively,
on the CelebA-HQ dataset. Finally, on our acoustic scan dataset, we
were able to achieve a mean SSIM score of 27.96 and a mean PSNR
score of 0.82. Hence, it is found that even with a minimal training
dataset, deep learning-based models, specifically the Hypergraphs
model, can provide satisfactory results.
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