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MAPPING CLASS GROUP ORBIT CLOSURES FOR
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and Juan Souto

Abstract. Let S be a connected non-orientable surface with negative Euler char-
acteristic and of finite type. We describe the possible closures in ML and PML of
the mapping class group orbits of measured laminations, projective measured lami-
nations and points in Teichmüller space. In particular we obtain a characterization
of the closure in ML of the set of weighted two-sided curves.

1 Introduction

In this paper we study the closures of the orbits of the action of the mapping
class group of a complete connected hyperbolic surface on the space of measured
laminations (Theorem 1.4), projective measured laminations (Theorems 1.1 and 1.3)
and Teichmüller space (Theorem 1.5). When reading this the reader might well be
surprised. They might be thinking that all of this is already known; that it is a
classical result that the action of the mapping class group on PML is minimal in
the sense that all orbits are dense [FLP], that PML is the limit set of the action
of the mapping class group on Teichmüller space, and that the orbit closures of
the action of Map on ML were already described by Mirzakhani and Lindenstrauss
[LM08]. And the reader would be correct if they restricted themselves to orientable
surfaces. Things are actually quite different in the non-orientable world.

For starters, it is due to Scharlemann [Sch82] and Danthony-Nogueira [DN90]
that the set of (projective) measured laminations which have a one-sided closed leaf is
open and has full measure, where a simple closed essential curve is one-sided if it has
a regular neighborhood homeomorphic to a Möbius band—otherwise it is two-sided.
Since the set of measured laminations without one-sided component is also mapping
class group invariant, we get in particular that the action Map(S) � PML(S) is
not minimal whenever S is non-orientable: the set

PML+(S) = {λ ∈ PML(S) without closed one-sided components}
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is a non-empty, closed, invariant proper subset. Our first result is that the action
of the mapping class group on PML+(S) is minimal, or rather that this set is the
unique closed minimal subset of PML(S):

Theorem 1.1. Let S be a connected, possibly non-orientable, non-exceptional hy-
perbolic surface of finite topological type. The set PML+(S) is the unique non-
empty closed subset of PML(S) which is invariant and minimal under the action
of Map(S).

In Theorem 1.1, as in the remaining of the paper, we say that a hyperbolic surface
S is exceptional if it is either a pair of pants or non-orientable with χ(S) = −1.
Otherwise the surface is non-exceptional. The non-orientable exceptional surfaces
are the two-holed projective plane, the one-holed Klein bottle, and the connected
sum of three projective planes. The mapping class group, the spaces of measured
laminations and projective measured laminations are well understood if the surface
is exceptional, and the interested reader will have no difficulty to clarify matters on
their own for those cases, but we discuss briefly exceptional surfaces in Section 2.5
below.

The closure of the mapping class group orbit of a two-sided curve γ is a closed
invariant subset of PML+. Theorem 1.1 implies thus that PML+(S) = Map(S) · γ.
It follows a fortiori that the set of projective classes of two-sided curves is dense in
PML+(S). This answers a question which seems to have been around for some time
[Bes]:

Theorem 1.2. Let S be a connected, possibly non-orientable, non-exceptional hy-
perbolic surface of finite topological type. The set of two-sided curves is dense in
PML+(S).

If Theorem 1.2 follows from Theorem 1.1 because PML+ is minimal, the fact
that it is actually the unique non-empty closed minimal subset of PML(S) implies
that PML+(S) is contained in the closure of every orbit λ ∈ PML(S). To describe
the actual closure of Map(S)·λ for an arbitrary λ we need to introduce some notation.

Following Lindenstrauss-Mirzakhani [LM08] we consider the decomposition λ =
γλ +λ′ where γλ is the atomic part of λ, and let Rλ be the union of those connected
components of S\γλ which contain a non-compact leaf of λ. The pair (Rλ, γλ) is, in
the terminology of [LM08], a complete pair. We associate to the pair (Rλ, γλ) first the
set γλ +ML+(Rλ) of measured laminations of the form γλ +μ where μ ∈ ML+(Rλ)
is a measured lamination supported by Rλ and without one-sided leafs, and then
the orbit of this set under the mapping class group action:

Gλ = ∪φ∈Map(S)φ
(
γλ + ML+(Rλ)

)
⊂ ML(S).

Unsurprisingly we denote by PGλ ⊂ PML(S) the image of Gλ in the space of
projective measured laminations.

With this notation in place we can give a precise description for the closure of
Map(S) · λ in PML for an arbitrary λ.
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Theorem 1.3. Let S be a connected, possibly non-orientable, non-exceptional hy-
perbolic surface of finite topological type. We have Map(S) · λ = PGλ ∪ PML+(S)
for any projective measured lamination λ ∈ PML(S).

The reader might be wondering what happens if we consider the action of the
mapping class group on ML(S) instead. In fact, even if this question had not crossed
their mind it would have to be considered: understanding orbit closures for the action
Map(S) � ML(S) is an integral part of the proof of Theorem 1.3. We prove:

Theorem 1.4. Let S be a connected, possibly non-orientable, non-exceptional hy-
perbolic surface of finite topological type. We have Map(S) · λ = Gλ for any measured
lamination λ ∈ ML(S).

In the orientable case, Theorem 1.4 is due to Lindenstrauss-Mirzakhani (see
Theorem 1.2 in [LM08]). They obtain it as a consequence of their main theorem, the
classification of mapping class group invariant measures on ML(S). It seems that,
for the time being, the latter kind of result is out of scope in the non-orientable
setting—for example, everything that Lindenstrauss and Mirzakhani do, relies on
the fact that the moduli space of S has finite volume, and this is false if the surface
is non-orientable. The proof of Theorem 1.4 that we give below is actually pretty
elementary and can also be enjoyed by those readers who only care about orientable
surfaces.

As we just pointed out, the moduli space of a non-orientable surface has infi-
nite volume. Indeed, the usual analogy between the mapping class group and an
arithmetic lattice breaks in the non-orientable case. In fact, in the non-orientable
case it might well be closer to the mark to compare the mapping class group with a
Kleinian group of the second kind, or rather with some higher rank version of this.
Recall that a Kleinian group is of the second kind if its discontinuity domain is not
empty, or equivalently if its limit set is a proper subset of the boundary of hyperbolic
space. Thinking of the Thurston boundary ∂T (S) = PML(S) of Teichmüller space
as being the analogue to the boundary at infinity of hyperbolic space, we interpret
the following result as describing the limit set of the action of the mapping class
group on Teichmüller space:

Theorem 1.5. Let S be a connected, possibly non-orientable, non-exceptional hy-
perbolic surface of finite topological type. We have Map(S) · X∩∂T (S) = PML+(S)
for any point X in Teichmüller space T (S).

Having presented the main results of the paper, we comment briefly on their
proofs and the outline of the paper. First, we give a very short argument explaining
that filling and uniquely ergodic measured laminations are limits of two-sided curves.

An argument. Let us suppose that λ is a filling and uniquely ergodic measured
lamination. As every projective measured lamination, λ can be approximated by a
sequence (αi) of weighted multicurves. Some of these might well be one-sided but,
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invoking for example the classification theorem of surfaces, we can get for all i a two-
sided simple curve βi with ι(βi, αi) = 0. Passing to a subsequence we can assume
that the sequence (βi) converges projectively to some μ ∈ PML(S). Continuity of
the intersection number implies then that ι(μ, λ) = 0. Now, since λ is filling we get
that both μ and λ have the same support. Since it is also uniquely ergodic we get
that λ and μ differ by a factor, meaning that they are equal in PML. This proves
that the filling uniquely ergodic lamination λ ∈ PML(S) is the limit of the sequence
of two-sided curves (βi).

At this point the reader might be ready to point out we also proved that every
element in the closure of the set of filling uniquely ergodic measured laminations
is also a limit of two sided curves, thinking that the set of filling uniquely ergodic
measured laminations must be dense. While it is true that they are dense in say
PML if the surface is orientable, this is not true for non-orientable surfaces as we
already pointed out earlier. In the non-orientable case we get from say Theorem 1.1
that the set of filling uniquely ergodic laminations is dense in PML+. If the reader
knew how to prove this without using the results of this paper, then everything we
do here could be done in 5 to 10 pages. Indeed, the bulk of the work is to deal with
measured laminations which are not ergodic.

Section-by-section summary. Once this introduction is concluded, we have a
section on preliminaries. We recall a few well-known facts about topology of surfaces,
mapping class groups, laminations, and hyperbolic surfaces. There is nothing new
here but the reader who is not used to thinking about non-orientable surfaces might
still want to have a look.

In Section 3 we recall what train tracks are and introduce what we call uniform,
or rather (C, λ)-uniform train tracks. In a nutshell, these are train tracks carrying a
given lamination λ and where, from the point of view of λ, all edges have comparable
lengths. Existence of such train tracks, or rather the fact that every train track can
be refined to such a train track, will be proved in Appendix A. What we do in
Section 3 is to prove two technical results—needed later on—about such uniform
train tracks. We think that uniform train tracks might turn out to be useful in other
settings as well.

In any case, uniform train tracks play a key role in the proof of the following
theorem in Section 4:

Theorem 4.1 (Informal version). Let λ ∈ L(S) be a lamination and let μ1, μ2 be
distinct unit length ergodic measured laminations with support λ. If τ is a sufficiently
nice uniform train track carrying λ then there are disjoint non-empty sub-train tracks
τ1 and τ2 such that any unit length measured lamination carried by τi is near μi.

The actual statement of Theorem 4.1 is pretty technical—the informal version
given here just captures the gist of it.
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Remark. Theorem 4.1 is motivated by a result of Lenzhen-Masur [LM10, Proposi-
tion 1]. It is not completely clear to us if, as stated, we could just have used what
they prove instead of working with Theorem 4.1. But in any case we would have had
to comment on the proof because they work in the world of quadratic holomorphic
differentials and hence, at least formally, deal only with orientable surfaces. We found
however much simpler to just give a direct proof of Theorem 4.1. Maybe a reader who
is better versed than ourselves in taking geometric limits and exploiting compactness
properties of spaces of manifolds would be able to see clearly enough through their
argument to modify the proof so that it also works in the non-orientable case.

Theorem 4.1 is maybe the main technical result of this paper and will play a
key role in the proof of Theorem 1.2. It has however applications that might be of
independent interest. For example we obtain the following as a corollary:
Corollary 5.3 Let c(S) and c+(S) be, respectively, the maximal number of compo-
nents of a multicurve and of a two-sided multicurve in S. Every lamination λ ∈ L(S)
supports at most c(S) mutually singular ergodic transverse measures. Moreover, if
λ has no one-sided leaves then it supports at most c+(S) mutually singular ergodic
transverse measures.

Note that if S has non-orientable genus k and r boundary components then we
have

c(S) = 2k − 3 + r and c+(S) =
{

1
2(3k − 7 + 2r) if k is odd
1
2(3k − 8 + 2r) if k is even

}
,

meaning that c(S) is about k/2 larger than c+(S).
Also note that the corollary says that a maximal multicurve carries the maximal

number of mutually singular ergodic transverse measure. In particular, the bound is
optimal. However, it is an interesting question—which we do not know the answer
to—whether this bound can be achieved by a connected recurrent lamination, or
what the best bound in that case is.

Remark. Corollary 5.3 is due to Levitt [Lev83] in the orientable case. He uses a
beautiful idea due to Katok [Kat73] and we really encourage the reader to have a
look at Levitt’s argument—it is very nice mathematics.

Let us continue now with the summary of the paper. In Section 5 we prove The-
orem 1.2. Indeed, although we might have given the impression that Theorem 1.2
was a corollary of Theorem 1.1, it is rather the other way around: all the theorems
mentioned earlier build on Theorem 1.2. The main idea of its proof is as follows:
Let μ ∈ ML be a representative of the element in PML+ that we want to approx-
imate and consider its ergodic decomposition. For the sake of concreteness say that
μ = μ1 + μ2 with μi ergodic. Let then τ be a “sufficiently nice” train track carrying
the support of μ and let τ1, τ2 ⊂ τ be the sub-train tracks provided by Theorem 4.1.
We can then approximate μ by weighted (simple) multicurves c1 · γ1 + c2 · γ2 with
γi carried by τi. But we must make sure that we can choose the γi to be two-sided.
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To do that we will need to first characterize which train tracks do not carry any
two-sided curves and use then a (rather minimal) quantification of Scharlemann’s
result on the openness of the set of measured lamination which have a one-sided
component.

Armed with Theorem 1.2 we attack the other results stated in the introduction.
In Section 6 we prove Theorem 1.4. The proof only relies on the density of two-sided
curves, that is Theorem 1.2, and of elementary facts about measured laminations.
In Section 7 we deduce Theorems 1.3 and 1.1 from Theorem 1.4. Finally, in Section 8
we prove Theorem 1.5.

As we mentioned earlier, we conclude with an appendix in which we prove the
existence of uniform train tracks.

On the genesis of this paper. This paper grew out of the work of the second of
us. In fact, one of the inclusions in the orbit closure results mentioned above were
proved by the second author in the unpublished preprint [Gen17], and equality was
established for surfaces of genus one. The genus one assumption guarantees that
the complement of a one-sided curve is orientable and hence that one can use all
the standard theory to deal with measured laminations disjoint from such a curve.
The novel ingredients here are Theorem 1.2 and the fact that we give a proof of
Theorem 1.4 which does not rely on the Lindenstrauss-Mirzakhani classification of
mapping class group invariant measures on the space of measured laminations.

It should be said that the orbits closure theorems were only a fraction of the
content of [Gen17]—we hope to revisit other parts of the said paper at a later point.

Another paper. At the moment of posting this paper to the arXiv we noticed
that just a couple of days earlier Khan [Kha21] had posted a very nice paper on
this topic. Some of his results are of compeltely different nature than what we are
doing here: for example, in Theorem 5.2 he shows that certain subsets of Teichmüller
space are non quasi-convex, answering in the negative a question asked in [Gen17].
Other results are however somewhat weaker results than the ones we present here.
For example, his Theorem 3.3, although stated with different words, asserts that
certain kinds of measured laminations, for example orientable ergodic laminations,
are limits of two-sided curves. It goes without saying that prior to the completion
of our respective papers, neither him nor ourselves were aware of each other’s work.

We really encourage the reader to have a look at Khan’s paper because the
arguments he gives when dealing with particular cases of laminations are much
prettier and simpler than what awaits them if they continue reading.

2 Preliminaries

We assume that the reader feels at home in the world of surfaces, that they know
what the mapping class group is, that they are familiar with laminations, measured
laminations and Teichmüller spaces. We breeze through these concepts below, but
should the reader wish more details we refer to the beautiful books [FM12, CB88,
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PH92]. However, even if the reader knows all these things inside out, it might well
be that they have only encountered them in the orientable setting. This is why we
start by recalling some basic facts about the topology of non-orientable surfaces.

2.1 Non-orientable surfaces. We should probably say once what a surface is:
it is nothing other than a 2-dimensional smooth manifold, possibly with non-empty
boundary. Moreover, unless we say explicitly otherwise, we will assume that our
surfaces S are connected and have finite topological type, by what we understand
that S is obtained from a compact surface Σ by deleting some of its boundary
components, possibly none and possibly all. We will indeed be mostly interested in
the case that the surface S has empty boundary, meaning that S = Σ\∂Σ where Σ
is a compact surface.

As in the orientable case, the classification theorem is the foundation on which
one builds any work on surfaces:
Classification theorem. Two compact connected surfaces Σ and Σ′ are homeo-
morphic if and only if the following two hold:

• Σ and Σ′ have the same number of boundary components and the same Euler
characteristic.

• Σ and Σ′ are either both orientable or both non-orientable.

We refer for example to [Sti93] for a proof of this theorem (under the, always
satisfied, assumption that the involved surfaces are triangulable).

A simple curve in a surface is essential if it neither bounds a disk, nor an an-
nulus, nor a Möbius band. Equivalently, a simple curve is essential if and only if it
is homotopically non-trivial, non-peripheral, and primitive. Note that, as long as S
has negative Euler characteristic, every orientation reversing simple curve is essen-
tial. Note also that the boundary of a regular neighborhood of such an orientation
reversing simple curve, although it is simple and homotopically non-trivial, is not
essential. In the sequel we will say that an essential simple curve is one-sided if it re-
verses orientation and two-sided if its preserves orientation. A topological multicurve
is the union of pairwise non-isotopic disjoint simple curves—it is essential, (resp.
two-sided, resp. one-sided) if all its components are.

To conclude with these topological preliminaries, recall that we say that a surface
S with negative Euler characteristic is exceptional if it is either a pair of pants or non-
orientable with χ(S) = −1. For clarification, here is a list of the possible exceptional
surfaces:

• S orientable: Pair or pants
• S non-orientable: Two-holed projective plane, one-holed Klein bottle, con-

nected sum of three projective planes.

The main reason to ignore exceptional surfaces is that, in all cases except the con-
nected sum of three projective planes, they support no measured laminations—at
least none containing non-compact leaves. Also the case of connected sum of three
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projective planes is a bit special, and for technical reasons we exclude it since some-
times we need to have space enough to find curves with certain properties. For
example we will want to know the following:

Lemma 2.1. If S is a non-exceptional connected surface then there are two-sided
simple curves α, β ⊂ S which fill S.

Recall that a collection {α1, . . . , αr} of curves fills S if
∑

i ι(αi, γ) > 0 for every
essential curve γ—here ι(·, ·) is the geometric intersection number.

We are sure that Lemma 2.1 is well-known and that is why we just sketch the
proof in the case of non-orientable surfaces. Via the classification theorem of surfaces
we get that there is η ⊂ S consisting of either a single one-sided simple curve (if S
has odd genus) or two disjoint one-sided simple curves (if the genus is even) such
that S\η is connected and orientable. For the sake of concreteness we assume that
we are in the former case, leaving the other case to the reader.

Let Σ be the metric completion of S\η and note that a connected component
of ∂Σ maps in a two-to-one way onto η—the remaining components are mapped
homeomorphically onto ∂S. Choose two distinct points x, y ∈ η and let x′, x′′ and
y′, y′′ be the corresponding points in ∂Σ. Since χ(Σ) = χ(S\η) = χ(S) � −2 we
can find two disjoint, non-boundary parallel simple arcs κ′, κ′′ ⊂ Σ with endpoints
∂κ′ = {x′, y′} and ∂κ′′ = {x′′, y′′}. When mapped into S, the two arcs κ′ and κ′′

match together and yield a two-sided curve α ⊂ S.
Now let β′ ⊂ S\η be any essential curve which fills with κ′ ∪ κ′′. The image β of

β′ in S is the second curve we are after. This concludes the discussion of Lemma 2.1.
��

2.2 Mapping class groups. The mapping class group of a surface S is the
group

Map(S) = Homeo(S)/ Homeo0(S)

of isotopy classes of homeomorphisms of S—the reader can replace homeomorphisms
by diffeomorphisms if they so wish, and nothing will change.

Both in the orientable and in the non-orientable case, the prime example of an
element in the mapping class group Map(S) is a Dehn-twist along a two-sided curve
γ. A Dehn-twist Dγ along γ is a mapping class represented by a homeomorphism
obtained as follows: conjugate the homeomorphism

(R/Z) × [0, 1] → (R/Z) × [0, 1], (θ, t) 	→ (θ + t, t)

via a homeomorphism between the standard annulus (R/Z) × [0, 1] and a regular
neighborhood A of γ, and extend the so obtained homeomorphism A → A by the
identity to a self-homeomorphism S → S.

If γ and γ′ are disjoint two-sided curves then they have disjoint regular neigh-
borhoods. This means that Dehn-twists along γ and γ′ commute.
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Below we will need to understand what happens to certain curves when we ap-
ply Dehn-twists to them. The following lemma due to Ivanov [Iva, Lemma 4.2] is
priceless:

Lemma 2.2. (Ivanov). Let α and β be simple essential curves and assume that γ =
γ1 ∪ · · · ∪ γr is a two-sided simple topological multicurve. Let Dγi

be a Dehn-twist
along γi and for some n1, . . . , nr ∈ Z let T = Dn1

γ1
◦ . . . ◦ Dnr

γr
. Then we have

ι(T (α), β) �
(

∑

i

|ni| · ι(α, γi) · ι(γi, β)

)

+ ι(α, β)

ι(T (α), β) �
(

∑

i

(|ni| − 2) · ι(α, γi) · ι(γi, β)

)

− ι(α, β)

Since Ivanov only considers the orientable case, let us comment briefly on the
proof in the non-orientable case. First, note that the upper bound for ι(T (α), β) is
just the number that you get by applying the standard representative of T to α and
counting intersection points without bothering to get rid of bigons. To get the lower
bound lift everything to the orientation cover S′ → S and apply Ivanov’s lemma
there. ��

Note now that, since measured laminations and a fortiori multicurves are de-
termined by intersection numbers, we get from Ivanov’s lemma, and with the same
notation as therein, that

lim
k→∞

1
k

· T k(α) =
∑

i

(
|ni| · ι(α, γi)

)
· γi.

Since for every multicurve γ = γ1 ∪ · · · ∪ γr we can find a two-sided curve α with
ι(α, γi) �= 0 for all i we get then the following well-known fact:

Lemma 2.3. Every weighted two-sided multicurve is a limit of weighted two-sided
curves. ��

Note that the lemma says that weighted two-sided curves are dense in weighted
2-sided multicurves, and hence can be seen as the baby case of Theorem 1.2.

Dehn-twists fix many curves: the curve one is twisting around, as well as all the
curves disjoint from it. Pseudo-Anosov mapping classes are on the other extremum.
Recall that, following Thurston, a mapping class is pseudo-Anosov if none of its
positive powers fixes the homotopy class of an essential curve. As in the orientable
setting, examples of pseudo-Anosov mapping classes can be constructed as follows:
let Dα and Dβ be Dehn-twists along two two-sided curves α and β which together
fill the surface S and consider the composition Dn

α ◦ Dn
β . It follows (compare with

[Man10]) for example from Lemma 2.2 that Dn
α ◦ Dn

β is pseudo-Anosov for all large
n. Alternatively, the reader can consider the lifts of Dα and Dβ to the orientation
cover and quote the result in the orientated case. Either way we get:
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Lemma 2.4. If S is a connected non-essential hyperbolic surface then Map(S) con-
tains pseudo-Anosov elements. ��

Non-orientable surfaces are confusing. This is why we add here some comments
to put things into context, although none of these things will play a role in the
sequel:

(1) Note that if S is orientable then what we here called the mapping class group is
ofter referred to as the full mapping class group, with the mapping class group
itself being the subgroup consisting of elements represented by orientation pre-
serving homeomorphisms. That last sentence makes no sense for non-orientable
surfaces.

(2) The reader might have been disturbed because we wrote “a” instead of “the”
in the sentence “a Dehn-twist along γ”. It is not a typo. The point is that,
even up to isotopy, there is no uniqueness for the homeomorphism between
(R/Z) × [0, 1] and the regular neighborhood A of our given two-sided curve
γ, the homeomorphism we used to define the Dehn-twist. In the orientable
world one can decide to choose it to be orientation preserving. This leads to
the notion of right Dehn-twist. If one chooses it to be orientation reversing then
one has the left Dehn-twist—these notions make no sense in the non-orientable
world and hence “a” is the correct article.

(3) Recall that the adjective “two-sided” only applies to essential curves. If we were
to mimic the construction of a Dehn-twist but starting with a non-essential
orientation preserving simple curve which is the boundary of a Möbius band
then we would get the trivial mapping class. On the other hand we get for
example from Lemma 2.2 that Dehn-twists along two-sided curves have infinite
order in Map(S).

(4) There is nothing like a Dehn-twist along a one-sided curve. In fact, every home-
omorphism of a surface which fixes the complement of a Möbius band is isotopic
to the identity.

We refer to [FM12] for facts on the mapping class group, and to [Par14] and the
references therein for facts on mapping class groups of specifically non-orientable
surfaces.

2.3 Hyperbolic metrics. It follows from the classification theorem of surfaces,
together with elementary constructions in hyperbolic geometry, that every connected
surface of negative Euler characteristic admits a complete hyperbolic metric with
totally geodesic boundary and finite volume. In fact, the Gauß-Bonnet theorem
implies that the condition on the Euler-characteristic is not only sufficient but also
necessary for the existence of such a metric. Under a hyperbolic surface, orientable
or not, we will understand in the sequel a surface endowed with such a complete
hyperbolic metric with (possibly empty) totally geodesic boundary and finite volume.

As in the orientable setting, we let the Teichmüller space T (S) of S be the set of
all isotopy classes of hyperbolic metrics on S. The pull-back action of the group of
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diffeomorphisms on the set of hyperbolic metrics induces an action Map(S) � T (S)
of the mapping class group on Teichmüller space.

Both in the orientable and in the non-orientable settings one can come up with
many reasonable, but equivalent, ways to endow T (S) with a topology. The ob-
tained topology on T (S) is mapping class group invariant and T (S) becomes home-
omorphic to a euclidean space. If for example one endows T (S) with the topology
induced by the embedding via length functions into the space R

S(S)
+ where S(S)

is the set of essential curves, then a concrete homeomorphism between T (S) and
the euclidean space of appropriate dimension is obtained via Fenchel-Nielsen coordi-
nates. See [PP16] for a discussion on the Teichmüller space and on Fenchel-Nielsen
coordinates for non-orientable surfaces.

2.4 Laminations and measured laminations. Let S be a hyperbolic surface
with empty boundary, orientable or not, and recall that we require it to be complete
and of finite volume. A lamination is a compact subset of S which admits a decom-
position into disjoint simple geodesics. Those geodesics are unique—they are the
leaves of the lamination. A basic example of a lamination on S is the closed geodesic
isotopic to a simple essential curve. Simple geodesic multicurves are a slight gener-
alization of this example: a simple geodesic multicurve is a lamination obtained by
taking the collection of simple closed geodesics corresponding to an essential simple
topological multicurve.

The set L(S) of all laminations on S is compact when endowed with the topology
induced by the Hausdorff distance. Also, if φ : S → S′ is a homeomorphism between
hyperbolic surfaces then there is a homeomorphism φ∗ : L(S) → L(S′) sending
simple closed geodesics γ to the geodesic freely homotopic to φ(γ). Moreover, ho-
motopic homeomorphisms S → S′ induce the same homeomorphism L(S) → L(S′).
It follows that there is an action Map(S) � L(S) of the mapping class group on the
space L(S) of laminations.

A measured lamination λ is a lamination λL endowed with a transverse measure.
Recall that a transverse measure is an assignment of a Radon measure λI on every
segment I transversal to the lamination in such a way that segments which are
isotopic relative to the lamination have the same measure

ι(λ, I) def= λI(I).

The support supp(λ) is the smallest sublamination of λL such that λI = 0 for every
segment I with I ∩supp(λ) = ∅. The set of all measured laminations in S is denoted
by ML(S).

Again, the most basic example of a measured lamination is given by an essential
simple closed geodesics γ: the underlying lamination is the geodesic γ itself and the
transverse measure is such that it assigns to the segment I the counting measure of
the set I ∩ γ. We will often identify the homotopy class of the essential curve γ, the
geodesics γ in this class, and the corresponding element γ ∈ ML(S).
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The union of non-intersecting laminations is a lamination and the sum of trans-
verse measures on two disjoint laminations is a transverse measure on the union.
It follows that the sum λ1 + λ2 of two measured laminations is a well-defined mea-
sured lamination as long as the supports of λ1 and λ2 do not meet transversally.
For example, if γ1, . . . , γr are the components of a simple geodesic multicurve and if
c1, . . . , cr are positive reals, then

∑
ciγi is a perfectly sound measured lamination, a

weighted multicurve. Along the same lines, any measured lamination λ ∈ ML(S) has
a unique decomposition λ = γ + λ′ where γ is a weighted multicurve corresponding
to the atomic part of λ and where λ′ is a measured lamination whose support does
not contain any closed leaves.

We say that a measured lamination λ is ergodic if whenever X ⊂ supp(λ) is a
saturated subset of its support (that is, a union of leaves) then for every segment
I we have that either λI(I ∩ X) = 0 or λI(I\X) = 0. Two measured laminations
λ1, λ2 ∈ ML(S) are mutually singular if for every segment I transversal to λL =
supp(λ1) ∪ supp(λ2) ∈ L(S) there is Z ⊂ I with λI

1(Z) = 0 and λI
2(I\Z) = 0.

Up to scaling, every lamination supports only finitely many ergodic measured
laminations (recall for that matter that we give a concrete bound in Corollary 5.3).
Moreover, every measured lamination can be written as the sum of ergodic ones. To
be more precise, for every λ ∈ ML(S) there are pairwise mutually singular ergodic
measured laminations μ1, . . . , μr ∈ ML(S) with supp(μi) ⊂ supp(λ) and with

λ = μ1 + · · · + μr. (2.1)

In fact, the collection {μ1, . . . , μr} is unique. The measured laminations μ1, . . . , μr

are the ergodic components of λ and (2.1) is its ergodic decomposition.
Measured laminations can be seen as currents (see [Bon86, ES] for details) and

hence can be identified with measures on the unit tangent bundle T 1S which are
invariant under both the geodesic flow and the geodesic flip. To describe how this
identification goes, suppose that γ ∈ ML(S) is a closed geodesic and note that it
corresponds to two orbits γ+ and γ− of period �S(γ) of the geodesic flow: traversing
the geodesic in one direction and in the other direction. The flip and flow invariant
measure γ̂ associated to γ is the convex combination of the Lebesgue measure along
those two orbits. In symbols, this means that for f ∈ C0(T 1S) we have

∫

T 1S
f(v) dγ̂(v) =

1
2

(∫ �S(γ)

0
f(ρt(v)) dt +

∫ �S(γ)

0
f(ρt(−v)) dt

)

where v ∈ T 1S is any vector tangent to the geodesic γ. The factor 1
2 is there to

ensure that the total measure of γ̂ agrees with the length of γ. In general we refer
to the total measure

�S(μ) = ‖μ̂‖

of μ̂ as the length of μ ∈ ML(S).
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Remark. We mentioned above the ergodic decompostion of a measured lamination.
To our surprise we found out that it is not easy to give a reference for its existence—
surprising because it is definitively common knowledge. Let us thus briefly explain a
way to get it. Given a measured lamination μ ∈ ML(S), let μ̂ be the associated flip
and flow invariant measure. In other words, μ is a (R � Z/2Z)-invariant measure on
T 1S. Applying the usual ergodic decomposition theorem (or maybe noting that the
argument used to prove it for iterates of an individual map applies word-by-word
for actions of a group such as R � Z/2Z) we get that μ̂ can be written as a linear
combination of ergodic measures, or rather as an integral over the space of ergodic
measures. Now, via the identification between flip and flow invariant measures and
currents, we get that each one of the measures we are integrating over arises from an
ergodic measured lamination carried by the support of μ. This means that we can
write μ as an integral over the space of ergodic measured laminations with support
contained in supp(μ). As we pointed out earlier (compare with Corollary 5.3) the
latter set is finite, meaning that instead of an integral we have a sum as in (2.1).

The space of measures on T 1S is naturally endowed with the weak-*-topology.
We get thus a topology on ML(S) via the embedding of the latter in the space
of flip and flow invariant measures on T 1S. We list a few properties of the space
ML(S):

• ML(S) is a metrizable space and the corresponding projective space PML(S)
is compact. In fact, it turns out that ML(S) and PML(S) are homeomorphic
to a Euclidean space and a sphere respectively, but we will not need these facts.

• The set of weighted closed geodesics c · γ with c > 0 is dense in ML(S).
• The geometric intersection number of two essential curves extends to a con-

tinuous bilinear symmetric map ι : ML(S) × ML(S) → R�0, the intersection
form.

• A concrete distance on ML(S) can be obtained as follows: it is known (see for
example [Ham03]) that there are finite collections A of curves which separate
measured laminations, by which we mean that for any two distinct μ, μ′ ∈
ML(S) there is α ∈ A with ι(μ, α) �= ι(μ′, α). Such a finite collection A
separating measured laminations induces a distance

dA(μ, μ′) = max
α∈A

|ι(μ, α) − ι(μ′, α)| (2.2)

on ML(S).
• The mapping class group acts on ML(S) by homeomorphisms, preserving the

intersection form.
• It is the key part of Thurston’s classification of mapping classes that every

pseudo-Anosov mapping class has north–south dynamics on PML(S). More-
over, the two fixed points λ± are such that ι(λ±, γ) > 0 for every simple curve
γ.
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Figure 1: Two two-holed projective plane. The curves γ and η are the core and dual to the
core, while α is a boundary component (so a curve around one of the punctures).

Although there has been no sign of it in what we said so far, la raison d’être of this
paper is that measured laminations behave really differently in the non-orientable
compared to the orientable setting. The reason behind this is the following theorem
of Scharlemann [Sch82]:

Theorem (Scharlemann). Let S be a non-orientable hyperbolic surface and let
λ ∈ ML(S) be a measured lamination in S. If the support of λ contains a one-
sided closed geodesic γ, then γ is also contained in the support of every measured
lamination in a neighborhood of λ.

Since this result is of capital importance for our paper, let us sketch the proof.
A first basic fact is that every two-holed projective plane P contains exactly two
homotopy classes of essential curves: both of them are one-sided and they intersect
each other once (see Figure 1). If we declare one of them to be the core of P , then
the other one is dual to the core. Now, the basic observation is that any one-sided
curve γ arises as the core of some two-holed projective plane, and if P ⊂ S is such
a two-holed projective plane with core γ and if η ⊂ P is dual to γ, then a measured
lamination λ ∈ ML(S) has γ as an atom if and only if

max
α⊂∂P

ι(λ, α) < ι(λ, η) (2.3)

This inequality is an open condition and this proves the theorem.

Remark. Note also that if c ·γ is a one-sided atom of λ and if P and η are as above,
then γ has weight c = 2 · (ι(λ, η) − maxα⊂∂P ι(λ, α)) and this quantity depends
continuously on λ. This means that not only are one-sided atoms stable, but so is
their weight.

Before moving on we should point out that Danthony-Nogueira [DN90] proved
a much stronger version of Scharlemann’s theorem: the set of measured laminations
with a one-sided atom is not only open but also has full measure, and hence is dense.
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2.5 Non-orientable exceptional surfaces. As mentioned already, there are
exactly three non-orientable surfaces with χ(S) = −1, namely the two-holed projec-
tive plane (i.e. the one-holed Möbius band), the one-holed connected sum of two pro-
jective planes (i.e. one-holed Klein bottle), and the (closed) connected sum of three
projective planes (i.e. the connected sum of a torus and a Möbius band). We denote
a surface of genus g and r punctures as Ng,r and so since χ(S) = 2−g−r, these sur-
faces are N1,2, N2,1 and N3,0 respectively. Below we describe their associated spaces
of measured laminations and mapping class groups. We refer to [Gen05, GK14] for
more details.

We already discussed N1,2 above: there are only two simple closed curves γ and
η, both of which are one-sided, and γ and η intersect. Moreover, any non-compact
simple geodesic must spiral towards either a boundary component or one of these
closed curves. It follows that every measured lamination is either a multiple of γ or
a multiple of η. In particular, ML+(N1,2) = ∅ and PML(N1,2) = PML−(N1,2)
consists of two points. The mapping class group Map(N1,2) is the finite group Z/2Z×
Z/2Z.

Next we consider N2,1, the one-holed Klein bottle. There is exactly one two-sided
simple closed curve α and any other simple closed curve intersects it. Letting γ0 be a
one-sided closed curve, all other one-sided closed curves are obtained from γ0 through
Dehn twists along α and hence the set of one-sided closed curves is given by the bi-
infinite sequence (γn) where γn = Dn

α(γ0) for each n ∈ Z. Note that γn is disjoint
from exactly two other closed curves: γn−1 and γn+1. Moreover, any non-compact
simple geodesic spirals towards one of the closed curves or around the boundary
component. Consequently, any measured lamination is a simple multicurve having
at most two components. In particular PML+(N2,1) consists of one point and any
[λ] ∈ PML−(N2,1) is of the form [tγn + (1 − t)γn+1] for some n and t ∈ [0, 1].
Moreover, γn converges projectively to α as n tends to ±∞. So PML(N2,1) is a
circle with a marked point corresponding to α. The mapping class group Map(N2,1)
is D∞ × Z/2Z, where D∞ is the infinite dihedral group.

Remark. We stress that neither N1,2 nor N2,1 carry measured laminations whose
support has a non-compact leaf.

Finally we deal with the connected sum of three projective planes. In this surface
there exists a unique one-sided closed curve γ disjoint from every two-sided closed
curve and such that N3,0\{γ} is orientable. Note that N3,0\γ is a one-holed torus T .
Hence we can embed ML(T ) into ML(N3,0). Moreover, any two-sided simple closed
curve is homotopic to one in T , and in fact, any λ ∈ ML+(N3,0) is contained in T .
Any other one-sided curve intersects γ in one point. We identify the circle PML(T )
with PML+(N3,0) in the 2-sphere PML(N3,0) and it divides PML−(N3,0) into two
disks: one corresponding to measured laminations having γ as a leaf and the other
corresponding to all multicurves having a one-sided leaf other than γ as a component.
Note that since every mapping class must fix γ we can identify Map(N3,0) with
Map(T ), the (full) mapping class group of the one-holed torus.
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3 Uniform train tracks

Throughout this section we assume that S is a connected non-exceptional hyperbolic
surface—we will write �(·) = �S(·) for lengths in S of curves, arcs, and measured
laminations. We assume also that λ ∈ L(S) is a geodesic lamination without closed
leaves. If the reader prefers, they can think of λ being recurrent (that is, the support
of a measured lamination) and connected, and of S being non-orientable.

In the informal version of Theorem 4.1 in the introduction we said something
about a sufficiently nice train track. Our goal now is to clarify what kind of train
tracks we will consider and prove two technical lemmas needed in later sections. We
start by recalling what train tracks are.

3.1 Train tracks. A train track τ in a hyperbolic surface S is a smoothly em-
bedded graph such that every vertex is contained in the interior of a smoothly
embedded arc I ⊂ τ and such that none of its complementary regions is a disk with
at most 2 cusps, an annulus, a Möbius band, or a disk with at most one puncture.
See [ES], or rather [Hat88, PH92], for details.

Except as an aid in a construction in the appendix, we will always assume that
train tracks don’t have superflous vertices: connected components homeomorphic to
a circle have a single vertex and all other connected components have vertices which
are at least trivalent. This implies that the complexity of a train track τ is bounded
by the topology of the surface S it lives in. We can for example bound the possible
number of vertices by noting that each complementary region of τ contributes a
multiple of −π to the Gauß-Bonnet integrand and has at most 3 cusps:

|V (τ)| = number of vertices in τ � 6|χ(S)|.

Since both the number of vertices and the number of edges are maximal if the train
track is trivalent, we also get the following bound on the number of edges:

|E(τ)| = number of edges in τ � 9|χ(S)|.

These bounds imply that, from a combinatorial point of view, there are only finitely
many train tracks. Since we will need this fact here and there, we record it as a
lemma:

Lemma 3.1. The surface S has only finitely many mapping class group orbits of
train tracks. ��

A lamination λ is carried by a train track τ if there is a continuous map

Ψ : [0, 1] × λ → S, (t, x) 	→ Ψt(x) (3.1)

such that Ψt is an embedding for all t ∈ [0, 1), Ψ0 is the identity and Ψ1 is an
immersion with image contained in τ . If the support of a measured lamination is
carried by τ then we say that the measured lamination itself is carried by τ . The set
of measured laminations carried by τ is denoted by ML(τ). It is a closed subset of
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ML(S). Also, the set of weighted multicurves is dense in ML(τ)—recall that one
of the main results of this paper, Theorem 1.2, is to understand what is the closure
of the set of weighted two-sided multicurves.

Still with the same notation suppose that a measured lamination λ ∈ ML(τ) is
carried by the train track τ , let e be an edge of τ , and let I be a smooth segment
meeting τ transversally in a single point of e. The weight ωλ(e) of λ on e is then the
limit

ωλ(e) def= lim
t→1

ι(λ, Ψ−1
t (I)),

where Ψt is as in (3.1). It is well-known that λ ∈ ML(τ) is uniquely determined by
the vector (ωλ(e))e∈E(τ) ∈ R

E(τ)
�0 whose entries are the weights of the edges of τ with

respect to λ. We denote by

W (τ) = {(ωλ(e))e∈E(τ) ∈ R
E(τ)
�0 with λ ∈ ML(τ)}

the set of all the so-obtained vectors. It is well-known that the map ML(τ) → W (τ)
is a homeomorphism and that W (τ) is the intersection of a linear subspace of R

E(τ),
the set of solutions of the switch equations, with the positive quadrant R

E(τ)
�0 .

3.2 Almost geodesic train tracks. A train track τ in our hyperbolic surface
S is ε0-geodesic if the edges have geodesic curvature less than ε0 at every point. We
will fix ε0 such that the following holds:

(*) If γ is any bi-infinite path in the hyperbolic plane with geodesic curvature
less than ε0 and if γ∗ is the geodesic which stays at bounded distance of γ,
then the closest point projection γ∗ → γ is well-defined, moves points less than
distance 1 away, and distorts length by at most a factor 2.

Fixing ε0 once and forever so that all of this holds, we will refer to an ε0-geodesic
train track as an almost geodesic train track.

The reason to consider ε0 such that (*) holds is that if τ is an almost geodesic
train track and if λ is a lamination carried by τ , then applying to each leaf the
closest point projection to its image under Ψ1 as in (3.1) we get a continuous map

Φ = Φλ,τ : λ → τ (3.2)

satisfying:

• dS(Φ(x), x) � 1 for all x ∈ λ, and
• the restriction of Φ to each individual leaf of λ is a smooth immersion satisfying

1
2 � |∂Φ

∂t | � 2 at every point.

The map Φ as in (3.2) is the carrying map of λ in τ . With this notation we say that
λ fills τ if Φ is surjective—if this is the case we say that τ carries λ in a filling way.
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Figure 2: On the left a local picture of a lamination λ; on the right a local picture of a train
track τ carrying λ. The thick edge is a λ-loopy edge of τ .

Remark. It is well-known that for any lamination λ there is an almost geodesic
train track τ carrying λ, say in a filling way, and that if λ has no closed leaves we
can find such a τ whose edges are as long as we want. There are different ways
to construct such a train track, but for example one can follow Thurston [Thu80,
Section 8.9] and take a neighborhood of λ and then collapse it along a foliation whose
leaves are short segments transversal to λ. Another way is to create a one-vertex
train track using the first return map to a short transversal of λ. We encourage the
reader to think of yet other ways—there are many.

Before moving on note that if λ ∈ ML(τ) is carried by an almost geodesic train
track τ then we have

�(λ) �
∑

e∈E(τ)

ωλ(e) · �(e) � 2 · �(λ). (3.3)

We will often want to replace the actual length of the lamination by the middle term
in (3.3)—this is one of the reasons explaining why factors of 2 keep appearing in
this paper.

3.3 Uniform train tracks. The chain of inequalities (3.3) probably makes
apparent that almost geodesic train tracks are geometric objects—objects that reflect
the geometry of S. It is often however very comfortable to work with train tracks
as if they were purely combinatorial objects. In some sense, uniform train tracks are
the kind of train tracks where these two points of view are married. In a nutshell,
a uniform train track is an almost geodesic train track all of whose edges have
comparable lengths. The actual definition is a bit more subtle because we are using
λ to measure the length of edges. That is why we first need some terminology.

With notation as above, suppose that τ is an almost geodesic train track carrying
our lamination λ, and let Φ : λ → τ be the carrying map. A pair {e, e′} consisting of
two half-edges of τ based at the same vertex is said to be a turn of τ . A turn is λ-legal
if it is represented by Φ(I) for some smooth segment I ⊂ λ. An edge e ∈ E(τ) of τ is
λ-loopy if both its half-edges are based at the same vertex and form a λ-legal turn,
see Figure 2. Finally we will say that τ is λ-generic if it has no bivalent vertices, if all
its vertices have at most valence 4, and if moreover all valence 4 vertices correspond
to λ-loopy edges.
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Figure 3: Left: A local picture (in a Möbius band) of the one-sided edge e (in black) with its
vertex v and two adjecent half-edges (in gray). Right: The result after splitting. The labels
ωi denotes the λ-weight of the corresponding (half)edge.

Figure 4: Left: A local picture (in a Möbius band) of the one-sided edge e (in black) with its
vertex v and two adjecent half-edges (in gray). Middle and right: The result after splitting.
The labels ωi denotes the λ-weight of the corresponding (half)edge.

Remark. If the lamination λ is understood from the context then we might simply
say that a turn is legal instead of λ-legal, that an edge is loopy instead of λ-loopy,
and that the train track is question is generic instead of λ-generic and so on.

Recall now that we are assuming λ has no closed leaves. This will in partic-
ular imply that any λ-loopy edge must be two-sided (in the sense that a regular
neighborhood of the edge is an annulus):

Lemma 3.2. If λ ∈ ML(τ) has no closed leaves, then any λ-loopy edge of τ must
be two-sided.

Proof. Let λ ∈ ML(τ) and e be a λ-loopy edge of τ with vertex v. Note that v has
valence at least 4 since ωλ(e) > 0 and λ has no closed leaves. For concreteness we
will assume v has valence exactly 4—the below argument can easily be generalized
to higher valance, and in any case, we will mostly be concerned with generic train
tracks. Now, suppose e were one-sided. Then in a regular neighborhood around e
(which is a Möbius band) the train track τ would look like the left most figure in
either Figure 3 or Figure 4. In the first case, we can split τ to get the righthand
picture in Figure 3 and hence λ has an atom (since ω1 = ωλ(e) > 0). In the second
case, since e is loopy, we can split τ as in the middle picture in Figure 4 and continue
until we arrive in the left most picture in that figure. Note that, with notation as in
the figure, ω1 − ω2 > 0 since e is λ-loopy. We are now in the situation of the first
case and can split similarly as there. Hence, in either case, we get that λ must have
an atom if e is one-sided. ��

Still with the same notation, we next define the λ-length of a closed edge e ∈ E(τ).
Intuitively, we define it simply as the length of the edge if it is not λ-loopy, but when
it is loopy, it is the length of the edge multiplied by the maximum number of times
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a (connected) segment of λ wraps around it. More precisely, the λ-length of an edge
e is

�λ,τ (e) = max
I∈π0(Φ−1(e))

�(Φ(I)), (3.4)

where �(Φ(I)) is the length of Φ(I) as a parametrized curve. Alternatively, it is the
length of I with respect to the pull-back metric of τ to λ. Note that, indeed, the
λ-length �λ,τ (e) and the usual length �(e) agree if e is not λ-loopy and that when e
is loopy we have �λ,τ (e) = k · �(e) for some k � 2.

We will write �λ(e) instead of �λ,τ (e) when the train track τ is understood from
the context. Accordingly, there will be no τ in the superscript in our notation for
the λ-length of τ itself and for the minimum of the λ-lengths of the edges of τ :

�λ(τ) =
∑

e∈E(τ)

�λ,τ (e) and mλ(τ) = min
e∈E(τ)

�λ,τ (e). (3.5)

With this notation in place, we are now ready to formally define what is a (C, λ)-
uniform train track.

Definition. Suppose that a lamination λ in a hyperbolic surface S has no closed
leaves. An almost geodesic train track τ is (C, λ)-uniform for some C > 0 if λ is
carried by τ in a filling way and if �λ(τ) � C · mλ(τ).

The existence of uniform train tracks, or more specifically the fact that any train
track can be refined to a uniform one, will be proved in the appendix of this paper.
We say τ can be refined to a train track τ ′ if there is a smooth map

Ψ : [0, 1] × τ ′ → S

such that Ψt is an embedding for all t ∈ [0, 1) and such that Ψ1 is an immersion with
image τ (compare to the definition of a lamination being carried by a train track
in Section 3.1). With slight abuse of terminology we set Φτ ′,τ = Ψ1 : τ ′ → τ which
we call a carrying map and refer to τ ′ as a refinement of τ . With this definition in
place, we state the proposition we will prove in Appendix A:

Proposition 3.3. Let S be a hyperbolic surface. There is a constant C > 0 such
that for any geodesic lamination λ ⊂ S without closed leaves, any train track τ0

carrying λ, and any L large enough, there is a refinement τ of τ0 which is λ-generic,
(C, λ)-uniform and satisfies �λ(τ) � L.

It is maybe worth mentioning that the constant C is not obtained via a compact-
ness theorem: one can actually give concrete estimates for it. We will for example see
that one can take C to be 1000|χ(S)| if we drop the requirement of τ being generic
and, say, 230|χ(S)| if we do not. Clearly, we are not trying to obtain optimal bounds.

We will assume Proposition 3.3 for now and prove it in Appendix A.
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3.4 Two lemmas on uniform train tracks. As we mentioned earlier, uniform
train tracks are geometric objects (they are almost geodesic) but they act as if they
were combinatorial objects (all edges have basically the same length, meaning that
up changing our measuring unit from nanometer to kyndemil we can act as if all
edges had unit length). We exploit this in the proof of two technical lemmas needed
below.

The first one basically asserts that if a measured lamination carried by a uniform
train track spends little of its life in some edge, then one can find another measured
lamination nearby which avoids that edge altogether. The second is a very weakly
quantified version of Scharlemann’s theorem.

Lemma 3.4. For every geodesic lamination λ and all positive C and δ there is ε < δ
such that for every (C, λ)-uniform, λ-generic train track τ the following holds: For
every unit length μ ∈ ML(τ) there is a second unit length measured lamination
ν ∈ ML(τ) with

(1) �(e) · |ωμ(e) − ων(e)| < δ for all e ∈ E(τ), and
(2) ων(e) = 0 for every e ∈ E(τ) with �(e) · ωμ(e) < ε.

We encourage the reader to find counter examples to Lemma 3.4 if one drops the
assumption that τ is uniform.

Proof. To begin with let τ∗ be the train track obtained from τ by removing all open
λ-loopy edges and let τ∗∗ be the union of the closed λ loopy edges. In other words,
τ∗∗ is a disjoint union of circles, τ = τ∗∪τ∗∗ and τ∗ and τ∗∗ only meet at the vertices
of τ∗∗. Note also that not only do we have R

E(τ)
�0 = R

E(τ∗)
�0 ⊕ R

E(τ∗∗)
�0 but also

W (τ) = W (τ∗) ⊕ W (τ∗∗).

Said in plain terms, every solution of the switch equations of τ∗ and every solution
of the switch equations of τ∗∗ give, when taken together, a solution to the switch
equations of τ , and every solution arises in this way.

All of this means that, up to maybe solving the problem for some smaller δ, we
can assume that τ is either the union of disjoint circles or a trivalent train track
which has thus no loopy edges. For the sake of concreteness we will assume that we
are in the second case—the case that τ is a union of disjoint circles can be dealt
with using exactly the same argument, but we are sure that the reader can come up
with a much simpler one.

Arguing by contradiction, suppose that the claim fails to be true for some λ, C
and δ, meaning that there are εi → 0 such that for each εi one can find some

• (C, λ)-uniform trivalent train track τi,
• and μi ∈ ML(τi) with �(μi) = 1

for which we cannot find any νi ∈ ML(τi) satisfying (1) and (2) in the statement
for ε = εi.
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We get from Lemma 3.1 that the surface S contains only finitely many homeo-
morphism types of train tracks. This means that, up to passing to a subsequence,
we can assume that there is some train track τ and for each i a homeomorphism
φi : S → S with φi(τ) = τi. The map φi induces a linear isomorphism—denoted
by the same symbol—between the associated spaces of solutions of the switch equa-
tions:

φi : W (τ) → W (τi)

Our μi gives us a vector ωμi
= (ωμi

(e))e∈E(τi) ∈ W (τi). Consider the scaled vector

wi = �(τi) · ωμi

and note that
∑

e∈E(τi)

wi(e) =
∑

e∈E(τi)

�(τi) · ωμi
(e) �

∑

e∈E(τi)

�(e) · ωμi
(e) � �(μi) = 1

where the final inequality holds because of (3.3).
To get a bound in the other direction note that, since τi is not only (C, λ)-uniform

but also trivalent and hence has no loopy edges, we have �(τi) = �λ(τi) � C · �λ(e) =
C · �(e) for every edge e ∈ E(τi). This implies that

∑

e∈E(τi)

wi(e) =
∑

e∈E(τi)

�(τi) · ωμi
(e)

� C ·
∑

e∈E(τi)

�(e) · ωμi
(e)

� C · 2 · �(μi) = 2 · C

where again the last inequality holds because of (3.3). Now, the chain of inequalities

1 �
∑

e∈E(τi)

wi(e) � 2 · C

implies that the elements (φi)−1(wi) ∈ W (τ), for all i, belong to a compact set and
that, up to passing to a subsequence, the limit

w = lim
i

(φi)−1(wi) ∈ W (τ)

exists and is non-zero. Now, if we let ˆνi ∈ ML(τi) be the measured lamination
corresponding to φi(w), then νi = 1

�(ν̂i)
ν̂i satisfies (1) and (2) for ε = δ

2 and all
sufficiently large i. This is a contradiction to our assumption—we are thus done
with the proof of Lemma 3.4. ��

We proceed now to our (rather weak) quantification of Scharlemann’s theorem:
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Lemma 3.5. For all C and ε positive there is δ < ε such that if τ ⊂ S is a (C, λ)-
uniform λ-generic train track, if μ, ν ∈ ML(τ) are measured laminations carried by
τ with

�(e) · |ωμ(e) − ων(e)| < δ

for all e ∈ E(τ), and if ν is such that

• ν has unit length,
• ν has a one-sided atom with at least weight ε

�(τ) , and
• ων(e) = 0 for every loopy edge e,

then μ has a one-sided atom.

The key point of this lemma is that the given δ does the trick for every train
track τ satisfying the stated conditions.

Proof. Seeking a contradiction we assume that the lemma fails for some C and ε,
meaning that there are

• a sequence (τn) of (C, λ)-uniform λ-generic train tracks,
• a sequence (νn) of unit length measured laminations carried by τn with ωνn

(e) =
0 for every loopy edge of τn,

• a sequence (cn · γn) of one-sided atoms of νn with weight cn � ε
�(τn) , and

• a sequence (μn) of measured laminations satisfying

�S(e) · |ωμn
(e) − ωνn

(e)| <
1
n

for every edge e ∈ E(τn) and every n, and such that γn is not a one-sided atom
of μn.

As in the proof of Lemma 3.4, let us denote by τ∗∗
n ⊂ τn the union of the loopy edges

of τn and note that we have

�(e) = �λ,τn(e) � 1
C

�λ(τn) � 1
C

· �(τn) (3.6)

for every edge e ∈ E(τn)\E(τ∗∗
n ). Let Kn be the number of times that γn meets a

vertex of τn. Since νn, and thus γn, do not travel through τ∗∗
n , we get that

1 = �(νn) � �(cn · γn) � 1
2

· ε

�(τn)
· Kn · 1

C
· �(τn)

where the last inequality arises as follows: the factor 1
2 because we are measuring

lengths in the almost geodesic train track τn, the next factor is the lower bound on
the weight cn, next is the number of edges that γn travels through in τn, and finally
the lower bound for the length of each such edge. Cleaning up we get that

Kn � 2C

ε
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is uniformly bounded.
Now, by Lemma 3.1 there are finitely many homeomorphism types of train tracks.

Since any train track carries only finitely many curves made out of a given number
of edges, we get that, up to passing to a subsequence, we can assume that there is a
train track τ , a sub-train track τ∗∗ ⊂ τ , a one-sided curve γ carried by τ but disjoint
of τ∗∗, and a sequence (φn) of homeomorphisms with

τn = φn(τ), τ∗∗
n = φn(τ∗∗) and γn = φn(γ).

We let ν̂n = φ−1
n (νn) and note that cn · γ is a one-sided atom of ν̂n for all n. This

means, as (2.3) in the proof of Scharlemann’s theorem and the remark following it,
that whenever P ⊂ S is a two-holed projective plane with core curve γ and dual
curve η we have

ι(ν̂n, η) = max
α⊂∂P

ι(ν̂n, α) +
1
2

· cn (3.7)

for all n. Note that τ∗∗ can be seen as a two-sided multicurve because it is homeo-
morphic to τ∗∗

n , the union of loopy edges of τn. It follows that, since γ is disjoint of
τ∗∗, we can also choose the two-holed projective plane to be contained in S\τ∗∗. It
follows that ∂P and η only meet edges in τ\τ∗∗.

We claim now that the measured laminations μ̂n = φ−1
n (μn) also satisfy (2.3) for

all sufficiently large n. Indeed, taking into account that the difference between the
intersection numbers of μ̂n and ν̂n with ∂P is bounded by the product of the number
of edges of τ̂ that ∂P meets times the maximal difference between the weights that
μ̂n and ν̂n give to those edges, we get

|ι(μ̂n, ∂P ) − ι(ν̂n, ∂P )| � const · max
e∈E(τ)\E(τ∗∗)

|ωμ̂n
(e) − ων̂n

(e)|

� const · max
e∈E(τn)\E(τ∗∗

n )
|ωμn

(e) − ωνn
(e)|

� const · 1
n

· max
e∈E(τn)\E(τ∗∗

n )

1
�(e)

� const · 1
n

· C

�(τn)
.

Here the max is taken over E(τ)\E(τ∗∗) because we have chosen P disjoint of τ∗∗.
A similar computation yields that, up to possibly replacing the constant by another
one,

|ι(μ̂n, η) − ι(ν̂n, η)| � const
n · �(τn)

Taking these two bounds with (3.7), and changing once again our constant, we get
that

ι(μ̂n, η) − max
α⊂∂P

ι(μ̂n, α) � 1
2

· cn − const
n · �(τn)
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for all n. Since we have the bound cn � ε
�(τn) we deduce that

ι(μ̂n, η) > max
α⊂∂P

ι(μ̂n, α)

for all large n. This means that (2.3) holds and thus that μ̂n has γ as an atom. Since
the pairs (μ̂n, γ) and (μn, γn) just differ by the homeomorphism φn we get that for
all large n the measured lamination μn has the one-sided curve γn as an atom. This
is a contradiction, and we are done. ��

4 Separating ergodic components

Continuing with the same notation as in the previous section we assume that S is
a connected non-exceptional hyperbolic surface and that λ ∈ L(S) is a connected
geodesic lamination without closed leaves. We will also assume that it is recurrent.
Since λ is connected, this last assumption just means that λ = supp(μ) for every
non-trivial measured lamination μ ∈ ML(λ) supported by λ.

Our goal now is to prove Theorem 4.1:

Theorem 4.1. Let S be a connected and possibly non-orientable hyperbolic surface,
let λ ∈ L(S) be a connected recurrent lamination, and let τ0 be a train track carrying
λ. Let μ1, . . . , μr ∈ ML(λ) be distinct unit length ergodic measured laminations
with support λ, and let A ⊂ S be a collection of simple curves separating measured
laminations.

There is C such that for every ε > 0 there are

• a (C, λ)-uniform λ-generic refinement τ ε of τ0, and
• unit length measured laminations νε

1, . . . , ν
ε
r ∈ ML(τ ε)

satisfying the following:

(1) �S(e) ·
∣
∣ωμi

(e) − ωνε
i
(e)

∣
∣ � δ(ε) for every i = 1, . . . , r and e ∈ E(τ ε).

(2) If τ ε
j ⊂ τ ε is the sub-train track filled by νε

j then we have τ ε
i ∩ τ ε

j = ∅ for all
i �= j ∈ {1, . . . , r}.

(3) We have dA(με
i , μi) � δ(ε) for all i, ε, and unit length με

i ∈ ML(τ ε
i ).

Here δ(·) is a function with limε→0 δ(ε) = 0 and dA is as in (2.2).

As pointed out by a referee, in the above statement it might be more natural to
start by giving δ, drop ε altogether, and just label everything in terms of δ. However,
in the course of the proof (e.g. see Proposition 4.3) τ ε and νε

i are defined in terms
of a parameter ε which we think of as tending to 0. We thus find it more convinient
to think of δ and ε as different parameters.

Given that the statement of Theorem 4.1 is rather technical, the reader might be
wondering what it actually means. It might help to re-visit the informal version that
we stated in the introduction and compare with the one here. Also to help clarify the
statement of the theorem, and because it will be useful when proving Corollary 5.3,
we prove the following result:
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Corollary 4.2. Let λ ∈ L(S) be a lamination and μ1, . . . , μr ∈ ML(λ) be distinct
unit length ergodic measured laminations with support λ. There is a sequence of
weighted simple multicurves (γi) with γi = ci

1 · γi
1 + · · · + ci

r · γi
r such that μj =

limi→∞ ci
j · γi

j for all j = 1, . . . , r.

Corollary 4.2 is due to Lenzhen-Masur [LM10, Theorem C] in the orientable case.
In some sense, the proof of Theorem 1.2 from the introduction boils down to

proving that if λ in Corollary 4.2 has no one sided leaves, then the multicurves γi

can be chosen to be two-sided; compare with the proof of Theorem 1.2 in Section 5.2.

Proof. We will just prove the claim under the assumption that λ is connected and
recurrent, leaving to the reader to make the necessary changes to deal with the
disconnected case. These assumptions imply that λ = supp(μj) for all j. Let also
A be as in the statement of Theorem 4.1 and, for ε → 0 let τ ε and τ ε

1 , . . . , τ ε
r be

the produced train tracks. Let then cε
j · γε

j ∈ ML(τ ε
j ) be a unit length weighted

curve carried by τ ε
j —as we mention earlier the set of weighted curves is dense, and

in particular non-emtpy, in the set of measured laminations carried by a train track.
Now, we have

μj = lim
ε→0

cε
j · γε

j

because of (3) in the theorem. Moreover, cε
1 · γε

1 + · · · + cε
r · γε

r is a simple multicurve
because, by (2) in the theorem, we have τ i

ε ∩ τ j
ε = ∅ for all i �= j. We are done. ��

4.1 Proof of Theorem 4.1. We turn now to the proof of Theorem 4.1. We will
complete it first modulo the following result that we deal with below. It basicall says
that, as long as the shortest edge in the train track has sufficiently long λ-length,
then the measured laminations μ1, . . . μr spend most of their time in different parts
of the train track. More precisely, if we write

E(τ, μ, ε) = {e ∈ E(τ) with �(e) · ωμ(e) > ε} (4.1)

then the proposition says that for all ε the sets E(τ, μi, ε) and E(τ, μj , ε) are disjoint
for suitably chosen τ and μi �= μj :

Proposition 4.3. Suppose that λ, μ1, . . . μr and A are as in Theorem 4.1. For every
ε there is Lε such that for every almost geodesic train track τ carrying λ and with
mλ(τ) � Lε the following holds:

• We have E(τ, μi, ε) ∩ E(τ, μj , ε) = ∅ for all i �= j.
• Moreover, any unit length νi ∈ ML(τ) with

{e ∈ E(τ) with ωνi
(e) �= 0} ⊂ E(τ, μi, ε)

satisfies dA(νi, μi) < δ(ε) with limε→0 δ(ε) = 0.
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Proposition 4.3 is basically a property of mutually singular ergodic measures
invariant under some dynamical system. The main difference between Theorem 4.1
and Proposition 4.3 is that the latter does not assert anything about the topology of
the sets of edges E(τ, μi, ε)—for all we know, this set could consist of a single edge,
meaning that there is no non-trivial measured lamination satisfying the condition in
the second statement of the proposition. We work with uniform train tracks exactly
to get some control of these sets. This is were Lemma 3.4 will come in handy.

Assuming Proposition 4.3 for the time being, we prove Theorem 4.1:

Proof of Theorem 4.1. First note that if λ has a closed leaf then we actually have
that λ is itself a circle and hence that the theorem is trivially true. We suppose from
now on that λ has no closed leaves.

Let C be the constant provided by Proposition 3.3 and let Lε be the constant
provided by Proposition 4.3 for our ε. By Proposition 3.3 there is a (C, λ)-uniform
λ-generic refinement τ = τ ε of τ0 with �λ(τ) � C · Lε. Uniformity implies that
mλ(τ) � Lε, and hence that Proposition 4.3 applies.

We start however by applying Lemma 3.4 to our ε and to each μi, letting νi =
νε

i ∈ ML(τ) be the obtained measured lamination. We are going to prove that these
measured laminations have the properties claimed in the statement of the theorem.

To begin with, note that (1) in the theorem holds because νi satisfies (1) in
Lemma 3.4.

To see that (2) is satisfied, note that, by Lemma 3.4, the smallest sub-train track
τi = τ ε

i ⊂ τ carrying νi is such that E(τi) ⊂ E(τ, μi, ε). Now Proposition 4.3 implies
that E(τi) ∩ E(τj) = ∅ for all i �= j. This implies that τi ∩ τj = ∅ because they are
both sub-train tracks of the λ-generic train track τ . We have proved that (2) in the
theorem is also satisfied.

To conclude, note that the final statement in Proposition 4.3 implies that also
(3) in the theorem is satisfied. ��

The remaining of this section is devoted to prove Proposition 4.3.

4.2 Approximating segments. Given a point x ∈ λ and some L > 0 we
denote by

Iλ
x,L : [−L, L] → λ

the path parametrized by arc length and mapping 0 to x. We will not distinguish
between the path t 	→ Iλ

x,L(t) and its opposite t 	→ Iλ
x,L(−t). In fact, abusing notation

we often identify Iλ
x,L with its image, acting as if Iλ

x,L = Iλ
x,L([−L, L]). We care

about these segments because, for large L, they do a good job approximating λ.
It will however be important to only work with segments Iλ

x,L which are basically
determined by the point Φ(x), where Φ is the carrying map of λ in τ . Note however
first that Φ(Iλ

x,L) and Φ(Iλ
x′,L) could actually be very different even if Φ(x) = Φ(x′):

they might be close for quite a while, but then, upon passing a vertex, they might
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diverge into different edges of τ . This is why we consider, for each closed edge
e ∈ E(τ), the set

I
λ
L(e) = {x ∈ λ with Φ(Iλ

x,L) ⊂ e}

of those points x such that Iλ
x,L projects into e. Denote by

I
λ
L(τ) = ∪e∈E(τ)I

λ
L(e)

the union of all those sets. We stress that to define I
λ
L(e) and thus I

λ
L(τ) we considered

closed edges. This only matters, but then it matters a lot, if e is a loopy edge. The
following lemma asserts that for points in I

λ
L(τ) the segment Iλ

x,L is to all effects
determined by x.

Lemma 4.4. For any finite set of closed geodesics A there is a constant c(A) such
that if τ is an almost geodesic train track and if λ is a lamination carried by τ , then
we have

∣
∣∣|α ∩ Iλ

x,L| − |α ∩ Iλ
x′,L|

∣
∣∣ � c(A)

for any α ∈ A and any two x, x′ ∈ I
λ
L(τ) with Φ(x) = Φ(x′).

Proof. There is d0 such that whenever we have Φ(x) = Φ(x′) for x, x′ ∈ I
λ
L(τ), then

(up to reversing one of the segments if necessary) there is a homotopy from Iλ
x,L

to Iλ
x′,L whose tracks have length at most d0—for example d0 = 6 does the trick.

Now, for any given closed geodesic α there is a bound c(α) for the maximal number
of times that it can meet a geodesic segment of length d0 in general position. This
quantity, or rather its double, bounds then the difference between the number of
times that α can meet Iλ

x,L and Iλ
x′,L if x, x′ ∈ I

λ
L(τ) are such that Φ(x) = Φ(x′).

The claim follows when we take c(A) = 2 · maxα∈A c(α). ��

Recall now that any measured lamination, and thus any unit length μ ∈ ML(λ)
can be interpreted as a flip and flow invariant probability measure μ̂ on T 1S. Let
then μ̄ be the push-forward of μ̂ under the projection map T 1S → S. We refer to μ̄
as the probability measure on S associated to the unit length lamination μ.

We will want to make sure that we arrange things in such a way that I
λ
L(τ) has

large μ̄-measure. Indeed, if one fixes the train track τ first and chooses L second it
might well be that I

λ
L(τ) is empty—it makes more sense to do things the other way

around:

Lemma 4.5. For all L1 and ε there is L2 such that the following holds: If μ ∈ ML(λ)
is a unit length measured lamination supported by λ and if τ is an almost geodesic
train track with mλ(τ) > L2 then

μ̄(Iλ
L1

(τ)) � 1 − ε

where μ̄ is the probability measure on S associated to μ.
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Proof. With some L2 to be determined below, suppose that τ is almost geodesic
with mλ(τ) > L2 and let Φ : λ → τ be the corresponding carrying map. Note that
to get the desired bound it suffices to prove that

μ̄(Φ−1(e)\I
λ
L1

(e)) < ε · μ̄(Φ−1(e)) (4.2)

for all e ∈ E(τ).
The set Φ−1(e) is the disjoint union of segments. If e is not loopy then Φ maps

each such segment s homeomorphically onto e and we thus have �(Φ(s)) = �λ(e) and
hence that �(s) � 1

2 · �(e) > 1
2 · L2 because Φ distorts distances by at most a factor

of 2. If e is loopy then we can either have �(Φ(s)) = �λ(e) or �(Φ(s)) = �λ(e) − �(e)
because some of the arcs may turn around e once less than others. In any case, we
get from the definition of λ-loopy that �λ(e) � 2 · �(e) for every λ-loopy edge e. This
means that we still have

�(Φ(s)) � 1
4

· L2

for any component s ∈ π0(Φ−1(e)), independently of e being loopy or not.
On the other hand we have for each such segment s ∈ π0(Φ−1(e)) that

�(s\I
λ
L(e)) � 4 · L1 + 4

because s has two end-points, because Φ displaces points at most distance 1 and
distorts distances by at most a factor 2.

This means that if we take L2 > (16 · L1 + 16) · ε−1 we have that

�(s\I
λ
L(e)) � ε · �(s).

Since this holds for every s ∈ π0(Φ−1(e)) we get (4.2), as we wanted. ��

To conclude with these generalities note that if e ∈ E(τ) is an edge in an almost
geodesic train track carrying λ then we have μ̄(Φ−1(e)) � 1

2 ·�(e) ·ωμ(e) because each
segment in Φ−1(e) has at least length 1

2 · �(e) and there are ωμ(e) worth of segments.
If e is loopy this is still true when we just cut e open at a point (equivalently, when
we work with open edges). We record a minimal generalisation of this fact:

Lemma 4.6. If τ is an almost geodesic train track carrying λ and μ ∈ ML(λ) is a
unit length measured lamination supported by λ then we have

μ̄(Φ−1(U)) � 1
2

· �(U) · ωμ(e)

for every edge e ∈ E(τ) and every measurable subset U ⊂ e. Here μ̄ is the probability
measure on S associated to μ and Φ : λ → τ is the carrying map. ��

All of this concerns arbitrary measured laminations with support λ—things be-
come much more interesting when we restrict ourselves to ergodic measured lami-
nations.



666 V. ERLANDSSON ET AL. GAFA

4.3 The Birkhoff game. The segments Iλ
x,L considered above will be impor-

tant because they do not only approximate λ, but also, if x is well-chosen, they
approximate concrete measured laminations supported by λ. Indeed, applying the
Birkhoff ergodic theorem, we get that for every L1-function f the limit

lim
L→∞

1
2L

∫ L

−L
(f ◦ Ix,L)dt

of time averages exists for μ̄-almost every x ∈ supp(μ). Moreover, if μ is ergodic
then we get that this limit of time averages actually agrees with the space average∫

fdμ̄. The convergence in the ergodic theorem is only pointwise, but we get from
Egorov’s theorem that it is uniform as long as we are willing to forgo a set of x’s
with small but positive measure. In this way we get:

Lemma 4.7. Let μ ∈ ML(λ) be a unit length ergodic measured lamination supported
by λ and let A be a finite collection of closed geodesics. For every ε, δ there is a
compact set Xμ,A,δ,ε ⊂ λ with μ̄(Xμ,A,δ,ε) � 1 − ε and some L0 � 0 with

max
α∈A

∣
∣∣
∣ι(μ, α) − 1

2L
|Iλ

x,L ∩ α|
∣
∣∣
∣ � δ

for all x ∈ Xμ,A,δ,ε and L � L0. ��

With the same notation as above choose some ε > 0, let A be a finite collection of
closed geodesics and let μ, μ′ ∈ ML(λ) be unit length ergodic measured laminations
with support λ. Note that, as long as the intersection numbers ι(μ, α) and ι(μ′, α)
are distinct enough for some α ∈ A, we have that the sets Xμ,A,δ,ε and Xμ′,A,δ,ε

provided by Lemma 4.7 are disjoint. Indeed, we get from Lemmas 4.4 and 4.7 that
for every δ > 0 with

δ <
1
2

· dA(μ, μ′),

there is L1 > 0 such that for every almost geodesic train track τ carrying λ we have

Φ
(
Xμ,A,δ,ε ∩ I

λ
L1

(τ)
)

∩ Φ
(
Xμ,A,δ,ε ∩ I

λ
L1

(τ)
)

= ∅. (4.3)

Recall that dA(·, ·) is the distance induced by A—see (2.2).
Let now L2 be the constant provided by Lemma 4.5 for our L1 and ε, and assume

that mλ(τ) > L2. Then we get from Lemmas 4.7 and 4.5

μ̄(Xμ,A,δ,ε ∩ I
λ
L1

(e)) � μ̄(Φ−1(e)) − 2 · ε

μ̄′(Xμ′,A,δ,ε ∩ I
λ
L1

(e)) � μ̄′(Φ−1(e)) − 2 · ε

for every edge e ∈ E(τ). Combining these two bounds with Lemma 4.6 we get that

�(e\Φ(Xμ,A,δ,ε ∩ I
λ
L1

(e))) � 4 · ε

ωμ(e)



GAFA MAPPING CLASS GROUP ORBIT CLOSURES FOR NON-ORIENTABLE SURFACES 667

�(e\Φ(Xμ′,A,δ,ε ∩ I
λ
L1

(e))) � 4 · ε

ωμ′(e)

From (4.3) we thus get that at most for one of μ and μ′ we can have that the right
side is larger than 1

2 · �(e), meaning that we have the implication

�(e) · ωμ(e) > 8 · ε ⇒ �(e) · ωμ′(e) < 8 · ε

and the same if we revers the roles of μ and μ′. With E(·, ·, ·) as in (4.1), this reads
as

E(τ, μ, 8 · ε) ∩ E(τ, μ′, 8 · ε) = ∅.

We summarize what we got so far:

Lemma 4.8. Let λ ∈ L(S) be a lamination and A a finite set of closed geodesics
separating measured laminations. Let also μ1 and μ2 ∈ ML(λ) be distinct, unit
length, ergodic measured laminations with support λ. Then for every ε there is L2

such that whenever τ is an almost geodesic train track carrying λ and with mλ(τ) �
L2 then E(τ, μ1, ε) ∩ E(τ, μ2, ε) = ∅. ��

We are now ready to conclude the proof of Proposition 4.3.

4.4 Proof of Proposition 4.3. From Lemma 4.8 we get that there is some Lε

such that for any almost geodesic train track τ carrying λ and with mλ(τ) � Lε for
all e ∈ E(τ) we have

E(τ, μi, ε) ∩ E(τ, μj , ε) = ∅

for all i �= j ∈ {1, . . . , r}. This was the first claim of the proposition. Suppose now
that we have νi ∈ ML(τ) with

{e ∈ E(τ) with ωνi
(e) �= 0} ⊂ E(τ, μi, ε). (4.4)

For α ∈ A we can then compute

ι(νi, α) =
1

2L0

∫
|Iν1

x,L0
∩ α| dν̄i(x),

where L0 = L(μ,A, δ) is as in Lemma 4.7, and where we abused notation slightly
by writing Iνi

x,L0
instead of I

supp(νi)
x,L0

. Now, since supp(νi) is carried by the almost
geodesics train track τ we get as in the argument leading to Lemma 4.4 that |Iνi

x,L0
∩α|

is basically the same as |Iλ
y,L0

∩ α| for any y ∈ λ ∩ I
λ
L0

(τ) with Φ(y) = Φ(x):

1
2L0

∣
∣∣|Iν1

x,L0
∩ α| − |Iλ

y,L0
∩ α|

∣
∣∣ < δ +

c(A)
L0

with c(A) as in Lemma 4.4.
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Combining assumption (4.4) and Lemma 4.7 we get that for most x ∈ supp(νi)
there is yx ∈ Xμi,A,δ,ε with Φ(x) = Φ(yx). Now, if the train track τ is such that mλ(τ)
is sufficiently large, we get from Lemma 4.5 that for most x the corresponding yx

belongs to I
λ
L0

(τ), say for all x outside a set of νi-measure ρ(L) where limL→0 ρ(L) =
0.

On the other hand there is a constant which just depends on A and the geometry
of the underlying surface, bounding the number of intersections that a segment of
length L0 can have with A. We get altogether there is some const > 0 with

|ι(μi, α) − ι(νi, α)| � 1
2L0

∫ ∣
∣|Iνi

x,L0
∩ α| − |Iλ

yx,L0
∩ α|

∣
∣ dν̄i(x)

�
(

δ +
c(A)
L0

)
(1 − ρ(L)) + const · ρ(L).

This means that, if we wanted to guarantee that νi and μi have basically the
same intersection number with α, first we should take L0 = L(μi, A, δ) large as
in Lemma 4.7 and then we should make L huge and assume that our train track τ
satisfies mλ(τ) � L. We are done. ��

5 Approximating by two-sided curves

In this section we will prove Theorem 1.2 from the introduction, the central result
of this paper. The main tool is Theorem 4.1 from the previous section: we will show
that, when λ has no one-sided leaves, each one of the train tracks τ ε

j given by that
theorem carries a two-sided curve. To do so we will show that if a train track does
not carry a two-sided closed curve, then the only measured laminations it does carry
are one-sided multicurves which are not too long. We then conclude the proof using
Lemma 3.5 to argue that the measured laminations νε

i given by Theorem 4.1 are
not such multicurves. In any case, we start by investigating which train tracks carry
two-sided curves.

5.1 Train tracks without two-sided curves. Our goal here is to describe
which train tracks fail to carry any two-sided curves. For expedience, and since it
will suffice for our purpose, we will only consider one-vertex train tracks.

Proposition 5.1. Let τ be a one-vertex train track. Either τ carries a two-sided
simple closed curve or every measured lamination carried by τ is a one-sided multi-
curve, each of whose components passes through the vertex at most twice.

Recall that we only apply the adjectives one-sided and two-sided to curves which
are essential—this means in particular that orientation preserving curves bounding
Möbius bands do not count as two-sided.

Starting with the discussion of the proposition, consider τ a one-vertex train
track. Since it will help to visualize what we describe here, we will arbitrary choose
to denote the outgoing half-edges at v as top half-edges and the incoming as bottom
half-edges. We will have three types of edges:
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Figure 5: On the left, a one-vertex train track as a graph. As a band complex in the middle.
And on the right, the instructions manual indicating how the bands have to be plugged into
the switchboard to build the band complex.

(1) t–b edges, formed by a top half-edge and a bottom half-edge,
(2) t–t edges, formed by two top half-edges,
(3) b–b edges, formed by two bottom half-edges.

Since τ only has one vertex, every closed edge e is a loop and hence determines
a homotopy class of a simple closed curve, which we call the curve associated to
e—note that this curve is carried by e if and only if e is of form t–b. Moreover, the
curve associated to a pair of edges of type t–t and b–b is the homotopy class of the
simple closed curve obtained as the concatenation of the two edges. Finally, we say
an edge is two-sided (resp. one-sided) if the curve associated to it is two-sided (resp.
one-sided).

So far we have been thinking of train tracks as graphs, but it is well-known that
one can think of them as being made out of bands (see for example [Ota96]). In
our concrete setting we represent our single vertex by a relatively wide and low
rectangle that we imagine as a switch board. Accordingly, we take a long and thin
band for each edge, looking a bit like a flat cable, and we plug the two short sides of
the band somewhere at the top and bottom sides of out switchboard, possibly both
ends on the top, or bottom, or one end on the top and the other on the bottom.
We do that in such a way that at the end of the day the 2-complex that we obtain
can be embedded into the surface as a regular neighborhood of our train track—in
the language of [ES] what we have gotten is a thickening of the train track. See the
left and center pictures in Figure 5 for a schematic representation of the train track
as a graph and as a band complex. The rightmost image in Figure 5 is the set of
instructions that one needs to follow to recover the train track: plug in the bands
into the switchboard as indicated in the instructions manual, the two ends of the
band labeled “a” in the positions labeled by “a” with the orientation indicated by
the arrows. Note in particular that for t–b edges, two arrows in the same direction
tell us that the edge associated is two-sided, while two arrows going in different
directions tell us that the edge associated is one-sided; for t–t and b–b edges it is
the other way around.
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Figure 6: Some examples of crossing and non-crossing t–b edges (1), t–b edges separated
and non-separated from a t–t, b–b pair (2), crossing, separated and nested t–t edges (3–4).
Note that there are no arrows because the definitions are the same whether the edges are
one- or two-sided.

Suggesting that the reader keeps Figure 6 in mind, we will now look at some
possible mutual positions of edges.

Definition 1. We say that

(1) two t–b edges are crossing if the two corresponding curves γ and γ′ have inter-
section number i(γ, γ′) = 1,

(2) a t–b edge e is separated from a pair of edges et of type t–t and eb of type b–b
if the curve γ corresponding to e and the curve γ′ corresponding to the pair
et, eb have i(γ, γ′) = 0,

(3) two edges of type t–t (resp. b–b) are crossing if the corresponding curves γ and
γ′ have intersection number i(γ, γ′) = 1,

(4) two edges e and e′ of type t–t (resp. b–b) which are not crossing, can be either
nested or separated according to whether, for any fixed b–b (resp. t–t) edge
e0, the curves γ and γ′ associated to the pairs e, e0 and e′, e0 have i(γ, γ′) = 0
(then they are nested) or i(γ, γ′) = 2 (then they are separated).

We are now ready to characterize those one-vertex train tracks that do not carry
any two-sided simple closed curve.

Lemma 5.2. Let τ be a one-vertex recurrent train track. If any of the following
statements fails, then τ carries a two-sided simple closed curve.

(1) All edges of type t–b are one-sided.
(2) All edges of type t–t are two-sided (resp. one-sided), while all edges of type b–b

are one-sided (resp. two-sided).
(3) All pairs of t–b edges are non-crossing.
(4) All t–b edges are separated from all pairs of t–t and b–b edges.
(5) If there are two or more t–t edges, then they are crossing (resp. nested).
(6) If there are two or more b–b edges, then they are nested (resp. crossing).
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Figure 7: The two-sided simple closed curves carried by τ if (1), (2) or (3) in Lemma 5.2
fail.

(7) There is at most one t–t edge or at most one b–b edge.

Recall that a train track is recurrent if it carries a curve which gives positive
weight to every edge.

Proof. First note that if (1) fails, meaning that there is a t–b edge which is two-
sided, then the corresponding curve is a two-sided simple closed curve carried by τ .
We can suppose from now on that (1) holds true.

Similarly, if there is a pair of edges of types t–t and b–b which are both one-sided
or both two-sided, then the curve corresponding to the pair is a two-sided simple
closed curve. This means that if (2) fails then τ carries a two-sided curve and we
are done. We can assume from now on that (2) holds true. But not only that. We
can assume, up to swapping the roles of top and bottom, that all the t–t edges are
two-sided and all the b–b edges are one-sided.

Now assume that (3) fails, and hence that there is a pair of t–b edges which are
crossing. Then one can construct a two-sided simple closed curve running along both
of them as shown in Figure 7. Ergo, we can also assume that (3) holds.

If there is a t–b edge which is non-separated from a pair of t–t and b–b edges,
then one can find a two-sided simple closed curve passing once through each edge.
Figure 8 shows an example, and all other possible configurations can be obtained
from the same figure by flipping the picture horizontally or vertically. We can thus
assume that (4) holds true.

Assume now that there are two (two-sided) t–t edges that are either nested or
separated. Recurrence implies that there must also be at least one (one-sided) b–b
edge. As indicated by the top half of Figure 9, we get a two-sided simple closed curve
which passes once along each t–t edge and twice along the b–b edge. This means
that we can suppose that also (5) holds.

Similarly, if (6) fails we get a simple two-sided curve as in the bottom half of
Figure 9. We can thus assume that (6) holds.
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Figure 8: The two-sided simple closed curve carried by τ if (4) in Lemma 5.2 fails.

Figure 9: The two-sided curve carried by τ if either (5) or (6) in Lemma 5.2 fails.

Figure 10: The two-sided curve carried by τ if (7) in Lemma 5.2 fails.

Finally, assume that (7) fails, that is that we have two t–t edges and two b–b
edges and note that by the above we can assume that the t–t are crossing and the
b–b are nested. Then we can construct a two-sided simple closed curve passing once
through each edge as in Figure 10.

As we wanted, we have found our two-sided curve if any one of the conditions
(1)–(7) fails to be true. ��

Our next goal is to figure out which measured laminations are carried by recurrent
train tracks τ for which conditions (1)–(7) in Lemma 5.2 hold true.

Let us start by dissecting such a train track τ . From (2) we know that, up to
switching the roles of top and bottom, we can assume that all t–t edges are two-sided
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and that all b–b edges are one-sided. Moreover, from (7) we know that there can
be either at most a single t–t edge or at most a single b–b edge. The discussions of
both main cases (there is a single t–t edge or a single b–b edge) are very similar and
the case that such edges do not exist is just a degenerate version of the main cases.
To avoid repeating ourselves we will thus assume that there is a single b–b edge,
leaving the other cases to the reader.

Summing up, we are assuming that there is one and only one b–b edge which is
moreover one-sided (see Figure 11, part (a)).

Now recurrence implies that there is also at least one t–t edge: if no such t–t
edge exists then all solutions of the switch equations give 0-value to our b–b edge.
Now, every t–t edge is two-sided by (2), but we might have more that one such edge.
However, by (5), each pair of t–t edges must be crossing, so their mutual positions
need to be like in Figure 11, part (b).

Now we need to see where the possible t–b edges could be plugged in. First of all,
if there are any t–b edges, then they are one-sided by (1). Now, by (4), they need to
be separated from each t–t, b–b pair. This means that they can be in either of three
possible positions with respect to the other edges, as in Figure 11, part (c). Finally,
there could be more than one t–b edges in any of these three positions, but by (3)
they need to be mutually non-crossing. See Figure 11 part (d) for the schematic
description of our train track. (Figure 11 part (e) is a schematic description of the
train track if there is instead a single t–t edge but maybe many b–b edges).

Once that we understand how a train track τ satisfying (1)–(7) in Lemma 5.2
looks like, let us figure out what are the measured laminations carried by τ . Given a
solution (ω(e))e∈E(τ) to the switch equation at the single vertex v we can represent
each edge e by a band of thickness ω(e). The band corresponding to the vertex then
has thickness equal to the sum of the weights of all outgoing (top) half-edges, which
is by definition the same as the sum of the weights of all the incoming (bottom)
half-edges.

First note that the t–b edges give equal contributions to the incoming and out-
going components. Then, to satisfy the switch equation, one needs to have that the
sum of the weights of the t–t edges must be equal to the weight of the single b–b
edge.

This means that we can subdivide the rectangle representing the vertex into five
(possibly degenerate) sub-rectangles (see Figure 12). In each rectangle the sum of
the weights of the edges at the top is equal to the sum of the weights of the edges
at the bottom. The first rectangle (from the left), A, has attached to it the top and
bottom extremes of non-crossing t–b edges. The second rectangle B has attached to
it one extreme of the single one-sided edge at the bottom and one extreme of each
of the crossing two-sided edges at the top. The third rectangle C has the same non-
crossing t–b edges attached to both the top and the bottom. The fourth rectangle D
has the other extremes of the edges attached to B. The fifth rectangle E has again
the same non-crossing t–b edges attached to both the top and the bottom.
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Figure 11: The instruction manual of a train track satisfying (1)–(7) in Lemma 5.2 in the
“single b–b edge” model: first plug in the unique b–b edge (a), then plug in the t–t edges
making sure that they are crossing (b), and finally start plugging in the t–b edges making
sure that are separated from every t–t, b–b pair (c). The final product is represented in (d).
Finally, (e) is a representation of the final product if what you have is the “single t–t edge”
model instead.

Figure 12: Splitting the train track τ represented by Figure 11 part (d) into 4 disjoint train
tracks.

In order to see which measured laminations are carried by τ , inside each sub-
rectangle we need to match each interval at the top (resp. bottom) with an interval
at the bottom (resp. top) of same length, without intersections. Inside A, the set
of intervals at the top match exactly the ones at the bottom in length. This means
that we can only connect a t–b band to itself. Then a measured lamination λ carried
by τ can be written as λ = c1γ1 + . . . caγa + λ′, where a is the number of t–b bands



GAFA MAPPING CLASS GROUP ORBIT CLOSURES FOR NON-ORIENTABLE SURFACES 675

attached to A, γi is the one-sided curve associated to each one of these bands and
λ′ is carried by the sub-train track obtained removing A. Note that each component
γi passes through the vertex only once. The exact same thing can be done with E.

Inside B, the sum of the weights at the top is equal to the weight of the single
band at the bottom. So we need to subdivide the bottom interval in b subintervals,
where b is the number of crossing two-sided bands at the top of the same length of the
ones at the top. Then we match the interval in the only possible way to not intersect.
A similar thing needs to be done in D. Because of the way the bands attached to B
and D are connected, the components of λ coming from these rectangles can only be
one-sided weighted curves, each of which passes through the vertex exactly twice.

Finally, inside C, the intervals are again matching because there are only t–b
edges. This means that the components given by C are again weighted one-sided
curves passing through the vertex exactly once.

Summing up, we have proved that if a recurrent one-vertex train track τ satisfies
conditions (1)–(7) in Lemma 5.2 then every measured lamination carried by τ is a
one-sided weighted multicurve, each of whose components passes through the vertex
at most twice. Since by Lemma 5.2 any recurrent one-vertex train track for which
any one of the conditions (1)–(7) fails carries a two-sided curve, we have proved
Proposition 5.1. ��

5.2 Density of two-sided curves in ML+(S). We can now prove Theo-
rem 1.2 from the introduction, stating that PML+(S) is exactly the closure of the
set of two-sided curves in PML(S):
Theorem 1.2 Let S be a connected, possibly non-orientable, non-exceptional hy-
perbolic surface of finite topological type. The set of two-sided curves is dense in
PML+(S).

Proposition 5.1 will play a key role in the proof of the above theorem. In partic-
ular, in the course of the proof we will have to pass from dealing with a given train
track to a one-vertex train track. Let us explain how to do this. Suppose τ is a train
track carrying a measured lamination ν and let e be an edge (since it is what we
will do in the proof, the reader can take e to be an edge of maximal weight). Take
a short transversal I to e, think of it as a transversal to ν, and consider the first
return map. Identify arcs that are homotopic in (S, I) and then collapse I to a point
v. The result is a refinement τ̂ of τ with a single vertex v.

Proof. Let μ ∈ ML+(S) be the measured lamination that we want to approximate
by weighted simple two-sided curves. Denote by λ = supp(μ) the support of μ and
let τ be a train track carrying λ in a filling way. We will approximate μ by two-sided
multicurves carried by τ . This means in particular that we can assume without loss
of generality that λ is connected. Noting that if λ is a closed curve then it is two-
sided because we are assuming that μ ∈ ML+(S), we see that the only case we
truly need to consider is that λ is connected but is not a closed curve—meaning in
particular that λ has no compact leaves. This is the setting from now on.
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Let then μ =
∑n

j=1 ajμj be the ergodic decomposition of μ, with μj ∈ ML(λ)
normalized in such a way that all of the μj have unit length, and fix also a finite
collection A of curves separating measured laminations. For ε very small—we will
make it tend to 0—let τ ε, νε

j , and τ ε
j , for j = 1, . . . , n, be given by Theorem 4.1.

Forgetting for now the νε
j ’s, recall that there is some uniform C such that τ ε is a

(C, λ)-uniform refinement of τ , that τ ε
j is a sub-train track of τ ε for each j, that we

have τ ε
i ∩ τ ε

j = ∅ whenever i �= j, and that we have

dA(με
j , μj) < δ(ε)

for any unit length με
j ∈ ML(τ ε

j ). In the proof of Corollary 4.2 we argued that all of
this implies that if we take any curve γε

j carried by ML(τ ε
j ) and if we chose weights

aε
j wisely, then the weighted multicurves γε =

∑n
j=1 aε

j · γε
j converge to μ. What

is different now is that we have to argue that we can choose the curves γε
j to be

two-sided.
This is where the νε

j come into the game, but first note that any loopy edge
is two-sided—this means that we can assume that our train tracks τ ε

j do not have
loopy edges. From Theorem 4.1 we get that νε

j has unit length, is carried by τ ε
0 , and

satisfies

�(e) · |ωμj
(e) − ωνε

j
(e)| < δ(ε)

where δ(ε) → 0. The assumption that τ ε
j has no loopy edges implies that ωνε

i
(e) = 0

for every loopy e ∈ E(τ ε), and hence that Lemma 3.5 applies. Since μj is supported
by λ, we know for a fact that it has no atom, and a fortiori no one-sided atom. We
get thus from Lemma 3.5 that any one-sided atom cε

j · γε
j of νε

j has to satisfy that

lim
ε→0

cε
j · �(τ ε) = 0. (5.1)

We are going to argue that this implies that τ ε
j carries a two-sided curve, as we

wanted to know.
Seeking a contradiction, suppose that this is not the case and let e be an edge of

τ ε
j with maximal possible weight ωε

νj
(e). Since νε

j is unit length, since τ ε
j is uniform

without loopy edges, and since there is a universal bound on how many edges it can
have, we have

ωνε
j
(e) � const

mλ(τ ε
j )

� const
mλ(τ ε)

(5.2)

where mλ(·) is as in (3.5). Now refine τ ε
j to a one-vertex train track τ̂ ε

j as explained
above, using a transversal to the edge e and the first return map of νε

j . Noting that
any two-sided curve in τ̂ ε

j is also carried by τ ε
j we get from our assumption and

from Proposition 5.1 that every measured lamination carried by τ̂ ε
j is a one-sided

multicurve whose components pass through the vertex at most twice. This applies
in particular to the largest sublamination

∑
k cε,j

k ·γε,j
k of νε

j carried by τ̂ ε
j (the whole
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of νε
j if τ ε

j is connected). Noting that each one of the one-sided curves γε,j
k pass

through the vertex of τ̂j at most twice, we get that
∑

k cε,j
k � 2 · ωνε

j
(e). Since the

number of components is bounded we have a constant such that there is always some
k with cε,j

k � const ·ωνε
j
(e). Up to replacing the constant by another constant we get

from (5.2) that for all ε and j the measured lamination νε
j has an atom of at least

weight cε,j
k � const

mλ(τε) . Since τ ε is (C, λ)-uniform we also get, up to again replacing
the constant by yet another one, that νε

j has an atom whose weight satisfies

cε,j
k � const

�(τ ε)
.

This contradicts (5.1). ��

Before moving on we point out that Theorem 1.2, or rather its proof, yields a
bound for the number of mutually singular ergodic measured laminations with given
support.

Indeed, suppose that λ is a recurrent lamination in S and let μ1, . . . , μn ∈ ML(S)
be mutually singular ergodic measured laminations with support λ. By Corollary 4.2
we can find a sequence of simple multicurves c1

i · γ1
i + · · · + cn

i · γn
i such that

μj = lim
i→∞

cj
i · γj

i . (5.3)

It follows directly that n is bounded by the maximal cardinality c(S) of a multi-
curve in S. Now suppose that λ has no one-sided leaves. Then, as in the proof of
Theorem 1.2 we get that we can assume that each of the curves γj

i in (5.3) can be
chosen to be two-sided. This means that in this case n is bounded by the maximal
cardinality c+(S) of a two-sided multicurve in S. We have proved the following:

Corollary 5.3. Let c(S) and c+(S) be respectively the maximal number of compo-
nents of a multicurve and of a two-sided multicurve in S. Every lamination λ ∈ L(S)
supports at most c(S) mutually singular ergodic transverse measures. Moreover, if
λ has no one-sided leaves then it supports at most c+(S) mutually singular ergodic
transverse measures. ��

As we mentioned in the introduction, this result is due to Levitt [Lev83] in the
orientable case.

6 Orbit closures in ML
In this section we prove Theorem 1.4. We continue to assume that S is a non-
exceptional hyperbolic surface. As in the introduction we associate to a measured
lamination λ ∈ ML(S) a complete pair (Rλ, γλ) as follows. Start by the decomposi-
tion λ = γλ + λ′ where γλ is the atomic part of λ and where λ′ has no closed leaves.
Let then Rλ be the possibly disconnected subsurface Rλ of S obtained by taking the
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union of components of S\γγ which contain a non-compact leaf of λ. We note that
none of the components of Rλ can be a pair of pants, a one-holed Möbius band, or
a one-holed Klein bottle—in other words, no component of Rλ is exceptional.

As in the introduction we define

γλ + ML+(Rλ) = {γλ + μ with μ ∈ ML+(Rλ)} ⊂ ML(S)

and

Gλ = ∪φ∈Map(S)φ
(
γλ + ML+(Rλ)

)
.

We can now recall the statement of Theorem 1.4:
Theorem 1.4 Let S be a connected, possibly non-orientable, non-exceptional hyper-
bolic surface of finite topological type. We have Map(S) · λ = Gλ for any measured
lamination λ ∈ ML(S).

As we mentioned in the introduction, this theorem is due to Lindenstrauss-
Mirzakhani [LM08] in the orientable case (see also Hamenstädt [Ham09]). They
obtained it as a corollary of the classification of mapping class group invariant mea-
sures on ML(S), always for S orientable. Given that this measure classification
does not exist (for good reasons) in the non-orientable case, we have to give a di-
rect proof of the theorem. The argument bellow works both in the orientable and
non-orientable case and uses only elementary facts about measured laminations and
Theorem 1.2. Theorem 1.2 is well-known when S is orientable.

Let us start with a discussion of the theorem. The set Gλ is, by its very defini-
tion, mapping class group invariant and contains λ. This means that the inclusion
Map(S) · λ ⊂ Gλ follows once we know that the latter set is closed.

Lemma 6.1. For any λ ∈ ML(S) the set Gλ is closed in ML(S).

Proof. First note that we get from Scharlemann’s theorem [Sch82] that the set
ML+(Rλ) is closed in ML(Rλ). It follows that also γλ + ML+(Rλ) is closed in
ML(S). This means that Gλ is the union of closed sets. To prove that such a
union is closed it suffices to show that any sequence (μn) ⊂ Gλ which converges
in the ambient space ML(S) is contained in finitely many of those closed sets, that
is, in finitely many translates of γλ + ML+(Rλ). Letting thus (μn) be such a se-
quence and noting that there is a sequence of mapping classes (φn) ∈ Map(S) with
μn ∈ φn(γλ +ML+(Rλ)) for all n, we get that μn = γn +λn where γn = φn(γλ) and
where λn ∈ ML+(φn(Rλ)).

The assumption that μn converges as n → ∞ implies in particular that its length
�(μn) is bounded. It follows that the length of γn is also bounded, meaning that the
multicurves γn belong to a finite set. Once we know γn there are only finitely many
choices for φn(Rλ) because it is a union of components of S\γn. It follows that the
sequence (μn) belongs to the union of finitely many translates of γλ +ML+(Rλ), as
we needed to show. ��
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So far we have established that Map(S) · λ ⊂ Gλ. The main step towards proving
the opposite inclusion is to prove that it holds true if λ has no atoms:

Proposition 6.2. If S is a connected non-exceptional hyperbolic surface then we
have ML+(S) ⊂ Map(S) · λ whenever λ ∈ ML(S) has no atoms.

It is in the proof of Proposition 6.2 that Theorem 1.2 plays a key role.

Proof. Since the set of weighted two-sided geodesics is dense in ML+(S) by The-
orem 1.2, it is enough to prove that any c · γ0 with c > 0 and with γ0 two-sided
is a limit of translates of λ. Our first goal is to show that we can find translates
of λ which are very close to the trivial measured lamination. To be able to make
sense of words like “close” we fix a finite collection A of curves separating measured
laminations—we might assume without loss of generality that γ0 ∈ A—and, as in
(2.2), let dA(·, ·) be the induced distance on ML(S).

Claim. For all ε > 0 there exists λε ∈ Map(S) ·λ with ι(λε, γ0) > 0 and dA(λε, 0) <
ε.

Proof. Note that there is some δ(ε) > 0 such that if μ ∈ ML(S) has length �(μ) <
δ(ε), then

dA(μ, 0) = max
η∈A

ι(μ, η) < ε

As we see, it suffices to guarantee that there is a λε ∈ Map(S) · λ with ι(λε, γ0) > 0
and �(λε) < δ(ε). This is what we will do.

To begin with, note that, up to replacing λ by a translate by a pseudo-Anosov
mapping class, we can assume that λ and γ0 together fill the surface. Now, take
a sequence Ln → ∞ and for each n an almost geodesic train track τn carrying λ
and whose edges have all at least length Ln—such a train track exists because λ
has no closed leaves. Since λ and γ0 fill, we can forget some of the members of
our sequence (τn) and ensure that ι(γ0, μ) > 0 for every μ ∈ ML(τn) and every n.
Also, since there are only finitely many mapping class group orbits of train tracks by
Lemma 3.1, we might pass to a subsequence such that for all n there is φn ∈ Map(S)
with φn(τn) = τ1.

Set λn = φn(λ) ∈ ML(τ1). Since τn is almost geodesic we have

Ln · ωλ(e) � 2 · �(λ)

for each edge e ∈ E(τn). This implies in turn that

�(λn) �
∑

e∈E(τ1)

ωλn
(e) · �(e) =

∑

e∈E(τ1)

ωλ(φ−1
n (e)) · �(e)

�
(

2 · �(λ)
Ln

)
· �(τ1).

We just have to choose n with Ln = δ(ε)−1 · 2 · �(λ) · �(τ1). ��
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Now, let D = Dγ0 be a Dehn twist along γ0. For each ε > 0 we will prove
that for there exists nε so that Dnε(λε) converges to c · γ0 as ε tends to 0, where
λε ∈ Map(S) ·λ is provided by the claim. Since A is a collection of curves separating
measured laminations we get that in order to make sure that Dnε(λε) converges to
c · γ0 we just have to make sure that

lim
ε→0

ι(Dnελε, η) = ι(c · γ0, η) (6.1)

for all η ∈ A. From Lemma 2.2 we get that for any such η ∈ A

ι(Dnελε, η) � nε · ι(λε, γ0) · ι(γ0, η) + ι(λε, η)
ι(Dnελε, η) � (nε − 2) · ι(λε, γ0) · ι(γ0, η) − ι(λε, η)

. Since ι(λε, γ0) �= 0 tends to 0 when ε goes to 0, we can choose nε → ∞ with

lim
ε→0

nε · ι(λε, γ0) = 1.

Combining the two inequalities above, and taking into account that ι(λε, η) < ε, we
get (6.1). This concludes the proof of the proposition. ��

We are now ready to conclude the proof of the theorem:

Proof of Theorem 1.4. Since Map(S) · λ ⊂ Gλ, and since the latter is closed by
Lemma 6.1, we have Map(S) · λ ⊂ Gλ.

For the reverse inclusion, let λ = γλ + λ′ be the unique decomposition of λ,
where λ′ ∈ ML(S) has no atoms. Let Ri be one of the connected components of
Rλ, and let λ′

i be a component of λ′ supported in Ri. As we pointed out earlier, Ri

is non-exceptional. By Proposition 6.2 we have that ML+(Ri) ⊂ Map(Ri) · λ′
i. It

follows thus that γλ + μ ∈ Map(S) · λ for any μ ∈ ML+(Rλ). In other words we
have

γλ + ML+(Rλ) ⊂ Map(S) · λ.

Since the right side is mapping class group invariant it follows that

Gλ = Map(S) · (γλ + ML+(Rλ)) ⊂ Map(S) · λ,

as we needed to prove. ��

7 Orbit closures in PML(S)

We come now to the proofs of Theorem 1.1 and Theorem 1.3. We start by the latter:
Theorem 1.3 Let S be a connected, possibly non-orientable, non-exceptional hyper-
bolic surface of finite topological type. We have Map(S) · λ = PGλ ∪ PML+(S) for
any projective measured lamination λ ∈ PML(S).

Theorem 1.3 will follow easily once we know that the set on the right is closed.
This is what we prove next:
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Lemma 7.1. The set PGλ ∪PML+(S) is closed in PML(S) for any λ ∈ PML(S).

Proof. Using for once square brackets to indicate projective classes, suppose that we
have a sequence ([μn])n in PGλ∪PML+(S) which converges to some [μ] ∈ PML(S).
We claim that [μ] also belongs to PGλ ∪ PML+(S). Since PML+(S) is closed, we
might assume without loss of generality that our sequence is actually contained in
PGλ. This means that it is represented by a sequence (μn) ⊂ Gλ ⊂ ML(S). If
the sequence (μn) converges in ML(S) then we are done because Gλ is closed by
Lemma 6.1. We might thus assume that μn only converges projectively to some
representative μ ∈ ML(S) of the class [μ], meaning that there is a sequence εn → 0
with

μ = lim
n

εn · μn.

We claim that μ ∈ ML+(S). Otherwise μ would have a one-sided atom c · γ. We
would then get from Scharlemann’s theorem that, for all large i, the geodesic γ
is the support of an atom of ε·μn. In fact, the weight cn in εn · μn of this atom
converges to c and hence stays bounded from below. Since there are φn ∈ Map(S)
and νn ∈ ML+(φn(Rλ)) with

εn · μn = εn · φn(γλ) + νn

we get that our atom cn · γ, having relatively large weight, must be an atom of νn.
This contradicts the assumption that νn has no one-sided leaves. We are done. ��

We are now ready to prove the theorem:

Proof of Theorem 1.3. Since Map(S) ·λ is contained in PGλ we get from Lemma 7.1
the inclusion Map(S) · λ ⊂ Gλ ∪ PML+(S). To prove the opposite inclusion note
that we get from Theorem 1.4 that PGλ ⊂ Map(S) · λ. Also, the argument used
in the proof of Proposition 6.2 implies that the projective class of every two-sided
curve belongs to Map(S) · λ. Since two-sided curves are dense in PML+(S) by
Theorem 1.2 we get that PGλ ∪ PML+(S) ⊂ Map(S) · λ. We are done. ��

Note that Theorem 1.3 implies that PML+(S) is contained in the closure of any
orbit of the action Map(S) � PML(S). Theorem 1.1 follows immediately:
Theorem 1.1 Let S be a connected, possibly non-orientable, non-exceptional hy-
perbolic surface of finite topological type. The set PML+(S) is the unique non-
empty closed subset of PML(S) which is invariant and minimal under the action
of Map(S). ��

On the other hand, we note that PML(S), for S non-orientable, has a dense
orbit if and only if S is of genus 1. Recall that the genus of the surface is defined
to be the maximum number of disjoint simple curves one can cut along without
disconnecting the surface.
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Corollary 7.2. Suppose S is non-orientable. If S has genus k = 1, then PML(S)
has a dense Map(S)-orbit. If S has genus k > 1 then PML(S) is not the closure of
any countable union of Map(S)-orbits.

Proof. For k = 1, let γ be a one-sided curve and set λ = γ + λ′ for some λ′ ∈
ML(S\γ). Note that every one-sided curve on S is in the Map(S)-orbit of γ, that
S\γ is orientable, and that Rλ = S\γ. It follows that PGλ = PML(S)\PML+(S)
and hence that

Map(S) · [λ] = PGλ ∪ PML+(S) = PML(S).

For the second statement, note that when the genus is at least 2 then there are
uncountably many projective classes of orbits of one-sided multicurves: for any 2
disjoint one-sided curves α, β, the classes [α + tβ] are distinct and not in the same
orbit for distinct t > 0. On the other hand, any countable union ∪n∈NPGλn only
contains countably many orbits of one-sided multicurves. ��

8 Orbit closures in Teichmüller space

There are many reasons why measured laminations and projective measured lami-
nations play a key role when studying hyperbolic surfaces, but if one were to have
to choose one then one would probably mention Thurston’s compactification of Te-
ichmüller space [Thu88]. Indeed, Thurston defined a mapping class group invariant
topology on

T (S) = T (S) ∪ PML(S)

with respect to which the inclusions T (S) ↪→ T (S) and PML(S) ↪→ T (S) are
homeomorphisms onto their images, and where a sequence (Xi) ⊂ T (S) converges
to a [λ] ∈ PML(S) if for some, and hence any representative λ ∈ ML(S) of the
class [λ], there is a sequence (εi) of positive real numbers with

lim
i→∞

εi · �Xi
(γ) = ι(λ, γ)

for every essential simple closed curve γ. The space T (S) is compact when endowed
with this topology—it is in fact homeomorphic to a ball, but we will not need
that fact. We refer to [FLP] for a discussion of Thurston’s compactification in the
orientable case, to [PP16] for one in the non-orientable case, and to [Bon88] for one
that works either way.

In this section we study where do orbits of the action Map(S) � T (S) accumulate
in the Thurston boundary ∂T (S) = PML(S).
Theorem 1.5 Let S be a connected, possibly non-orientable, non-exceptional hyper-
bolic surface of finite topological type. We have Map(S) · X ∩ ∂T (S) = PML+(S)
for any point X in Teichmüller space T (S).

In the course of the proof of the theorem we will need the following fact:
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Lemma 8.1. Suppose λ, λ′ ∈ ML(S) are such that ι(λ, α) ≤ ι(λ′, α) for all simple
closed curves α. Then supp(λ) ⊂ supp(λ′).

Proof. First note that we might assume without loss of generality that λ has con-
nected support, meaning that there are a priori three options: either ι(λ, λ′) > 0, or
supp(λ) ∩ supp(λ′) = ∅, or supp(λ) ⊂ supp(λ′). To rule the first one out, let (γi) be
a sequence of weighted curves which converges to λ′ in ML(S). By the continuity of
the intersection form we have that limi ι(λ′, γi) = 0 while limi ι(λ, γi) = ι(λ, λ′) > 0.
This contradicts our assumption.

The discussion of the second case is less clean. Suppose first that the support of
λ is not a simple curve. This implies that every open neighborhood U of supp(λ)
contains a simple curve γ with ι(λ, γ) > 0. If supp(λ) ∩ supp(λ′) = ∅ then we
can choose the neighborhood U disjoint from λ′, meaning that ι(λ′, γ) = 0. This
contradicts our assumption. It remains to consider the case when the support of λ
is a simple curve—for the sake of concreteness we assume that the weight is one.
Since it is the most interesting and hardest case we suppose that the curve λ is
contained in a complementary region of supp(λ′) homeomorphic to an annulus with
cusps, leaving the other cases to the reader. Let U be an open small neighborhood of
λ′ and U its closure. Let also [x, y] ⊂ S\U be a simple arc which intersects supp(λ)
once, and with x, y ∈ U . We can now find two disjoint simple curves γx, γy ⊂ U with
x ∈ γx and y ∈ γy, and with ι(λ, γx) < 1 and ι(λ, γy) < 1. Let γ be the simple curve
obtained, up to homotopy, as the juxtaposition of 2 copies of [x, y] and the curves
γx and γy. We have ι(γ, λ) = 2 while ι(γ, λ′) < 2. This contradicts once again our
assumption.

Having ruled out the first and second possibilities we get that supp(λ) ⊂ supp(λ′),
as we needed to prove. ��

We are now ready to prove the theorem.

Proof of Theorem 1.5. Note that PML+(S) ⊂ Map(S) · X ∩ ∂T (S) by minimality
of PML+(S), Theorem 1.1.

Suppose now that [λ] ∈ PML(S) is an accumulation point of Map(S) · X, say
Xn = φn(X) with φn pairwise distinct. Let α and β be two-sided simple closed
curves which together fill S. Consider the function

I : ML(S) → R

defined by

λ 	→ �X(λ)
ι(α, λ) + ι(β, λ)

.

Note that I is continuous, non-zero, and descends to a function on the compact
space PML(S) and is hence bounded from above and below by positive constants.
In particular, there exists K > 1 such that

1
K

≤ �X(γ)
ι(α, γ) + ι(β, γ)

≤ K
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for all simple closed curves γ. It follows that

1
K

≤
�φn(X)(γ)

ι(φn(α), γ) + ι(φn(β), γ)
≤ K (8.1)

for all n and all simple closed curves γ.
Note now that, up to reversing the roles of α and β and passing to a subsequence,

we can assume that �X(φn(α)) � �X(φn(β)) for all n. This means that if we set εn =
1

�X(φn(α)) then we have that both the sequences εn ·φn(α) and εn ·φn(β) are bounded
in ML(S). This means that, up to possibly passing to a further subsequence, we
can assume that the limits

lim
n→∞ εn · φn(α) = μ and lim

n→∞ εn · φn(β) = μ′

exist in ML(S). Note that μ has unit length and hence is not 0. Note also that
μ, μ′ ∈ ML+(S) because α and β are two-sided and because ML+(S) is closed by
Scharlemann’s theorem.

Note that, since the mapping classes φn do not repeat, there is some γ0 with
�φn(X)(γ0) → ∞. Equation (8.1) implies then that also

ι(φn(α), γ0) + ι(φn(β), γ0) → ∞. (8.2)

On the other hand

lim
n

εn ·
(
ι(φn(α), γ0) + ι(φn(β), γ0)

)
= ι(μ, γ0) + ι(μ′, γ0) < ∞. (8.3)

Hence equations (8.2) and (8.3) together imply that εn → 0.
Once we know that εn tends to 0 we have that

ι(μ, μ′) = lim
n

ι(εn · φn(α), εn · φn(β)) = lim ε2
n · ι(α, β) = 0

and hence that λ′ = μ + μ′ is a perfectly sound measured lamination with

lim
n

εn ·
(
ι(φn(α), γ) + ι(φn(β), γ)

)
= ι(λ, γ) (8.4)

for every curve γ. Moreover, since the support of λ′ is the union of the supports of
μ and μ′ we have λ′ ∈ ML+(S).

Recall now that [λ] ∈ PML(S) is an accumulation point of the sequence (φn(X)).
From the choice of the sequence (εn) and from (8.1) we get that for all γ the se-
quence (εn · �φn(X)(γ))n is bounded. This means that, once again up to passing to
a subsequence, we might assume that the projective class [λ] = limn φn(X) ∈ T (S)
has a representative λ ∈ ML(S) with

lim
n

εn · �φn(X)(γ) = ι(λ, γ) (8.5)

Combining (8.4) and (8.5) we get from (8.1) that

ι(λ, γ) � ι(K · λ′, γ)
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for every curve γ. Lemma 8.1 implies thus that

supp(λ) ⊂ supp(λ′).

Since λ′ ∈ ML+(S) we get that also λ ∈ ML+(S), and hence that [λ] = limn φn(X) ∈
PML+(S), as we needed to prove. We are done. ��
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Appendix A. Existence of uniform train tracks

In this appendix we prove Proposition 3.3, which states that any train track carrying
a lamination without closed leaves can be refined to be arbitrarily long while also
uniform. We recall the precise statement:
Proposition 3.3 Let S be a hyperbolic surface. There is a constant C > 0 such
that for any geodesic lamination λ ⊂ S without closed leaves, any train track τ0

carrying λ, and any L large enough, there is a refinement τ of τ0 which is λ-generic,
(C, λ)-uniform and satisfies �λ(τ) � L.

The reader is referred to Section 3 for the terminology and notation used in this
appendix. In particular we remind the reader that τ is (C, λ)-uniform if it is almost
geodesic, carries λ in a filling way, and the λ-lengths of all edges are comparable:
�λ(τ) ≤ C · mλ(τ).

Note that if τ0 is any train track carrying the lamination λ, we can refine it to
an almost geodesic (and as long as we want) train track τ ′

0, still carrying λ (using,
for example, the Thurston’s construction mentioned in the remark in Section 3.2).
Since a refinement of a refinement of τ0 is still a refinement of τ0, we can without
loss of generality assume that τ0 was already almost geodesic to begin with.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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v
e →

v

e
→v′

e′

Figure 13: Splitting a cusp at v to remove the short edge e.

The idea of the proof of the proposition is to modify the train track τ0 according
to a series of procedures which increase the length of a short edge while controlling
the total increase of length. Since the general idea is quite simple, but making it
precise is tedious, we will first give an intuitive idea of the process. For simplicity
assume τ0 is trivalent and has a unique shortest edge e. We want to refine τ0 such
that this short edge disappears by getting concatenated with other edges, while
only increasing the total length of the train track by a prescribed amount. There
are two cases. If e is the only incoming edge at vertex v, then there is a cusp at v
bounded by the two outgoing edges. We “split” this cusp by zipping open e until
its other vertex: see the top part of Figure 13. In the resulting train track the short
edge has been absorbed into the adjacent ones and the total length has increased
by �λ(e) = mλ(τ0). In the other case e is one of two incoming edges at v. We again
want to split the cusp at v but this now means unzipping the outgoing edge e′ which
could be very long. Hence, in order to control how much total length we add, if e′

is very long we do not split the cusp all the way to the next vertex but to some
predetermined distance (say twice the minimal edge length). Formally we will do
this by adding a bivalent vertex v′ on e′ at that distance and split until v′. See
bottom part of Figure 13. Note that in both situations, in the local picture around
v, we have not only gotten rid of the short edge e, but the two new edges have
lengths greater than 2�λ(e). One can then repeat this process finitely many times
obtaining a refinement where the shortest edge length has doubled, while the length
has only increased by a comparatively small amount.

Now we will make all of this precise—the basic issue being that the process we
described above works well if the involved train tracks are trivalent and that this
property might get lost after even the first step. Recall from Section 3.3 the definition
of a refinement; in this section, to give a refinement of a train track τ , we will give
a smooth graph τ ′ and a smooth immersion τ ′ � τ which can be perturbed into an
embedding τ ′ ↪→ S. To be fair, we are just going to give the graph τ ′ and a map
Φ = Φτ ′,τ : τ ′ → τ . It will be evident that a smooth structure exists on τ ′ which
makes Φ a smooth immersion—note that if such a structure exists, it is unique.
Finally, since we are thinking of τ ′ in terms of an immersion into τ , we identify the
carrying maps of λ into τ and τ ′ respectively. Accordingly, we use lengths in τ to
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measure the length and λ-length of edges of τ ′. All of this will not pose a problem
because all relevant inequalities here will be strict, meaning that if they are satisfied
for length defined in this way, they also hold after perturbing Φ into an embedding.
Along the same lines, the condition for being almost geodesic is open and this means
that it makes sense to say that τ ′ is almost geodesic.

A final piece of terminology: we say that τ ′ is a simplicial refinement if the map
Φ is a simplicial map, that is, maps vertices to vertices and edges to edges.

Now we define more rigorously what we mean by the process of splitting a cusp
alluded to above, and in such a way that it also works for vertices of higher valence.
Let e be a (half-)edge which is not the only incoming one at a vertex v. Then there
is a (either one or two) complementary region F of S\τ having a cusp at v and such
that e is contained in a side of F ; we call each such cusp an adjacent cusp at v (with
respect to e). Moreover, if e′ is an outgoing half-edge at v and {e, e′} is a λ-legal turn
we say that e′ is a λ-child of e. With this terminology and with the above intuitive
idea in mind, we define what we mean by splitting a cusp:

Splitting a cusp. Let F be a complementary region of S\τ with vertex v0 a
cusp of F and e0, e1 the two half-edges of τ incident to v0 for which v0 is an adjacent
cusp. If e0 and e1 have a common λ-child denote it by ê. Splitting the cusp v0 is the
process which produces the simplicial refinement τ ′ (possibly with bivalent vertices)
of τ such that

|Φ−1(v)| = 1 for all v �= v0 and |Φ−1(v0)| = 2

and

|Φ−1(e)| = 1 for all e �= ê and |Φ−1(ê)| = 2 (if ê exists).

Note that for every cusp of τ we split, we add the length of a common child to the
total length of the resulting train track. That is, if τ ′ is a refinement resulting from
splitting one cusp then we have

�λ(τ ′) = �λ(τ) + �λ(ê).

See Figure 14 for some examples of splitting cusps.
Using this tool we define a few processes resulting in refinements. Recall that we say
an edge e is λ-loopy if it has a single vertex and (e+, e−) is a λ-legal turn, where
e+, e− are the two half-edges of e. If e is an edge with only one vertex and such that
one half-edge is incoming and the other outgoing at that vertex but which is not
λ-loopy (i.e. no leaf of λ takes that turn) we call it a fake loopy edge. A non-loopy
edge is one that is neither loopy nor fake loopy (that is, a non-loopy edge is one
which is not an embedded circle).

Combing a half-edge. Let e0 be a half-edge which is part of a non-loopy edge,
and let v0 be the vertex adjacent to e0. We comb e0 through the following steps:

(1) Split any adjacent cusps and set e′
0 = (Φτ̂ ,τ )−1(e0) where τ̂ is the resulting

simplicial refinement, and let v′
0 ∈ (Φτ̂ ,τ )−1(v0) be the vertex adjacent to e′

0
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Figure 14: Examples of the process of splitting a cusp. The top row are local pictures of a
train track with a cusp shaded, the corresponding two half-edges in bold, and the half-edges
which are not a common child dashed. The bottom row is the result of splitting the cusp.

Figure 15: Examples of combing a half-edge. Left: local picture with the half-edge to be
combed in bold and its children represented by the solid lines. Middle: result after splitting
the adjacent cusps. Right: End result, after splitting the remaining cusps and removing
bivalent vertices.

(2) Split all cusps at v′
0.

(3) Remove any bivalent vertices.

Letting τ ′ be the resulting refinement of τ , note that Φ(e) = Φτ ′,τ (e) is a con-
catenation of edges of τ for every edge e of τ ′. In particular we have that any edge
e of τ ′ such that Φ(e) intersects the interior of e0 satisfies

�λ(e) = �λ(e0) + �λ(e′)

for some child e′ of e0. See Figure 15 for an example of combing an edge.
Unmasking a fake loopy edge. Suppose e0 is a fake loopy edge with vertex

v0 in τ . There are two cases: either there is a λ-legal turn {e1, e2} which crosses e0

or there is not. In the second case, we simply replace v0 with two vertices v′
0, v′′

0 and
replace e0 with an edge connecting v′

0 and v′′
0 such that the resulting train track still

carries λ; see top row in Figure 16. In the second case, we do the same but connect
v′
0 and v′′

0 with an additional edge e carrying segments that took the {e1, e2} turn
and then we comb e (and finally we delete any bivalent vertices). See the bottom
row of Figure 16 for an example. Note that the length �λ(τ ′) of resulting refinement
τ ′ either is the same as that of τ or

�λ(τ ′) = �λ(τ) + �λ(e1) + �λ(e2)

where e1, e2 are two edges adjacent to v0.
Finally we consider the actual loopy edges. If e is a λ-loopy edge and e+, e− are

its two half-edges, for every leaf l of λ for which Φλ,τ (l) traverses e, Φλ,τ (l) must
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Figure 16: The two possibilities of unmasking a fake loopy edge.

Figure 17: The first step in unlooping a loopy edge.

take the turn {e−, e+} a number of times. We define the λ-winding number of e to
be w = k − 1 where k is the largest integer such that there is a leaf of λ which takes
the turn {e−, e+} k times. Note that if e has λ–winding number w, then every leaf l
of λ such that Φλ,τ (l) transverses e takes the turn {e−, e+} either w or w + 1 times.

If the winding number w is not too large, it will be helpful below to replace
a loopy edge e0 with a concatenation of w edges by unlooping it according to the
following process:

Unlooping a loopy edge. Suppose e0 is a loopy edge with vertex v0. We will
construct a refinement τ ′ of τ such that Φ−1(e0) consists of (one or two) non-loopy
edges. Choose an incoming half-edge e+

0 of e0, and denote the other half-edge by e−
0 .

There is an edge e incoming at v0 and adjacent to e+
0 such that {e, e−

0 } is a λ-legal
turn. Split the cusp v0 adjacent to e+

0 and e. This results in a simplicial refinement
τ ′ of τ with

�λ,τ ′
(e0) = �λ,τ (e0) − �(e0).

Note that at this point we have not added any λ-length to the train track. Now,
delete any bivalent vertices and continue inductively until we arrive at a refinement
where the edge corresponding to e0 is a fake loopy edge. We complete the process
by unmasking it and deleting any bivalent vertices. The length of the refined track
track is related to the length of τ just like in the case of unmasking fake loopy edges.

Intuitively, the reader should picture the loopy edge e having been unwrapped
into a non-loopy edge of length approximately �τ (e) and generically also a second
non-loopy edge obtained through the unmasking in the last step. See Figure 17.

We will apply the above processes to define our main procedure. As outlined in
the beginning of this appendix, the idea is to modify a given train track trading any
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short edges for longer ones while controlling the total length of the resulting train
track.

Main Procedure. Let τ0 be any (almost geodesic) train track carrying λ and
recall that �λ(e) = �λ,τ (e), �λ(τ) and mλ(τ) were defined in (3.4) and (3.5).

We start by adding bivalent vertices to any non-loopy edge e with �(e) > 4mλ(τ0)
such that it gets subdivided into a number of edges each having length 2mλ(τ0) ex-
cept possibly one which has length at least 2mλ(τ0) but less than 4mλ(τ0). In the
resulting train track unmask all fake loopy edges, and if this results in an edge of
length greater than 4mλ(τ0), then add bivalent vertices to subdivide it as above.
Finally, unloop any loopy edge e with �λ(e) ≤ 4mλ(τ0). Denote the resulting refine-
ment by τ̂0. Note that mλ(τ̂0) = mλ(τ0), that τ̂0 has the same number of edges of
length less than 2mλ(τ0) as τ0 does, and that for each (fake) loopy edge we have
(unmasked or) unlooped we have increased the total length by at most 8mλ(τ0)
and hence �λ(τ̂0) ≤ �λ(τ0) + 9|χ(S)| · 8mλ(τ0) where the factor 9|χ(S)| is a (very
non-optimal) bound on how many loopy edges τ0 can have.

Now let e0 be an edge realizing mλ(τ0) in τ̂0 and note that it is non-loopy and
any adjacent edge has length at most 4mλ(τ0) and at least mλ(τ0). Let e+

0 be a
half-edge of e0 and v0 its vertex. Combing e+

0 (and then removing all remaining
bivalent vertices) we obtain a refinement τ1

0 of τ0 carrying λ. Note that the number
of edges e in τ1

0 with �λ(e) = mλ(τ0) is strictly less than the number of edges e in
τ0 with �λ(e) = mλ(τ0), that the number of edges e in τ1

0 with �λ(e) < 2mλ(τ0)
is strictly less than the number of edges e in τ0 with �λ(e) < 2mλ(τ0), and that
�λ(τ1

0 ) ≥ �λ(τ0). Intuitively, the reader can think of any edge in τ1
0 as corresponding

to a concatenation of edges in τ̂0 and any edge whose image contains e0 is the
concatenation of at least two and hence has length at least 2mλ(τ0). Now, since
combing an edge means splitting cusps and there are at most 6|χ(S)| cusps in S\τ̂0

we have �λ(τ1
0 ) ≤ �λ(τ̂0) + 6|χ(S)| · 4mλ(τ0) ≤ �λ(τ0) + 96|χ(S)| · mλ(τ0).

Now, if mλ(τ1
0 ) < 2mλ(τ0) we repeat the above process, replacing τ0 with τ1

0 . We
continue inductively as long as mλ(τn

0 ) < 2mλ(τ0) where τn
0 denotes the refinement

resulting from the nth step. Note that in each step the number of edges of length less
than 2mλ(τ0) decreases and hence since there are finitely many edges, the procedure
ends in finitely many steps. That is, there is a k ≤ 9|χ(S)| such that mλ(τk

0 ) ≥
2mλ(τ0); we set τk

0 := τ1. Note that we have �λ(τ0) < �λ(τ1) < �λ(τ0) + 1000|χ(S)| ·
mλ(τ0).
We are finally ready to prove the proposition:

Proof of Proposition 3.3. Let λ be a geodesic lamination without closed leaves and
τ0 any train track carrying it. Let L ≥ �λ(τ0). As already mentioned after the
statement of the proposition, up to replacing τ0 by a refinement, we can assume
that τ0 is an almost geodesic train track and �λ(τ0) ≥ L.

Apply the Main Procedure to τ0 resulting in the refinement τ1 where mλ(τ1) ≥
2mλ(τ0) and with �λ(τ1) < �λ(τ0) + 1000|χ(S)| · mλ(τ0). Continuing inductively, we
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obtain the refinement tk at the kth step satisfying

mλ(τk) ≥ 2kmλ(τ0)

and

L < �λ(τk) < �λ(τ0) + 1000|χ(S)| ·
k−1∑

i=0

mλ(τi)

< �λ(τ0) + 1000|χ(S)| · mλ(τk) ·
k∑

i=1

2−i

< �λ(τ0) + 1000|χ(S)| · mλ(τk).

It follows that for any C > 1000|χ(S)| there exists a k such that τk is C-uniform.
It remains to show that there is a generic such train track. Note that by choosing

k large enough above, we can assume τk is uniform and all its edges having enormous
λ-lengths since mλ(τk) grows exponentially with k. The idea is then to add more
vertices along these very long edges and spread out the edges so that every vertex
is trivalent at the non-loopy edges, and to partly unwrap any loopy edge so that its
vertex is 4-valent. We sketch this process and leave the precise details to the reader;
in particular, for simplicity we assume there are no loopy edges. Note that there are
at most E = 18 · |χ(S)| half-edges in any train track and hence any vertex can be
at most E-valent. Choose k large enough so that every edge in the C-uniform train
track τk has length at least 2E ·L. Let v be a vertex which has maximal valence in τk,
which we assume is greater than 3. Add a bivalent vertex at the midpoint of every
edge incident at v, then split a (any) cusp at v, and finally delete any remaining
bivalent vertex. The maximal valency of a vertex in the resulting refinement is either
strictly less than in τk or it remains the same but has one less vertex of this valency.
Moreover, every edge has length at least 2E−1 · L and the total length has increased
by at most �λ(τk)/2. We repeat the process until (in finitely many steps n ≤ E)
every vertex is trivalent. The resulting refinement τ satisfy mλ(τ) ≥ mλ(τk)/2n

and �λ(τ) ≤ �λ(τk) + �λ(τk) ·
∑n

i=1 2−i < 2�λ(τk). It follows that τ is generic and
C ′-uniform for C ′ = 2E+1 · C. ��
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[PP16] A. Papadopoulos and R.C. Penner. Hyperbolic metrics, measured foliations

and pants decompositions for non-orientable surfaces. Asian J. Math., (1)20
(2016), 157–182

[Par14] L. Paris. Mapping class groups of non-orientable surfaces for beginners. Winter
Braids Lect. Notes, 1(Winter Braids IV (Dijon, 2014)):Exp. No. 3 (2014), 17

[PH92] R.C. Penner and J.L. Harer. Combinatorics of Train Tracks, Volume 125 of
Annals of Mathematics Studies. Princeton University Press, (1992)

[Sch82] M. Scharlemann. The complex of curves on nonorientable surfaces. J. London
Math. Soc. (2), (1)25 (1982), 171–184

[Sti93] J. Stillwell. Classical Topology and Combinatorial Group Theory, Volume 72
of Graduate Texts in Mathematics, 2nd edn. Springer, (1993).

http://arxiv.org/abs/math/0508036
http://arxiv.org/abs/1706.08798
http://arxiv.org/abs/2110.00037


GAFA MAPPING CLASS GROUP ORBIT CLOSURES FOR NON-ORIENTABLE SURFACES 693

[Thu80] W.P. Thurston. The geometry and topology of three-manifolds. Unpublished
notes, (1980). Available at http://library.msri.org/books/gt3m/PDF/Thurston-
gt3m.pdf.

[Thu88] W.P. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces.
Bull. Amer. Math. Soc. (N.S.), (2)19 (1988), 417–431

V. Erlandsson
School of Mathematics, University of Bristol, Bristol BS8 1UG, UK.

and

Department of Mathematics and Statistics, UiT The Arctic University of Norway, Tromsø,
Norway.

v.erlandsson@bristol.ac.uk

M. Gendulphe
Lycée La Folie Saint-James, Paris, France.

matthieu@gendulphe.com

I. Pasquinelli
School of Mathematics, University of Bristol, Bristol BS8 1UG, UK.

irene.pasquinelli@bristol.ac.uk

J. Souto
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