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A B S T R A C T   

The application of artificial neural networks with the involvement of a modified homogeneity factor to predict 
exergetic terms from combustive and/or mixing dynamics in a marine engine is considered in this study. This is a 
significant step since the mathematical formulation of exergy in combustion is complicated and even uncon-
vincing due to the turbulent and highly nonlinear nature of the combustion process. The computational simu-
lations are carried out on a marine CI (compression ignition) engine and the respective data per different fuel 
types that are used for thermodynamic exergetic computations as well as energetic simulations. A new parameter 
namely the modified homogeneity factor derived by an artificial neural network (ANN) is considered for the 
mixing dynamics, i.e. as an input parameter for the availability and irreversibility predictions. This parameter is 
based on the standard deviation from an ideal air-fuel mixture formed within the combustion chamber of the 
marine engine. Furthermore, spray and injection quantities along with the combustion process and its heat 
transfer parameters are served to predict the exergetic terms for two study cases: (a) fuel type and (b) injection 
orientation. It is shown that using data analytics that consists of neural networks can provide an adequate 
approach in diesel engines for improving energy efficiency and reducing emissions.   

1. Introduction 

New technological advancements in engine and power-generating 
systems require the employment of an updated approach to solve the 
energy-emission crisis in the shipping industry (Perera and Mo, 2016). 
According to new European Union (EU) greenhouse gas (GHG) regula-
tions in the shipping sector, a 55% reduction of total GHG and a full 
decarbonization mandate is underway by 2050 ambition (DNV, 2018; 
Liu et al., 2021). The proposed initiatives include the energy taxation 
directives, where the alternative and promising green fuels are 
tax-exempt, and the heavy fuel oil is penalized by 37 €/ton (Goulielmos, 
2022). This approach can trigger a drastic research campaign to address 
the alternative fuel applications in internal combustion engines (ICEs) to 
cope with the emission control and energy management requirements in 
shipping. Although diesel engines raise concerns over efficiency and 
emissions, they are still in use in transport and agriculture industries due 
to their reliability and high power output capabilities (Huang et al., 
2022). The recent research studies on diesel engines try to address the 
shortcomings of such engines to spot energy losses and obviate 
emissions. 

Machine learning and big-data analyses in maritime have proved 
enormous capacity to handle large-scale data sets, i.e., both in clus-
tering/classification and trend recognition/regression (Perera et al., 
2016) and behavior prediction of vessels and ship systems (Castresana 
et al., 2022a). In this setting, artificial intelligence techniques and 
soft-computing methods streamline fast predictive models of marine 
engine performance without resorting to unwieldy experimental ap-
proaches and hefty numerical simulations producing instant online re-
sponses even for the unseen input data with a higher degree of 
confidence (Maind and Wankar, 2014; Taghavifar et al., 2016, 2014). 
Artificial neural network (ANN) based models can be utilized in terms of 
dealing with non-linear problems, where the physical connection that 
exists between input-output parameters may not be straightforward 
(Niu et al., 2017). However, ANN approaches should relate to the 
combustion process of IC engines through the principles of thermody-
namics to model such conditions. 

The second law of thermodynamics, which governs the energy 
accessibility and convertibility of energy-to-work ratio potential, can 
support the energy analysis of marine engines (Dincer and Rosen, 2012). 
It is an insightful approach to efficiency analysis to address the energy 
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quality in each system. The entropy creation in a process dissipates the 
chances of energy utilization and increases the non-ideality or irre-
versibility that translates to the degradation of energy systems (Demirel, 
2007). 

Various fuel types can be used to create thermal energy through the 
combustion process of engines. Dimethyl ether (DME) is a clean color-
less gas with non-toxic properties, which can be liquefied and injected in 
the engine to obtain zero particulate and sulfur emissions (Makoś et al., 
2019). This fuel can be an acceptable alternative fuel for marine pow-
ertrains and ship propulsion system with affordable retrofitting and 
infrastructure launching (competitive costing around 523 $/t to 604 
$/t) (ChemBioPower, 2019). Hydrogen as fuel in the ship powertrain is 
another option that can partially (and in rare cases even fully) replace 
diesel or heavy fuel oil (HFO) to eliminate SOx and GHGs, although the 
concerns over its transportability, storage, production, and safety can be 
considered as challenges. 

In another relevant study, the objective is set on an ANN coupling 
with a non-dominating sorting genetic algorithm (NSGA-II). The intel-
ligent data handling approach is implemented on a dual-fuel, low-tem-
perature combustion engine to increase the exergy efficiency and 
decrease the exergy destruction (Shirvani et al., 2021). This research has 
utilized an optimization technique to vary the input data of the simu-
lated engine so that the objective function of an optimization algorithm 
be satisfied. As reported, the best candidate solution managed the NOx 
and soot amount to satisfy the emission control regulations. Iscan (Işcan, 
2020) has used ANNs on the experimental results of a diesel engine 
running with safflower biodiesel to explore the thermodynamic ele-
ments of the combustion system. The combustion parameters served as 
the inputs such as burned fuel mass fraction, heat transfer velocity, and 
heat release rate (HRR) sorted with respect to the engine load. The 
author claimed that the ANN has a higher capability in predicting the 
engine performance (e.g., brake thermal efficiency) and emission met-
rics (e.g., NOx and CO2) for both diesel and biodiesel fuels. Can et al 
(Can et al., 2022). considered ANN as a predictive data-processing tool 
to generate the output results of a diesel engine. The study argued that 
the developed network can learn the trend between input-out results 
with a correlation coefficient of R = 0.999 that satisfies a low error 
criterion. As discussed, the results show that the ANN can be a potential 
option for combustion diagnostic/control as virtual sensors and engine 
calibration methodologies. Ma et al (Ma et al., 2022). used ANN and 
particle swarm optimization (PSO) algorithm to establish a predictive 
model and to optimize the dual-fuel marine engine performance and 

emission. They reported the fuel consumption (2.1% declined brake 
specific fuel consumption (BSFC)) and emission reduction (20.5% NOx 
& 43.1% CO) accomplishment as the optimization target by tuning the 
respective operational variables. Raptodimos and Lazakis (Raptodimos 
and Lazakis, 2020) used a Nonlinear Autoregressive technique with an 
Exogenous Input (NARX) neural network to assess its prediction feasi-
bility of the marine engine performance index (the exhaust gas tem-
perature of a marine main engine). Their results indicate that the 
network can predict the exhaust gas temperature of the ship engine and 
thereby sends a warning signal for future anomaly in the engine oper-
ation. Besides the predictability characteristics of artificial intelligence 
(AI) and machine learning techniques in marine engine applications, the 
respective functions are based on data clustering (Raptodimos and 
Lazakis, 2018; Bui and Perera, 2021) and fault diagnosis (Zhou and Xu, 
2010; Xu et al., 2017) techniques. 

From the literature, the studies revolving around engine exergy 
forecasting via AI and in specific ANN are scarce. Most of the investi-
gated works attempt to predict the engine outperformance and emission 
elements based on the selective input variables, such as load, pressure, 
temperature, etc. These input and output variables can be matched by 
training neural networks. This study bridged the gap between the first 
law (energy conservation) and the second law (exergy) of thermody-
namics through neural network modeling where various spray and 
mixing mechanics factors are involved that have not been captured in 
mathematical models. In order to further emphasize the validity of re-
sponses, the simulated and computed data are generated and classified 
into two classes: case study 1 (sorted based on fuel types) and case study 
2 (sorted based on spray injection angle). The availability and irre-
versibility as the second law thermodynamic analysis components are 
linked to spray-combustion-emission as the input whereas these pa-
rameters are recognized mostly as the output in former research outlets. 
The main contribution of this study is on the methodology, novel input/ 
output quantities selection, modularity, and adaptability of the neural 
network with alternative-renewable fuels and new operational spray 
injection angle. The authors believe that premixing and post-mixture 
quality is the underlying parameter in both energy efficiency and 
exergy output of the marine engine. As a result, instead of the air-fuel 
equivalence ratio, the modified homogeneity factor for different fuels 
and injection angles is calculated and then included in the input layer of 
the network. The interconnection of far initial (spray and mixing) and 
far post-combustion (exergy) parameter arranged as the inputs-outputs 
in the network platform with successful forecasting accuracy is the 

Fig. 1. The research pathway: step-by-step flow diagram.  
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advancing step of the present study by the combination of CFD, ther-
modynamic analysis, and big-data machine learning applications. 

The undertaken steps from data generation and sorting to ANN 
modeling and post-processing are demonstrated in Fig. 1 to better 
illustrate and summarize the research targets. 

2. Marine engine specification 

The engine considered for the data analysis is a marine medium- 
speed, four-stroke with six-cylinders unit and that the key features are 
listed in Table 1 (Hu et al., 2017). Since the purpose of this research is to 
focus on data-driven modeling of the energy-exergy correlation, the 
main simulation models are also listed in Table 1, which led to a valid 
engine output result. 

The computational simulations are performed via the AVL-FIRE 
platform (AVL FIRE version, 2018) where the structural dimensions of 
the chamber, crankshaft, connecting rod, injection line, and valves are 
taken from the experimentally operated engine. The meshed domain of 
the combustion chamber in two topologies of top dead center (TDC) 
(720 ◦CA) and 730 ◦CA are displayed in Fig. 2. The local grid refinement 
in the spray block is implemented from 40 CA bTDC (before top dead 
center) to 40 CA aTDC (after top dead center) to upgrade the precision of 
spray injection and droplet evaporation. The average cell size is 0.7 mm, 
hence the cell number generated in this method is 103616. The transient 
modeling of different 4 strokes of engine operation is implemented by 
crank-angle (CA) run mode where the CA intervals are split into different 
steps with smaller ones at initialization of 0.1 CA and fuel injection and 
combustion period of 0.2 crank-angle, whereas for the compression 2 CA 
step is considered to speed up the running time. The initial condition 
quantities of turbulent kinetic energy, turbulent length scale, and tur-
bulent dissipation rate are adjusted to 10 m2/s2, 0.001 m, and 

5231 m2/s3. 

3. Exergy terms and modified homogeneity factor (HF*) 
calculations 

The data acquired for the neural network in the next stage of the 
study are categorized as either direct parameters (calculated as the en-
ergy quantities taken from the CFD solution) or have to be further 
evaluated in an indirect format. The following parameters are the in-
direct parameters that are computed analytically or by the EES (engi-
neering equation solver) tool. 

3.1. Exergy expressions in the output of the network 

The exergy/availability is defined as the quantity related to a dual 
system-environment interaction where the system is brought to the 
dead-state equilibrium condition of the surrounding, thus producing 
useful/convertible work (Moran et al., 2010). The exergy stems from the 
second law of thermodynamics that argues over the quality of energy 
rather than the amount of energy. As a result, this study is dealing with 
the quality of the energy delivered from the engine system and detects 
the sources of energy loss and the irreversibility that undermines the 
ratio of the transmittable energy and work. The irreversibility in this 

Table 1 
Engine characteristics and applied simulation models.  

Parameter Value/comment 

Bore × stroke 160 × 240 (mm2) 
Cylinder number/engine layout 6/ in-line 
Rated speed/power 1000 rpm/540 kW 
Compression ratio 15.2 
Fluid flow field turbulence model k-ζ-f (Popovac and Hanjalic, 2007) 
Spray-wall collision Walljet 1 (Cabrera, 2003) 
Conservative equations 

discretization algorithm 
Simple/Piso (Versteeg and Malalasekera, 
2007) 

Combustion model Coherent flame model: ECFM-3Z+ (Colin and 
Benkenida, 2004) 

Spray evaporation Duckowicz (Dukowicz, 1980) 
NOx model Extended Zeldovich (Zeldovich et al., 1947)  

Fig. 2. The meshed domain of combustion chamber at different CA positions.  

Fig. 3. Schematic representation of irreversibility and availability in the system 
boundary of cylinder-piston arrangement. 

H. Taghavifar and L.P. Perera                                                                                                                                                                                                               



Process Safety and Environmental Protection 172 (2023) 546–561

549

research not only comes from the combustion, and heat transfer pro-
cesses but also the air-fuel mixing process contributes to the irrevers-
ibility process (Terzi, 2018). The total availability constitutes chemical 
and thermomechanical components of the in-cylinder phenomena. A 
schematic of the energy/exergy balance on the combustion chamber as 
the system boundary is depicted in Fig. 3. The provided energy of fuels’ 
chemical energy released by the oxidation process within the cylinder 
chamber produces heat and pressure. The heat is transferred via the 
cylinder walls or transported as gas mass flow from the outlet exhaust 
valve. The heat portion of the generated energy in the combustion 
chamber is inaccessible and results in the process irreversibility. How-
ever, the generated pressure in cylinder can contribute to useful work 
that propels the system hence increasing the exergy of the engine as 
illustrated in Fig. 3. The sprayed fuel mixing with air, combustion pro-
cess, energy transport as enthalpy from the exhaust valves, and the heat 
transfer due to a definite temperature difference between the cylinder 
wall and the ambient air are main sources of the irreversibility that tend 
to undermine the availability of the supplied energy in the combustion 
chamber of the engine as identified in the following schematic 
representation. 

The chemical and thermomechanical availabilities (Ach and Atm) are 
estimated as follows, having thermodynamic properties and mass flow 
across the system boundary (Van Gerpen and Shapiro, 1990): 

Ach = T0

∑

i
miRi ln

(
xi
xi0

)

(1)  

Atm = E − P0V − T0S −
∑kk

i=1
μi0mi (2)  

where P0 and T0 represent the equilibrium dead-state conditions pres-
sure and temperature and xi, μi, and mi give the molar fraction, chemical 
potential, and mass fraction of species i in the combustion chamber. 
Therefore, the total energy with the addition of two components can be 
obtained: 

Atot = Ach +Atm = E − P0V − T0S −
∑kk

i=1
μi

0mi (3) 

Atot is the overall availability, while E, V, and S denote the total 
energy, cylinder volume, and entropy. The irreversibility rate which is 
associated with exergy destruction is introduces in below equation, 
therein the exergy destruction is linked to combustion process per CA: 

dI
dθ

=
T0

T

∑kk

i=1
μi

dmi

dθ
(4)  

where μi = gi is valid for the ideal gases and for fuels μi = af,ch can be 
applied. dm/dθ is the mass flow rate with crank-angle and Af,ch is the 
chemical exergy of fuel with CxHyOz structure is calculated as below 
(Rakopoulos et al., 2008). 

Af ,ch = mf af ,ch = LHV
[

1.0410+ 0.01728
x
y
+ 0.0432

z
y

]

(5)  

Where mf and af,ch are the fuel mass flow and specific chemical exergy of 

the fuel, respectively. 

3.2. Modified homogeneity factor as mixing mechanics indicator in the 
input of the network 

The mixing process of air/fuel in the combustion chamber is an un-
derlying phase that affects the subsequent combustion and ignition 
timing. This, in return, alters the kinetics of the chemical reaction. The 
mixing process eventually impacts the generated species during the 
combustion, the concentration of species, and burning rate. Therefore, 
the measurement of mixing quality and extent of the uniformity is 
proposed based on a new definition of the heterogeneity factor (Nandha 
and Abraham, 2002) and then the improved coefficient of the modified 
homogeneity factor (HF*) is introduced (Taghavifar et al., 2021). 

In the former definition, the mixture heterogeneity can be described 
as the standard deviation of the dimensionless fuel mass by the total 
mixture mass. In this manner, the distribution of fuel in each compu-
tational cell must be considered, thereby the increase of fuel in each cell 
(cell i) means that the fuel amount in the adjacent cell will be decreased. 
Hence, the half of fuel standard deviation is the criteria for the com-
putations of fuel dispersion in the combustion chamber domain. The 
change in the fuel amount in the i-th cell depends on the average 
equivalence ratio (φ0) as (Mobasheri and Peng, 2013):   

In the new definition, instead of the fuel mass, the optimal mixture of 
air/fuel mass and its deviation from the mean value of the ideal mixture 
is adopted and then scaled as a non-dimensional coefficient. Eq. 6 in a 
simple format gives the fuel mass variation in a given computational cell 
based on the equivalence ratio and AFRst. The optimal mixture takes the 
independent constants of air and fuel in the cell. The assigned co-
efficients of fuel and air are multiplied by the mass fraction of air and 
fuel in each respective mass fraction and then summed over (Taghavifar 
et al., 2021): 

Li=A(dma)i+B
(
dmf

)

i

Li=x(dma)i+AFRst
(
dmf

)

i=

[
xAFRst

AFRst+φi
+

φiAFRst

AFRst+φi

]

δmi=
(x+φi)AFRst

AFRst+φi
δmi

(7)  

here φi represents the equivalence ratio at cell i, dma and dmf are the 
mass fractions of air and fuel. The coefficients are A = x and B = AFRst 
where x such varies that the standard deviation from the ideal non- 
dimensional mixture results the minimum of HeterF(θ) or alternatively 
maximum of HF* as: 

HeterF(θ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Ncell

i=0

[
(L − L)i

]2

√

2L
HF∗(θ) = (1 − Heter F(θ)) %

(8) 

The HeterF(θ) function shows non-uniformity of the air-fuel mixture 
and is the opposite of homogeneity factor (HF*). 

dmf =
φi

AFRst + φi
δmi dma =

AFRst

AFRst + φi
δmi→

(
dmf

)

cell i −

(

dmf

)

=
φi

AFRst
δmi −

φ0

AFRst+
δmi

→ =
AFRst(φi − φ0)

(AFRst + φi)(AFRst + φ0)
δmi

(6)   
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4. Implementation of ANN on energy-exergy datasets 

The ANN framework is categorized among utilitarian soft-computing 
knowledge and artificial intelligence perspective. This science has 
gained widespread popularity within pure and applied science areas. 
This modeling domain is a dynamic research field for scientists, where 
ANN has proved efficiency potency in facing complex nonlinear systems. 
The ANN mimics the human biological behavior of a neuron system 
where each neuron is composed of weights and associated biases that are 
connected through multiple convoluted layers. The number of layers is 
determined based on the complexity of the problem. These networks are 
called multi-layer perceptron (MLP) networks with hidden layers be-
tween input and output that have a characteristic role in the predictive 
capacity of the developed ANN. The input layer of the network takes the 
input parameters as the input neurons and process them through the 
hidden layers and gives out output parameters in the output layer. These 
networks are featured as modular and adaptable with various structures. 
Once the inputs are fed to the network and a specified amount is pre-
sented as an objective, the error can be obtained via a comparison of 
desirable and actual responses of the system. The acquired error then 
will be back-propagated to the system so that the respective adjustments 
are administered under the supervised rules of the network. This process 
will be iterated consecutively until the output reaches a desired and 
acceptable amount, where the respective error is minimized. The back- 
propagation algorithm runs until the convergence of the predicted 
values towards the actual values that are implementable and optimiz-
able through the descent gradient method. The schematic coordination 
representation of ANN along with input/output parameters and the 
single hidden layer is demonstrated in Fig. 4. 

4.1. Data handling and processing: normalization, classification, and 
error estimation 

A total dataset size of 9760 is used for the modeling with the parti-
tioning of 70%, 20%, and 10% portions randomly allocated for training, 
testing, and cross-validation, respectively. The Levenberg-Marquardt 

training algorithm (trainlm) is applied during the modeling imple-
mentation due to its acceptability and capability concerning the com-
bustion phenomena in direct injection (DI) engines (Roy et al., 2014). A 
feed-forward ANN with a back-propagation training algorithm is 
employed while four training algorithms (trainlm, traingdx, trainmp, 
and trainscg) are adopted in which the error minimization has been 
performed by the gradient descent. In the present study, the MLP 
network prognosticates the responses consisting of one hidden layer 
with varying neurons of 1–20 which is to avoid random selection in the 
network structure. During the initial training phase of the network, the 
weights and biases of the neurons are selected arbitrarily. Therefore, for 
each number of neurons in the hidden layer (for any given network 
architecture), the network is trained for 100 iterations to overcome the 
haphazard selection deficiency. In each training iteration, the network is 
trained for 1000 epochs. The mean value is considered an efficiency 
index of the predictive potential of the respective model. Ultimately, in 
the non-dimensioning step, the following function will be served for the 
calculation: 

Xn =
Xr − Xr, min

Xr, max − Xr, min
×

(

Xh − Xl

)

+Xl (9)  

Where Xn denotes non-dimensional input variables, Xr denotes initial 
unprocessed input variables, and Xr,min and Xr,max are the minimum and 
maximum of the input variables. Furthermore, Xh and Xl are 0 and 1 
successively. Since the values are placed between 0 and 1, in accordance 
with dimensionless output, the logsig transfer function is taken. For 
modeling, the network efficiency is assessed with different statistical 
indices. The root mean square error (RMSE), mean absolute percentage 
error (MAPE), and coefficient of determination (R2) are considered for 
estimating the predictive quality in the ANN. 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Yactual − Ypredicted

Yactual

⃒
⃒
⃒
⃒ (10)  

Fig. 4. Energy-exergy thermodynamic dataset acquirement and handling with supervised ANN network predictive model.  
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
Ypredicted − Yactual

)2

√

(11)  

R2 =

∑n

i=1

(
Ypredicted − Ymean

)2

∑n

i=1
(Yactual − Ymean)

2
(12)  

where Yactual و Ypredicted are actual and predicted output values calculated 
by the ANN. 

4.2. The ANN architecture configuration and performance analysis 

The predictive strength of the network is significantly dependent on 
its structure. The ANN has essentially comprised of the input and output 
layers with one or several hidden layers. The principal components of 
the network include neurons, i.e. transfer functions with predefined 
layers. The fundamental transfer functions that are used in the MLP 
layers of the network include Log-Sigmoid (logsig), Tan-Sigmoid (tan-
sig), and linear functions of Purelin. The transfer functions in the neural 
network can be linear and nonlinear therein a nonlinear function en-
sures appropriate functioning of the developed ANN within nonlinear 
system behavior. The network output reliance on the transfer function 
type must be reiterated. The Logsig function receives the input signals in 
the range of (-∞, +∞) and converts them into the (0, +1) band.The 
tansig has data within (-∞, +∞) and transfers the corresponding data 
into (− 1, +1), while Purelin function, also known as linear or identical 
function, maps (-∞, +∞) data interval into the same domain of (-∞, 

+∞). In recent research studies, activation functions of Purelin and 
tansig are adopted for the output and hidden layers respectively since 
they had demonstrated acceptable performance in the combustion and 
species gas modeling applications (Paul et al., 2018). The u argument 
transfer from the input signal region to y output takes place as: 

yk = tan sig
(
uk) (13) 

The overview of various training algorithm types that have been 
recently updated and employed in the engineering scope reveals that 
following are the most efficient (Hoang et al., 2021): (a) resilient 
backpropagation, (b) scaled conjugate gradient (scg), (c) 
Levenburg-Marquardt, (d) gradient descent with momentum and 
adaptive learning (gdx) that for this project, different methods are taken 
altogether. 

5. Results and discussion 

The results fall into two major categories of fuel type and injection 
angle. Each category then is divided into two subcategories: firstly, the 
network setup and input/output interactions will be addressed, and 
secondly the obtained results from ANN forecasting will be shown and 
discussed. 

5.1. ANN application on the energy-exergy link with HF* consideration: 
the first case study- grading based on the fuel type 

In the first case study, after much inspection of the factors that can 
have the highest impact on the elements and components governing the 

Fig. 5. Block structure of developed ANN for the first case study: fuel type parameter sets.  

Table 2 
Statistical data of input and output parameters including uncertainty, standard deviation, and variation bounds.  

No. *Objective input and output parameters Design parameters Min. and Max. data discrepancy Std. deviation %Uncertainty  

1 Crank angle (θ) CA 690–781  20.7  4.6  
2 Heat release rate (J/deg) HRR 0–38.32  10.45  3.296  
3 Homogeneity factor (%) HF 0–0.834  0.321  0.573  
4 Sauter mean diameter (mm) SMD 0–0.143  0.0256  0.1578  
5 Nitrogen oxide mass fraction (-) NOx 0–0.00235  0.000695  0.029  
6 Pressure (MPa) P 1.85–19.8  3.4563  1.983  
7 Carbon dioxide mass fraction (-) CO2 0–0.16073  0.0593  0.232  
8 Chemical availability (J) Ach 0.7983–27.21  8.73909  3.17231  
9 Thermo-mechanical Availability (J) Atm 55.35–635  171.8472  12.9395  
10 Irreversibility rate (J/deg) dI/dθ 0–15.06  4.4627  2.2835  
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second law of thermodynamics (exergy and irreversibility), the crank 
angle, the rate of heat release rate, the modified homogeneity factor of 
air/fuel mixture, Sauter mean diameter (SMD) of spray, NOx mass 
fraction, CO2 mass fraction, and in-cylinder pressure are selected as the 
influential input variables or parameters on the evolving trend of the 
exergetic output parameters. The utilized output parameters include 
chemical availability, mechanical availability, and irreversibility rate. In 
order to demonstrate the input parameters’ effect on the availability in 
the engine , the broken-down exergy into the chemical and physical 
(mechanical) availability is used instead of the overall parameter. The 
classic thermodynamic equations have linked the exergy to the com-
bined factors of the system-environment, such as temperature, pressure, 
and generated species concentrations (Bejan, 2016). However, in cur-
rent research, the preceding events of combustion (spray and air/fuel 
mixing quality), and indirect combustive events (such as heat release 
rate) are included to increase the precision of the developed model. The 
schematic representation of the block structure of the network along 
with neurons and layers is shown in Fig. 5, where the involved input and 
output parameters can be seen. 

The proposed network with the respective number of neurons in the 
hidden layer can be categorized as: the ANN structure will be 7-x-3 that x 
represents the number of neurons in the hidden layer. The x value for 

different training algorithms can be varied and thereby the chosen 
number is based on the network performance in an organized manner, 
while in other studies that are mostly chosen based on trial and error, 
which greatly undermines the efficiency of the developed neural 
network system. The initial and unprocessed input and output data must 
be dimensionless within (− 1, 1) domain due to the use of the tansig 
transfer function. This is advantageous since promotes the training 
feature of the network and prevents the lingering trend and sticking the 
output results in the local optima. During the start of the network 
training, the weights and biases are inevitably selected randomly. 
Therefore, for each number of neurons in the hidden layer, the network 
is trained100 times to overcome this issue. In general, the network is 
trained for 1000 epochs as the cutoff parameter to complete its 
convergence to the respective parameter during the training algorithm. 

5.1.1. The relation between inputs and outputs- the first case 
The collected data from the selected marine engine is sorted based on 

CA evolution. Some data are directly from the simulated engine and 
some of them are further calculated (e.g., modified HF* and exergetic 
terms). The statistical information is detailed in Table 2, with the list of 
input-output parameters and the respective numeric significance. With 
reference to Table 2, it is stated that the highest data sensitivity is 

Fig. 6. Thermomechanical and irreversibility rate variations versus HF* for diesel, DME, and hydrogen fuels.  

Fig. 7. Pie chart breakdown of chemical/thermomechanical availability and irreversibility rate for diesel, DME, and hydrogen fuels.  
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associated with thermomechanical availability (Atm) and the lowest 
sensitivity and data discrepancy pertains to the NOx mass fraction. 

For better characterization of the significance of HF* on the outlet 
results, this study deals with this valuable parameter and analyze the 
findings. To this end, Fig. 6 provides where the variations of the ther-
momechanical and irreversibility rate with respect to the modified ho-
mogeneity factor is plotted for diesel, DME, and hydrogen fuel types. It is 
seen that as expected with the combustion process of hydrogen corre-
spondingly more availability is achieved compared to other fuels. 
However, the important point is that hydrogen, unlike the other two 
fuels, has a peak point with HF* that occurs at HF* = 0.453 while the 
peak point of diesel and DME are consistently increasing. That is to say, 
the higher HF* coefficient (that means better air/fuel mixing quality), 
the system potential or preparatory measures to use the available 

Fig. 8. The impact of input variables of HF, SMD, and pressure on Atm.  

Fig. 9. (a) The MSE variation per neuron number of hidden layer for different 
training algorithms, (b) magnified view of MSE changes in the 10–20 neurons 
for trainlm. 

Fig. 10. The MSE variation with the number of iterations as epochs to deter-
mine the best validation point for the testing and training phases. 

Table 3 
Performance and accuracy of the developed ANN for the output parameters for 
the first case study sets.  

Output 
parameters 

R2 RMSE MAPE 

Test Train Test Train Test Train 

Ach  0.999  0.9999  0.23789  0.20841  0.06259  0.04921 
Atm  0.996  1  0.98736  0.76549  0.01943  0.00279 
dI/dθ  0.978  0.983  0.60766  0.53758  0.284  0.45034  
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energy, and the energy-to-work chance increases accordingly. Once the 
mixing quality enhances, better combustion efficiency takes place, 
hence the chemical reaction releases much more energy. Subsequently, 
the in-cylinder pressure and temperature rise, and the availability 
elevate. In the case of hydrogen fuel, it seems that an optimal amount of 
homogeneity factor leads to maximum thermos-mechanical availability 
that corresponds to Atm = 633.8 J. The optimality point determination 
depends on the under-investigated engine system characteristics to have 
enough capacity to use the released energy by fuel with a high heating 
value to convert the most of chemical energy into the power output. The 
irreversibility rate curve is strongly oscillatory since the instantaneous 
irreversibility is calculated at each moment per crank angle that origi-
nates from the turbulent nature of the combustion process and severe 
change of thermodynamic properties. The reason for the higher average 
irreversibility of DME compared to diesel is attributed to the combustion 
chamber containing gas entropy and more heat transfer of DME- 
powered engines to the environment compared to diesel. This mainly 

stems from high pressure and high-temperature combustion of DME that 
has been mentioned earlier (Roh and Lee, 2017) and greater average 
heat release and out heat flux for DME (HRRDME = 9.46 J/deg, HRRdiesel 
= 8.84, WHFdiesel = 17,614 W, WHFDME = 21,112 W). Hydrogen ex-
hibits a different trend because after the peak point corresponding to 
HF* = 0.13, the average irreversibility begins to decline and in a broader 
view, hydrogen at a higher HF ratio gives much lesser irreversibility 
than the other two fuels. 

Fig. 7 presents the pie chart breakdown of the output parameters for 
each of the considered fuels with associated properties such as HRR and 
SMD where the allocated portion for each fuel is separated in percent-
ages. From Fig. 7 it can be interpreted that diesel fuel has a bigger spray 
droplet diameter SMD = 17.58 µm and a corresponding heat release 
capability that is the lowest HRR = 8.83 J/deg. This causes it to have the 
lowest exergy or chemical and thermomechanical availability for this 
fuel with 27% and 22% share of the total availability, respectively. One 
can conclude that the fuels with the lower capability to be disintegrated 

Fig. 11. Scatter plots of comparison between the ANN-predicted and actual output results for (a) Ach, (b) Atm, (c) dI/dθ.  
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Fig. 12. The overall ANN scatterplot for testing, training, and validation portions.  

Fig. 13. The ANN block structure for the second case study: the injection angle grading.  
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during injection will have a lower chance of exergy content or energy 
accessibility for the final useful work conversion ratio. Hydrogen, on the 
other hand, features a tiny spray droplet with SMD = 2.55 µm and the 
highest HRR of HRR = 11.277 J/deg giving the most proportion of 
chemical and thermomechanical availability corresponding to 41% and 
55%. This means that the fuel with small droplets generated during the 
breakup process can make a uniform air/fuel mixture. This premixed 
load to the engine (as featured by the modified homogeneity factor) can 
boost the pressure and temperature of the cylinder , where the avail-
ability terms are leveraged. Concerning irreversibility, diesel shows less 
exergy destruction potential (31%) whereas DME shows the most share 
of irreversibility (36%). The irreversibility of different fuels is close to 
each other. 

The plots of Fig. 8 display the effect of main input variables on the 
output of thermomechanical availability in the engine. The results infer 
that by having a small spray droplet as the fuel jet breakup initiates, a 
better homogeneity factor (closer to 1) resulted, and this comes from 
better heat release and droplet evaporation by the oxidizer. On the other 
side, the heat-to-work ratio for the cases of better air-fuel mixing ele-
vates due to the higher pressure of the in-cylinder chamber. The sig-
nificance of mixing dynamics in better availability terms is emphasized 
in this study, where the fuel chemical potential can better be used and 
converted to heat and pressure. The goal is to prevent heat loss from the 
chamber walls and exhaust valve and make the pressure to move the 
piston, which gives higher availability of the system. 

5.1.2. ANN modeling results for the first case study-fuel type grading 
In this sub-category, the ANN is served to prognosticate the second 

law of thermodynamic, which govern the energy quality of the system. 
The main part of the present study deals with connecting the availability 
of energy and irreversibility with the factors of load preparation and 
premixed quality of fuels, injected spray structure, the generated heat of 
combustion, and gas species concentration. There have been no concrete 
mathematical equations in the exact form to link the aforesaid 

Table 4 
The impact assessment of injection angle with input and output data series.  

Injection 
angle 

Peak 
penetration (m) 

HF (-) Mean TKE 
(m2/s2) 

Mean 
Atot (J) 

Mean dI/ 
dθ (J/deg) 

130 deg  0.03  0.703  15.68  191.09  17.48 
140 deg  0.0294  0.69  15.09  165.05  14.88 
150 deg  0.0277  0.671  14.23  154.3  12.98  

Fig. 14. (a) The MSE variation with the number of neuron layers for different training algorithms: the second case study, (b) magnified view of trainlm in the range 
of 10–20 neurons. 
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parameters, therefore this approach can be considered as black-box 
modeling in such intricate and stochastic physical phenomena as a 
combustion process. 

The priority in ANN modeling is adopting the optimal configuration 
so that the efficiency and performance of the developed model in 
learning the pattern and predicting the accurate outputs can be 
increased. In this framework, a criterion for assessment of the accuracy 
and fidelity of the network must be established that here the actual re-
sponses and the deviations of the predicted response as the error is 
recognized and during each iteration, the model tries to minimize the 
respective error. Following, Fig. 9 displays the mean square error (MSE) 
with the increase of neurons in the hidden layer for different types of 
training methods thereby the best decision can be made on the optimal 
structure of the neural network. The transfer functions of trainlm, 
trainscg, trainrp, and traingdx are used in the range of 0–20 neurons. For 
all the cases, an increase of neurons caused the network error decline, 
however, trainlm and trainscg outperform in terms of the rapid gradient 
of error reduction compared to the other two algorithms. For the best 
architecture of network selection, trainlm in neuron number of x = 20 
resulted in the least error of MSE = 0.3868. It seems like that in 10–20 
neurons with the trainlm error variation is unchanged but in the 
magnified view of Fig. 8b, the minimum value of error that occurred in 
x = 20 is better illustrated. 

As a result, the optimal neural network structure to achieve the 
precise modeling capability with the dataset as input and output is 
7–20–3 with trainlm training algorithm. The MSE reduction trend for 
two subgroups of testing and training are shown in Fig. 10 and along 

with each epoch implementation, the error extent is reduced for the next 
step (the epochs are from 0 to 1000). Moreover, the optimal operative 
point from the cross-validation aspect happens at epoch number of 78 
with the MSE corresponding to 3.3197. 

The performance and precision of the ANN optimization with three 
statistical criteria for three output parameters are estimated and 
measured which are mentioned in Table 3. According to this table in-
formation, the highest network performance capacity (based on the 
coefficient of determination) for the training phase of the thermo-
mechanical availability with R2 = 1. It indicates that the success and 
adequate robustness of the ANN model is observed. Such a performance 
can only be achieved with a unique selection of input and output data 
and variables that have strong interconnection from a physical and 
chemical standpoint. Other than that, the neural network structure and 
training expertise depends on matching of datasets on the unity line. The 
other point of interest is the value of R2 = 0.9999 for the chemical 
availability that is very close to the unity, representing a striking pre-
dictive capability of the neural network. Two other indices of perfor-
mance assessments that are introduced here include RMSE and MAPE. 
The MAPE (as an error measuring indicator) has the least amount for 
thermomechanical availability (MAPEAtm = 0.002786) and the highest 
amount pertains to irreversibility (MAPE dI∕dθ = 0.45033). However, 
based on the RMSE error evaluation, the least error in ANN performance 
goes to chemical availability. Based on these two error estimation def-
initions, the MAPE can be a better standard of error recognition since it 
gives a normalized deviation of the predicted results from the actual 
corresponding responses thus better delineating the response deviations 
that are the source of errors. 

The data points are distributed across the scatter plots of Fig. 11 
where the vertical axis represents the results of ANN modeling, and the 
horizontal axis gives the actual values of the output results from the 
thermodynamic simulation of the combustion chamber, computed by 
the EES solver. The closer the data points mapped onto the unity line 
(represented in a red dotted line) the better the network performance in 
predicting the exergy of the combustion system. Interestingly, there is 
full conformity of the results in simulation and modeling for the ther-
modynamic availability while the irreversibility rate demonstrates the 
lowest agreement of the results between actual and network responses. 
The main reason for this can be traced to the oscillation and instability of 
the instantaneous irreversibility rate. The high degree of consistency in 
the results in the case of availability is the inclusion of all influencing 
input parameters from mechanical (physical) agents (i.e., injection and 
spray evolution) to heat transfer and species formation during the 
chemical reaction. It can be concluded that for the physical formulation 
of the exergy, the mixing dynamics of air-fuel must be included in the 
engine application. 

The overall performance of the ANN model is shown in Fig. 12 as the 

Fig. 15. The MSE variation versus epoch numbers to determine the best vali-
dation point for the testing and training dataset portions. 

Table 5 
A selected number of data from the input and outputs for the second case study.  

CA (deg) Diesel MF (-) SMD (mm) Penetration (m) TKE (m2/s2) HF (-) Ach (J) Atm (J) dI/dθ (J/deg)  

721  0.00433 1.43 × 10− 2  0.0269  14.775  0.02354  0.6554  72.25  7.98  
726.8  0.05401 4.39 × 10− 3  0.02717  35.835  0.38797  7.051  193.3  10.57  
734  0.08128 3.77 × 10− 3  0.02893  32.441  0.60502  12.48  255.1  6.319  
744  0.08659 3.71 × 10− 3  0.02816  16.187  0.69723  16.9  261.2  0.4537  
753  0.08618 3.65 × 10− 3  0.02831  11.854  0.70247  17.63  238  0.3541  

Table 6 
The ANN performance and precision in producing the output values for the second case study.  

Output parameters  R2  RMSE  MAPE 
Test Train Test Train Test Train 

Ach  0.9999  0.9998  0.07945  0.090862  0.029048  0.02996 
Atm  0.9999  0.9999  0.53716  0.52584  0.002197  0.002217 
dI/dθ  0.9934  0.9961  0.36729  0.26402  0.183889  0.192855  

H. Taghavifar and L.P. Perera                                                                                                                                                                                                               



Process Safety and Environmental Protection 172 (2023) 546–561

558

scatterplot for three phases of the classified data of testing, training, and 
validation. The correlation coefficient of the training mode is the highest 
that comes to R = 0.99993. The plot confirms the acceptability, 
robustness, and reliability of the training neural network with the pro-
posed structure in producing the output exergetic responses. The present 
work is a combination of the CFD engine modeling, thermodynamic 
computation for the exergy and data-driven ANN. 

5.2. The ANN application on energy-exergy interaction considering HF*: 
the second case study- fuel injection angle grading 

This case study centers around the numerically generated data based 
on the different spray injection angle of diesel fuel, that consequently 
affects the mixing process and exergetic terms. 

5.2.1. The network structure for the second sub-category 
The undertaken process is exactly like the first case study but for the 

modeling goal, a different set of input data series such that 8748 data 

size is employed. The database is sorted according to injector injection 
angles of 130, 140, and 150 deg. The neural network structure is 6-x-3, 
and the number of neurons in the hidden layer will be determined based 
on the least MSE. The topological representation of the developed 
network for the second case is illustrated in Fig. 13 where the input 
parameter selection is also changed. At this time, the hydrodynamic 
spray characteristic of the spray penetration, turbulent kinetic energy 
(TKE), and diesel mass fraction are replaced by the major generated 
species concentrations, pressure, and HRR. 

Table 4 summarized the information on the effect of an injection 
angle effect on the mixing index, turbulent kinetic energy, penetration 
and their correlation with the total availability, and irreversibility of the 
process taking place in the combustion chamber. Injection with 130 deg 
tilted angle allows for longer spray injection with a better atomization 
chance that results in higher HF* = 0.703. The mixing mechanics of fuel 
and air along with higher TKE for the case of injection with 130 deg 
results in higher energy available to be transformed to useful shaft work. 
The injection angle at the lower direction leads to spray-wall collision 

Fig. 16. The scatterplot for the ANN predictive results for (a) Ach, (b) Atm, (c) dI/dθ.  
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and reduces the air-fuel uniformity, thus an incomplete combustion 
process occurs. Therefore, the fuel chemical potential and heat pro-
duction are wasted at 150 deg injection and the availability drops from 

191.09 J to 154.3 J. Since the combustion at 150 deg is not fully 
happening, the process irreversibility is lower (around 25.7%) 
compared to 130 deg injection in the engine. 

For the determination of x value, we use the top plot of Fig. 14 
wherein the number of neurons for different training algorithms are 
varied. Again, trainlm algorithm proved better capability in error 
gradient reduction that is marked with a black line. The increase in a 
number of the hidden layer neurons in the standard interval (to avoid 
overfitting issues) leads to error reduction and the system performance 
enhancement. The enlarged picture of the trainlm algorithm is shown 
that a discernable least MSE at a neuron number of 19 corresponding to 
MSE = 0.3077. 

Based on the obtained results, the optimal configuration of the neural 
network is 6–19–3 with trainlm for the second case study with the in-
jection angle with different input parameters. In order to demonstrate 
the variation of the response errors versus, i.e. the number of iterations 
or epochs, Fig. 15 is given for two testing and training portions. The 
optimal validation performance is at 698th epoch with MSE = 0.13162. 

A few randomly chosen data are sampled in the following Table 5. 
This table indicates that as the CA increases (or the time passes during 

Fig. 17. The ANN performance in three phases of testing, training, and validation.  

Table 7 
The ANN comparison metrics between the study and recent literature.  

Research item Output parameters Best R (R2) 
network 
performance 

Error analysis 

Current study Exergy/ 
irreversibility 

R2 = 0.9999 MAPE 
= 0.002197, 
RMSE = 0.09086 

(Ma et al., 2022) emissions R2 = 0.9908 MAPE = 0.0314 
(Raptodimos and 

Lazakis, 2020) 
Exhaust 
temperature 

R = 0.9825 MAPE = 0.0104 

(Castresana 
et al., 2022b) 

Emission/ 
temperature/fuel 
consumption 

R = 0.9968 MAPE = 0.0028 

(Aghbashlo 
et al., 2016) 

Exergy/ 
sustainability index 

R2 = 0.9977 RMSE = 0.13588  
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the engine functioning), the diesel fuel mass fraction or the amount of 
the injected fuel to the combustion chamber increases. Therefore, the 
fuel droplet diameter as a result of the breakup process decreases, then 
the spray penetration gradually increase, where the turbulence in the 
initial stage of injection has the maximum amount. It is seen that with 
the evolution of the process, the thermomechanical and chemical 
availabilities increase but the irreversibility decrease at the post- 
combustion stage. 

5.2.2. The ANN application results on the second case study-grading based 
on the injection angle 

For the assessment of the accuracy and reliability of the presented 
network, the statistical parameters are chosen to measure the degree of 
output response errors in the predictions. According to Table 6, the size 
of errors for all output parameters is minimal and the coefficient of 
performance is so close to unity indicating the excellent performance of 
the network due to an optimal selection of the network structure and the 
selected input parameters interconnection or influence on the thermo-
mechanical index parameters. In this model (compared to the first case 
study), the model efficiency particularly in chemical exergy and irre-
versibility has upgraded significantly. That is to say, the determination 
coefficient for the test and training phases are improved from R2 

= 0.978 to R2 = 0.9934 and R2 = 0.983 to R2 = 0.9961. The RMSE error 
deviation standard has the highest amount for mechanical availability, 
while the MAPE error criteria give the highest normalized error for 
irreversibility. This is mainly due to TKE consideration among the input 
variables that could cogently take into account the oscillatory nature of 
the instant irreversibility. 

The 2D scatterplots around the fitting line, which is the index of 
correspondence of the actual and predicted values are depicted in 
Fig. 16. The data for the scatterplots are taken from the training phase 
for the output results. As seen, the mapping of data points around the 
fitting line for the availability terms is more than irreversibility which is 
also the case for the previous section. 

It can be stated that the comprehensive effectual parameters on the 
exergy and the second law of thermodynamics will be selected that 
encompass the mechanical, combustive, heat transfer, chemical inter-
action, and species concentration parameters in two different categories 
of the first and the second case studies. The first case study is sorted for 
different alternative fuels of diesel, DME, and hydrogen while for the 
second case study the sorting of accessible data is implemented based on 
the fuel injection angle. In the first case study, the ideal performance of 
the network with R2 = 1 is obtained and for the second case study, the 
efficiency of the system in predicting the irreversibility is improved. The 
overall neural network performance in three phases of testing, training, 
and validation is shown in Fig. 17 where the actual results of thermo-
dynamic calculations are contrasted with the neural network modeling. 
The promising correlation coefficient of R = 0.9999 is an indication of 
the satisfactory performance of the neural network. 

Table 7 shows the performance metrics, developed by an ANN and 
compared with the most relevant research metrics in the recent engine 
research studies. This study is having a larger data set and diverse input 
parameters. Having involved the computational parameter in a broad 
operational map, the introduced neural network model is able to predict 
the exergy output more efficiently in terms of the accuracy and perfor-
mance as presented in Table 7. 

6. Conclusion 

A multi-fold research is conducted on the medium-speed marine 
diesel engine, which consists of CFD data, EES thermodynamic compu-
tation, and AI data processing to establish a connection among the en-
ergy, spray, and exergy parameters within the ANN framework. The 
main findings are:  

• Thermomechanical availability increases with the increase of HF* 
that occurs along with a small SMD spray droplet size (SMD = 60 µm, 
HF* = 0.73 → Atm,max = 240 J).  

• Hydrogen fuel with 55% of Atm and 41% of Ach gives the highest 
availability amount among the respective fuels. Although the irre-
versibility rate of all fuels is in the same range, DME has slightly more 
irreversibility (37%). The HRR of fuel has a direct correlation with 
availability while SMD has an inverse impact on the availability.  

• The optimal ANN topology for the first case study (fuel type sorting) 
is 7–20-3 with trainlm algorithm, with which the corresponding 
mean error of MSE = 0.3868 is obtained. The neural network in this 
study is able to predict accurately the chemical exergy and thermo-
mechanical exergy with respective R2 = 0.999 and R2 = 1 for the 
training portion of data. The MAPE index of results for Ach, Atm, and 
dI/dθ for the test portions are 0.061, 0.019, and 0.285.  

• The 130 deg injection angle has a higher spray penetration length by 
making better mixture uniformity (HF* = 0.703) and TKE, as a 
result, higher total availability has been achieved. The availability 
and irreversibility quantities not only depend on the combustion 
process and pressure/temperature but also pertained to mixing pre- 
combustion dynamics.  

• In the second case study, based on the RMSE error estimation 
criteria, the lowest amount goes to Ach with 0.0908 while with MAPE 
error index Atm demonstrates the lowest value as much as 0.0022. 
There is overall excellent performance of the output prediction with 
a machine learning approach for exergetic thermodynamic evalua-
tion for a marine diesel engine application.  

• For the second case study according to injection angle modeling and 
data sorting, the optimal configuration of the network is 6–19-3, 
wherein the model efficiency for the chemical and thermomechan-
ical availability terms are considerably upgraded compared to the 
first case study. That is to say, for testing and training portions the 
predictive capacity are promoted from R2 = 0.978 to R2 = 0.9934 
and from R2 = 0.983 to R2 = 0.9961 for the irreversibility rate. 

The proposed research study on CFD data, exergy and HF compu-
tation, and then ANN application requires a considerable computational 
resources, however, the accuracy of the results can be guaranteed. To 
avoid this, the engineering device can be modeled with a 1D model in 
many situations. More detailed combustion parameters and gas species 
concentration will be considered in future works and that will increase 
the chemical exergy accuracy. Finally, the exergoenvironment and 
exergoeconomic parameters are of pivotal significance for promising 
renewable fuels and it is highly recommended to add these factors to the 
network’s outputs , while keeping fuel price within the input array. 
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