
 

 

Introduction 
 
The description of the genome [1,2] has been 
followed by an extraordinary technology-driven 
research at the borders between traditional epi-
demiology and basic research investigating sin-
gle nucleotide polymorphism (SNPs) in relation 
to disease risk. Similar innovations are ongoing 
for the analyses of the cancer genome,  tran-
scriptome, proteome, and  metabolome [3]. This 
development has fostered new multidisciplinary 
and interdisciplinary fields of research under 
headings like systems biology [4] or systems 
epidemiology [5]. In this context, the different 
definitions and traditions for handling the ques-
tion of causality have been well described and 
discussed [6-8], but so far no common concept 
have been proposed.  
 
Here, we will present three major approaches to 
causality from basic biological research, epide-
miological research, and mathematics and ar-
gue for an exploration of pathways analysis as a 

functional tool for assessing causality in inter-
disciplinary cancer research. 
 
Concept of causality in basic genetic research 
 
Basic genetic research is mechanistic oriented 
and mostly based on studies with experimental 
design using animal models or cell lines [9]. 
Within this tradition, the rather reductionist defi-
nition of causality [10,11] corresponds to the 
effects related to one change in the experiment. 
Also, the concept of causality in cancer research 
has also been promoted in a more biological 
sense as the effects of mutations in oncogenes, 
suppressor genes and microRNA [12]. Hence, 
we now comprehend that cancer arises from 
successive genetic changes by which a number 
of cellular processes are altered. This paradigm 
of genetic causality has been challenged by 
highly complicated and multilevel functions de-
scribed in systems biology [13]. It is also cur-
rently understood that gene analysis by itself 
provides an incomplete picture. Due to alterna-
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tive splicing of both mRNA and proteins, com-
bined with more than 100 unique post-
translational modifications, one gene can give 
rise to multiple protein species. In tumour biol-
ogy, mutations are divided in driver and passen-
ger mutations [14]. A driver mutation is a so-
matic mutation in the tumour that is causally 
linked to carcinogenesis. It is not required for 
maintenance of the invasive cancer, but it must 
have been functional sometimes during cancer 
development. Passenger mutation will have no 
impact on the carcinogenic process since they 
have not conferred clonal growth advantages 
being somatic mutations without functional con-
sequences. Driver mutations could occur in at 
least five or six genes, while the numbers of 
passenger mutations could be substantially 
higher. The presence of somatic mutations is 
partly the reason for the new cancer taxonomy 
based on gene expression profiles [15]. These 
molecular profiles based on hierarchical model-
ling could improve etiological research by classi-
fying tumours according to gene expression pat-
terns that could also be linked to specific expo-
sures. Animal models have been constructed to 
show the carcinogenic process in murine mod-
els, e.g. for gastric cancer [16]. However, animal 
models have been shown to be too simplistic 
compared to human carcinogenesis. For exam-
ple, in rats only two mutations are sufficient for 
creating a tumour cell from a normal cell, but 
these finding have not been generalized to hu-
man cell lines [17]. Cell lines show the same 
lack of direct generalisation because of 
changes partly due to laboratory manipulations 
in order to make the cell lines immortal [18]. In 
spite of an overwhelming literature on in vitro 
experimental pathway research, neither the 
exact functions nor the succession of mutations 
necessary for the multistage model have been 
sufficiently described for implementation in in 
vivo research.  

Finally, the introduction of high-throughput 
analyses of DNA, RNA, proteins and metabolites 
in basic biological studies has fostered the need 
for advanced statistics and data mining making 
the interpretation of the results closer to the 
criteria used in biostatistics and epidemiology. 
This development has reinforced the research 
discipline named systems biology and the 
closely related methodologies of bioinformatics. 
 
Concept of causality in epidemiology 
 
Epidemiology is mostly an observational science 
with few experiments. The nature of causality in 
studies of human health and diseases has been 
discussed over several hundred years. The crite-
ria used today are most often referred to Hill 
[19], but philosophers like Hume previously 
noted several of the important aspects of cau-
sality [20]. A major discussion of criteria for de-
termining causality was brought up by the early 
works related to smoking and lung cancer. At 
that time, epidemiologists still used to think of 
causality in mono causal terms by the postu-
lates of Koch [21]. The causality criteria by Hill, 
see Table 1, were partly rules for judging the 
time frame, statistical associations, relationship 
to earlier works, ecological data, analogy and 
experiments. Of his nine criteria, some are to-
day obsolete like analogy, and others are often 
better specified like specificity of both exposure 
and disease. For a more dynamic concept of 
causality the most important criteria of Hill is 
plausibility. Hill himself had a very cautious view 
on this aspect since he very clearly saw that the 
criteria would depend upon the biological knowl-
edge of the day. Presently, the discussion of 
biological plausibility draws heavily on the 
knowledge from basic research with inherent 
problems of generalization to human conditions. 
As noted earlier, most information originates 
from animal and in vitro experiments and could 

Table 1. Causality criteria proposed by Hill [19] 

(1) Strength – of the observed statistical association 
(2) Consistency – repeated observations by different persons, in different places and time 
(3) Specificity – the association is limited to specific exposures or particular sites and types of disease 
(4) Temporality – the order of exposure before disease 
(5) Biological gradient – a dose-response curve 
(6) Plausibility – existing biological knowledge 
(7) Coherence – should not conflict with known facts of natural history and biology 
(8) Experiment – experimental or semi-experimental evidence 
(9) Analogy – judged by analogy 
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be too simplistic for the interpretation of gene 
function in the real life situation with multiple 
exposures and the flexibility of the pathway net-
work to adjust for different living conditions. 
 
Also, whole genome scans in gene-environment 
studies have given birth to another set of crite-
ria [22]. Some of these are related to the valid-
ity of the study design and the statistical prob-
lem of mass testing of significance. These crite-
ria have always been part of the scientific proc-
ess, but traditionally they were discussed as 
part of the study design, before the discussion 
of causality. The concern over lack of validity 
and comparability between studies now foster 
initiatives for more systematic judgement about 
the validity of questionnaire information, bio-
markers and outcomes [23].  
 
Mathematical modelling of the carcinogenic 
process 
 
There has been longstanding and wide interest 
for mathematical modelling of the carcinogenic 
process. Different models have been applied on 
incidence figures [24,25]. These models mostly 
describe a two or multiple step process. Each 
step has been interpreted as a mutation. These 
mutations changes the metabolic pathways, but 
the models do not say anything about the na-
ture of each step, only that several steps seems 
to be necessary to describe the incidence 
curves for most cancer sites.  As written by P. 
Armstrong more than 20 years ago: “Until and 
unless we obtain direct evidence about the 
presence and nature of intermediate stages, 
any statistical theory is likely to remain largely 
unfalsifiable” [24]. The mathematical models 
have been important for the concepts of initia-
tion (first mutation), promotion (clonal growth) 
and progression (final mutation) [26]. They 
leave little possibility for a judgement of the 
effect linked to any allele variant or to changes 
in gene expression or protein synthesis as a 
consequence of lifestyle [27]. The dependence 
of the cancer incidence on molecular processes 
can still not be quantified and the lack of details 
on how cancer evolves keeps attempts to link 
relevant biological processes to risk patterns at 
a fairly simple level.  
 
Improving concepts of causality through       
transcriptome analyses 
 
Due to the traditional mono-disciplinary  re-

search the three different concepts of causality 
in cancer research have been poorly integrated, 
but recent research headed under the name of 
gene-environment interaction studies has for a 
long time been forcefully pushed forward [28]. 
These gene-environment studies combine epi-
demiology with basic genetics. They are mostly 
based on a simple design with exposures meas-
ured once at start of follow-up and analysed 
together with variants of single nucleotide poly-
morphisms, SNPs, also considered as expo-
sures in the same statistical design. Several of 
the large initiatives also use case-control sam-
ples [e.g. 29]. So far this approach has given 
little information on the multistage process of 
cancer. High-throughput SNPs assays have not 
revealed a strong association to tumour devel-
opment. In a previous genome-wide association 
study of lung cancer as an example, only one 
single locus was associated with an increased 
risk of lung cancer (RR<2) after a search of 
around 30,000 genes [29]. In contrast, the risk 
for lung cancer for heavy smokers in the same 
study was found to be in the order of ten or 
more. In addition, the identification of one or 
more putative SNPs will presumably not inform 
us about which stage in carcinogenesis could 
be affected. This lack of information makes re-
sults less useful for public health strategies 
since effective prevention depends on the abil-
ity to intervene on the last steps of the multi-
stage process [30]. In similar analyses, no ma-
jor SNP in the oestrogen metabolism was identi-
fied as a risk factor for breast cancer [31]. 
Hence, some research is ongoing in order to 
improve the analyses of the missing heritability 
of complex disease [32].   
 
Human biological processes are the outcome of 
complex interactions between lifestyle factors, 
environment, and genes, so there might be 
strong reasons for studying gene expression or 
protein changes in vivo. Also, the genome and 
the proteome can provide a dynamic reflection 
of both the intrinsic genetic programme of the 
cell and the impact of its immediate environ-
ment. At least three different approaches are 
currently applied in order to obtain a better un-
derstanding of causality in relation to the multi-
stage carcinogenesis. First, several animal and 
cell models have successfully imitated the mul-
tistage aspect of cancer development but a ma-
jor problem remains, as noted previously, the 
generalization from in vitro till in vivo models. 
Second, a huge effort is under way to describe 
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the different cancer genomes (e.g. the Interna-
tional Cancer Genome Consortium, ICGC) [14]. 
Somatic mutations can be considered as conse-
quences of the archaeology of the cells with the 
use of the mutations prevalence as a measure 
of the driver or passenger status, but still verifi-
cations by other methods will be necessary. The 
third approach is to build new prospective stud-
ies with a more complicated design in order to 
follow the changes in transcriptome and pro-
teome of peripheral blood and target tumour 
tissue over time. Obviously, these studies 
should overcome the problems of chance or 
statistical power by being large enough (50.000 
– 1.000.000), be representative of defined 
populations, with information on major lifestyle 
factors from questionnaires and with biobanks 
for the analyses of the genome, transcriptome, 
proteome, and metabolome. A major limitation 
of such approach so far has been lack of appli-
cation of standard epidemiological methods 
[33]. Several proposals exist under headings 
such as population laboratory [34] or the glo-
bolomic design [5, 35, 36].  

Biological premises for a functional causality 
concept 
 
The idea of building large prospective studies to 
explore the transcriptome and the proteome in 
cancer epidemiology as a basis for a functional 
concept of causality depends on some assump-
tions about gene expression and regulation in 
peripheral blood and tumour tissues. Taking the 
example of the transcriptome, peripheral blood 
gene expression may dynamically reflect system 
wide biology and possibly pre-invasive stages of 
cancer (Table 2). Recognition of the role of mo-
lecular changes in carcinogenesis demands a 
new generation of  molecular biomarkers of 
exposure in order to account for confounding 
signals and reinforce the investigation of  bio-
logical plausibility for these associations [7, 41].  
 
Somatic mutations and their associated pat-
terns in gene expression should be accessible 
through collection of tumour tissue. However, 
for most sites of cancer only the last invasive 
stage is accessible for tissue biopsies. Tissue 

Table 2. A short overview of current in vivo knowledge of gene expression in blood and tumour tissue rele-
vant for a more functional concept of causality 

 

Tumour tissue 
Gene profiling of tumour tissue have added a new taxonomy for some cancer sites like breast 

cancer [15] 
Large cohort studies of cancer patients have been constructed for clinical research investigating 

cancer prediction and prognosis [37] 
  
Peripheral blood 

Expression patterns in peripheral blood cells have been found to reflect exposures like radiation 
[38], metal fumes [39], smoking [40], dioxin [41], hormone therapy[42], and benzene 
[43] which could be confounders in gene expression analyses related to disease 
status. 

There is in vitro evidence for a dietary regulation of microRNA expression in cancer cells [44,45] 
One recent study gives a reference library for gene expression in blood cell subtypes, Haemat-

las, which identifies key genes with roles in blood cell function [46] 
Information bridging the blood – tumour gap, necessary for a transcriptional model of carcinogenesis 

The peripheral blood transcriptome may dynamically reflect system wide biology which could be 
use as a potential diagnostic tool [47-55].  Last year, the first commercial diagnostic 
tests based on gene expression in blood were launched. The ColonSentry™ is an RT-
PCR based assay of 7 genes for colorectal cancer screening [50] and the BCtect™ is 
also an RT-PCR based assay using 96 genes to detect breast cancer at an early stage 
of the disease [48], even though the sensitivity and specificity so far is not excellent. 

A relationship between gene expression in blood and adipose tissue for traits related to clinical 
obesity has been observed with a weaker relationship in blood [54]. A significant ge-
netic component to gene expression traits has been demonstrated for genes related 
to obesity. 
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samples from pre-malignant stages are only 
taken out regularly from the cervix and to some 
extent from the breast. Of note, tumour evolu-
tion for example in the breast does not seem to 
follow a simple linear progression model but 
rather appears to involve a more complex proc-
ess characterized by periods of expansion fol-
lowed by contraction concomitant with simulta-
neous evolution of multiple independent tumour 
regions – a scenario likely responsible for the 
great mutational heterogeneity witnessed in this 
disease [57, 58]. It has been noted by several 
investigators that tumour heterogeneity (i.e. 
expansion) is greatest at transition phase (i.e., 
from ductal carcinoma in situ to invasive ductal 
carcinoma, or from invasive ductal carcinoma to 
metastatic boundaries) and less so following 
these phases (i.e. contraction) presumably ow-
ing to alternating periods of mutational diversity 
followed by clonal selection.  
 
Obviously, the success of a prospective design 

with genomic, transcriptomic, and proteomic 
options will depend heavily on the collected bio-
logical specimen and new technologies. mRNA 
is particularly sensitive to degradation by abun-
dant and ubiquitous RNAses and several tech-
niques to overcome this challenge are used or 
under investigation [60, 61]. The questions of 
technologies are utterly more important for 
studies of the transcriptome in peripheral blood 
than in tumour tissue due to lower yield of RNA 
and less highly expressed genes. Moderne tech-
nology has enabled studies of microRNA from 
serum (62). Similarly, robust technology exists 
for the analysis of epigenetics, mainly as DNA 
methylation, and to a lesser extent for histone 
modifications [63, 64]. Finally, the profiling of 
proteins is difficult in numerous other ways. 
Apart from the technological challenge pre-
sented by the range of protein concentrations, 
proteins have properties arising from their 
folded structures, so generic methods are diffi-
cult to design and apply, and the analysis and 

Figure 1. A schematic representation of the relationship between the design of a globolomic study with three        
repeated samples of blood and eventually one of tumor tissue sample, and the multistage model, for three persons 
with different life histories or stages in the model. The dark shaded area shows the optimal design with repeated 
measurements, the light one the restricted design with only one measurement. 
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significance of post-translational modifications 
provide a major challenge, both in normal and 
disease conditions [65].  
 
New designs 
 
The major challenge of a more functional ap-
proach to causality using a surrogate tissue like 
peripheral blood as proposed here will be to 
investigate whether there is specific communi-
cation between the tumour tissue till peripheral 
blood by the means of mRNA, microRNA or 
other molecular mechanisms through the differ-
ent stages of initiation, promotion and progres-
sion. Obviously one would expect such signals 
to be weak, maybe a few transcripts or proteins 
changes, pointing to the need of high quality 
biological specimens and the use of even more 
improved novel technologies (e.g. deep se-
quencing, protein microarrays).   
 
We propose a new analytical strategy as exten-
sions of the common prospective design. The 
optimal design for a functional study would be 
to sample blood suitable for gene expression 
analyses regularly during follow-up to facilitate 
analyses of possible changes in gene expres-
sion within the same persons over time and 
compare with tumour tissue expression. Figure 
1 illustrates a globolomic design with multiple 
(e.g. three) collections of peripheral blood suit-
able for gene expression, protein and metabo-
lites analyses throughout the lifespan. In addi-
tion, tumour tissue from cases can be collected 
at the time of diagnosis. Schematically, person 
A remains healthy and presents no somatic 
driver mutation. Person B contracts a cancer 
some years after the third blood sample - the 
proposed numbers of six somatic mutations 
have taken place. At time of diagnosis tumour 
tissue sample is taken and buffered for expres-
sion profiling together with another peripheral 
blood sample. Concurrently, person A is ran-
domly drawn as a control and also asked for 
blood samples. This nested case-control design 
should give correct estimates of differences in 
gene expression related to the carcinogenic 
process between diseased and healthy individu-
als and with the possibilities of adjustment for 
potential confounders. The comparison could be 
done from the first collected blood samples un-
til cancer diagnosis of cancer. In the same de-
sign, collection of tumour tissue would enable a 
comparison between driver mutations and their 
expression in tumour tissue and blood profiles 

over time. There exist quite a few large prospec-
tive studies with repeated blood samples suit-
able to investigate genome and proteome; how-
ever in the discussion of pro et cons for new 
prospective biobanks gene expression analyses 
are mostly neglected [65-67]. Prospective study 
including biological specimen suitable for ex-
pression analyses in peripheral blood and tu-
mour tissue has only recently been imple-
mented [36].  
 
A restricted analytical design could be imple-
mented even if only one blood sample suitable 
for expression analyses was collected before 
diagnosis. The restricted design, light shaded 
area in Figure 1, would start its follow-up at the 
time shown for the third blood collection. Per-
son A and B can be compared, but only for the 
one blood sample taken a few years before. In 
addition, some participants will at time of blood 
sampling have neoplasm at different pre-
invasive stages, illustrated with person C at 
stage III. Through the follow-up period, this neo-
plasm develops into invasive cancer and is diag-
nosed. The comparison between the stored 
blood samples for this person C with person A 
could give information on the possible gene 
expression of the somatic mutation in stage III. 
Also, if the two stage clonal expansion model 
[68] is correct the success rate of this approach 
would improve due to fewer mutations and con-
sequently critical carcinogenesic stages. 
 
Concluding remarks 
 
The lack of information on the exact nature of 
the multistage model is one of several obstacles 
for an integrated concept of causality in current 
translational cancer research. For the moment 
we have no commonly accepted carcinogenic 
model with a description of the number of muta-
tions or their succession. It has been proposed 
that six essential alterations in cell physiology 
dictate malignant growth [69]. Another explana-
tion for the lack of understanding of the carcino-
genic model could be the effects of resistance 
genes that may stop incipient cancerous foci 
[70]. Alternatively, since gene expression and 
protein expression differ along the time scale 
modelling biochemistry at the metabolic level 
could be another solution [71]. 
 
Since we lack almost completely knowledge 
about the transcriptome or proteome in periph-
eral blood and its relationship to the carcino-
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genic process in tumour tissues we propose 
that future prospective studies should include 
high quality biological material for gene expres-
sion analysis, preferably with repeated samples 
through several decades. In this way the frag-
mented and mono-disciplinary concept of cau-
sality used today could be replaced by a more 
functional and dynamic view on the carcino-
genic process integrating multiple perspectives. 
The term systems epidemiology has been intro-
duced to cover such a new scientific discipline 
[5]. Ongoing projects should in a few years more 
clearly demonstrate any important effects of 
this design on the concept of causality – the 
core term for most epidemiologists and basic 
researchers. 
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