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We consider cones of real forms which are sums of squares and 
invariant under a (finite) reflection group. Using the representation 
theory of these groups we are able to use the symmetry inherent 
in these cones to give more efficient descriptions. We focus 
especially on the An , Bn , and Dn case where we use so-called 
higher Specht polynomials to give a uniform description of these 
cones. These descriptions allow us, to deduce that the description 
of the cones of sums of squares of fixed degree 2d stabilizes 
with n > 2d. Furthermore, in cases of small degree, we are able 
to analyze these cones more explicitly and compare them to the 
cones of non-negative forms.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open 
access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

A real form (homogeneous polynomial) f ∈ R[X1, . . . , Xn] is called a sum of squares if it admits 
a representation in the form f = f 2

1 + . . . + f 2
m for some real forms f1, . . . , fm ∈ R[X1, . . . , Xn] and 

it is called positive semidefinite or non-negative if it assumes only non-negative values on Rn . We 
will denote by �n,2d the cone of sums of squares forms in n variables of degree 2d and by Pn,2d
the corresponding cone of non-negative forms. Clearly, every sum of squares is also non-negative, 
and we therefore have the inclusion �n,2d ⊂ Pn,2d . Hilbert (1888) addressed and solved the question 
to characterize the cases, when the two cones coincide. As it turns out this only seldom happens, 
namely only in the case of bivariate forms (n = 2), quadratic forms (2d = 2), and ternary quartics 
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(n = 3, 2d = 4). Sums of squares play a fundamental role in real algebraic geometry and have in the 
last two decades become also a very important tool for polynomial optimisation (see for example 
Scheiderer, 2009). Several authors have considered situations in which one supposes that the forms 
are invariant under the action of a group: For a group G ⊂ GLn(R) we denote by PG

n,2d and �G
n,2d

the invariant forms in the respective cones. Since this additional requirement can shrink the dimen-
sions of the cones, their study may become more tractable. Furthermore, as presented in Gatermann 
and Parrilo (2004), representation theory of groups can be particularly used to simplify the sums of 
squares decomposition. Building on this, it was found in Riener (2011); Riener et al. (2013) that sums 
of squares invariant under the symmetric group are highly structured, and the complexity of a sum of 
squares decomposition, in this case, stabilizes with n ≥ 2d. Furthermore, symmetric sums of squares 
appear quite naturally in various contexts (for example Raymond et al., 2018). This makes these cones 
an interesting object of study. Choi and Lam (1977) initiated a systematic study of Hilbert’s classifi-
cation restricted to the case of symmetric forms, and in a collaboration with Reznick they further 
provided a complete study of the cone of even symmetric sextics (Choi et al., 1987). Whereas they 
could show that in the sextic case there exists a form that is non-negative but not a sum of squares 
Harris (1999), who studied the case of even symmetric octics, was able to show that the cone of even 
symmetric ternary octics that are sums of squares coincides with the non-negative cone. Recently, 
Goel et al. (2017) constructed even symmetric polynomials of every degree 2d > 8 and every number 
of variables n ≥ 3 which are non-negative but not a sum of squares, so for even symmetric forms Har-
ris’ example and the quartics in any number of variables remain the only exceptional cases compared 
to Hilbert’s classification. Despite the classical case analysis done by Hilbert, it can also be interesting 
to study the quantitative comparison of sums of squares on non-negative polynomials in an asymp-
totic situation, i.e., when the number of variables grows to infinity. Contrary to the general situation, 
where for large numbers of variables almost every non-negative form is not a sum of squares (see 
Blekherman, 2006), a detailed analysis of the symmetric sum of squares cone and symmetric non-
negative cone in Blekherman and Riener (2021) showed that this is not the case in the symmetric 
case.

In this article, we advance the previously mentioned lines of research by focusing on the situa-
tion of sums of squares invariant under some families of finite real reflection groups G ⊂ GLn(R). 
Such groups are generated by a set of orthogonal reflections across hyperplanes passing through the 
origin. The invariant theory of these groups is well understood and generalizes the theory of symmet-
ric polynomials. Therefore, our setup provides a natural unification and extension to the previously 
mentioned works on symmetric and even symmetric forms.

Outline of the article and contributions: The beginning of the next section gives a short general intro-
duction to the machinery of symmetry reduction for sums of squares based on linear representation 
theory. In the case of finite reflection groups these techniques combined with results from invariant 
theory, and in particular the coinvariant algebra and harmonic polynomials, allow for a concrete de-
scription of the quadratic module of invariant sums of squares in Theorem 2.24. The results we give 
in this second section are similar to previous works, notably (Blekherman and Riener, 2021; Dostert 
et al., 2017; Gatermann and Parrilo, 2004; Vallentin, 2009).

Section 3 then turns to the special situation of the three infinite families An , Bn and Dn of ir-
reducible reflection groups for which we can integrate the notion of the higher Specht polynomials 
(Ariki et al., 1997; Morita et al., 1998) with the previously mentioned techniques. These polynomials 
allow for a convenient way to combinatorially describe an isotypic decomposition of the coinvari-
ant algebra in the case of finite reflection groups whose irreducible components fall to the classes 
An, Bn, Dn (see Theorem 3.8). As we show in Theorem 3.11 this combinatorial description then in 
turn implies a concrete characterization of the cone of invariant sums of squares. In particular, we 
show in Theorem 3.22 that if the degree 2d is fixed and the number of variables n is growing, a 
stabilization of the isotypic decomposition and a resulting combinatorial stabilization of the structure 
of the cone of invariant sums of squares is happening in the case of all three families.

Building on these general results we study the cone of even symmetric (i.e., Bn-invariant) forms 
of degree 8 in more detail in Subsection 4.1. In Theorem 4.1 we obtain an explicit description of the 
dual cone of even symmetric ternary octics. As one application of this result, we are able to revisit 
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the remarkable finding of Harris, which follow immediately from our description. Furthermore, we 
provide a complete description of the cone of even symmetric octic sums of squares for all number of 
variables in Theorem 4.14. Following our discussion of even symmetric forms we turn to forms that 
are Dn-invariant in Subsection 4.2. We first show in addition to the case of even symmetric ternary 
quartics also all ternary quartics invariant by the slightly smaller group D3 are positive semidefinite 
if and only if they can be written as a sum of squares (see Theorem 4.18). We then examine the 
dual cone of D4-invariant quartic sums of squares in Theorem 4.22, which turns out to be simplicial. 
Similarly to our approach in the even symmetric case this yields in particular that every D4-invariant 
quaternary quartic non-negative form is a sum of squares. These results allow us to conclude a com-
plete charaterization of the cases in which for Dn-invariant forms we have an equality between the 
cones of sums of squares and non-negative forms (see Theorem 4.26). To conclude our considerations, 
we highlight some connections to non-negativity testing of forms with the help of semidefinite pro-
gramming in the last subsection. It follows from recent work of Scheiderer (2018) that the cone of 
non-negative forms in general is not a so-called spectrahedral shadow, i.e., it can in general not be 
represented as a feasibility set of semidefinite programming. In contrast to this result, we observe that 
additionally to the cases where the cone of invariant sums of squares coincides with the correspond-
ing cone of non-negative forms, there are cases where we can represent the cone of non-negative 
forms by projections of sets defined by linear matrix inequalities.

Some of the results presented here are also included in the master’s thesis (Debus, 2019) written 
by the first author at Universität Wien under the supervision of the second author.

2. Invariant sums of squares

2.1. General symmetry reduction

Let X = (X1, . . . , Xn) always denote a tuple of variables and write R[X] = R[X1, . . . , Xn] =⊕
d∈N0

Hn,d for the polynomial ring in these variables, where Hn,d denotes the subspace of forms 
of degree d. Let G ⊂ GLn(R) be a finite group acting linearly on Rn . This action then naturally gives 
rise to an action of G on the polynomial ring R[X1, . . . Xn] and thus we can view this R-vector space 
as a G-module. It follows from Maschke’s theorem that this G-module is completely reducible, and 
thus for any degree d, there exists an isotypic decomposition, i.e., the G-module Hn,d decomposes 
into a direct sum of the form

Hn,d = V (1) ⊕ V (2) ⊕ · · · ⊕ V (h) (2.1)

with V ( j) = θ
( j)
1 ⊕ · · · ⊕ θ

( j)
η j and ϑ j := dim θ

( j)
i , where θ(u)

i1
, θ(v)

i2
are G-isomorphic if and only if u = v

i.e., we denote by η j the multiplicity of an irreducible G-module and by ϑ j its dimension. Here, the 
θ

( j)
i are the irreducible components and the V ( j) are the isotypic components, i.e., the direct sum of 

isomorphic irreducible components. The component with respect to the trivial irreducible representa-
tion in R[X] is the invariant ring R[X]G . Note that an irreducible representation θ( j)

i will occur with 
infinite multiplicity in R[X]. For f ∈R[X] we write 〈 f 〉G for the G-module which is the linear span 
of {σ f : σ ∈ G}.

It is classically known that R[X]G is a finitely generated R-algebra, and furthermore each isotypic 
component in R[X] is a finitely generated R[X]G -module (see Stanley, 1979, Theorem 1.3). These 
properties follow from the existence of a linear projection onto R[X]G , called the Reynolds operator.

Definition 2.1. For a finite group G the linear map

RG : Hn,d −→ H G
n,d

f 	−→ 1
|G|
∑

σ∈G σ( f )

is called the Reynolds operator of G .
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Remark 2.2. Although we restrict to finite groups, most of the theory presented in this section can be 
directly translated to the more general setup of reductive groups.

An important tool for the study of invariant sums of squares is Schur’s lemma, which we include 
for the convenience of the reader.

Lemma 2.3 (Schur’s lemma). Let K be a field that is algebraically closed and V be a G-module defined over 
K. Further, let V, W denote two irreducible G-submodules of V . Then the G-module HomG(V, W) of G-
homomorphism between V and W satisfies HomG(V, W) 
 K if and only if V and W are G-isomorphic. 
Otherwise, we have HomG(V, W) = 0.

Remark 2.4. In the sequel, we will mostly work with G-modules defined over the real numbers. In 
this setup, one devotes some care to the fact that irreducible representations defined over the reals 
may be reducible over the complex numbers. This additional difficulty is in fact not hard to overcome 
and, in particular, in the case of real reflection groups, which are the main focus of this work, all 
complexifications of real irreducible G-modules remain irreducible (Humphreys, 1990).

Let V = 〈 f1〉G be irreducible. As a consequence of Schur’s lemma, we obtain that any G-
homomorphism φ ∈ HomG(V, W) is uniquely defined by f2 := φ( f1). If further φ �= 0 then for any 
ψ ∈ HomG(V, W), we have ψ = λφ for a scalar λ ∈K. This motivates the following:

Definition 2.5. Let V be a finite dimensional G-module with isotypic decomposition

V =
l⊕

j=1

η j⊕
i=1

θ
( j)
i

and f ji ∈ θ
( j)
i be such that for every j each f ji is the image of f j1 under a G-isomorphism. Then (

f11, . . . , f1η1 , f21, . . . , flηl

)
is called a symmetry adapted basis of V .

We point out that while a symmetry-adapted basis of a G-module is usually not a vector space 
basis, a system of linear generators is given by its G-orbit.

For a R-vector space W we write 
∑

W 2 for the sums of squares of elements in W . Note, an 
invariant polynomial which can be expressed as a sum of squares in the ring R[X] will not necessarily 
have a sum of squares decomposition in invariant polynomials, i.e.,

R[X]G
⋂∑

R[X]2 �=
∑

(R[X]G)2.

For instance, the symmetric polynomial X2
1 + X2

2 cannot be a sum of squares of symmetric polynomials 
of degree 1.

By integrating the idea of a symmetry-adapted basis together with Schur’s lemma, one arrives at 
the following observation more or less directly (see also Blekherman and Riener, 2021; Cimprič et al., 
2009; Gatermann and Parrilo, 2004; Riener et al., 2013 for more details on the following statement).

Theorem 2.6. Let { f11, f12, . . . , flηl } be a symmetry adapted basis of the G-module Hn,d of forms of degree d. 
Then any G-invariant sum of squares form in H G

n,2d is contained in the set

l∑
j=1

RG

(
〈 f j1, . . . , f jη j 〉2

R

)

In some situations, it is convenient to formulate Theorem 2.6 in terms of matrix polynomials, 
i.e., matrices with polynomial entries. For two k × k symmetric matrices A and B we define their 
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inner product as 〈A, B〉 = Tr(AB). We define a block-diagonal symmetric matrix B with j blocks 
B(1), . . . , B( j) and

B( j) = (RG( f ju · f jv
)
)u,v . (2.2)

Then Theorem 2.6 is equivalent to the following statement:

Corollary 2.7. g ∈ �G
n,2d if and only if g = 〈A1, B(1)〉 + . . . + 〈Al, B(l)〉 for some A j ∈Rη j×η j symmetric and 

positive semidefinite matrices.

2.2. Representation theory of finite reflection groups

The aim of this subsection is to provide an introduction to the representation theory of finite real 
reflection groups and how their symmetry can be exploited to reduce complexity in calculations. The 
presented material is mainly based on work in Blekherman and Riener (2021); Dostert et al. (2017); 
Gatermann and Parrilo (2004); Riener et al. (2013). For a general overview on reflection groups and 
their invariant theory, the reader is advised to consult also Humphreys (1990); Lehrer and Taylor 
(2009).

Definition 2.8. A real reflection group is a pair (G, ρ), where G is a finite group and ρ : G → GLn a 
linear representation of G such that ρ(G) is generated by a set of reflections. A reflection group is 
essential if Rn does not contain a non-trivial G-submodule.

Usually, we just say that a group G is a reflection group and the relevant linear map ρ should be 
understood from the context.

Example 2.9.

(i) The symmetric group Sn on n letters is a reflection group acting via coordinate permutation 
on Rn . The action of Sn on Rn is not essential, as the linear subspace R · (1, . . . , 1) is fixed 
pointwise. The induced action of Sn on Rn/R · (1, . . . , 1) is known as the reflection group of 
type An−1 and is essential.

(ii) The symmetry group of the regular m-gon is a reflection group denoted by I2(m) and called 
dihedral group.

Remark 2.10. Any real reflection group can be identified with a direct product of essential reflec-
tion groups. The essential real reflection groups have been classified and are precisely the infinite 
series An−1, Bn, Dn, I2(m) and the six exceptional reflection groups E6, E7, E8, F4, H3, H4 (see e.g. 
Humphreys, 1990).

The reflection group of type Bn can be identified with the hyperoctahedral group S2 � Sn acting 
on Rn via sign changing and permutation of coordinates. Then Bn is generated by the reflections at 
{xi = ±x j}, for 1 ≤ i ≤ j ≤ n. Furthermore, Dn can be identified with the subgroup of Bn of index 2, 
generated by the reflections at {xi = ±x j}, for 1 ≤ i < j ≤ n. Dn is usually called the group of “even 
sign changes”.

Theorem 2.11 (Chevalley-Shephard-Todd). Let G be a finite group and let G act linearly on Rn. Then the 
invariant ring R[X]G is R-algebra isomorphic to a polynomial ring if and only if G is a real reflection group. 
Moreover, in this case R[X]G is generated by n algebraically independent forms ψ1, . . . , ψn, i.e., R[X]G =
R[ψ1, . . . , ψn].

While the generators are not unique but well explored (e.g., the elementary symmetric or the 
power sum polynomials are generators of R[X]Sn ), the multisets of their degrees {d1, . . . , dn} are 
unique and 

∏
i di = |G| (see e.g. Humphreys, 1990 for further details).
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Definition 2.12. Let G be a reflection group which acts linearly on Rn and R[X]G = R[ψ1, . . . , ψn]. 
The forms ψ1, . . . , ψn are the fundamental invariants of G . Let (d1, . . . , dn) be the ordered sequence of 
degrees of the fundamental invariants. We define

NG(k) := |{(α1, . . . ,αn) ∈ Nn
0 : α1d1 + . . . + αndn = k}|.

With this definition, the following is a direct consequence of Theorem 2.11.

Corollary 2.13. Let G be a finite reflection group. The dimension of the vector space of G-invariant forms of 
degree d equals NG(d), i.e., dim H G

n,d = NG(d).

Example 2.14.

(i) R[X]Sn =R[e1, e2, . . . , en] =R[p1, p2, . . . , pn], where
e j(X) :=∑I⊂[n]:|I|= j

∏
i∈I Xi are the elementary symmetric and p j(X) :=∑n

i=1 X j
i are the power 

sum polynomials.
(ii) R[X]Bn =R[e1(X2), e2(X2), . . . , en(X2)] =R[p2, p4, . . . , p2n], where X2 := (X2

1, . . . , X2
n ).

(iii) R[X]Dn =R[p2, p4, . . . , p2n−2, en].
(iv) R[X]I2(m) =R[X2

1 + X2
2, (X1 + √−1X2)

m + (X1 − √−1X2)
m].

Remark 2.15. For λ := (λ1, . . . , λl) ∈ Nl we write pλ := pλ1 · · · pλl for the l products of the power 
sums pλi and analogously eλ for the products of elementary symmetric polynomials.

From a computational perspective, invariant theory as outlined above can be used to reduce com-
putations for polynomials in R[X] to the smaller ring R[X]G . Since R[X] is in general a finite 
R[X]G -module, the quadratic module R[X]G⋂∑R[X]2 can be described conveniently. We outline 
this in the case of reflection groups below by using the coinvariant algebra and a theorem of Cheval-
ley.

Definition 2.16. The quotient algebra of the polynomial ring modulo the ideal generated by the non-
constant elements of the invariant ring is called the coinvariant algebra of G and is denoted by R[X]G , 
i.e.,

R[X]G = R[X]/ (ψ1, . . . ,ψn)R[X] .

Note, by definition the coinvariant algebra of G has the structure of a G-module.

Theorem 2.17 (Chevalley, 1995). Let G be a real reflection group acting linearly on Rn. Then the coinvariant 
algebra R[X]G is isomorphic as a G-module to the regular representation and

R[X] 
 R[X]G ⊗R R[X]G

as graded R-modules.

Remark 2.18. Note that any irreducible representation θ occurs dim θ many times in the regular 
representation. Therefore, Theorem 2.17 yields that the multiplicities of the different irreducible rep-
resentations θ( j) appearing in R[X]G are equal to the corresponding dimensions ϑ j .

Corollary 2.19. Let R[X]G = R[ψ1, . . . , ψn] be a polynomial ring in the fundamental invariants ψ1, . . . , ψn

and let R[X]G =⊕l
j=1 ϑ jθ

( j) be the isotypic decomposition of the coinvariant algebra. Then there exists 
a symmetry adapted basis f11, . . . , flϑl ∈ R[X] of R[X]G and any f ∈ R[X] can be written as a sum of 
polynomials of the form
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l∑
j=1

ϑ j∑
i=1

∑
σ∈G

g ji,σ σ f ji

for some g ji,σ ∈R[X]G .

Proof. The existence of the symmetry adapted basis ( f11, . . . , flϑl ) of R[X]G follows by Schur’s 
Lemma 2.3. Further, by definition, the G-orbit of ( f11, . . . , flϑl ) spans the coinvariant algebra. The 
claim follows from the graded tensor decomposition in Theorem 2.17, since the basic tensors of R[X]
are elements described above. �

Note that second summation in the representation of a polynomial in Corollary 2.19 goes actually 
up to ϑ j as the multiplicity η j of an irreducible representation θ( j) in the coinvariant algebra equals 
its dimension ϑ j .

Remark 2.20. The calculation of a symmetry-adapted basis of the coinvariant algebra easily allows 
computation of the isotypic decomposition of the G-module Hn,d for any degree. As a rough general 
procedure, one needs to compute the products of elements from the symmetry-adapted basis with 
fundamental invariants of G , such that the degree of the obtained forms equals d.

Definition 2.21. Let S := {s1, . . . , s|G|} be a basis of R[X]G . Then we define the matrix polynomial 
H S(ψ1, . . . , ψn) ∈R[ψ1, . . . , ψn]|G|×|G| entry wise

H S
u,v := RG(su · sv),

and each entry RG(su · sv) is expressed as a polynomial in the fundamental invariants ψ1, . . . , ψn .

Lemma 2.22. Let f ∈ R[X] be G-invariant and let γ ∈ R[ψ1, . . . , ψn] with γ (ψ1, . . . , ψn) = f then f is a 
sum of squares if and only if γ (ψ1, . . . , ψn) admits a representation of the form

γ = 〈T , H S〉
where T is a sum of squares matrix polynomial, i.e., T = LT L for a matrix L ∈ R[ψ1, . . . , ψn]n×m and an 
integer 1 ≤ m ≤ n.

Proof. This follows from the decomposition R[X] 
R[X]G ⊗R[X]G in Theorem 2.17. �
Definition 2.23. For every irreducible representation θ( j) of G we construct a matrix polynomial Hϑ j ∈
R[ψ1, . . . , ψn]η j×η j in the following way: Let R[X]G =⊕l

j=1 R[X]ϑ j
G be the isotypic decomposition 

of the coinvariant algebra and {s1,1, . . . , s1,η1 , s2,1, . . . , sl,ηl } be a symmetry adapted basis of R[X]G . 
Then we define

H
ϑ j
u,v = RG(s j,u · s j,v).

Combining the above definition and lemma, and the results from Schur’s lemma we immediately 
obtain

Theorem 2.24. Let G be a finite reflection group with R[X]G =R[ψ1, . . . , ψn]. Then,

�R[X]2 ∩R[X]G =
⎧⎨⎩g ∈R[ψ1, . . . ,ψn] : g =

l∑
j=1

〈Hϑ j , A j〉
⎫⎬⎭ ,

where A j ∈R[ψ1, . . . ,ψn]η j×η j is a sum of squares matrix polynomial.
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Example 2.25. Let f ∈R[X1, X2] be a form of degree 2d which is invariant under the dihedral group 
I2(k). The dihedral group I2(k) has only irreducible representations of dimension 1 or 2. In fact, if 
k is odd (resp. even), then 2 (resp. 4) representations of dimension one and k−1

2 (resp. k−2
2 ) rep-

resentations of dimension two. By block-diagonalisation we end up with H S(z) having 2 (resp. 4) 
1 × 1 blocks Hθ1 , Hθ2 (resp. Hθ1 , . . . , Hθ4 ) and k−1

2 (resp. k−2
2 ) 2 × 2 blocks Hθ3 , . . . , H

θ k+3
2 (resp. 

Hθ5 , . . . , H
θ k+6

2 ). Then for n odd (resp. even) f non-negative if and only if there exist sums of squares 
matrix polynomials A j ∈R[X2

1 + X2
2, (X1 + √−1X2)

k + (X1 − √−1X2)
k]dim θ j×dim θ j such that

f =
m∑

j=1

〈Hθ j , A j〉

and m = k+3
2 (resp. m = k+6

2 ).
For k = 3 the coinvariant algebra R[x, y]I2(3) decomposes into the direct sum of

θ(1) = 〈1〉, θ(2) = 〈−x3 + 3xy2〉, θ(3)
1 = 〈x〉I2(3), θ

(3)
2 = 〈xy〉I2(3),

where θ(3)
1 and θ(3)

2 are I2(3)-isomorphic via x 	→ xy. Then we find:

Hθ(1) = 1, Hθ(2) = RI2(3)(3xy2 − x3)2,

Hθ(3) =
(

RI2(3)(x2) RI2(3)(x2 y)

RI2(3)(x2 y) RI2(3)(x2 y2)

)
.

Definition 2.26. Let G be a finite real reflection group and θ be an irreducible representation. We 
denote by hϑ

k the multiplicity of θ in the isotypic decomposition of the degree k part of the covariant 
algebra (R[X]θG)k .

In order to study the sums of squares of a given degree the following direct consequence of Theo-
rem 2.17 which relates the dimension of the space of G-invariant forms of degree d, NG (d) (see 2.13) 
to the multiplicity of an irreducible representation in Hn,d will be helpful.

Corollary 2.27. Let G be a finite reflection group and θ be an irreducible representation. Then the multiplicity 
of the corresponding irreducible representation in the G-module Hn,d equals

d∑
k=0

NG(d − k) · hϑ
k .

2.3. G-harmonic polynomials

In this subsection we present a specific basis of the coinvariant algebra for reflection groups which 
can be simply computed.

Definition 2.28. For a polynomial f (X) =∑α cα Xα ∈R[X] we define f (∂) as the linear operator

f (∂) : R[X] −→ R[X]
g 	−→ ∑

α cα
∂α

(∂ X)α
g

.

I.e., f (∂) is a linear map which is a formal sum of scaled partial derivatives.

Example 2.29. Let f (X) = X2
1 + X1 X2 ∈ R[X1, X2, X3], then f (∂) = ∂2

∂ X1∂ X1
+ ∂2

∂ X1∂ X2
and f (∂)

(
X2

1 +
X2

2 + X2
3 + X1 X2 X3

)= 2 + X3.
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Definition 2.30. Let G be a real reflection group and R[X]G = R[ψ1, ψ2, . . . , ψn]. Let HG be the R-

vector space defined as HG := (R[X]G
>0

)⊥
with respect to the inner product

〈·, ·〉 : R[X] ×R[X] −→ R

( f , g) 	−→ ev(0,...,0)

(
f (∂)g(X)

)
.

Any f ∈HG is called a harmonic polynomial and HG is called the vector space of G-harmonic polynomi-
als.

Theorem 2.31 (Bergeron, 2009). Let G be a real reflection group and � :=∏ Li , be the product of a minimal 
system of linear polynomials defining the reflection hyperplanes. Then, the vector space of G-harmonic poly-
nomials HG is generated by all partial derivatives of �, i.e., HG = 〈 ∂α

(∂ X)α
� : α ∈ Nn

0 〉R . Furthermore, HG is 
G-module isomorphic to the regular representation of G and R[X] =R[X]G ⊗R HG .

Remark 2.32. Note that HG consists precisely of those polynomials which vanish under all G-invariant 
differential operators annihilating the constants. This notion of G-harmonic polynomials can be in fact 
defined for any group of transformations and under some general assumptions similar representations 
of polynomials in terms of invariant polynomials and harmonic polynomials can be obtained (Helga-
son, 2022, Chapter 3).

Remark 2.33. Let G be a real reflection group, ψ1, . . . , ψn be the fundamental invariants and consider 
the map

� : Rn −→ Rn

X 	−→ (ψ1(X), . . . ,ψn(X)).

Then by a statement of Steinberg (1960) we have

� = c · det(Jac �)

where Jac � denotes the Jacobian of � and c is a non-zero scalar. Thus up to a scalar multiple, the 
determinant is independent of the choice of fundamental invariants ψ1, . . . , ψn .

Example 2.34. For Sn the symmetric group acting on Rn via coordinate permutation and ψi =∑n
j=1 Xi

j the power sums, we obtain � =∏i< j(xi − x j) equals the determinant of the Vandermonde 
matrix, which is precisely the product over all reflections of Sn , and det(Jac �) = n! · �.

Remark 2.35. Computing a basis of the coinvariant algebra R[X]G = R[X]/R[X]G
>0, which is de-

fined as a quotient may be challenging and involves the calculation of a Gröbner basis. However, 
the approach using harmonic polynomials can be more efficient. As the fundamental invariants of 
real reflection groups are well-known, one can simply calculate the polynomial � and all its partial 
derivatives and one is only faced with a problem in linear algebra.

2.4. Convex geometric properties of �G and PG

Convex cones and the dual cones have been studied extensively in the research on non-negativity 
versus sums of squares (see e.g. Blekherman, 2012 on Hilbert’s inequality cases or Blekherman et 
al., 2012). In this subsection, we present known and adapted knowledge on the convex geometrical 
properties of �G

n,2d and PG
n,2d . We refer to Blekherman and Riener (2021, Subsection 4.5) for more 

details.

The sets �G
n,2d and PG

n,2d are convex cones, i.e., they are convex sets which are closed under scalar 
multiplication by non-negative scalars. Moreover, these sets are closed and pointed, i.e., they do not 
contain a non-trivial linear subspace. We refer to Blekherman (2006) for details.
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Remark 2.36. To study the set �G,∗
n,2d we associate the elements in �G,∗

n,2d with positive semidefinite 
quadratic forms. We associate a linear functional � ∈ H G,∗

n,2d with a G-invariant quadratic form Q �

defined as

Q � : Hn,d −→ R

f 	−→ �
(
RG( f 2)

)
.

Note, although � is defined on the space of invariant forms, the quadratic form Q � is defined on the 
space of all forms.

Since our considered polynomials are homogeneous we have the following description of the dual 
cone of invariant non-negative forms. For a ∈Rn we write eva for the point-evaluation of a, i.e.,

eva : R[X] −→ R

f (X) 	−→ f (a).

Recall that the dual cone of a convex cone K ⊂RN is denoted by K ∗ and is defined as

K ∗ =
{
� ∈RN,∗ : �(K ) ⊆ R≥0

}
.

Proposition 2.37 (Blekherman, 2006). The dual cone of the non-negative invariant forms is the convex cone 
that is generated by all point-evaluations, i.e.,

PG,∗
n,2d = cone{eva : a ∈ Sn−1}.

By duality any f ∈ PG
n,2d contained in the boundary of PG

n,2d has a real zero. We formulate the 
dual version of Theorem 2.6.

Lemma 2.38. Let � ∈ H G,∗
n,2d and { f11, . . . , f1η1 , f21, . . . , flηl } be a symmetry adapted basis of Hn,d and B( j) =(

RG( f ju · f jv
)
)u,v . Then � ∈ �

G,∗
n,2d if and only if �(B j) is positive semidefinite for all j = 1, . . . , l.

The following lemma enables the characterization of extremal elements via their kernels.

Lemma 2.39 (Blekherman, 2012, Lemma 2.2). Let V be a R-vector space, A the vector space of quadratic 
forms on V and A+ ⊂A the cone of positive semidefinite quadratic forms. Let L be a linear subspace of A and 
K be the section of A+ with L, i.e., K = A+ ∩ L. Then a quadratic form Q ∈ K spans an extreme ray of K if 
and only if its kernel is maximal among all kernels of quadratic forms in L, i.e., if ker Q ⊆ ker P for a P ∈ L, it 
is P = λQ for some λ ∈R.

In order to examine the kernels of invariant quadratic forms, we use the following construction. 
For a linear subspace W ⊂ Hn,d , we define its quadratic symmetrization with respect to G as

W <2> :=
{

h ∈ H G
n,2d : h = RG

(∑
f i gi

)
for f i ∈ W and gi ∈ Hn,d

}
.

In order to characterize the extreme rays of �G,∗
n,2d we use Lemma 2.38 to identify �G,∗

n,2d with 
a linear section of the cone of positive semidefinite quadratic forms on Hn,d with the subspace of 
G-invariant quadratic forms on Hn,d .

Proposition 2.40 (Blekherman and Riener, 2021). An element � ∈ �
G,∗
n,2d is extremal if and only if ker Q � is 

maximal among all kernels of G-invariant quadratic forms on Hn,d. Let W := ker Q � , then W <2> is equal 
to the kernel of �. Moreover, if 

(
f11, . . . , flηl

)
is a symmetry adapted basis of Hn,d and 

(
g11, . . . , glη′

)
is a 
l
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symmetry adapted basis of W such that 〈g ji1 〉G 
G 〈 f ji2 〉G and g ji1 	→ f ji2 define the unique G-isomorphism, 
then

W 〈2〉 = 〈RG(g ji1 · f ji2) : 1 ≤ j ≤ l,1 ≤ i1 ≤ η′
j,1 ≤ i2 ≤ η j〉R.

Proof. The first claim follows from Lemma 2.39. The second claim follows from the positive semidef-
initeness of the quadratic form Q � . The complexity reduction gives the above description of W 〈2〉
according to the use of a symmetry-adapted basis and by applying Schur’s lemma. �

In order to prove equality or inequality between the sets �G
n,2d and PG

n,2d we will make use the 
following dual approach.

Corollary 2.41. Suppose the convex cones �G
n,2d, PG

n,2d are full dimensional. Then �G
n,2d = PG

n,2d if and only if 
any extremal ray in �G,∗

n,2d is generated by a point-evaluation.

Proof. The primal cones PG
n,2d and �G

n,2d are equal if and only if the dual cones are equal. By 
Minkowski’s theorem, any � ∈ �

G,∗
n,2d can be written as a sum of extremal elements. If any extremal 

ray in �G,∗
n,2d is generated by a point-evaluation, then there exists a set M ⊂Rn such that

PG,∗
n,2d ⊆ �

G,∗
n,2d = cone{eva : a ∈ M} ⊂ cone{eva : a ∈ Sn−1} = PG,∗

n,2d

where the last equality follows by Proposition 2.37.
Conversely, if �G

n,2d = PG
n,2d then also the dual cones are equal. However, PG,∗

n,2d is the convex cone 
that is generated by all point-evaluations. Hence, any extremal ray in �G,∗

n,2d is generated by a point-
evaluation. �
3. Sums of squares invariant under An, Bn , and Dn

In this section we present an algorithmic approach for calculating a symmetry-adapted basis of the 
coinvariant algebra for reflection groups of type An−1, Bn or Dn which was introduced by Morita et 
al. (1998). We prove stabilization of the isotypic decomposition for a fixed degree and a large enough 
number of variables, for these series of essential reflection groups.

3.1. Higher Specht polynomials

A well-known classical construction of the irreducible Sn-modules in the real polynomial ring 
is due to Specht (1935). The Sn-generators of these representations are called Specht polynomials. 
However, we are interested in the decomposition of the coinvariant algebra. An elegant combinatorial 
algorithm to decompose the coinvariant algebra into all irreducible submodules for all pseudoreflec-
tion groups of type G(r, p, n) was introduced in Morita et al. (1998). In the following, we briefly 
present their work. We begin by recalling some basic definitions from combinatorics.

Definition 3.1. A non-increasing sequence of positive integers λ = (λ1, . . . , λl) is called a partition and 
l is the length of λ. We denote by |λ| =∑l

i=1 λi = n the value of λ and say that λ is a partition of 
n, which we denote by λ � n, if |λ| = n. For partitions λ1 and λ2 we call the pair � = (λ1, λ2) a 
bipartition and allow λ1 = ∅ or λ2 = ∅. We say that |�| = |λ1| + |λ2| = n is the value of � and write 
� � n when � is a bipartition of n.

We always denote bipartitions with capital letters and partitions with small letters. Note that every 
partition λ naturally defines also a bipartition (λ, ∅).
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Definition 3.2.

(1) For a given partition λ = (λ1, . . . , λl) � n the Young diagram associated to λ is an arrangement of 
n boxes that are left-aligned and top-aligned, such that the i-th row contains exactly λi many 
boxes. Filling the n boxes with the distinct integers in [n], one obtains a Young tableau or tableau
of shape λ. If the numbers in all columns and rows are increasing we call the tableau standard.

(2) Given a bipartition � we can associate in the same way a pair of Young diagrams. A Young 
bitableau or bitableau is a filling of both diagrams with all the numbers in [n] and we call it 
standard if both diagrams are standard. We denote by YT(�) the set of (bi-)tableaux of shape �
and by SYT(�) the subset of standard (bi-)tableaux.

Example 3.3.

(1) The Young diagram associated to (3, 3, 1) is .

(2) For the partition (3, 1) the tableau 1 4 3
2

is not standard and the set of all standard tableaux of 

shape (3, 1) is 
{

1 3 4
2

, 1 2 4
3

, 1 2 3
4

}
.

(3) The bitableau 
(

2 3 4
5 , 1 6

)
is standard, while 

(
1 3 2
4 , 5 6

)
is not standard.

In the following, we will denote an irreducible representation indexed by a (bi-)partition � by S� , 
i.e., S� is a Specht module. The underlying group should be clear from the context.

The famous Robinson-Schensted correspondence gives a bijection between the standard tableaux 
of shape λ and the elements in the conjugacy class of Sn which are labelled by λ. Hence, this number 
equals the multiplicity of the Specht module Sλ in the coinvariant algebra. The correspondence has 
been adapted to pseudoreflection groups of type G(r, p, n) and in particular, for the contained series 
of reflection groups of types Bn = G(2, 1, n) and Dn = G(2, 2, n), e.g., see Caselli (2011, Section 10).

Following Ariki et al. (1997); Morita et al. (1998) we construct a symmetry-adapted basis of the 
coinvariant algebra. The group Sn acts naturally on a tableau by replacing the entry i with σ(i) for 
σ ∈ Sn .

Definition 3.4. Let T be a Young tableau of shape λ � n. The Sn-subgroups

CT := {σ ∈Sn : σ T is obtained by permutation of the columns of T }
RT := {σ ∈Sn : σ T is obtained by permutation of the rows of T }

are the column and row stabilizer of T . We define the formal linear combination

εT := f λ

n!
∑

σ∈CT ,τ∈RT

sgn(σ )στ ∈R[Sn],

where f λ is the number of standard tableaux of shape λ. For a bitableau T = (T 1, T 2) we define 
εT 1 , εT 2 ∈R[Sn] analogously and set εT := εT 1 · εT 2 .

We associate (bi-)tableau with sequences, monomials, and polynomials:

Definition 3.5. Let T = (T 1, T 2) ∈ YT(�) be a (bi-)tableau.

(1) The word of T is the sequence w(T ) ∈ N |λ| where we read each column of the tableau T 1 from 
the bottom to the top, starting from the left. We continue with this procedure for the tableau T 2.

(2) We define the index i(T ) ∈N |�| of T as follows. The number 1 in the word w(T ) has index 0. If 
k in the word has index p, then k + 1 has index p or p + 1 according as it lies to the right or the 
left of k. We call the sum of the entries of i(T ) the charge of T and write ch(T ).
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(3) We associate to a pair of (bi-)tableaux (T , S) ∈ YT(�) × YT(�) a monomial in n variables X S
T :=

Xi(w(S))1
w(T )1

· · · X
i(w(S))|�|
w(T )|�| . Moreover, we define polynomials associated to (T , S)

F S
T := εT · X S

T ∈R[X] and F̂ S
T := F S

T (X2) ·
∏
j∈T 2

X j

where X2 := (X2
1, . . . , X2

n ).

Note that associating tableaux with words is a standard technique in the combinatorics of tableaux 
(see e.g. Fulton, 1997).

Example 3.6. Let � = ((2, 1), (1)) � 4 be a bipartition and S =
(

1 4
2 , 3

)
, T =

(
1 2
4 , 3

)
∈ SYT(�). 

The word of S is w(S) = (2, 1, 4, 3) and the word of T is w(T ) = (4, 1, 2, 3). We calculate the indices 
i(S) = (1, 0, 2, 1) and i(T ) = (1, 0, 0, 0) and compute X S

T = X1
4 X0

1 X2
2 X1

3 = X2
2 X3 X4, F S

T = X2
1 X3 X4 +

X2
2 X3 X4 − X1 X2

2 X3 − X1 X3 X2
4 .

In Morita et al. (1998) introduced the following polynomials in analogy to Specht’s polynomial 
representation of the irreducible Sn-modules.

Definition 3.7. Let n ∈N and let L := {(λ, μ) � n : λ �= μ, |λ| ≥ |μ|}.

(1) For An−1 a complete list of higher Specht polynomials is given by the polynomials{
F S

T : (T , S) ∈
⋃
λ�n

SYT(λ) × SYT(λ)

}
.

(2) For Bn a complete list of higher Specht polynomials is given by the polynomials{
F̂ S

T : (T , S) ∈
⋃
��n

SYT(�) × SYT(�)

}
.

(3) For Dn a complete list of higher Specht polynomials is given by the polynomials{
F̂ S

T : (T , S) ∈
⋃
�∈L

SYT(�) × SYT(�)

}
, and if n is even additionally also

⎧⎨⎩ F̂ S
(T 1,T 2)

± F̂ S
(T 2,T 1)

: ((T 1, T 2), S) ∈
⋃
λ� n

2

SYT((λ,λ)) × SYT((λ,λ))

⎫⎬⎭ .

Note that for the Dn case the higher Specht polynomials differ in their structure depending on the 
parity of n.

Theorem 3.8 (Morita et al., 1998, Theorem 3). For the reflection groups of type An−1, Bn or Dn the higher 
Specht polynomials form a vector space basis of the coinvariant algebra. For (P , Q ), (P ′, Q ′) ∈ SYT(λ) ×
SYT(λ) and (T , S), (T ′, S ′) ∈ SYT(�) × SYT(�) we have

Sλ 
An−1 〈F (P ′,Q ′)
(P ,Q ) 〉An−1 = 〈F (P ′,Q ′)

(P ′′,Q ′′) : (P ′′, Q ′′) ∈ SYT(λ)〉R
S� 
Bn 〈 F̂ (T ′,S ′)

(T ,S) 〉Bn = 〈 F̂ (T ′,S ′)
(T ′′,S ′′) : (T ′′, S ′′) ∈ SYT(�)〉R
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Furthermore, for λ �= μ the associated irreducible Bn-representations (λ, μ) and (μ, λ) remain Dn-
irreducible, but are Dn-isomorphic. For a pair ((T 1, T 2), S) of standard bitableaux of shape (λ, λ) � n we 
have

〈 F̂ S
T 〉Dn = 〈 F̂ S

T + F̂ S
(T 2,T 1)

〉Dn ⊕ 〈 F̂ S
T − F̂ S

(T 2,T 1)
〉Dn 
Dn : S(λ,λ)

+ ⊕ S(λ,λ)
−

and the Dn-modules S(λ,λ)
+ , S(λ,λ)

− are Dn-irreducible and non-isomorphic.

Moreover, we find the following as a consequence of Schur’s Lemma and the statements in Morita 
et al. (1998): For the groups An−1, Bn and Dn and standard (bi-)tableaux T = (T 1, T 2), S1, S2 of shape 
� (resp. λ) the maps

F S1
T 	→ F S2

T for An−1 and F̂ S1
T 	→ F̂ S2

T for Bn, Dn

define the (up to scalar multiplication) unique G-module isomorphisms. If � = (λ, λ), then the unique 
Dn-isomorphisms are

F̂ S1
(T 1,T 2)

± F̂ S1
(T 2,T 1)

	→ F̂ S2
(T 1,T 2)

± F̂ S2
(T 2,T 1)

.

Definition 3.9. Let G ∈ {An−1, Bn, Dn} and � � n be a (bi-)partition. We write q�
d for the multiplicity 

of the G-module S� in Hn,d .

Remark 3.10. From Theorem 3.8 we obtain a combinatorial description of hθ
k , i.e., of the multiplicity 

of an irreducible representation θ in the subspace of the coinvariant algebra of forms of degree k. 
Namely, in the case of An−1 θ is labelled by a partition λ � n and

hλ
k = |{T ∈ SYT(λ) : ch(T ) = k}|.

While for Bn and Dn θ is labelled by a bipartition � = (λ, μ) � n and

h�
k = |{(T , S) ∈ SYT(�) : 2 ch(T , S) + |μ| = k}|.

In particular, the multiplicity of S� in Hn,d can be described combinatorially through the number of 
standard (bi-)tableaux and the degrees of G

q�
d =

d∑
k=0

NG(d − k) · h�
k .

By integrating the above-presented construction with the general setup, the degrees of the consid-
ered reflection groups and the number of standard (bi-)tableaux combinatorially encode the following 
information about the invariant sums of squares.

Theorem 3.11. Let G ∈ {An−1, Bn}.

(1) The isotypic decomposition of Hn,d is⊕
��n

q�
d · S�,

where � ranges over partitions for An−1 and bipartitions for Bn.
(2) There exists a symmetry adapted basis of the coinvariant algebra R[X]G consisting of higher Specht 

polynomials (s�
1 , . . . , s�

ϑ�
)��n, where ϑ� denotes the dimension of S�. By defining symmetric matrix 

polynomials (H�
v,u) = (RG(s�

v · s�
u )
) ∈R[X]ϑ�×ϑ� we have
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�R[X]2 ∩R[X]G =
{

g ∈R[ψ1, . . . ,ψn] : g =
∑
��n

〈Hϑ j , A�〉
}

,

where A� ∈R[ψ1, . . . ,ψn]ϑ�×ϑ� are sums of squares matrix polynomial.

(3) There exists a symmetry adapted basis of Hn,d =⊕��n q�
d · S� such that its elements 

(
s�

1 , . . . , s�

q�
d

)
which belong to the isotypic component q�

d · S� are products each of one higher Specht polynomial and 

a monomial in ψ1, . . . , ψn. By defining matrix polynomials B� = (RG(s�
v · s�

u )
)

v,u ∈ (R[X]G
)q�

d ×q�
d a 

form f ∈ H G
n,2d is a sum of squares if and only if

f =
∑
��n

〈B�, A�〉

for some positive semidefinite matrices A� ∈Rq�
d ×q�

d .

Proof. The isotypic decomposition of Hn,d can be realized by multiplying the higher Specht poly-
nomials of G of degree ≤ d with products of fundamental invariants by Theorems 3.8 and 2.17. For 
every k the multiplicity of G-modules G-isomorphic to S� in the subspace of the coinvariant algebra 
of degree k is precisely h�

k , while NG(d − k) gives the dimension of H G
n,d−k . Now, (2) and (3) follow 

from Theorem 2.24 and Corollary 2.7. �
Remark 3.12. For Dn one can provide analogous assertions. The isotypic decomposition in (1) and the 
sizes of the matrices in (2) and (3) differ slightly, since then the Dn-module S(λ,λ) decomposes into 
two irreducible Dn-modules, and since S(λ,μ) is Dn-isomorphic to S(μ,λ) .

Example 3.13. The D4 fundamental invariants are the following:

p2 = X2
1 + X2

2 + X2
3 + X2

4, p4 = X4
1 + X4

2 + X4
3 + X4

4,

p6 = X6
1 + X6

2 + X6
3 + X6

4, e4 = X1 X2 X3 X4,

i.e., we have R[X]D4 = R[p2, p4, p6, e4]. By Corollary 2.19 and Theorem 3.11 the symmetry adapted 
basis of H4,2 can be obtained by multiplying fundamental invariants with higher Specht polynomials 
such that the degree equals 2.

We apply Theorem 3.8 to calculate the D4 higher Specht polynomials. For a bipartition � � 4 the 
minimal degree of a higher Specht polynomial associated with � is given by the smallest integer in 
{2 ch(T ) + |λ2| : T ∈ SYT(�)}.

Since the degrees of the fundamental invariants are at least 2, we need to compute all higher 
Specht polynomials of degrees 0 and 2. Therefore, we only need to consider bipartitions (λ1, λ2) � 4
with λ2 � m ∈ {0, 2} as otherwise the degree is odd. In the case λ2 � 2 we must have ch(T ) = 0. This 
can only occur for w(T ) = (1, 2, 3, 4) which forces � = ((2), (2)). The possible remaining cases are

�1 = ((4),∅),�2 = ((3,1),∅),�3 = ((2,2),∅),�4 = ((2,1,1),∅),�5 = ((1,1,1,1),∅).

Amongst the standard bitableaux T of shape � j, j ∈ {1, 2, 3, 4, 5} we only consider those with 
ch(T ) ∈ {0, 1}. Only for �1 charge 0 is possible. In the remaining cases, ch(T ) = 1 if and only if 
T =

(
1 2 3
4 , ∅

)
. Then, the D4-module S((2),(2)) decomposes, by Theorem 3.8, into two irreducible, 

non-isomorphic modules S((2),(2))
+ and S((2),(2))

− . Hence, the D4-module H4,2 has the isotypic decom-
position

H4,2 = S((4),∅) ⊕ S((3,1),∅) ⊕ S((2),(2))
+ ⊕ S((2),(2))

− .

The relevant higher Specht polynomials are 1 for S((4),∅), X2
4 − X2

1 for S((3,1),∅) and X1 X2 ± X3 X4 for 
S((2),(2))

+ and S((2),(2))
− .
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3.2. Stabilization of the isotypic decompositions

In the following, we prove a stabilization of the isotypic decompositions of the Zn-modules Hn,d
for large n and (Zn)n ∈ {(An)n, (Bn)n, (Dn)n}.

Definition 3.14. For a partition λ = (λ1, λ2, . . . , λl) � n we write λ + 1 for the partition of n + 1 ob-
tained from λ by replacing λ1 with λ1 + 1. For a bipartition � � n we define � + 1 as the bipartition 
(λ + 1, μ) � n + 1.

Note, λ + 1 = (λ1 + 1, λ2, . . . , λl). We use the combinatorial description of the degrees of a 
symmetry-adapted basis of Hn,d from Remark 3.10. For An−1 and a standard tableau T we have 
deg F T

T = ch(T ), while for Bn and (T , S) we have deg F̂ (T ,S)
(T ,S) = 2 ch(T , S) + |μ|. Our aim is to iden-

tify the relevant standard (bi-)tableaux whose associated higher Specht polynomials occur in Hn,d .

Lemma 3.15. Let k ≥ 1 be an integer and λ � n = d +k be a partition. In the case that the first row of a tableau 
T ∈ SYT(λ) does not begin with 1, 2, . . . , k we have deg F T

T > d.

Proof. We assume that a standard tableau T of shape λ does not contain 1, 2, . . . , k in the first row. 
Let k̃ be the first entry of T in the second row. We must have k̃ ≤ k and i(T ) does contain at least 
n − k̃ + 1 entries which are larger than or equal to 1. Therefore,

deg F T
T = ch(T ) ≥ n − k̃ + 1 ≥ n − k + 1 = d + 1. �

We formulate Lemma 3.15 for bipartitions.

Lemma 3.16. Let (λ, μ) � n be a bipartition, with |μ| ≤ d and |λ| ≥ d−1
2 + j for an integer j ≥ 1. Let (T , S)

be a standard bitableau of shape (λ, μ) where α1 < . . . < α|λ| are all the entries in T . Suppose the first row of 
T does not begin with α1, . . . , α j then deg F̂ (T ,S)

(T ,S)
> d.

Proof. We suppose that for some i ≤ j the i-th entry in the first row of T is not αi and let i be 
minimal with this property. Then αi must be the first entry in the second row and |λ| − i + 1 entries 
in i(T , S) are at least 1. Hence

deg F̂ (T ,S)
(T ,S) = 2 ch(T , S) + |μ| ≥ 2(|λ| − i + 1) ≥ 2

(
d − 1

2
+ j − j + 1

)
≥ d + 1. �

We write T = (αi j) for a standard tableau T of shape λ and αi j denotes the entry in the i-th row 
and j-th column of T , counted from the left to the right and the top to the bottom. Analogously, we 
write (T , S) = ((αi j), (βi j)

)
for a standard bitableau.

Definition 3.17. For a partition λ = (λ1, . . . , λl) � n = d + k we define

�λ
k := {(αi j) ∈ SYT(λ) : α1 j = j,1 ≤ j ≤ k}.

For a bipartition � � n = d + k we define ��
k as the set

{((αi j), (βi j)) ∈ SYT(�) : (α1 j) starts with the k smallest integers in {αi j}}
and (α1 j) denotes the first row of T .

Example 3.18.

�
((3,1),(1))
3 =

{(
2 3 4
5 , 1

)
,
(

1 3 4
5 , 2

)
,
(

1 2 4
5 , 3

)
,
(

1 2 3
5 , 4

)
,
(

1 2 3
4 , 5

)}
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Lemma 3.19. Let n = d + k, λ = (λ1, . . . , λl) � n be a partition and

ρλ
n,n+1 : �λ

k −→ �λ+1
k+1

S = (αi j) 	−→ S̃ = (α̃i j)

where ̃α1 j = j for 1 ≤ j ≤ α21 . Further, ̃α1 j = α1 j−1 + 1 for j ≥ α21 + 1 and ̃αi j = αi j + 1 for all i ≥ 2 and 
j ≥ 1.

The map ρλ
n,n+1 is injective, and i(S), i(̃S) differ only by a 0, i.e., any non-zero entry in i(S) occurs with 

the same multiplicity in i(̃S), while 0 occurs once more. Furthermore, if k > d − 1 then for any ̃S ∈ �λ+1
k+1 \

ρλ
n,n+1(�

λ
k ), we have ch(̃S) > d.

Proof. Since S ∈ �λ
k is standard, we observe that α21 is the smallest integer t for which α1t �= t , 

if such a t exists, and otherwise α21 = max j{α1 j} + 1. For S ∈ �λ
k the tableau S̃ of shape λ + 1 is 

indeed standard: S̃ is filled with 1, . . . , n + 1. Increasing rows and columns are inherited from S , as 
α1α21 > α21, if α21 < max j{α1 j}. S̃ is clearly increasing in any column from the second row onward. 
But also from the first row to the second. For 1 ≤ j ≤ α21 this is clear from S . For j ≥ α21 + 1 this 
follows because α̃1 j = α1, j−1 + 1 < α2, j−1 + 1 < α2, j + 1 = α̃2 j .

The smallest p which is written left of p − 1 in w(S) (resp. w (̃S)) is α21 if α21 < max j{α1 j} and 
otherwise min{α22, α31}. From there any p > α21 is left of p − 1 in w(S) if and only if p + 1 is left 
of p in w (̃S). Hence, i(S) and i(̃S) differ only by a 0.

Consider ψλ+1
n+1,n : �λ+1

k+1 → YT(λ) which maps a standard tableau S̃ to a tableau S by removing the 
box of the first entry α̃1 j in the first row of S̃ , that is strictly smaller than α̃1 j+1 − 1, and if such an 
entry does not exist then the last entry. The boxes to the right are shifted to the left such that one 
obtains a diagram. Any entry that was to the right of α̃1 j or in a row below is decreased by one. If 
ψλ+1

n+1,n (̃S) =: S is again standard, then ψλ+1
n+1,n ◦ ρλ

n,n+1(S) = S . This shows the injectivity of ρλ
n,n+1.

If S is not standard, then one entry in the first column must be smaller than the entry below. 
Assume that this happens at S ’s entry α1 j . By assumption j > k, but this means λ2 ≥ j > k and we 
observe

ch(̃S) ≥ λ2 + 1 ≥ k + 2 ≥ d + 1. �
We present the analogous assertion for bipartitions.

Lemma 3.20. Let n = d + k, � = (λ, μ) = ((λ1, . . . , λl), μ) � n be a bipartition and

ρ�
n,n+1 : ��

k −→ ��+1
k+1

(T , S) = ((αi j), (βi j)) 	−→ (T̃ , S̃) = ((α̃i j), (β̃i j))
,

where (T̃ , ̃S) is defined by: Let t be minimal with α1t �= t, then α̃1 j = j, 1 ≤ j ≤ t and α̃1 j = α1 j−1 + 1, 
for t + 1 ≤ j ≤ λ1 + 1, α̃i j = αi j + 1, when i ≥ 2, and β̃i j = βi j + 1 for all i, j. If such a t does not exist, 
then α̃1 j = j for all 1 ≤ j ≤ λ1 + 1 and α̃i j = αi j + 1, if i ≥ 2, j ≥ 1 and β̃i j = βi j + 1 for all i, j. Then 
the map ρ�

n,n+1 is injective and i(S, T ), i(̃S, ̃T ) differ only by a 0, i.e., any non-zero entry in i(S, T ) occurs 
with the same multiplicity in i(̃S, ̃T ) and 0 occurs once more. Furthermore, if k > d

2 − 2 then for any (T̃ , ̃S) ∈
��+1

k+1 \ ρ�
n,n+1(�

�
k ), it holds that 2 ch(T̃ , ̃S) > d.

Proof. For (T , S) ∈ ��
k we note (T̃ , ̃S) is indeed a standard bitableau of shape � + 1, since increasing 

entries in all rows and columns are inherited from (T , S). An integer p occurs left of p − 1 in w(T , S)

if and only if p + 1 occurs left of p in w(T̃ , ̃S). In particular, i(T , S) and i(T̃ , ̃S) differ only by an 
additional 0 entry and hence their charges are equal.

Consider f : ��+1
k+1 → YT(�) which maps an element (T̃ , ̃S) ∈ ��+1

k+1 to a bitableau of shape � by 
removing α̃11, if α̃11 �= 1. Otherwise, we remove the box containing the largest entry in the first row 
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of T̃ that is no longer the predecessor of the following number and subtract 1 from any larger entry 
α̃i j, ̃βi j . Then f is an inverse of ρ�

n,n+1 and therefore ρ�
n,n+1 is injective.

If f (T̃ , ̃S) is not standard, we have λ2 ≥ k + 1. For k > d
2 − 2 we have

2 ch(T̃ , S̃) ≥ 2(k + 2) > d. �
Definition 3.21. For m > n ≥ d and (bi-)partitions �, λ � n we define ρλ

n,m := ρλ+m−n−1
m−1,m ◦ · · · ◦ ρλ

n,n+1

and ρ�
n,m := ρ�+m−n−1

m−1,m ◦ · · · ◦ ρ�
n,n+1.

Now, we can prove the stabilization of the isotypic decomposition, which was already proven in 
Riener (2011); Riener et al. (2013) for the symmetric group with different methods.

Theorem 3.22. For large enough integers n ∈N , � � n and Zn ∈ {An−1, Bn, Dn} the Zn- and Zn+1-isotypic 
decompositions remain stable, in the sense that S(λ,μ) occurs with the same multiplicity in Hn,d as S(λ+1,μ)

in Hn+1,d. The stabilization of the isotypic decomposition of Hn,d occurs from n = 2d for An−1 , n = d for Bn
and n = 2d + 1 for Dn.

Proof. We restrict us to the cases An−1 with n ≥ 2d, and Bn with n ≥ d. For n > d the relevant 
fundamental invariants of degree ≤ d are equal for Bn and Dn . Thus, for Dn and n > 2d the same 
argument as for Bn applies, since no bipartition of n can be of the form (λ, λ). By iteration, it is 
sufficient to compare the isotypic decompositions of Hn,d and Hn+1,d .

Let n ≥ d and � = (λ, μ) � n be a bipartition with |μ| ≤ d and κ � n ≥ 2d be a partition. Further, 
be f1, . . . , fm a symmetry adapted basis of the isotypic component 

⊕m
i=1 S

� (resp. 
⊕m

i=1 S
κ ) from 

Theorem 3.8. We suppose there exist m standard (bi-)tableaux T := T1 and T2 . . . , Tm of shape �
(resp. κ ) with f j = π F̂

T j
T (resp. f j = π F

T j
T ), for some π ∈ R[X]Zn . π can be chosen as a product of 

fundamental invariants of Zn by a change of basis, since π f j must be homogeneous. The degree of 
a polynomial f j is determined by the degrees of fundamental invariants d1, . . . , dn , the charge of the 
standard (bi-)tableau T j and |μ|.

The degrees ≤ d of fundamental invariants are equal for n and n + 1. By Lemma 3.15, we have 
T1, . . . , Tm ∈ �κ

n−d and by Lemma 3.19, for all i, the tableau ρκ
n,n+1(Ti) is standard with the same 

charge as Ti . Furthermore, the map ρκ
n,n+1 is injective and any standard tableau that is not contained 

in the image has too large a charge. The claim follows since only the standard tableaux in ρκ
k,k+1(�κ

k )

are possible options for higher Specht polynomials in Hn+1,d .
By the Lemmas 3.16 and 3.20 the standard bitableaux (T , S) of shape � with 2 ch(T , S) ≤ d are 

in bijection with the standard bitableaux (T̃ , ̃S) of shape � + 1 with 2 ch(T̃ , ̃S) ≤ d and the bijection 
preserves the charge. Furthermore, our bijection adds a 0 to the index of the image bitableau and 
preserves the other entries.

Finally, note that S(d,d) ⊂ H2d,d , since the tableau 1 2 ... d
v w ...2d with v = d +1 and w = d +2 has charge 

d, but (d − 1, d) is not a partition of 2d − 1. Similarly, S(∅,(d)) ⊂ Hd,d for the bitableau (∅, 1 2 ... d ) 
with charge 0. For Dn we observe S((d),(d)) ⊂ H2d,d but the D2d-module S((d),(d)) is special since it 
decomposes which does not happen for S((d−1),(d)) . �

We note that in the case of Dn and n = d, an additional fundamental invariant of degree d occurs, 
which does not occur for n > d anymore. Thus, at least the trivial representation occurs with larger 
multiplicity in Hd,d than in Hd+1,d . However, Example 3.23 shows that already for the symmetric 
group the stabilization does not occur in the step from d to d + 1 in general.

Example 3.23. Consider the bitableau T = 1 2 5
3 4 of shape λ + 1 = (3, 2) � 5. We have ch(T ) = 3, 

i.e., p1 F T
T ∈ H5,4. However, SYT(λ) =

{
1 2
3 4 , 1 3

2 4

}
with charges 2 and 4. For any S ∈ SYT(λ), we can 

construct a tableau S̃ ∈ SYT(λ + 1) with the same charge, but T cannot be obtained in this way. In 
particular, the A3-module Sλ has smaller multiplicity in H4,4 than the A4-module Sλ+1 in H5,4.
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Corollary 3.24. For a fixed degree d and a sequence (Zn)n of reflection groups (An−1)n, (Bn)n or (Dn)n the 
symmetry adapted description of the set �Zn

n,2d are equal up to the map ρ�
n,m, for n ≥ 2d, n ≥ d or n ≥ 2d + 1

respectively.

The corollary says that up to ρ�
n,m and ρλ

n,m the same matrix polynomials can be used in a sum of 
squares representation.

Proof. This follows from Theorem 3.22 and Lemmas 3.15, 3.16, 3.19, 3.20. �
The case n = 2d is the last where � � n can be of the form � = (λ, λ), i.e., the B2d-module 

S� is not D2d-irreducible in Hn,d but the B2d+1-module S�+1 is D2d+1-irreducible in Hn+1,d (see 
Theorem 3.8). Nevertheless, the multiplicities of S� in H2d,d and Hn,d are equal for n ≥ 2d. Moreover, 
whenever n ≥ d for Bn , or n > d in case of Dn one can use that if S� ⊂ Hn,d , for � = (λ, μ) � n, and 
d even (odd), then |μ| must also be even (odd).

4. Concrete examples and applications

We apply the results from the preceding Section 3 to solve non-negativity versus sums of squares 
questions. In contrast to the non-equivariant case, the Bn-invariant forms have a non-trivial equality 
between the sets of even symmetric sums of squares and non-negative forms in 3 variables and 
degree 8. This was proven by Harris (1999). In fact, it turns out that this case and quartics are the 
only non-trivial equality cases (Goel et al., 2017). We will present a characterization of the dual and 
primal cones of B3-invariant sums of squares ternary octics and obtain a new elementary proof of 
Harris’ theorem. Moreover, we study Dn-invariant forms, prove that PD4

4,4 is a simplicial cone, and 
answer the non-negativity versus sums of squares question there.

In general, testing the non-negativity of a polynomial in more than two variables is already for 
quartics an NP-hard problem (see e.g., Blum et al., 1998 or Murty and Kabadi, 1985). In equivariant 
situations, it is therefore of interest to exploit the symmetry of invariant polynomials to reduce this 
complexity. The works in Acevedo and Velasco (2016); Friedl et al. (2018); Harris (1999); Moustrou 
et al. (2021); Riener (2012, 2016); Timofte (2003) focus on providing test sets for verification of non-
negativity of invariant polynomials. We also examine test sets for Bn and Dn invariant forms and 
small degrees.

We remark that each group in the infinite series I2(m) of dihedral groups acts on R2. In particular, 
any I2(m) invariant non-negative form is a sum of squares.

4.1. Even symmetric octics

One of the well-known and rare cases of equality between sums of squares and non-negative 
forms in equivariant situations was proven by Harris (1999). Harris’ proof is quite analytical. In this 
subsection, we give s new proof of equality build on a detailed study of the dual cone. Furthermore, 
we present a uniform description of the cones of n-ary even symmetric sums of squares octics.

Theorem 4.1. The dual cone of even symmetric ternary octic sums of squares has the following description

�
B3,∗
3,8 =

⎧⎨⎩ev(
a,
√

1−a2,0
),ev(b,c,c) : 1

2
≤ a ≤ 1,0 ≤ b ≤ 1, c =

√
(1 − b2)

2

⎫⎬⎭ .

As a consequence of Theorem 4.1 we can give a new proof for Harris’ result.

Corollary 4.2 (Harris, 1999, Theorem 4.1). The sets of non-negative and sums of squares even symmetric 
ternary octics are equal, i.e., �B3

3,8 =P B3
3,8 .
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Proof. By Theorem 4.1, the cone �B3,∗
3,8 is generated by point-evaluations. Thus, the claim follows from 

Corollary 2.41. �
Remark 4.3.

(1) Harris showed that � := {(a, a, b), (0, a, b) : a, b ∈ R≥0} is a test set for even symmetric ternary 
octics and used this as the main ingredient in his proof of equality (Harris, 1999). Theorem 4.1
establishes also this result of Harris directly. Note, that more generally test sets for Dn invariant 
polynomials are described in Friedl et al. (2018).

(2) The equality in Corollary 4.1 does not follow directly from Hilbert’s equality case �S3
3,4 = PS3

3,4
under canonical identification through the S3-isomorphism

� : H B3
3,8 −→ HS3

3,4∑
α∈2N3

0
cαxα 	−→ ∑

α∈2N3
0

cα X
1
2 α

.

For g ∈ HS3
3,4 we have �−1(g) = g(X2

1, X2
2, X2

3). Then g is non-negative on R3≥0 if and only if 
�−1(g) is non-negative. However, the example

f (X) := e1(X2)e3(X2) = (X2
1 + X2

2 + X2
3)(X2

1 X2
2 X2

3) ∈ P B3
3,8

with �( f )(−1, −1, 1) = −1 < 0 shows PS3
3,4 � �(P B3

3,8).

In order to show Theorem 4.1 we give a detailed study of the even symmetric ternary octics which 
are sums of squares. Note that the vector space dimension of H B3

3,8 is 4, while the dimension of H Bn
n,8

is 5 for all n ≥ 4.

Lemma 4.4. The B3-module H3,4 has the isotypic decomposition

H3,4 = 2 · S((3),∅) ⊕ 2 · S((2,1),∅) ⊕ 2 · S((1),(2)) ⊕ S((1),(1,1)).

A symmetry adapted basis of H3,4 realising the B3-isotypic decomposition is given by the following polynomi-
als:

S((3),∅) :
{

e1(X2)2, e2(X2)
}

, S((2,1),∅) :
{

e1(X2)(X2
3 − X2

1), X2
2 X2

3 − X2
1 X2

2

}
,

S((1),(2)) :
{

e1(X2)X2 X3, X2
1 X2 X3

}
, S((1),(1,1)) :

{
(X2

3 − X2
2)X2 X3

}
.

Proof. We need to determine the multiplicity of the irreducible B3-modules S(λ,μ) in H3,4 for all 
bipartitions (λ, μ) � 3. We can immediately exclude some of them. Since we only need higher Specht 
polynomials of degree 0, 2 or 4 by Theorem 3.11, the degree - which equals 2 times the charge of 
a standard bitableau of shape (λ, μ) plus |μ| - must be 0, 2 or 4. However, this implies that only 
bipartitions with μ ∈ {∅, (2), (1, 1)} are feasible to obtain an even degree. By going through all the 
remaining cases one obtains precisely the following higher Specht polynomials of degree 0, 2 and 4:{

1, X2
3 − X2

1, X2
2 X2

3 − X2
1 X2

2, X2 X3, X2
1 X2 X3, (X2

3 − X2
2)X2 X3

}
.

Multiplying by the invariants 1, e1(X2)2 and e2(X2) results accordingly in the above mentioned sym-
metry adapted basis. �
Corollary 4.5. A form f ∈ H B3

3,8 is a sum of squares if and only if there exist positive semidefinite matrices 
A(1), A(2), A(3) ∈R2×2 and A(4) ∈R1×1 such that

f = 〈A(1), B(1)〉 + 〈A(2), B(2)〉 + 〈A(3), B(3)〉 + 〈A(4), B(4)〉
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where the B( j) ’s are the following matrix polynomials corresponding to the B3-modules in H3,4

B(1) :=
(

e1(X2)4 e1(X2)2e2(X2)

e1(X2)2e2(X2) e2(X2)2

)
,

B(2) :=
(

2
3 e1(X2)4 − 2e1(X2)2e2(X2) −3e1(X2)e3(X2) + 1

3 e1(X2)2e2(X2)

−3e1(X2)e3(X2) + 1
3 e1(X2)2e2(X2) 2

3 e2(X2)2 − 2e1(X2)e3(X2)

)
,

B(3) :=
(

1
3 e1(X2)2e2(X2) e1(X2)e3(X2)

e1(X2)e3(X2) 1
3 e1(X2)e3(X2)

)
,

B(4) :=
(

e1(X2)e3(X2) − 4

3
e2(X2)2 + 1

3
e1(X2)2e2(X2)

)
.

Proof. The matrices B(1), . . . , B(4) are the symmetrizations of the products of the symmetry adapted 
basis from Lemma 4.4. By Theorem 2.6, any invariant sum of squares form has such a representa-
tion. �
Corollary 4.6. A linear form � ∈ H B3,∗

3,8 is contained in �B3,∗
3,8 if and only if the following four matrices are 

positive semidefinite(
m(14) m(2,12)

m(2,12) m(22)

)
,

(
2
3 m(14) − 2m(2,12)

1
3 m(2,12) − 3m(3,1)

1
3 m(2,12) − 3m(3,1)

2
3 m(22) − 2m(3,1)

)
,( 1

3 m(2,12) m(3,1)

m(3,1)
1
3 m(3,1)

)
,
( 1

3 m(2,12) − 4
3 m(22) + m(3,1)

)
,

where we write m(14) := �(e1(X2)4), m(3,1) := �(e1(X2)e3(X2)), m(2,12) := �(e1(X2)2e2(X2)) and m(22) :=
�(e2(X2)2).

Proof. By Lemma 2.38, this is precisely the dual statement to Corollary 4.5. �
As remarked before H B3

3,8 is a 4-dimensional R-vector space. We choose as fundamental invariants 
the elementary symmetric polynomials evaluated in X2 = (X2

1, X2
2, X2

3) and work with the R-basis(
e1(X2)4, e1(X2)e3(X2), e1(X2)2e2(X2), e2(X2)2

)
of H B3

3,8. In order to establish the proof of Theorem 4.1 we study the extremal rays of �B3,∗
3,8 and show 

that all of them are spanned by point-evaluations. Recall that for to an element � ∈ �
B3,∗
3,8 we associate 

a B3-invariant quadratic form on H3,4, denoted by Q� , and we will study W� := kerQ� its kernel and

W 〈2〉
� := ker� =

{
RG

(∑
f i gi

)
∈ H G

n,2d : f i ∈ W , gi ∈ Hn,d

}
(see Proposition 2.40). As the dimension of H B3

3,8 is 4 a hyperplane in H B3
3,8 is of dimension 3. Thus, 

it follows that we must have dim W 〈2〉
� = 3. By Lemma 4.4, the isotypic decomposition of the B3-

submodule W� of H3,4 has the form

W� = kerQ� = α · S((3),∅) ⊕ β · S((2,1),∅) ⊕ γ · S((1),(2)) ⊕ δ · S((1),(1,1)),

where α, β, γ ∈ {0, 1, 2} and δ ∈ {0, 1}. In order to show that indeed, the extremal elements corre-
spond to point evaluations we use that if ker � is maximal among all kernels of elements in �G,∗

3,8 , i.e., 
if ker� contains a non-trivial zero then � must be a scalar multiple of the point-evaluation at this 
point (see Lemma 2.39). In the following lemmas we analyze possible combinations of the integers 
α, β, γ , and δ through a case distinction to obtain a classification of all extremal elements in �B3 ,∗

3,8 .
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Lemma 4.7. Let � ∈ �
B3,∗
3,8 be an extremal element. Then α < 2, i.e., the multiplicity of the trivial representation 

in W� is smaller than 2.

Proof. If α = 2 then e1(X2)2 ∈ W� and hence e1(X2)4 ∈ W 〈2〉
� = ker�. However, any monomial of 

degree 8 that is a square occurs with positive coefficients in e1(X2)4, which implies � = 0 must be 
the 0 map. �
Lemma 4.8. Let � ∈ �

B3,∗
3,8 be an extremal element and α = 0. Then � is a scalar multiple of the point-

evaluation evz , where z ∈ {(1, 1, 1), (1, 0, 0), (1, 1, 0)}.

Proof. In the case β = 2 we know by dimension reasons on W 〈2〉
� that any other B3-module occurring 

in W� must already be contained in 2 ·S((2,1),∅) . However, the forms in the module 2 ·S((2,1),∅) have 
the common zero (1, 1, 1).

If β = 1, then we must have γ ≥ 1 or δ = 1 such that W 〈2〉
� is a hyperplane. For δ = 1 the elements 

in W� have the common root (1, 1, 1). Now, we consider the case β = 1, γ ≥ 1. Thus for some pairs 
(a, b), (c, d) ∈R2 \ {(0, 0)}

ae1(X2)(X2
3 − X2

1) + b(X2
2 X2

3 − X2
1 X2

2), ce1(X2)X2 X3 + dX2
1 X2 X3 ∈ W�,

and the symmetrized products with elements in H3,4 are contained in W 〈2〉
� , i.e.,

0 =a

(
2

3
m(14) − 2m(2,12)

)
+ b

(
1

3
m(2,12) − 3m(3,1)

)
,

0 =a

(
1

3
m(2,12) − 3m(3,1)

)
+ b

(
2

3
m(22) − 2m(3,1)

)
,

0 = c

3
m(2,12) + dm(3,1),

0 =cm(3,1) + d

3
m(3,1).

Now, we distinguish two cases, depending on m(3,1) vanishing or not-vanishing.

i) If m(3,1) �= 0 we have that c + d
3 = 0. Since W� is a linear space we can set c = 1 and d = −3. 

However, then the B3-module W� has the common zero (1, 1, 1). Thus � is a scalar multiple of 
the point-evaluation ev(1,1,1) .

ii) Assume that m(3,1) = 0. We first consider the case when c �= 0. Then m(2,12) = 0 and since m(14) >

0 we have a = 0. Hence, b �= 0 and m(22) = 0 which implies that the elements in W� all vanish 
at (1, 0, 0) and � is a scalar multiple of ev(1,0,0) . So we only the case with vanishing c remains. If 
c = 0 we have

0 =a

(
2

3
m(14) − 2m(2,12)

)
+ b

(
1

3
m(2,12)

)
,

0 =a

(
1

3
m(2,12)

)
+ b

(
2

3
m(22)

)
.

In this situation we find that if a = 0 then � is a scalar multiple of ev(1,0,0) , since any form in 
W 〈2〉

� has the zero (1, 0, 0). If otherwise a �= 0 we may assume that a = 1 since W 〈2〉
� is a linear 

space. In this situation we have

0 =2

3
m(14) + (−2 + b

3
)m(2,12),

0 =1

3
m(2,12) + 2b

3
m(22).
133



S. Debus and C. Riener Journal of Symbolic Computation 119 (2023) 112–144
By scaling � and since m(14) > 0, we can assume that m(14) = 1. We first note that b = 0 is 
impossible. Indeed, b = 0 directly yields the contradiction 0 = m(14) = 1. So b �= 0 and m(2,12) =

2
6−b , m(22) = 1

−6b+b2 , for a non zero b �= 6. From the conditions in Corollary 4.6 we obtain for the 
first matrix

det

(
1 m(2,12)

m(2,12) m(22)

)
≥ 0,

which implies that −2 ≤ b < 0. And the positive semidefiniteness of the last matrix in Corol-
lary 4.6 yields

1

3
m(2,12) − 4

3
m(22) + m(3,1) ≥ 0

implies that b ≤ −2 or 0 < b < 6. Thus b = −2 and � is the point-evaluation ev( 1√
2
, 1√

2
,0) .

Finally, if γ ≥ 1, then β = 1 or δ = 1. However, we have already examined the case β = 1. For δ = 1
the elements in W� have the common zero (1, 0, 0). Thus � is a scalar multiple of ev(1,0,0) . �

We now can proceed with the cases where α = 1, which implies that ae1(X2)2 + e2(X2) ∈ W� for 
an a ∈R, since e1(X2)4 /∈ W� . Notice that this implies the following equations for ker �:

am(14) + m(2,12) = 0,

am(2,12) + m(22) = 0.

Moreover, since m(14) > 0 and since � is a linear form, without loss of generality we can suppose 
m(14) = 1, as � is then just a positive scalar. The positive semidefiniteness conditions with the reduc-
tions m(2,12) = −am(14), m(22) = a2m(14) and m(14) = 1 can then be expressed with the following four 
matrices all of which must be positive semidefinite.(

1 −a
−a a2

)
,

(
2
3 +2a − 1

3 a−3m(3,1)

− 1
3 a−3m(3,1)

2
3 a2−2m(3,1)

)
,

(
− 1

3 a m(3,1)

m(3,1)
1
3 m(3,1)

)
,
(

−a
3 − 4a2

3 +m(3,1)

)
(4.1)

Using the positive semidefiniteness of the second matrix and −a = m(2,12) ≥ 0 we obtain a ∈ [− 1
3 , 0].

With these considerations, we now proceed with a case distinction on the parameters β, γ , δ. We 
show here that in certain cases the admissible linear forms in the dual cone correspond to point-
evaluations. Recall that by Corollary 2.37 the evaluations on points on the sphere generate the dual 
cone of non-negative forms and the following lemmas show that the only possible linear forms in the 
dual cone are indeed point-evaluations. Notice that we may scale these points, as the polynomials are 
homogeneous and we thus can identify point-evaluations along a ray.

Lemma 4.9. Let � ∈ �
B3,∗
3,8 be an extremal element. If α = δ = 1, then � is a scalar multiple of the point-

evaluation in (1, 1, 0).

Proof. The condition δ = 1 yields S((1),(1,1)) ⊂ W� which implies (X2
3 − X2

2)X2 X3 ∈ W� and

−a

3
− 4a2

3
+ m(3,1) = 0.

Positiveness yields 0 ≤ m(3,1) = 1
3 (a + 4a2) and therefore that a ≤ − 1

4 . We use that the determinant 
of the second matrix in (4.1) is non-negative, i.e.,

0 ≤
(

2

3
+ 2a

)(
2

3
a2 − 2m(3,1)

)
−
(

−1

3
a − 3m(3,1)

)2

= −4

9
a(1 + 3a)2(1 + 4a).

This is not satisfied for a < − 1
4 . Hence a = − 1

4 , m(14) = 1, m(3,1) = 0, m(2,12) = 1
4 , m(22) = 1

16 and � is a 
scalar multiple of ev( 1√ , 1√ ,0

) . �

2 2

134



S. Debus and C. Riener Journal of Symbolic Computation 119 (2023) 112–144
Lemma 4.10. Let � ∈ �
B3,∗
3,8 be an extremal element. If α = 1, γ ≥ 1, then � is a scalar multiple of a point-

evaluation in (1, 0, 0), (1, 1, 1) or 

(√
1
2 +

√
a + 1

4 ,

√
1
2 −

√
a + 1

4 ,0

)
, for − 1

4 ≤ a ≤ 0.

Proof. We have S((1),(2)) ⊂ W� , i.e., for a pair (b, c) ∈R2 \ {(0, 0)}

be1(X2)X2 X3 + c X2
1 X2 X3 ∈ W�

and the symmetrized products with elements in H3,4 are contained in W 〈2〉
� , i.e.,

0 =−ab

3
+ cm(3,1),

0 =bm(3,1) + c

3
m(3,1).

Substituting ab
3 = cm(3,1) in the second equation gives b 

( a
9 + m(3,1)

)= 0.

a) We first assume that b �= 0. Then m(3,1) = − a
9 . In this case, we obtain from the positive semidefi-

niteness of the second matrix in (4.1) that

0 ≤ 2

3
a2 − 2m(3,1) = 2

3
a(a + 1

3
).

Thus a ∈ {0, − 1
3 }. If a = 0 then m(3,1) = m(2,12) = m(22) = 0 and � = ev(1,0,0) . For a = − 1

3 we have 
m(3,1) = 1

27 , m(2,12) = 1
3 , m(22) = 1

9 and � = ev( 1√
3
, 1√

3
, 1√

3

) .

b) In the remaining case b = 0 we can assume by linearity of W� that c = 1, which implies m(3,1) =
0. By the non-negativity of the last 1 × 1 matrix in (4.1), i.e.,

0 ≤ −a

3
− 4a2

3
+ m(3,1)

we obtain − 1
4 ≤ a ≤ 0. However, for any such − 1

4 ≤ a ≤ 0, we have m(14) = 1, m(3,1) =
−a, m(2,12) = a2, m(22) = 0 and � = ev(√

1
2 +
√

a+ 1
4 ,

√
1
2 −
√

a+ 1
4 ,0

) . �

Lemma 4.11. Let � ∈ �
B3,∗
3,8 be an extremal element. If α = β = 1, then � is a scalar multiple of a point-

evaluation at a point of the form⎛⎝√1 + 2
√

1 + 3a

3
,

√
1 − √

1 + 3a

3
,

√
1 − √

1 + 3a

3

⎞⎠ , for − 1

3
≤ a ≤ 0, or

⎛⎝√1 − 2
√

1 + 3b

3
,

√
1 + √

1 + 3b

3
,

√
1 + √

1 + 3b

3

⎞⎠ , for − 1

3
≤ b ≤ −1

4
.

Proof. If β = 1 then S((2,1),∅) ⊂ W� , i.e., for a pair (b, c) ∈R2 \ {(0, 0)}

be1(X2)(X2
3 − X2

1) + c(X2
2 X2

3 − X2
1 X2

2) ∈ W�

and the symmetrized products with elements in H3,4 are contained in W 〈2〉
� , i.e.,
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0 =b

(
2

3
+ 2a

)
+ c

(
−1

3
a − 3m(3,1)

)
,

0 =b

(
−1

3
a − 3m(3,1)

)
+ c

(
2

3
a2 − 2m(3,1)

)
.

We distinguish two cases:

i) If b = 0, c = 1 or if b = 1, c = 0 then − 1
3 = a, m(3,1) = 1

27 and � = ev( 1√
3
, 1√

3
, 1√

3

) .

ii) We continue with the remaining case b �= 0 and c �= 0. Since W� is a vector space we assume 
without loss of generality that b = 1 and obtain

m(3,1) = 2

9c
+ 2a

3c
− a

9
and

2(1 + 3a)(−3 − 2c + ac2)

9c
= 0.

Hence a = − 1
3 (in which case � = ev( 1√

3
, 1√

3
, 1√

3
)) or −3 − 2c + ac2 = 0. If a = 0 then c = − 3

2 and 

m(3,1) = − 4
27 which does not satisfy the positive semidefiniteness conditions. If − 1

3 < a < 0 then 

either c = 1
a −

√
1+3a

a2 or c = 1
a +

√
1+3a

a2 .

In the first case we find

m(14) = 1,m(3,1) =
a
(

1 + a
(

6 +
√

1+3a
a2

))
9 − 9a

√
1+3a

a2

,m(2,12) = −a,m(22) = a2.

For any − 1
3 < a < 0, � is the point-evaluation at 

(√
1+2

√
1+3a

3 ,

√
1−√

1+3a
3 ,

√
1−√

1+3a
3

)
.

In the second case we find

m(14) = 1,m(3,1) =
a
(

1 − a
(
−6 +

√
1+3a

a2

))
9 + 9a

√
1+3a

a2

,m(2,12) = −a,m(22) = a2.

However, m(3,1) ≥ 0 is equivalent to − 1
3 < a ≤ − 1

4 . For any − 1
3 < a ≤ − 1

4 , � is the point-evaluation 

at 
(√

1−2
√

1+3a
3 ,

√
1+√

1+3a
3 ,

√
1+√

1+3a
3

)
. �

These results now allow us to conclude the proof of Theorem 4.1.

Proof of Theorem 4.1. By Lemmas 4.7, 4.8, 4.9, 4.10 and 4.11 we have established that the extremal 
rays in �B3,∗

3,8 are all generated by point-evaluations. These generators are the point-evaluations at 
elements in the set{(

a,
√

1 − a2,0
)

, (b, c, c) : 1

2
≤ a ≤ 1,0 ≤ b ≤ 1, c = 1√

2

√
(1 − b2)

}
. �

Corollary 4.12. P B3
3,8 is the convex cone generated by the following six forms

e1(X2)4 − 3e1(X2)2e2(X2),−9e1(X2)e3(X2) + e1(X2)2e2(X2), e2(X2)2 − 3e1(X2)e3(X2),

e1(X2)2e2(X2), e1(X2)e3(X2),3e1(X2)e3(X2) − 4e2(X2)2 + e1(X2)2e2(X2)

and the following two families of forms(
ae1(X2)4 + e1(X2)e2(X2),ae1(X2)e2(X2) + e2(X2)2 : − 1 ≤ a ≤ 0

)

3
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Proof. These forms are precisely the sums of squares contained in the kernels of extremal rays of 
�

B3,∗
3,8 . Since �B3

3,8 = P B3
3,8 by Corollary 4.2, these forms are also the extremal elements in the pointed 

convex cone P B3
3,8. The claim follows from Minkowski’s Theorem. �

Theorem 3.22 established the stabilization of Bn-Specht modules in Hn,d for a large enough num-
ber of variables for d = 4. This allows a uniform description of the sets �Bn

n,8 for all n ≥ 4, as observed 
in Corollary 3.24.

Lemma 4.13. The Bn-isotypic decomposition of Hn,4 for n ≥ 4 is

2 · S((n),∅) ⊕ 2 · S((n−1,1),∅) ⊕ S((n−2,2),∅) ⊕ 2 · S((n−2),(2))

⊕ S((n−2),(1,1)) ⊕ S((n−3,1),(2)) ⊕ S((n−4),(4)).

A symmetry adapted basis of Hn,4 realising the Bn-isotypic decomposition is given by the following seven sets 
of polynomials

S((n),∅) :
{

p(n)
(4)

, p(n)

(22)

}
S((n−1,1),∅) : {(X2

n − X2
1)p(n)

(2)
, X4

n − X4
1}

S((n−2,2),∅) : {(X2
1 − X2

3)(X2
2 − X2

4)} S((n−2),(1,1)) : {
(X2

n − X2
n−1)Xn−1 Xn

}
S((n−4),(4)) : {X1 X2 X3 X4} S((n−3,1),(2)) : {

(X2
n − X2

1)Xn−2 Xn−1
}

S((n−2),(2)) : {Xn−1 Xn p(n)
(2), (X2

n−1 + X2
n )Xn−1 Xn}

Proof. We determine the multiplicity of an irreducible Bn-module S(λ,μ) in Hn,4 for bipartitions 
(λ, μ) � n using Theorem 3.8. We can immediately exclude some bipartitions. The fundamental in-
variants of degree ≤ 4 are of degree 2 and 4. Only (λ, μ) such that μ � n2, with n2 ≤ 4 can occur, 
since a corresponding higher Specht polynomial has as a factor the monomial consisting of all prod-
ucts of the Xi ’s, where i ranges over the entries of the second bitableau. Furthermore, we only need 
to consider bipartitions (λ, μ) such that |μ| is even because a factor of the higher Specht polynomial 
is of degree |μ|, while the additional factor has even degree. We can restrict us to bipartitions (λ, μ)

such that there exist (T , S) ∈ SYT(λ, μ) with 2 ch(T , S) + |μ| ≤ 4. Therefore a charge ≤ 2 is necessary. 
We calculated all relevant higher Specht polynomials for n ≥ 4:

S((n),∅) : {1} S((n−1,1),∅) :
{

X2
n − X2

1, 1
n

∑n−1
i=2 X2

i (X2
n − X2

1)
}

S((n−2,2),∅) : {
(X2

1 − X2
3)(X2

2 − X2
4)
}

S((n−2),(1,1)) : {
(X2

n − X2
n−1)Xn−1 Xn

}
S((n−4),(4)) : {X1 X2 X3 X4} S((n−3,1),(2)) : {

(X2
n − X2

1)Xn−2 Xn−1
}

S((n−2),(2)) :
{

Xn−1 Xn,
1

n−2 (X2
1 + . . . + X2

n−2)Xn−1 Xn

}
.

Multiplying these polynomials with power means gives a Bn-symmetry adapted basis of Hn,4. How-
ever, since

X4
n − X4

1 ∈ 〈p(n)
2 (X2

n − X2
1),

1

n

n−1∑
i=2

X2
i (X2

n − X2
1)〉R,

(X2
n−1 + X2

n)Xn−1 Xn ∈ 〈p(n)
2 Xn−1 Xn,

1

n − 2
(X2

1 + . . . + X2
n−2)Xn−1 Xn〉R,

we can work with the above-mentioned symmetry adapted basis. �
The isotypic decomposition now allows us directly to give a uniform description of the Bn-invariant 

sum of squares of degree 8.
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Theorem 4.14. For n ≥ 4, f ∈ H Bn
n,8 is a sum of squares if and only if there exist positive semidefinite matrices 

A((n),∅), A((n−1,1),∅), A((n−2,2),∅), A((n−2),(2)) ∈ R2×2 and A((n−2),(1,1)), A((n−4),(4)), A((n−3,1),(2)) ∈ R1×1
≥0

such that

f = 〈A((n),∅), B((n),∅)〉 + 〈A((n−1,1),∅), B((n−1,1),∅)〉 + 〈A((n−2,2),∅), B((n−2,2),∅)〉
+ 〈A((n−2),(2)), B((n−2),(2))〉 + A((n−2),(1,1))B((n−2),(1,1))

+ A((n−4),(4))B((n−4),(4)) + A((n−3,1),(2))B((n−3,1),(2))

where

B((n),∅) :=
⎛⎝ p(n)

(42)
p(n)

(4,22)

p(n)

(4,22)
p(n)

(24)

⎞⎠ ,

B((n−1,1),∅) :=
⎛⎝ p(n)

(4,22)
− p(n)

(24)
p(n)

(6,2) − p(n)

(4,22)

p(n)
(6,2) − p(n)

(4,22)
p(n)

(8) − p(n)

(42)

⎞⎠ ,

B((n−2,2),∅) :=
(−n + 1

n2
p(n)

(8) + 4n − 4

n2
p(n)

(6,2) + n2 − 3n + 3

n2
p(n)

(42)
− 2p(n)

(4,22)
+ p(n)

(24)

)
,

B((n−2),(2)) :=
⎛⎝ p(n)

(24)
− 1

n p(n)

(4,22)
2p(n)

(4,22)
− 2

n p(n)
(6,2)

2p(n)

(4,22)
− 2

n p(n)
(6,2) 2p(n)

(6,2) + 2p(n)

(42)
− 4

n p(n)
8

⎞⎠ ,

B((n−2),(1,1)) :=
(

p(n)
(6,2) − p(n)

(42)

)
,

B((n−4),(4)) :=
(

p(n)

(24)
− 6

n p(n)

(4,22)
+ 3

n2 p(n)

(42)
+ 8

n2 p(n)
(6,2) − 6

n3 p(n)
(8))
)

,

B((n−3,1),(2)) :=
(

2
n2 p(n)

(8) − 2n+2
n2 p(n)

(6,2) − 1
n p(n)

(42)
+ n+3

n p(n)

(4,22)
− p(n)

(24)

)
.

Proof. The matrices B(i) are the matrices that contain the symmetrized products of the symmetry-
adapted basis of the Bn-module Hn,4 from Lemma 4.13. By Theorem 2.6, any invariant sum of squares 
form has such a representation. �

We observe that for n ≥ 4 the R-vector spaces

H Bn
n,8 = 〈p(n)

(24)
, p(n)

(4,22)
, p(n)

(42)
, p(n)

(4,2), p(n)
(6,2), p(n)

8 〉R
have the same dimension. We identify the vector spaces with respect to the isomorphism

p(n)
λ 	→ p(m)

λ

for n, m ∈N≥4. Blekherman and the second author studied symmetric quartic forms (Blekherman and 
Riener, 2021) and defined a limit set as the linear span of all pλ := limn→∞ p(n)

λ . They showed that 
for symmetric quartics the limits of the cones of sums of squares and non-negative forms are equal. 
As a first step towards a similar result in the Bn case, we provide a classification of the limit of the 
cones of even symmetric octics which are sums of squares.

Remark 4.15. The matrices in Theorem 4.14 have the following limits for n → ∞

B((n),∅) :=
(

p(42) p(4,22)

p(4,22) p(24)

)
B((n−1,1),∅) :=

(
p(4,22) − p(24) p(6,2) − p(4,22)

p(6,2) − p 2 p(8) − p 2

)
,

(4,2 ) (4 )
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B((n−2,2),∅) := ( p(42) − 2p(4,22) + p(24)

)
,

B((n−2),(2)) :=
(

p(24) 2p(4,22)

2p(4,22) 2p(6,2) + 2p(42)

)
,

B((n−2),(1,1)) := ( p(6,2) − p(42)

)
,

B((n−4),(4)) := ( p(24)

)
,

B((n−3,1),(2)) := ( p(4,22) − p(24)

)
.

Corollary 4.16. An even symmetric homogeneous octic limit sum of squares inequality f has the form

f = α1p(42) + 2α2p(4,22) + α3p(24)

+ β1(p(4,22) − p(24)) + 2β2(p(6,2) − p(4,22)) + β3(p(8) − p(42))

+ δ(p(6,2) − p(42))

where 
(

α1 α2
α2 α3

)
, 
(

β1 β2
β2 β3

)
, (δ) are positive semidefinite real matrices.

Proof. We observe that an invariant limit sum of squares coming from the irreducible representation 
S((n−2,2),∅) , i.e., p(42) −2p(4,22) +p(24) , is contained in the first line. The limit sum of squares p(24) from 
S((n−4),(4)) is also contained in the first line, while the limit form from S((n−3,1),(2)) , i.e., p(4,22) −p(24) , 
is contained in the second line for β1 = 1. Furthermore,

(α,β)

(
p(24) 2p(4,22)

2p(4,22) 2p(6,2) + 2p(42)

)
(α,β)T = 2β2(p(6,2) − p(42)) + 〈

(
4β2 2αβ

2αβ α2

)
,

(
p(42) p(4,22)

p(4,22) p(24)

)
〉. �

Remark 4.17. Let �
B∞∞,8 denote the cone consisting of all limit forms from Corollary 4.16, �

S∞∞,4
the limit cone of symmetric sums of squares of degree 4 in Blekherman and Riener (2021) and 
� : H B∞∞,8 → HS∞∞,4 be the canonical S∞-homomorphism. The cones � 

(
�

B∞∞,8

)
and �

S∞∞,4 = PS∞∞,4

are different. This is not surprising, since the cone � 
(
P B∞∞,8

)
can be identified with the limit of 

all symmetric forms that are non-negative on the positive orthant (compare with Polya’s Nichtnega-
tivenstellensatz; Pólya, 1928).

It is a question for further studies to determine the relationship between the limit cones of even 
symmetric sums of squares and non-negative octics.

4.2. Forms invariant under Dn

It is natural to wonder, to what extent Harris’ result on ternary forms invariant under B3 carries 
over to the slightly smaller group D3. As is shown in the following theorem we obtain equality 
between the sets �D3

3,8 and PD3
3,8. Furthermore, we prove that PD4

4,4 is a simplicial cone that gives a test 
set for non-negativity consisting of three points. We prove that for quaternary quartics invariant under 
D4 we also have that non-negativity implies having a sum of squares representation. We conclude 
with a full characterization of the non-negativity versus sums of squares question for forms invariant 
under Dn .

Theorem 4.18. The sets of non-negative and sums of squares ternary octics invariant under D3 are equal, i.e., 
�

D3
3,8 =PD3

3,8 .

Proof. The invariant ring R[X1, X2, X3]D3 =R[p2, e3, p4] is a polynomial ring in the symmetric poly-
nomials p2, e3 and p4. A vector space basis of H D3

3,8 is given by 
(

p(24), p(4,22), p(42), p2e2
3

)
. Recall that 
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H B3
3,8 = 〈p(24), p(4,22), p(42), p(6,2)〉R . The functions p6 and e2

3 occur linearly in the following identity 
for symmetric functions in three variables

p(23) − 3p(4,2) + 2p6 − 6e2
3 = 0.

Hence we deduce that H D3
3,8 = H B3

3,8. The claim follows by Corollary 4.2. �
Remark 4.19. We have the same conical generators and test set for non-negative ternary octics in-
variant under D3 as for B3, i.e., a form f ∈ H D3

3,8 is non-negative if and only if f (y) ≥ 0 for all 
y ∈ {(a, a, b), (0, a, b) : a, b ∈R≥0}.

In the following, we study quaternary quartics invariant under D4.

Lemma 4.20. The D4-module H4,2 has the isotypic decomposition

H4,2 = S((4),∅) ⊕ S((3,1),∅) ⊕ S((2),(2))
+ ⊕ S((2),(2))

− .

A symmetry adapted basis which realizes the D4-module decomposition of H4,2 is the following:

S((4),∅) : {p(2)

}
, S((3,1),∅) :

{
X2

4 − X2
1

}
,

S((2),(2))
+ : {X1 X2 + X3 X4} , S((2),(2))

− : {X1 X2 − X3 X4} .

Proof. By Theorem 3.8, we have to determine the multiplicity of the irreducible D4-modules labelled
by bipartitions (λ, μ) � 4 of the form |λ| ≥ |μ|. We are just interested in higher Specht polynomials 
of degree 0 or 2, since the only D4 fundamental invariant of degree ≤ 2 is p2. Thus, necessarily 
|μ| ∈ {0, 2}. If μ = ∅, then both bipartitions ((4), ∅), ((3, 1), ∅) have exactly one standard bitableau 
whose charge is at most 1, i.e., they occur precisely once in H4,2. Any occurring module labelled 
by (λ, μ) with |μ| = 2 must have a standard bitableau with index (0, 0, 0, 0). This can only occur if 
the word equals (1, 2, 3, 4). Thus, only the bipartition ((2), (2)) has a standard bitableau with charge 
0. By Theorem 3.8, the module S((2),(2)) decomposes into two irreducible D4-modules S((2),(2))

+ and 
S((2),(2))

− . We calculated the relevant higher Specht polynomials according to Theorem 3.8{
1, X2

4 − X2
1, X1 X2 + X3 X4, X1 X2 − X3 X4

}
,

and find accordingly the polynomials above. �
Corollary 4.21. A D4-invariant quaternary quartic f ∈ H D4

4,4 is a sum of squares if and only if there exist 
positive numbers A(1), A(2), A(3), A(4) ∈R≥0 such that f = A(1)B(1) + A(2)B(2) + A(3)B(3) + A(4)B(4) , where

B((4),∅) := (p(22)

)
, B((3,1),∅) :=

(
2

3
p(4) − 1

6
p(22)

)
,

B((2),(2))
+ :=

(
1

6
p(22) − 1

6
p(4) + 2e4

)
, B((2),(2))

− :=
(

1

6
p(22) − 1

6
p(4) − 2e4

)
.

Proof. The matrices B(i) are obtained by calculating the Reynolds operator evaluated at squares of 
the symmetry adapted basis of the irreducible D4-modules from Lemma 4.20. By Theorem 2.6, any 
invariant sum of squares form has such a representation. �
Theorem 4.22. The cone of �D4,∗

4,4 is a simplicial cone with the following description

�
D4,∗
4,4 = cone

{
ev(1,0,0,0), ev(1,1,1,−1),ev(1,1,1,1)

}
.
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Proof. Let � ∈ �
D4,∗
4,4 denote an extremal element. Let

W� := α · S((4),∅) ⊕ β · S((3,1),∅) ⊕ γ · S((2),(2))
+ ⊕ δ · S((2),(2))

−
be the D4-submodule of H4,2 which is the kernel of the associated quadratic form, for α, β, γ , δ ∈
{0, 1}. Now, we show that � must be a scalar multiple of one of the three point-evaluations above, 
respectively that W 〈2〉

� must have one of the points as a zero.

Since p(22) is not contained in the boundary of �D4
4,4 we see that α = 0. Furthermore, dimR W 〈2〉

� =
2 and therefore we have that precisely two of the parameters are non-zero, because the symmetrized 
squares of the symmetry adapted basis elements belonging to the D4-modules S((3,1),∅) , S((2),(2))

+ and 
S((2),(2))

− are linearly independent.

i) We start by examining the case γ = δ = 1. Then �(e4) = 0, �(p(22)) = �(p(4)) and

W 〈2〉
� = 〈e4, p(22) − p(4)〉R.

W 〈2〉
� has the root (1, 0, 0, 0).

We proceed with the cases γ = β = 1 or β = δ = 1.

ii) We notice that if γ = β = 1 then

W� = 〈X2
4 − X2

1, X1 X2 + X3 X4〉D4 ,

but all elements in W� have the common root (1, 1, 1, −1).
iii) If β = δ = 1 then

W� = 〈X2
4 − X2

1, X1 X2 − X3 X4〉D4

with the common root (1, 1, 1, 1). �
Corollary 4.23. The set of non-negative and sums of squares quaternary quartics invariant under D4 are equal, 
i.e., �D4

4,4 =PD4
4,4 .

The corollary does not already follow from the observation made in Harris (1999) that �B4
4,4 =P B4

4,4

because H D4
4,4 \ H B4

4,4 �= ∅.

Proof. By Theorem 4.22, the cone �D4,∗
4,4 is generated by point-evaluations. Hence any extremal ray in 

�
D4,∗
4,4 is spanned by a point-evaluation and the claim follows from Corollary 2.41. �

By reformulating Theorem 4.22 we obtain the following very simple test set for D4-quartics:

Corollary 4.24. A form f = a(X2
1 + X2

2 + X2
3 + X2

4)2 +b(X4
1 + X4

2 + X4
3 + X4

4) +c X1 X2 X3 X4 , with a, b, c ∈R, 
is non-negative if and only if f (z) ≥ 0 for all z ∈ {(1, 0, 0, 0), (1, 1, 1, −1), (1, 1, 1, 1)}.

Proof. An invariant form f ∈ H D4
4,4 is non-negative if and only if �( f ) ≥ 0 for all � ∈ PD4,∗

4,4 . By Corol-

lary 4.23 we have PD4,∗
4,4 = �

D4,∗
4,4 . But we saw in Theorem 4.22 that �

D4,∗
4,4 has these 3 extreme 

rays. �
Corollary 4.25. The convex cone PD4

4,4 of non-negative D4-quartics is a simplicial cone generated by

4p(4) − p(22), p(22) − p(4) + 12e4, p(22) − p(4) − 12e4.
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Proof. The sets PD4
4,4 and �D4

4,4 are equal by Corollary 4.23. The boundary of �D4
4,4 is equal to the union 

of all kernels of extremal elements in �D4,∗
4,4 intersected with �D4

4,4. The claimed forms are precisely 
the invariant sums of squares contained in the kernels of the three extremal rays in Theorem 4.22. �

The results from the previous two subsections allow to conclude the following classification of the 
equivariant non-negativity versus sums of squares question for the reflection group Dn .

Theorem 4.26. The sets �Dn
n,2d and PDn

n,2d are equal if and only if (n, 2d) ∈ {(2, 2d), (n, 2), (n, 4), (3, 8)}.

Proof. Suppose that there exists f ∈ P Bn
n,2d \ �

Bn
n,2d . This implies f ∈ PDn

n,2d \ �
Dn
n,2d . Therefore, we can 

directly rely on the classification carried out in Goel et al. (2017) and we only need to consider these 
cases specifically, where all even symmetric positive semidefinite forms are sums of squares. These 
are only the following non-trivial cases: (n, 2d) ∈ {(3, 8), (n, 4)}. But we have shown in Theorem 4.18
that in the case (3, 8) the equality does survive, and while following Corollary 4.23 it does also for 
(4, 4). Furthermore, if n > 4 then the invariant quartics with respect to Bn are precisely the invariant 
quartics with respect to Dn as H Bn

n,4 = 〈p(22), p(4)〉R = H Dn
n,4 for n ≥ 5, which completes the proof. �

4.3. LMIs and non-negativity testing

In general testing non-negativity of a polynomial in more than two variables is already for quar-
tics an NP-hard problem (see e.g. Blum et al., 1998 or Murty and Kabadi, 1985). On the other hand, 
certifying that a given polynomial is a sum of squares can be done with so-called semidefinite pro-
gramming. Although the complexity status of this procedure in the Turing or in the real numbers 
model is not yet known (see Ramana, 1997) SDPs can be solved numerically in polynomial time to a 
given accuracy through the ellipsoid algorithm and this approach generally provides a tractable way 
to certify that a polynomial is non-negative, if it is a sum of squares. For real symmetric matrices 
A, B ∈ Rn×n we write A � B if A − B is positive semidefinite. The feasible region of a semidefinite 
program is given by the projection of a set defined by a linear matrix inequality (LMI), i.e., an inequality 
of the form A0 +x1 A1 +x2 A2 + . . .+xn An � 0, where A0, . . . , An are real symmetric matrices all of the 
same size and x1, . . . , xn are supposed to be real scalars. The set of all x ∈ Rn satisfying a given LMI 
is called a spectrahedron. For every f ∈ Hn,2d one can construct an LMI (Powers and Wörmann, 1998) 
which possesses a solution if and only if f is a sum of squares. The corresponding spectrahedron is 
called the Gram spectrahedron of f (Chua et al., 2016), and it represents in fact all possible ways to 
decompose f into sums of squares. Accordingly, it is non-empty if and only if f is a sum of squares. 
The results presented in the article can be directly transferred into the setup of symmetry-adapted 
Gram-spectrahedra, which were, for example, recently studied by Heaton et al. (2020).

Theorem 4.27. Let G be a finite reflection group and consider f ∈ H G
n,2d and θ1, . . . , θl be all non G-isomorphic 

irreducible representations. Then the Gram spectrahedron of f can be defined by a block diagonal matrix, 
consisting of l blocks B1, . . . , Bl and the size of the block Bi equals

d∑
k=0

N(d − k) · hϑi
k .

In particular, in the case G ∈ {An−1, Bn, Dn} the size of the matrix is independent of n, for large n.

Proof. This follows from choosing a symmetry-adapted basis of Hn,d and Corollary 2.27. When G ∈
{An−1, Bn, Dn} the stabilization follows from Corollary 3.24. �

A convex set that can be obtained as the projection of a higher dimensional spectrahedron is called 
spectrahedral shadow. Following a question by Nemirovski, which convex sets can be represented as 
projections of spectrahedra, Scheiderer (2018) showed that the cones of non-negative forms in general 
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are not spectrahedral shadows. In the next theorem, we give some examples of invariant non-negative 
forms, which form spectrahedral shadows.

Theorem 4.28. For all n, the families of cones PSn
n,4 , P Bn

n,6 , P Bn
n,8 and P Bn

n,10 are spectrahedral shadows. Moreover, 
for forms in any of these families, there exists an LMI of size O (n3) certifying the non-negativity.

Proof. For n ≤ 2 this is trivial, and in the case n = 3 this follows either from Hilbert’s Theorem in the 
S3 case or from Harris’ result 4.2 in the B3 case. So we assume n ≥ 4. By the half-degree principle, 
an element f ∈ HSn

n,4 is non-negative on Rn if and only if for any partition λ � n of length 2, the 
form f λ ∈ H2,4 is non-negative on R2, where f λ(x, y) := f (x, . . . , x, y, . . . , y) and x occurs precisely 
λ1 times and y λ2 times. Notice that each f λ is non-negative if and only if it is a sum of squares, 
i.e., if we have f λ ∈ �2,4. If we denote by �λ the linear map f 	→ f̃ λ(x, y) and if λ1, . . . , λm are all 
partitions of n with length 2 then

PSn
n,4 =

m⋂
i=1

(
�λi
)−1

(�2,4)

which proves the claim in the Sn case. Using the half-degree principle (Riener, 2016, Theorem 3.1) for 
Bn and considering instead of f (X) ∈ R[X]Bn the form f (

√
X1, . . . , 

√
Xn) ∈ R[X]Sn , one can argue 

analogously with slight modifications. �
Remark 4.29. In the case of symmetric polynomials, the above statement was implicitly already stated 
in Riener et al. (2013, Theorem 5.5) for symmetric quartic forms, albeit without mentioning of the 
term spectrahedral shadow.

The core of the proof above is the reduction to bivariate forms through test sets.

Theorem 4.30. For the families of cones PSn
n,6 , P Bn

n,12 and P Bn
n,14 membership can be decided with O (n3) many 

LMIs, each of which has size bounded independent of n.

Proof. Using the half-degree principle (Riener, 2016, Theorem 3.1) one finds that membership in each 
of the above-mentioned cones can be decided by reducing to O (n3) many ternary forms, similar to 
the proof above. For each of these ternary forms, one can decide non-negativity individually. de Klerk 
and Pasechnik (2004) provided a construction to decide the non-negativity of a ternary form of degree 
2d by means of d/4 LMIs each of which is polynomial in d. Combining their construction with the 
arguments above thus yields an LMI of the announced size. �
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