
CSP at the Cyber-Physical Edge

Lukasz Sergiusz MICHALIK 1, Michael J. MURPHY, John Markus BJØRNDALEN,
Otto J. ANSHUS

UiT The Arctic University of Norway

Abstract. Today, to do ground-based in-situ observations of the arctic tundra, re-
searchers carry wild life cameras and other observation units into the field, manually
configure the devices while on the arctic tundra, and fetch the collected data several
months later. This approach does not scale. Instead, observing and reporting of data
must be automated using a distributed wireless network of autonomous observation
units.

We present the basic hardware and software architectures of the Distributed Arctic
Observatory (DAO) observation units. A DAO observation unit is composed of both
heavy and light computer cores. The idea is to use the heavy cores for resource de-
manding tasks and then power them off and shift the workload to light cores when
possible in order to increase energy efficiency and extend battery life.

We report on initial thoughts and experiences in applying a CSP network on an
observation unit to ease development of advanced functionalities, while still achieving
energy efficiency for observation units.

In order to rapidly develop prototype systems and learn from them, we have com-
posed observation units with a combination of Raspberry Pi computers as the heavy
cores, and Arduino, Nucleo, and Sleepy Pi microcontrollers as the light cores.

This is work in progress.

Keywords. CSP, Go, microcontroller, concurrency, energy efficiency, heterogeneous
computing

Introduction

The arctic tundra is the biome that is most exposed to and sensitive to climate change. This
implies an urgent need for reliable and timely observation as stated in the Climate-Ecological
Observatory for Arctic Tundra (COAT) science plan [1]. Today, however, much less than 1%
of the arctic is being observed by in-situ observation stations collecting data from various
sensors. While satellites can provide valuable information, ground-based in-situ observations
are essential for measurements of the type and resolution needed.

To scale with the number of observation units and the volume of data, the deploy-
ment, observing, reporting and analytics of data must be automated. Such automation can
be achieved with a ground-based distributed wireless network of autonomous observation
units. Wireless sensor networks (WSN) typically have nodes comprised of a microcontroller,
a radio, and a battery. While microcontroller-based observation units have very good energy-
efficiency, they typically lack in other respects. The microcontrollers have few and limited
computing, memory, and network resources. Consequently, only relatively simple function-
alities can execute at the edge sensor nodes. The programming and run-time environments
are also limited, lacking the tools of the trade we are used to on larger computers. This is
costly in several ways, including having to use limited software models (say, not being able

1Corresponding Author: Lukasz Sergiusz Michalik. E-mail: lukasz.s.michalik@uit.no



to use multi-threading, though efforts are underway [2]), as well as increased development
time and more bugs.

Consequently, it is harder to achieve autonomous operation in the face of harsh environ-
mental conditions, network partitioning and limited quality of service, and unexpected fail-
ures. It also becomes more difficult to update and reconfigure observation units after deploy-
ment.

This is critical in an environment like the arctic tundra where energy and data networks
are sparse resources, the frigid temperatures degrade battery and electronics operation, and
observation units cannot realistically be visited by humans for updates, repair and mainte-
nance when they fail or observation needs change.

Advanced observation units suited for the arctic tundra must therefore support advanced
and varied types of networking, energy management, data processing, storage and retrieval of
data, and ease of development and programming. They must also be adaptable with regards
to future needs and flexible with regards to interactive changes during ongoing observations.
Flexibility is especially important as we have experienced that ecologists regularly come up
with new sensor applications and use cases. Agile adaptation to new sensor types and uses of
sensors will be increasingly important.

Consequently, the wireless sensor network systems must shift from being microcontroller-
based to also being computer-based. To achieve the needed energy-efficiency and low en-
ergy usage, heterogeneous architectures such as ARM’s big.LITTLE architecture [3] provide
heavy cores for the resource and energy demanding tasks, and light cores for lighter tasks
drawing very little energy. Such systems will turn cores and other resources on and off as
demanded by the available energy and mission tasks to be performed.

ARM’s big.LITTLE architecture has hardware advantages that make programming sim-
pler. Both big and little cores have the same architecture and instruction set, and share mem-
ory through a hardware cache-coherence layer [4]. This hardware support allows the op-
erating system scheduler to leverage classic symmetric multiprocessing (SMP) techniques
to move threads between heterogeneous cores. Kernel scheduling code is modified to add
heuristics that schedule threads between big and little cores based on thread load statistics. In
another mode, hardware virtualization presents the big and little cores together as one core
with two clock speeds, stopping processes and transparently moving them between cores
when the OS requests a clock-speed change. This allows the operating system’s existing
clock-speed regulating code to make use of the heterogeneous architecture with no modifi-
cation at all, though it only uses half of the processors at any given time. In either case, no
modifications are required to application code, beyond normal use of multiprocessing.

Programming a microcontroller-based sensor node includes flashing the microcontroller
with a sequential program, running applications on top of or embedded inside a tiny operat-
ing system, and providing a sensor node with a simple interface for interacting with remote
applications running on remote servers or in the cloud. Sometimes basic software must be
installed into the sensor nodes before they are deployed.

We have built multiple prototype sensor nodes, which we call observation units, fol-
lowing the idea of mixing heavy and light cores. We apply a well-known commodity com-
puter (Raspberry Pi), and one or multiple well-known microcontrollers (Arduino). In normal
operation, the Raspberry Pi will boot into Linux and run necessary mission software for a
short duration before shutting down to save energy. The microcontroller is always on in low-
powered mode to perform light tasks, and it will decide when to power the Raspberry Pi on
or off. Power to the Raspberry is controlled by a Sleepy Pi, which is itself a microcontroller
board that is preconfigured to control power to a Raspberry Pi. The Sleepy Pi is necessary
because a Raspberry Pi is not actually capable of powering itself down fully. Figures 2b and 3
show this prototype’s architecture and implementation.

The advantage of such a node for development is that the “heavy core” is running a



mature and widely used operating system (Raspbian, which is based on Debian Linux) that
has all necessary tools of the trade. Consequently, we are able to use the programming models
and languages that we are used to and prefer using (such as CSP in Python or Go).

In this paper, we are assuming that we can write a normal PyCSP or Go program, and
seamlessly deploy the processes/co-routines between the heavy and light cores. The idea is
similar to OpenMP [5], where the same source code is used to write and verify a sequential
program and, through annotations, compile a parallel program. A similar approach to sensor
system development would let us write a CSP program and identify processes that will exe-
cute on, for instance, a microcontroller. While we ignore discussing how to do this in prac-
tise, we briefly look at how Linux and Android approaches using multiple cores. We focus
on a few of the issues arising when cores, at any time, can enter sleep and power off modes
for shorter and longer periods. We assume this to be the common case.

The original CSP paper from 1978 states that “the programs expressed in the proposed
language are intended to be implementable both by a conventional machine with a single
main store, and by a fixed network of processors connected by input/output channels (al-
though very different optimizations are appropriate in the different cases).” [6]. When cores
running CSP processes or goroutines enter sleep mode or power off, we are interested in
the behaviour of the parallel, input, output, alternative and repetitive commands. We identify
some of the issues we believe are of interest, and experiment with Go running on a Rasp-
berry Pi and a Nucleo microcontroller in order to gain some practical experience with the
challenges arising when cores sleep and power on and off.

The work flow we envision to develop concurrent functionalities for observation units is
comprised of five stages.

Stage 1 is to design and implement a CSP/Go program for a single computer (laptop, PC
with Linux).

Stage 2 is to manually move the whole program from the PC to one of the heavy cores (a
Raspberry Pi) of an observation unit for early deployment and testing with sensors.

Stage 3 is to manually move a process/goroutine of the program from the heavy core (Rasp-
berry) to a light core (Nucleo microcontroller) for initial power optimisation.

Stage 4 is to find a mapping of processes/goroutines to heavy and light cores and actually do
the migration to the cores. All cores will be powered on all the time.

Stage 5 is to find a mapping of processes/goroutines to heavy and light cores and actually do
the migration to the cores. Cores can be in powered on, powered off, and sleep states.

Instead of migrating processes/goroutines between cores, we are also considering keep-
ing a program intact on a single core, and instead migrate whole programs between cores.

1. CSP and Heterogeneous Architectures

A parallel command is specified in [6] as a “concurrent execution of its constituent sequen-
tial commands (processes). All the processes start simultaneously, and the parallel command
ends only when they are all finished.”

With a heterogeneous architecture, the challenges arising from the parallel command
executed across cores include simultaneous starting, scheduling, power management and si-
multaneous ending.

The main issue with “start all simultaneously” is that some of the cores on which pro-
cesses are meant to run are sleeping or powered off. The command could use already pow-
ered cores with resources to accept the process and its workload. However, for the application
domain we are interested in, advanced sensor nodes on the arctic tundra, energy is a sparse
resource to be carefully used. Consequently, heavy cores will normally be powered off, and



A

B

C

µc µc

Heavy

Figure 1. Hypothetical distribution of CSP processes across devices

must be powered on before assigning processes to them. Light cores on the other hand will
as common case be powered on or can be quickly powered on from various power levels, but
may have too few resources to accept many of the processes. Taken together, this has impli-
cations for how many cores can be used for “simultaneous” start of processes. If cores have
to be powered on before being used, the latency of starting processes increases. Furthermore,
it may be beneficial to consider co-scheduling some of the processes to reduce the number of
wake-ups and shutdowns of the heavy cores.

We envision that the parallel command should allow assignment of processes to pow-
ered off or suspended cores. In effect, this would be a pending migration until the cores are
powered on for some reason. One approach to handle this would be to add “power guards”
and “scheduling guards” that would allow the programmer to provide hints about acceptable
delays and scheduling decisions for the runtime.

To “end the command when they are all finished,” the system can force cores to remain
powered on until all processes are finished. This increases the energy usage. Some processes
may even never “finish” as such, and all cores used by the parallel command remain powered
on all the time. We need to let processes reside on cores that are sleeping or powered off,
without this being seen as a crash, failure or termination of the processes. One question here is
whether we can use light versions of processes that can run on light cores as representatives,
or proxies, for heavy processes running on sleeping or powered off heavy cores.

An input and output command “is delayed until the other process is ready with the cor-
responding output or input. Such delay is invisible to the delayed process [...] An input com-
mand fails if its source is terminated. An output command fails if its destination is terminated
[...]” [6].

With a heterogeneous architecture, the challenges arising from input and output com-
mands include delays and failing. Delays can arise from, for instance, a core running a pro-
cess being suspended after the process starts to send or receive on a channel. The correspond-
ing operation may not be established or completed before the suspended core becomes active,
at a cost in latency and energy.

A process should not be detected as failed unless it fails to wake up again. One of the
issues here is separating failed communication channels or units in a system from processes
located on a suspended core.

The few issues raised here impact other commands like input and output guards and
the alternative and repetitive commands. To evaluate input and output guards, sleeping and
powered off cores have to be powered on and awaken on a potentially large scale. This can be
costly in energy and in increasing the delays before a decision is made on which alternative
to execute.

For the repetitive command with input guards, it is meant to terminate if all the sources
named by them have terminated. Again, “termination” has to be defined not to imply that a
process on a sleeping or powered off core has terminated.

As an example case, consider the process network in fig. 1. A program that runs correctly
on a single desktop computer could be mapped to run process A on one microcontroller,



process C on another and a coordinator, B, on a heavy core1. If A tries to coordinate with
C through B, it can do this with messages passed on channels. If the core running B is
suspended anywhere in this process, we may end up with A and C having an inconsistent
view of the result as B may be able to complete the communication with A just before being
suspended, but not have the time to coordinate with C.

In effect, we have created a problem similar to the two-generals problem [7]. A practical
solution to this might involve some form of notifications to let the runtime and power man-
agement system take application intentions into account and also notify peers and the user
programs about actions. This might require modifications to the runtime.

Allowing coordinating entities, termed narcoleptic processes in our group, to suspend
and resume at any point in time introduces issues similar to partitioning in distribute sys-
tems, except some of the processes will be sleeping instead of disconnected. Forcing cores to
stay awake during co-ordinations can quickly lead to problems similar to priority inversions,
where a long-running channel communication keeps the entire system running. We are cur-
rently using the term sleep deprivation internally for this situation. One potential solution to
this is to model some process interactions as short-lived transactions with deadlines.

2. Related Work

Prior relevant state of the art on using cyber-physical systems includes research on wire-
less sensor networks (WSN), deployment and use of WSNs in various fields and application
domains like agriculture, habitat and environmental monitoring [8–15].

A WSN typically is composed of small computing devices being microcontrollers (often
called motes) [16, 17, 17–22]

For the sensor nodes the WSN community traditionally applied MICA2 motes [16–19],
the Sun SPOT platform [20], Libelium Wasp-motes [21], and custom-made architectures
[17, 22].

From about the 2010 this shifted gradually towards Arduino-based architectures, such
as Arduino Uno [23] and Arduino Mega [24]. AVR ATmega 1281V is also in use [25]. All
of these approaches use microcontrollers with very limited resources, but being very energy-
efficient vs. general purpose tiny computers like the Raspberry Pi.

Of special interest for this paper is the hardware and software platforms used for de-
velopment of software for sensor nodes, and platforms running on the nodes. While energy-
efficient and often able to communicate via radio, a sensor node typically has very limited
processing and memory resources. The reported experience is that such platforms are difficult
and time-consuming to write software for [26–29].

To determine the suitability for prototyping, Occam, Go, and Python/PyCSP have been
compared [30].

The conclusion is that Go provides both ease of development, results in stable programs,
allows for low level hardware interfacing, and CSP-style of concurrency and communication.

We are aware of proposals to introduce operators to support asynchronous input and
output commands. One proposal supports having a process doing output to only processes
being able to do an input command [31]. We find this proposal interesting because we see
it as relevant to our question of what to do when deciding which processes to communicate
with when some of the possible processes are on sleeping or powered down cores.

A second proposal allows the acknowledgement from the receiver to the sender to be
delayed [32]. This is interesting for our research. If a receiver delays sending ack, the sender
must accept a delay. We would like to see if this can be used to let the delay be because of a
sleeping/powered off core.

1The program may, for instance, need to run some computation in B to determine the next state



Heavy Light
1. Program

2. Shutdown

3. Determine
need to wake

4. Wake

(a) Conceptual Architecture

Raspberry Pi

Sleepy Pi

Arduino
1. Flash

2a. Shutdown signal2b. OS shutdown

2c.
Pin
low

2d.
Power
off

3. Timer

4a. Wake signal4b.
Power
on 4c. Boot

(b) Prototype Design

Figure 2. DAO observation unit: architecture and design

Raspberry Pi

Sleepy Pi

Arduino

I2C

Programmer

Power
Supply SCL,SDA

6GPIO 2,3 A6,A7

USB SPI

power

power

G
PI

O
25

PD
7

Figure 3. DAO observation unit: hardware connections

A third proposal allows a process to do an output command without having a corre-
sponding input command ready [33]. This proposal directly attacks the issue on whether an
alternative command can select a process on a sleeping/powered off node to interact with.

One of the options we are considering is to compile existing languages down to an effi-
cient interpreter that can be deployed on target micro-controllers. MicroPython2 is an exam-
ple of a runtime for the Python programming language, but it has limited concurrency support
directly, and the asyncio and threading libraries are very limited currently. The Transterpreter,
on the other hand, is a system that compiles Occam-π down to run on an interpreter which
can run on small embedded architectures [34]. In [35], it was ported to the Cell processor,
which is an example of a distributed hybrid processor architecture.

3. Architecture

The idea of the present version of a DAO observation unit is to apply heavy cores for tasks
demanding more processing, memory, and other resources, and to apply light cores for less
demanding tasks. fig. 2a shows a diagram of the prototype architecture.

Technically, we combine a well known and widely used tiny computer and operating sys-
tem with a microcontroller. The tiny computer will handle more resource demanding tasks,
and the microcontroller will handle lighter tasks. The microcontroller will also coordinate to
switch the computer on and off according to the observation unit’s workload.

The software architecture for the heavy core comprises the functionalities: (i) customiz-
ing (“programming”) light core functionalities as needed, (ii) shutting down and rebooting
itself, and (iii) other heavy-duty mission business logic & payloads.

The software architecture for the light core comprises the functionalities: (i) determin-
ing when to wake up heavy core, (ii) determining when to request shutdown of heavy core,
(iii) keeping time, and (iv) other light-duty mission business logic & payloads.

The prototype design in fig. 2a shows a prototype that we have developed to investigate
suspending and resuming the heavy cores, represented by the Raspberry Pi. The Sleepy Pi
is necessary as a controller that can properly cut power to the Raspberry Pi because the
Raspberry lacks the capability to power itself down fully.

2MicroPython, see https://micropython.org/



Go Emgo
Serial Port

Raspberry Nucleo

(a) Device hardware connections

Prefix Delta 2 Consume

Succ

A D

CB

(b) Commstime benchmark

Prefix Delta 2 Consume

proxy

A D

CB

Succ

serial port

Raspberry

Nucleo

(c) Commstime benchmark across devices

Figure 4. Prototype implementation of commstime benchmark across devices

For this paper, we have started working on a prototype that is capable of running a con-
current program written in the Go programming language on the microcontroller, using the
Emgo compiler and runtime.3 Emgo uses the standard Go compiler, but it targets a custom
Go runtime that is developed specifically to run on microcontrollers. Emgo does not currently
support Arduino hardware, so we have modified our prototype to instead use a Nucleo micro-
controller, which Emgo does support. In addition, we have temporarily removed the Sleepy
Pi in order to simplify development and focus on the problem of moving goroutines to a mi-
crocontroller. This simplified architecture is shown in fig. 4a. This simplified prototype is not
intended for extreme temperatures, and is instead focused on the integration of Go programs
running on heavy cores and microcontrollers.

4. Implementation

The prototype was implemented using a Rasperry Pi 3B connected to a Nucleo-L476RG mi-
crocontroller as shown in fig. 4a. The Raspberry Pi is running programs written in Go, while
the Nucleo board runs programs compiled with Emgo. To simplify the prototype, we are
currently connecting the Nucleo board to the Raspberry Pi over USB. The USB connection
powers the Nucleo board and is used for uploading new programs to the Nucleo board. We
are also using the serial port console for communication between the Go program and the
Emgo program.

Future implementations will investigate other communication options, such as i2c, as
powering the Nucleo from one of the Raspberry’s USB ports prevents us from powering
down the Raspberry Pi without cutting power to the Nucleo.

To experiment with communication with the Emgo compiled programs on the Nucleo,
we have implemented a variation of the commstime benchmark [36]. The benchmark is used
to measure context switch and channel communication overhead. The structure of a normal
commstime benchmark running on a host computer is shown in fig. 4b.

In commstime, a value is passed around in a cycle, with copies of the values observed
by Consume. The Prefix process initiates the execution of the benchmark by sending a value
to Delta2 over channel A. Delta2 receives the value and sends a copy over both D and C.

3Emgo, see https://github.com/ziutek/emgo



Succ receives a value, adds 1 to it and sends the result over channel B. From now on, Prefix
receives on B and sends the received value on A without modification.

Consume first receives a few values over D to make sure all the other processes are run-
ning. It then records a timestamp and reads a predefined number of messages before record-
ing a new timestamp. The elapsed time is then used to compute an average time for a channel
communication and scheduling of goroutines.

The plan for the prototype was originally to move the Succ process out to the Nucleo
board and run the rest of the benchmark on the Raspberry Pi. We did not get remote channel
support working in time for this paper, so the prototype now uses a Succ proxy process
running on the Raspberry Pi that receives a value from the C channel, passes it over the serial
port and reads a new value back over the serial port before sending it over the B channel. The
Succ proxy is shown below. It is running on the Raspberry, as shown in fig. 4c.

func succ_proxy(in <−chan int, out chan<− int) {
i := 0
for {

n := <−in;
WriteSerial(i, n)
n = ReadSerial()
out <− n
i++

}
}

The Emgo side runs a version of the Succ process that reads on the serial port, increases
the value by 1 and passes the result back over the serial port.

5. Experiments

A group of performance measuring experiments were done on a prototype to document per-
formance characteristics.

We measured electrical current draw during the commstime benchmark (fig. 4b) when
running all together on a Raspberry Pi 3, and then when split across a Raspberry Pi and
Nucleo board communicating over a serial port (figs. 4a and 4c). During separate runs of
these two benchmarks, we have also captured CPU utilization metrics on the Raspberry Pi
(user and system times).

In order to determine how much overhead is imposed by serial communication between
devices, we wrote an additional benchmark in which Raspberry Pi sends and receives exactly
3B of data (1B of actual data and 2B end-of-transmission) to and from Nucleo board. This
send and receive is repeated 100 times.

To measure power consumption, we connected a digital multimeter (R&S® HMC8012)
between the Raspberry Pi and its power supply. We measured electrical current draw and then
used it to calculate power consumption, using a measured voltage that was consistently very
close to 5V. To obtain readings over time, we used the multimeter’s digital log function to
record samples every second (capturing about 5 samples/s).

To obtain CPU utilization readings we used the sar command line tool from the
sysstat package (System performance tools for the Linux operating system). The sar com-
mand was executed in a separate Raspberry Pi SSH session in order to sample system activity
every 1 s during the commstime benchmarks. The sar command calculates its CPU utiliza-
tion across all cores, so a report of 25% CPU utilization corresponds to 100% utilization of
one of the Raspberry’s four cores.

The commstime benchmark was executed with the default Go runtime parameters (GO-
MAXPROCS=4 for RaspberryPi 3).



In order to capture CPU utilization and current draw during the commstime benchmark
executed on Raspberry Pi alone, we increased number of iterations for the consume process
from 100 to 100000. This was necessary to increase the execution time of the benchmark
to a time scale large enough for the multimeter and CPU utilization sampler to get steady
readings.

6. Results

Figure 5 shows context switch times and times taken by a single round of data exchange
between Go processes for the commstime benchmark executed on the Raspberry Pi alone
and on the combination Raspberry plus Nucleo. It is clear from the presented results that our
benchmark needs a few magnitudes less time to finish when GO routines are communicating
on the same node (note that the time axis is on a logarithmic scale). Part of the slower times
for the Raspberry-Nucleo combination is caused by communication delay. One of the Go
processes (“proxy” in fig. 4c) is communicating with the Emgo process on the Nucleo side
using a serial port, which imposes and additional delay of 1020 µs between each read and
write operation.

The slowest benchmarks in the figure are from an early implementation of the serial
communication code, where each read from and write to the serial port was imposing a 20ms
delay on the Raspberry Pi side. This from our read implementation waiting for at least four
bytes to arrive before declaring the read successful. We changed the implementation to detect
single bytes arriving on the serial line and eliminated that delay, resulting in the improved
benchmarks show on the right in the figure. In order to improve context switch time further,
we will need to find a more efficient way to exchange data between the Raspberry and the
Nucleo.

The Raspberry Pi draws an average 264mA of current when idle and around 370mA
while executing the more intensive variant of the commstime benchmark alone (one thousand
times more data exchanges between GO processes). This experiment used between 25%
to 49% of the Raspberry’s CPU time during execution. A single run of benchmark takes
approximately 17 s.

The combined Raspberry Pi and Nucleo idles at around 320mA and spikes up to 340mA
during the workload. We measured that Nucleo board itself uses 44mA to 56mA of current
while waiting for data arrival on a serial port. Our experiment showed that communication
delay causes the Raspberry’s CPU to spend most of the benchmark’s time idle (sar shows
only 0.25% to 0.5% CPU utilization). Electric current consumption results are depicted in
figs. 6a and 6b.

Current consumption results for the Raspberry-Nucleo combination are not terribly im-
pressive considering the applied workload. In order to improve our prototype we are planning
to decrease the current draw of Nucleo board below 7mA in the next iteration by underclock-
ing its CPU and disabling unused board components. Future experiments will also power
down the Raspberry Pi to conserve energy, delegating more work to the microcontrollers.

7. Discussion

With heavy and light cores potentially entering powered off/on and sleep states at any time,
we have characteristics of an asynchronous distributed system with unreliable, untrusted
communication channels.

The implementation of CSP commands will have to send acknowledgements when im-
plementing the channel abstraction.



Raspberry Only Nucleo w/ 20ms delay Nucleo w/ no delay
Loop 19.6 s 20.3 ms 4.1 ms
Context switch 4.9 s 5.1 ms 1.0 ms

10 s

100 s

1 ms

10 ms

Ti
m

e 
(lo

ga
rit

hm
ic 

sc
al

e)

Loop
Context switch

Figure 5. Commstime benchmark results

0 20 40 60 80 100 120 140
time (s)

200

250

300

350

400

450

cu
rre

nt
 (m

A)

(a) Running commstime on Raspberry only

0 10 20 30 40 50 60 70 80
time (s)

200

250

300

350

400

450

cu
rre

nt
 (m

A)

(b) Running commstime across Raspberry and Nucleo

Figure 6. Current consumption during commstime benchmark

Depending on how the implementation is done, this can produce situations where an
output command done at one core correspond to an input command at another core, while the
implementation of the channel in effect is “hosted” at a third core. The sender and receiver
can reach an inconsistent state with regards to the state of the output and input because the
acknowledgements may or may not have reach both. This can happen because the third core
can enter powered off or sleep state between sending out ACKs.

In effect we have a problem like the two-generals problem [7].

8. Conclusions

Advanced sensor nodes for harsh, resource limited, and hard to get at environments need to
shift from being microcontroller based to having significant more resources available. An
architecture with heavy and light cores provides for both ease of development, rich function-
alities and energy efficiency.

Programmability is critical to support deployment of a system growing over time, and
having to adapt to future technologies and observational needs.

We are interested in researching if a CSP network of processes can support all of the
above requirements and needs. Concurrent programs or processes/goroutines will have to
be mapped to cores, and then migrate between cores according to a range of dimensions
including resource availability (energy, CPU, memory, network), and observational needs.



The research is in an early stage, and we are presently focusing on identifying the chal-
lenges, and constructing an early prototype.

Acknowledgements

The DAO project is supported by the RCN IKTPluss program, project number 270672. The
COAT Tools project is supported by the UiT The Arctic University of Norway. Thank you
very much to the COAT ecologists, and to Ken-Arne Jensen at the technical staff at the UiT
Dept. of Computer Science.

References

[1] Rolf A. Ims, Jane U. Jepsen, Audun Stien, and Nigel G. Yoccoz, editors. Science plan for COAT: Climate-
ecological Observatory for Arctic Tundra. The Fram Centre by the University of Tromsø, 2013.

[2] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64kb computer safely and efficiently. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, pages 234–251, New York, NY, USA, 2017. ACM.

[3] Arm big.LITTLE technology.
[4] ARM Cortex-A Series Programmer’s Guide for ARMv8-A (DEN0024A). ARM, 2015.
[5] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-memory program-

ming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.
[6] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, August 1978.
[7] E. A. Akkoyunlu, K. Ekanadham, and R. V. Huber. Some constraints and tradeoffs in the design of network

communications. SIGOPS Oper. Syst. Rev., 9(5):67–74, November 1975.
[8] Aline Baggio. Wireless sensor networks in precision agriculture. In ACM Workshop on Real-World

Wireless Sensor Networks (REALWSN 2005), Stockholm, Sweden, pages 1567–1576. Citeseer, 2005.
[9] Antonio-Javier Garcia-Sanchez, Felipe Garcia-Sanchez, and Joan Garcia-Haro. Wireless sensor network

deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed
crops. Computers and Electronics in Agriculture, 75(2):288 – 303, 2011.

[10] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: experiences from a pilot sensor net-
work deployment in precision agriculture. In Proceedings 20th IEEE International Parallel Distributed
Processing Symposium, pages 8 pp.–, April 2006.

[11] W.S. Lee, V. Alchanatis, C. Yang, M. Hirafuji, D. Moshou, and C. Li. Sensing technologies for precision
specialty crop production. Computers and Electronics in Agriculture, 74(1):2 – 33, 2010.

[12] Tamoghna Ojha, Sudip Misra, and Narendra Singh Raghuwanshi. Wireless sensor networks for agricul-
ture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture,
118:66 – 84, 2015.

[13] Luis Ruiz-Garcia, Loredana Lunadei, Pilar Barreiro, and Ignacio Robla. A review of wireless sensor
technologies and applications in agriculture and food industry: State of the art and current trends. Sensors,
9(6):4728–4750, 2009.

[14] T. Wark, P. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Crossman, P. Valencia, D. Swain, and G. Bishop-
Hurley. Transforming agriculture through pervasive wireless sensor networks. IEEE Pervasive Computing,
6(2):50–57, April 2007.

[15] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt Welsh. Fidelity and yield in
a volcano monitoring sensor network. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, pages 381–396, Berkeley, CA, USA, 2006. USENIX Association.

[16] Lindsay A Seders, Caitlyn A Shea, Michael D Lemmon, Patricia A Maurice, and Jeffrey W Talley. Lak-
enet: an integrated sensor network for environmental sensing in lakes. Environmental Engineering Science,
24(2):183–191, 2007.

[17] Xin Wang, Longquan Ma, and Huizhong Yang. Online water monitoring system based on zigbee and gprs.
Procedia Engineering, 15:2680 – 2684, 2011. CEIS 2011.

[18] Teresa Ko, Shaun Ahmadian, John Hicks, Mohammad Rahimi, Deborah Estrin, Stefano Soatto, Sharon
Coe, and Michael P. Hamilton. Heartbeat of a nest: Using imagers as biological sensors. ACM Trans. Sen.
Netw., 6(3):19:1–19:31, June 2010.

[19] Liqian Luo, Qing Cao, Chengdu Huang, Lili Wang, Tarek F. Abdelzaher, John A. Stankovic, and Michael
Ward. Design, implementation, and evaluation of enviromic: A storage-centric audio sensor network.
ACM Trans. Sen. Netw., 5(3):22:1–22:35, June 2009.



[20] M. Zennaro, A. Floros, G. Dogan, T. Sun, Z. Cao, C. Huang, M. Bahader, H. Ntareme, and A. Bagula. On
the design of a water quality wireless sensor network (wqwsn): An application to water quality monitoring
in malawi. In 2009 International Conference on Parallel Processing Workshops, pages 330–336, Sept
2009.

[21] Nikolaos Rapousis, Michalis Katsarakis, and Maria Papadopouli. Qowater: A crowd-sourcing approach
for assessing the water quality. In Proceedings of the 1st ACM International Workshop on Cyber-Physical
Systems for Smart Water Networks, CySWater’15, pages 11:1–11:6, New York, NY, USA, 2015. ACM.

[22] Peng Jiang, Hongbo Xia, Zhiye He, and Zheming Wang. Design of a water environment monitoring
system based on wireless sensor networks. Sensors, 9(8):6411–6434, 2009.

[23] Cesar Eduardo Hernández Curiel, Victor Hugo Benítez Baltazar, and Jesús Horacio Pacheco Ramírez.
Wireless sensor networks for water quality monitoring: Prototype design. International Journal of Envi-
ronmental, Chemical, Ecological, Geological and Geophysical Engineering, 10(2):162 – 167, 2016.

[24] A. S. Rao, S. Marshall, J. Gubbi, M. Palaniswami, R. Sinnott, and V. Pettigrovet. Design of low-cost au-
tonomous water quality monitoring system. In 2013 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pages 14–19, Aug 2013.

[25] Vladimir Dyo, Stephen A. Ellwood, David W. Macdonald, Andrew Markham, Niki Trigoni, Ricklef
Wohlers, Cecilia Mascolo, Bence Pásztor, Salvatore Scellato, and Kharsim Yousef. Wildsensing: De-
sign and deployment of a sustainable sensor network for wildlife monitoring. ACM Trans. Sen. Netw.,
8(4):29:1–29:33, September 2012.

[26] Asad Awan, Suresh Jagannathan, and Ananth Grama. Macroprogramming heterogeneous sensor networks
using cosmos. In Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, EuroSys ’07, pages 159–172, New York, NY, USA, 2007. ACM.

[27] Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, and Ramesh Govindan. Reliable and efficient
programming abstractions for wireless sensor networks. In Proceedings of the 28th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’07, pages 200–210, New York,
NY, USA, 2007. ACM.

[28] Luca Mottola and Gian Pietro Picco. Programming wireless sensor networks: Fundamental concepts and
state of the art. ACM Comput. Surv., 43(3):19:1–19:51, April 2011.

[29] Adriano Branco, Francisco Sant’anna, Roberto Ierusalimschy, Noemi Rodriguez, and Silvana Rossetto.
Terra: Flexibility and safety in wireless sensor networks. ACM Trans. Sen. Netw., 11(4):59:1–59:27,
September 2015.

[30] Brian Vinter, Lawrence J. Dickson, Lindsay O’Brien Quarrie, Patrick Dyhrberg Sørensen, and Tor Skovs-
gaard. “a concurrent data collection environment for wasteful communication satellite system”. In Jan
Bækgaard Pedersen, Kevin Chalmers, Jan F. Broenink, Brian Vinter, Kevin Vella, and Peter H. Welch,
editors, “Communicating Process Architectures 2017”, pages 187 – 196. “Open Channel Publishing Ltd.,
Bicester, UK”, “August” 2017.

[31] S. Gruner, D. G. Kourie, M. Roggenbach, T. Strauss, and B. W. Watson. A new csp operator for optional
parallelism. In 2008 International Conference on Computer Science and Software Engineering, volume 2,
pages 788–791, Dec 2008.

[32] Peter Marwedel. Embedded system foundations of cyber-physical systems, 2011.
[33] Jan F. Broenink and Antoon H. Boode. “asynchronous readers and writers”. In Kevin Chalmers, Jan

Bækgaard Pedersen, Jan F. Broenink, Brian Vinter, and Peter H. Welch, editors, “Communicating Process
Architectures 2016”, pages 197 – 210. “Open Channel Publishing Ltd., Bicester, UK”, “August” 2016.

[34] Christian L. Jacobsen and Matthew C. Jadud. The Transterpreter: A Transputer Interpreter. In Ian R. East,
David Duce, Mark Green, Jeremy M. R. Martin, and Peter H. Welch, editors, Communicating Process
Architectures 2004, volume 62 of Concurrent Systems Engineering Series, pages 99–106, Amsterdam,
September 2004. IOS Press.

[35] Damian J. Dimmich, Christian L. Jacobsen, and Matthew C. Jadud. A Cell Transterpreter. In Peter
Welch, Jon Kerridge, and Fred Barnes, editors, Communicating Process Architectures 2006, volume 29 of
Concurrent Systems Engineering Series, pages 215–224, Amsterdam, September 2006. IOS Press.

[36] Fred Barnes and Peter H. Welch. Prioritised Dynamic Communicating Processes - Part I. In James Pascoe,
Roger Loader, and Vaidy Sunderam, editors, Communicating Process Architectures 2002, pages 321–352,
sep 2002.


