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Abstract: A rigorous forward model solver for conventional coherent microscope is presented.
The forward model is derived from Maxwell’s equations and models the wave behaviour of light
matter interaction. Vectorial waves and multiple-scattering effect are considered in this model.
Scattered field can be calculated with given distribution of the refractive index of the biological
sample. Bright field images can be obtained by combining the scattered field and reflected
illumination, and experimental validation is included. Insights into the utility of the full-wave
multi-scattering (FWMS) solver and comparison with the conventional Born approximation
based solver are presented. The model is also generalizable to the other forms of label-free
coherent microscopes, such as quantitative phase microscope and dark-field microscope.
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1. Introduction

Visualization of biological samples is an important task in biologic research. Fluorescence
microscopy [1] is widely used to image biological samples where fluorescence markers or
dyes are used to make the specimens visible. Although it provides detailed structures of the
biological sample with high specificity, it suffers from some limitations such as photo-toxicity
and photo-bleaching.

Label-free imaging solutions, which rely on the scattering due to the intrinsic contrast of the
sample, are therefore preferred in the situations where long-duration imaging, live cell friendliness,
not perturbing the biological system through chemical additions, etc. are preferred. Label-free
microscopy has been developed for several decades, including bright-field microscopy, dark-field
microscopy [2,3] and interferometric microscopy [4,5]. Among them, arguably, bright-field
and quantitative phase imaging microscopy are the most popular qualitative and quantitative
label-free imaging solutions respectively.

One of the challenges with label-free imaging solutions is that their images are more difficult to
interpret than fluorescence microscopy images. Besides the lack of specificity, another important
reason is that multiple scattering of light in the sample region contributes to a non-linear map
of the sample in the image region, which appears artefacts while it is not. Solutions such as
incoherent or partially-coherent illumination systems have been used to suppress the effect of
multiple scattering in the image plane. However, the interest in coherent imaging solutions still
remains because the evidence of multiple scattering in the image plane indicates potential of
being able to decode the near field interaction and thereby seek super-resolution. This potential
however remains untapped and the artefact-prone nature of label-free images remain uninterpreted
because of lack of computational tools in microscopy domain that correctly simulate and explain
how and how much of the near field multiple scattering interaction actually reaches the imaging
plane. There is some preliminary work done. For example, scalar field propagation based models
have been proposed, especially used in holography [6–8] and other quantitative phase imaging
techniques [4,9,10]. Analysis of imaging system is mainly established by first-order diffraction
theory and scalar point spread function [11]. 3D dyadic Green’s functions (or vectorial point
spread functions) have been presented [12,13] which gives the mapping of dipoles induced in
the sample with various orientations to a vectorial field and can be considered foundational
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for coherent imaging. Further, there have been some simulators that use Born [14] or Rytov
approximation [15] for calculation [9,16–18]. Explicit solutions can be obtained for these
linearized cases and ease the analysis. Several forward models considering z-propagation
of multiple scattering for thick samples have been proposed and used for inversion process.
Multi-slice is a popular method where the sample is decomposed of thin planes along optical
axis and the field is calculated layer by layer with some linear approximation, such as multi-slice
beam propagation methods [19–21] and multi-layer Born methods [22]. Such methods are
definitely more sophisticated than Born approximation. However, multiple-scattering effect is
not accurately modeled in these work.

An accurate forward model is essential for 3D reconstruction of the sample, as the reconstruction
is usually relied on decreasing the discrepancy between the measured data and the simulated
data obtained by the forward model. Due to the wave property of the light, the interaction
between light and sample be can be precisely described by Maxwell’s equations. Based on the
equations, forward modeling can be achieved by solving time-dependent differential equations in
time domain with finite difference time domain (FDTD) method [23], or by solving integral or
partial differential equations in frequency domain with numerical solvers such as finite element
method (FEM), boundary element method (BEM) and so on [24–27]. Yet, these methods are
limited to 2D cases where the object is assumed infinite and invariant along one axis. Rigorous
coupled-wave analysis (RCWA) [28,29] can give an exact solution of Maxwell’ equations to
simulate the electromagnetic diffraction by grating structures. However, its application is also
limited to period strutures. A rigorous model is used in [30] for 3D objects with scattered field in
near field solved by FEM and mapping each plane-wave component of the scattered field to the
camera to get the intensity map. In this work, we present a rigorous computational model based
on the integral method with Green’s function which describes the field radiated by a dipole as
sum of plane-wave components for a full-wave three-dimensional case with temporally coherent
illumination and it can be applicable to arbitrary 3D objects. Simulation of light propagation and
field captured on camera is given for a conventional microscope setup with support for reflection
mode bright field microscopy.

Here, we briefly discuss the physics being simulated. The light is considered as wave. When
monochromatic light is used to illuminate the sample, the atoms in samples are polarized and
become dipoles which are oscillating at the same frequency with the applied field. These dipoles
also radiate electric field and such field is described by dyadic Green’s function. The field
produced by one dipole generates a field which changes the total field elsewhere and further
influences changes in the polarization of other dipoles. Therefore, the total field at one point in
the sample is influenced by and also influences the field at all other points. Such phenomenon,
called multiple-scattering effect, is described by Lippmann-Schwinger integral equation. The
fields produced by all dipoles in the sample are added up to form an image on the camera.
Another Dyadic Green’s function is derived for this specific microscope setup which gives the
field produced by a dipole at the far field. Bright-field image and interferogram are formed as the
intensity map of combination of the complex scattered field, reflected incident field and reference
field. This model gives a full description of the observed image. However, it is impossible to find
an explicit solution for random samples, thus, numerical techniques are employed to simulate this
process. The method of moments (MoM) [31] and discrete dipole approximation (DDA) [32] are
popular tools to get numerical solutions. Here MoM based on a uniform grid with pulse-basis
function and point-matching method is used to ease computational cost. This method allows the
calculation of far field at the camera under different configurations and investigation of near field
which helps understand the effect of samples with different physical parameters. This simulation
is also valid for strong-scattering objects and also shows the potential to develop new imaging
algorithms based on inverse methods which can break the diffraction limit due to the integration
of multiple-scattering effect in the forward model.
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In Sec. 2, we demonstrate the forward problem describing the image field on the camera given
the distribution of refractive index (RI) of the sample and how the problem is solved. In Sec.
3 we show some simulation results that are validated by experiments. In Sec. 4, we present
further insight into the role of multiple scattering by comparing the simulation results with
Born Approximation and also showing the near-field results inside domain of interest. In Sec.
5, we discuss the scope of generalization of our model to different microscopes and samples.
Conclusion is given in Sec. 6.

2. 3D Full wave multiple scattering solver

The present forward solver solves the problem in frequency domain thus temporally coherent
illumination is required. Here we take conventional bright-field microscopy with reflection
measurement and spatially coherent illumination as an example. However, the model can be
employed with various kinds of illumination. See Supplement 1 (Sec. S3) for more information
about the adaptation of our model for other illuminations.

2.1. Problem description

The microscope setup under investigation exploits reflection measurement for bright-field imaging,
as shown in Fig. 1(a). Collimated coherent light with angular frequency ! (! = 2� c• � with c
the light speed and � the wave length in vacuum) is employed to illuminate the sample. Time
dependence e� i! t is discarded for simplicity in the following formulation. The sample, immersed
in a medium with refractive index nobj, is placed on the substrate with a refractive index nsub. The
scattered light, together with the reflected incident light, propagates through the objective lens,
tube lens and forms the bright-field image on the camera. Here we define two local coordinate
systems with the focal points of objective lens and tube lens being the original points and z-axis
is chosen as the optical axis as shown in Fig. 1(b). The Domain of Interest (DoI) is a cubic with
size of X � Y � Z in the upper half-space (object region) with all the samples enclosed. With
the distribution of RI n¹r º at point r = ¹x, y, zº inside DoI known, the forward problem can be
described by equations [34]

Et¹r º = Ei¹r º + k2
obj

»

V
Gd¹r , r 0º� ¹r 0ºEt¹r 0ºdr 03 (1)

Es¹r camº = k2
obj

»

V
Gs¹r cam, r 0º� ¹r 0ºEt¹r 0ºdr 03 (2)

where Ei¹r º, Et¹r º are the incident and total electric fields inside DoI while Es¹r camº is the
scattered field measured at the image plane at point r cam = ¹xcam, ycam, zcamº. All the waves
considered here are vectorial and are expressed under Cartesian coordinate system. For example,
the total field at one point is presented as Et¹r º = »Etx¹r º, Ety¹r º, Etz¹r º¼T , similarly with incident
and scattered fields. kobj is the wavenumber in object region. Gd¹r , r 0º and Gs¹r cam, r 0º are the
dyadic Green’s functions, which are 3 � 3 tensors with each column representing the vectorial
fields produced at r inside DoI and at r cam on the image plane by a x-, y- and z- polarized dipole
located at r 0respectively. Within this microscope setup, Gd¹r , r 0º is simply the half-space Green’s
function as we assume that the substrate is thick enough such that no reflections come from the
bottom. Far-field Green’s function Gs¹r cam, r 0º is obtained by integrating all the propagating
plane-wave components of primary and reflected fields from the substrate radiated by a dipole that
can be collected by the objective lens (limited by NA). Detailed derivation of Gs¹r cam, r 0º can be
found in [13]. � ¹r º is the contrast of refractive index between sample and immersion background,
defined as � ¹r º = ¹n¹r º2 � n2

objº•n2
obj. Here we assume that the object is isotropic, lossless and

nonmagnetic. The first equation is called state equation, also known as Lippmann-Schwinger
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equation, which describes the relation between the electric field and the contrast inside DoI while
the second equation is called data equation which gives the scattered field on the camera.

Fig. 1. (a) Schematic diagram of the microscope setup. For simulation, laser source
is used to generate temporally and spatially coherent illumination and bright-field image
is simulated with reflection measurement mode. Partially spatially coherent unit: in
experiment, incoherent illumination is also employed (as described in Sec. 3) to suppress
unexpected fringes. Add-on module for interference microscopy: generalization to off-axis
interferometric phase microscopy can be achieved by including the reference arm (described
in Supplement 1, Sec. S2). Note that modules in dashed blocks are not considered in
the following modelling. MO: microscopic objective lens, BS: beam splitter, L: lens, RD:
rotating diffuser. (b) Coordinate systems defined for simulation. Objective and tube lenses
are represented by Gaussian reference spheres [33]. There origins are chosen as the origins
of the local coordinate systems with the optical axis being the z-axis. DoI is a cubic region
on the substrate inside which RI is a function of location based on the distribution of the
samples.

2.2. Numerical solver

To solve the problem numerically, the equations are discretized with the method of moments. The
whole domain of interest is discretized into N = Nx � Ny � Nz small cells with side h and all the
physical variables are considered uniform in each cell, represented by the value at the center of
each cell rm, m = 1, 2, : : : , N. Considering the singularity, the half-space dyadic Green’s function
Gd¹r , r 0º is split into two parts as Gd¹r , r 0º = Gh¹r , r 0º + Gr¹r , r 0º with Gh¹r , r 0º representing the
primary field and Gr¹r , r 0º the reflected field from the substrate. The state equation is discretized
as follows

Et¹rmº = Ei¹rmº +
�
2
3

�
¹1 � ikobjaºeikobja � 1

�
�

1
3

�
� ¹rmºEt¹rmº

+ Vc

NÕ

n, m
k2

objGh¹rm, r nº� ¹r nºEt¹r nº + Vc

NÕ

n
k2

objGr¹rm, r nº� ¹r nºEt¹r nº
(3)

where Vc is the volume of each cell and a is the equivalent radius as a = 3
p

3Vc•4� . Numerical
evaluation of the singularity of Gh¹r , r 0º is considered as in [35]. Here we define

Gh¹rm, r nº =

8>><

>>
:

2
3

�
¹1 � ikobjaºeikobja � 1

�
�

1
3

, n = m

Vck2
objGh¹rm, r nº n , m

(4)
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and
Gr¹rm, r nº = Vck2

objGr¹rm, r nº. (5)

The discrete equation can be simplified as

Et¹rmº = Ei¹rmº +
NÕ

n
Gh¹rm, r nº� ¹rmºEt¹rmº +

NÕ

n
Gr¹rm, r nº� ¹rmºEt¹rmº. (6)

We can rewrite it as matrix-vector product and the total field can be obtained by matrix
inversion given the illumination and distribution of contrast. However the system matrix has a
size of 3N � 3N which leads to difficulty in large-scale problem. In our simulation, we use an
optimization method to get the solution. Exploring the expressions of Green’s function, we can
find that

Gh¹rm, r nº = Gh¹rm � r nº (7)

Gr¹rm, r nº = Gr¹xm � xn, ym � yn, zm + znº (8)

which involve operations of convolution and correlation. Thus, fast Fourier transform (FFT) can
be employed to save memory and accelerate computation. Details of FFT implementaion for
half-space dyadic Green’s function can be found in [36]. To simplify the calculation of gradient,
we use the contrast current J¹rº = � ¹r ºEt¹r º [37], instead of the total field, as the unknown
variable in the equation. It can be obtained by solving the least-square problem

J = argmink� Ei + � GhJ + � GrJ � Jk2 (9)

with gradient-based optimization method, such as conjugate gradient (CG) method [38] and
biconjugate gradient stabilized (Bi-CGSTAB) method [39].

Similarly, we discretize the image plane into M = Mx � My pixels centered at r cam,m, m =
1, 2, : : : , M. Once the contrast source J¹rº is obtained, the scattered field at each point can be
calculated as

Es¹r cam,mº = Vc

NÕ

n
k2

objGs¹r cam,m, r nºJ¹r nº. (10)

2.3. Illumination and collected light

The illumination is assumed to be collimated, represented as plane wave

Eill =

2
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5

e� ikobjz. (11)

Given reflection coefficient R =
nobj � nsub

nobj + nsub
e� 2ikobjzsub for normal incidence with zsub represent-

ing z-coordinate of the substrate, the incident field is the sum of the illumination and the reflected
light as

Ei =
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The reflected light will propagate through objective and tube lens and is captured by the camera
as

Er = R•Mei¹kobj fobj+kcamfcamº

2
6
6
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Ex0

Ey0

0

3
7
7
7
7
7
7
7
5

eikcamzcam . (13)

Here fobj and fcam are the focal lengths of objective and tube lens respectively. kcam is the
wavenumebr in the image plane. M is the magnification of the microscope. Note that we have
neglected the intensity loss when light passes through the objective and tube lens and we also
assume that the light intensity is uniformly distributed on camera after refraction by the lens.
The field generated from the sample arm on the camera is Esample = Es + Er and the bright-field
image is

Ibf ¹r camº = jEsample¹r camºj2 = Esample¹r camºEsample¹r camº (14)

where E is conjugate of E. The procedure of solving the forward problem to get the scattered field
is shown in Fig. 2. Given the illumination Ei¹r º and the sample parameter n¹r º, the contrast source

Fig. 2. Illustration of our 3D full-wave multi-scattering (FWMS) forward solver process.
Example is shown with a 1 micron-diameter bead (n = 1.6) placed on a substrate with
nsub = 3.5 and in immersion medium (nobj = 1) illuminated by x-polarized plane wave
(� =660 nm) with normal incident angle. Far-field DGF is derived to simulate a 40 � 0.65
NA objective lens. With known incident field and distribution of the contrast, contrast
source is determined first which indicates how the dipoles are induced in the DoI, as Jx, Jy
and Jz shown in three orthogonal planes in a 3D cubic. Each contrast source component
will radiate vectorial scattered field on camera, which gives 3 � 3 2D data maps with the
row index showing contrast source component and column index indicating the component
of the scattered field. The final scattered field is obtained by adding up the data maps by
column which compose the same component of the field. The square of the amplitude of
each component is computed as the intensity component and the final camera image of
scattered field on camera is the sum of these three components. In the shown example, the
x-component of the scattered field produced by Jx (1st row, 1st col. in the 3 � 3 2D maps)
has the highest amplitude and keeps the shape of the object. The final image on the camera
is dominated by this component.






























