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ABSTRACT

Change detection represents a major family of remote sen-
sing image analysis techniques and plays a fundamental role
in a variety of applications to environmental monitoring and
disaster risk management. However, most change detection
methods operate under the assumption that the multitempo-
ral input data have been collected with the same (or very si-
milar) acquisition modality – a possibly critical restriction in
several applications. In this paper, the problem and the oppor-
tunities of change detection from multitemporal data acquired
through heterogeneous modalities are addressed. Methodolo-
gically, this is a highly challenging data fusion problem, es-
pecially within an unsupervised framework. Here, these chal-
lenges and the methodological approaches proposed in the li-
terature, which range from earlier semi-parametric regression
to current deep learning architectures, are reviewed. Then,
recent fully unsupervised techniques, based on spectral clus-
tering, traditional image regression, and deep image-to-image
translation, are briefly described.

Index Terms— Heterogeneous change detection, multi-
modal data fusion, image regression, image-to-image transla-
tion, deep learning, affinity matrix.

1. INTRODUCTION

Multitemporal remote sensing imagery represents a preci-
ous information source in many applications to agriculture,
forestry, climate change monitoring, urban planning, and di-
saster risk management. This potential is further enforced
by the current availability of data from a variety of space
missions with optical (e.g., Sentinel-2, Landsat 8, Pléiades,
WorldView-3) and synthetic aperture radar (SAR) payloads
(e.g., COSMO-SkyMed Second Generation, TerraSAR-X,
RADARSAT-2). In this framework, a family of image analy-
sis methods of major importance is aimed at change detection
(CD), i.e., at identifying the pixels that underwent ground
changes in between two acquisition times t1 and t2 [1, 2].

Most CD methods operate under the assumption that data
at t1 and t2 have been acquired through the same modality,
i.e., the same geometrical configuration, spectral bands, radar

frequencies, etc [1, 2]. This scenario will be named homoge-
neous CD in the following. A milder statement may be that
differences in the acquisition modality are small enough to be
mitigated through normalization or co-calibration. Methodo-
logically, this is a natural assumption because it favors that
significant variations in the at-sensor signal can be attributed
to ground changes rather than to differences in the acquisition
modality. However, from an application-oriented perspective,
this assumption can be severely restrictive when single-modal
data are unavailable or their collection requires unacceptable
latency times (e.g., in the case of CD for damage assessment
shortly after a natural disaster). Homogeneous CD is a long-
studied problem for which many methodological solutions,
involving for example Bayesian estimation theory, Markov
random fields, segmentation, fuzzy set theory, and kernel ma-
chines, have been proposed [1, 3, 2].

When multitemporal data characterized by different
acquisition modalities are involved (e.g., a multispectral
image at t1 and a SAR image at t2 or a C-band SAR image
at t1 and an X-band SAR image at t2) – a scenario that we
shall name heterogeneous CD –, a highly challenging data
fusion task arises, because one wishes to “compare” observa-
tions whose probability distributions intrinsically differ even
when they are taken on an unchanged region. The literature
of heterogeneous CD is substantially more recent and scarcer
than that of homogeneous CD and was essentially initiated
by the copula-theoretic work in [4]. Lately, remarkable deve-
lopments have been obtained through deep learning [5, 6].

In this paper, a general overview of the heterogeneous CD
problem and its challenges is presented (see Section 2). The
methodological approaches that have been proposed in the li-
terature are reviewed (see Section 3), and recent methods de-
veloped by the authors are briefly described (see Section 4).

2. HETEROGENEOUS CHANGE DETECTION

Let X and Y be the images collected at times t1 and t2, re-
spectively, and let x and y be two generic data samples drawn
on the same spatial location from X and Y , respectively. De-
pending on the specifics of each individual method, x and y
may include data from either an individual pixel or a patch
of neighboring pixels (the latter case is most typical of deep
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neural methods). If H0 and H1 indicate the “no-change” and
“change” hypotheses, in the case of homogeneous CD one
generally assumes that x and y exhibit the same (or very si-
milar) distribution when conditioned to H0. This condition is
violated in the case of heterogeneous CD, thus hindering the
possibility of a direct “comparison” between x and y [4].

Broadly speaking, most heterogeneous CD methods are
based on the key idea of transforming x and y so that they
exhibit the same (or similar) distributions. This can be ac-
complished either by a mapping x 7→ φ(x) = ỹ and/or
y 7→ ψ(y) = x̃ such that the distributions of the new random
vectors x̃ and ỹ, when conditioned to H0, match those of x
and y, respectively, or by two mappings x 7→ ξ(x) = z and
y 7→ ζ(y) = z′ so that z and z′ has the same distribution gi-
ven H0. In the former case ỹ is an estimate of what x would
look like if it could be observed through the modality of y
(and vice versa). In the latter case, z and z′ may not have spe-
cific interpretations but are meant to bring the two modalities
towards a common domain. From this perspective, hetero-
geneous CD remarkably relate to domain adaptation, transfer
learning, and image-to-image translation [7, 8, 9, 10].

Based on the role of training samples in the determination
of the mappings (φ, ψ) or (ξ, ζ), methods can be categori-
zed into three broad groups: (i) fully supervised, (ii) partially
supervised, and (iii) fully unsupervised. In case (i), training
samples are assumed available for the thematic classes at both
t1 and t2. This scenario involves strong ground truth requi-
rements and is normally not strictly considered heterogene-
ous CD as it corresponds to a joint supervised classification
of the input multitemporal data (i.e., z and z′ are class la-
bels), for which effective approaches have been available for
long [11, 12, 13]. In case (ii), which encompasses all earlier
approaches to heterogeneous CD, a training set is used alt-
hough it does not cover all classes at all observation times.
Most typically, it regards only H0 with the goal of conveying
prior information on what unchanged areas look like through
the different modalities. In case (iii), which has been explored
only lately, no training data are used. This is both remarka-
bly interesting for applications, because it does not need any
ground truth and is not prone to annotation errors, and very
challenging methodologically, because no prior is available
on the relation between the two modalities. In the next secti-
ons we will focus on strict-sense heterogeneous CD through
partially supervised and fully unsupervised methods.

3. METHODOLOGICAL APPROACHES

3.1. Partially supervised semi/non-parametric methods

Partially supervised approaches to estimate (φ, ψ) or (ξ, ζ)
have been proposed based on methodological ideas from va-
rious areas, with the goal of pushing the transformed data
towards a common probability distribution (semi-parametric
and non-parametric regression), a common manifold (mani-

fold learning), or a common Hilbert space (kernel machines).
The first approach to heterogeneous CD has been the parti-
ally supervised method in [4] that combines quantile regres-
sion and copula functions to learn φ and ψ using a training
map for H0. It integrates nonparametric estimators of the
marginals of x and y and parametric copula models of their
dependence (hence, an overall semi-parametric method). A
limitation is the focus on single-channel data (scalar x and
y). In [14], ξ and ζ are modeled by combining estimates of
the marginals of x and y with a meta-Gaussian distribution
(essentially equivalent to a Gaussian copula). In [8], a nonpa-
rametric method is proposed in which φ and ψ are modeled by
combining kernel regression and a nearest neighbor approach.
In [15], a “no-change” manifold is extracted according to the
local joint statistics and to models of the noise in the two mo-
dalities, so that changes are detected by using a case-specific
distance from this manifold. A kernel-based approach is de-
veloped in [16] to determine mappings ξ and ζ to a common
Hilbert space through a kernel generalization of the canonical
correlation analysis (CCA). The optimization of the correla-
tion functional is guided by a set of samples drawn from H0.

3.2. Fully unsupervised nonparametric methods

Fully unsupervised heterogeneous CD methods have been de-
veloped recently on the basis of methodological components
rooted in dictionary learning, multidimensional scaling, and
deep learning. A goal of most approaches is to automati-
cally identify pairs of samples from X and Y that can be used
to learn (φ, ψ) or (ξ, ζ) and are likely unchanged. The lat-
ter condition is crucial to ensure that the resulting transforms
emphasize the discrimination between H0 and H1.

The first fully unsupervised method has been developed
in [17] based on dictionary learning. It determines two cou-
pled dictionaries from X and Y through an iterative patch-
wise learning process. The pairs of image patches that yield
the largest reconstruction error are automatically removed, as
they are interpreted as likely drawn from H1. The resulting
dictionaries bring both modalities towards a common code
space in which similar sparse codes are expected for patches
drawn from H0. Multidimensional scaling concepts are used
in [18] and [19]. In [18] an energy-based model is formulated
to encode nonlocal pairwise pixel interactions and compute
a transformed feature that preserves local pairwise similarity
and its temporal evolution. In [19], multidimensional scaling
is combined with local histograms of pixel intensities and of
gradient magnitudes and with histogram matching.

3.3. Fully unsupervised deep learning methods

Deep learning, which has been particularly successful in re-
mote sensing image analysis lately, has recently been found
effective for heterogeneous CD as well. The rationale is to le-
verage on the powerful feature learning capabilities of deep



neural nets to model (φ, ψ) or (ξ, ζ), typically using stac-
ked denoising autoencoders (SDAEs) or generative advers-
arial networks (GANs). SDAEs consist of a cascade of two
networks and are usually aimed at dimensionality reduction,
feature extraction, data reconstruction, and regression [20].
A GAN is also made of two interconnected networks, which
are trained in a competing fashion with the goal of genera-
ting, from an input noise source, samples whose distribution
is indistinguishable from that of a target source [20]. Impor-
tant extensions aimed at image-to-image translation also ad-
dress the generation from input data conditioned to a separate
source (conditional GAN) [21] or a consistent behavior in the
translation across two sources (cycle GAN) [22].

In [5, 23, 24], SDAE architectures are proposed for fully
unsupervised heterogeneous CD by integrating, in the related
loss functions, a weighting on the probability that each sam-
ple is drawn from H1. Network training and update of these
weights are performed iteratively. Architectures combining
SDAEs and clustering algorithms have been developed to au-
tomatically identify (and use for training) pixels that can be
assigned to H0 and H1 with a certain confidence [25] and to
address the detection of two distinct types of change [26].

GAN architectures have been proposed in [6, 27] for he-
terogeneous CD from optical and SAR data. In [27], a condi-
tional GAN is used to learn a transform φ from input optical
data x to estimated SAR data ỹ, and a further approximation
network is trained to map the input SAR data y to a domain in
which residual mismatches are minimized. In [6], mappings
(φ, ψ) that estimate SAR from optical data and vice versa are
learned through an architecture that combines cyclic adversa-
rial terms and variational autoencoders [20]. In these methods
as well, weights on the chances that each sample is drawn
from H1 are introduced and iteratively updated.

4. RECENT AFFINITY MATRIX-BASED METHODS

4.1. Affinity-based non-parametric image regression

As discussed above, a major challenge of fully unsupervised
heterogeneous CD is to capture the relation between the two
modalities over unchanged areas, while simultaneously emp-
hasizing the discrimination of changed areas. On one hand,
the flexibility of nonparametric – traditional and deep – ap-
proaches allows powerful regression models to be formulated.
On the other hand, the lack of training information on H0 or
H1 makes the learning of these models particularly complex.

An approach to address this challenge has recently been
proposed in [28] based on the combination of nonparametric
regression and spectral clustering concepts. With the goal of
estimating φ and ψ in a fully unsupervised manner, the key
idea is to leverage on the information captured by local affi-
nity matrices to automatically determine a pseudo-training set
T0 composed of pixel pairs that likely belong to H0. The af-
finity matrix of a set of pixels provides a graph-theoretic cha-

racterization of their spatial structure and interrelations [29,
30]. The rationale of the approach in [28] is that, if a change
occurs on some pixels, these interrelations are expected to
change as well, quite regardless of the acquisition modality.

Computationally, for each pair p of spatially correspon-
ding patches in X and Y , fully connected graphs are defined
within these patches, the affinity matrices AX

p and AY
p associ-

ated with these graphs are computed, and the Frobenius dis-
tance between AX

p and AY
p is evaluated. A pixel is inserted

into T0 according to the statistics of the Frobenius distances
obtained on all patches containing it. The resulting set T0
is used to train a multioutput support vector machine [31], a
Gaussian process regression [32], a random forest [33], or the
regression algorithm in [8] to learn φ and ψ. Case-specific
algorithms, based on the Hellinger distance between proba-
bility distributions and on k-nearest neighbors, are integrated
in the method to make sure that T0 is representative of “no-
change” across the whole image and to adaptively tune the
kernel width used to compute the affinities.

Experimental validation shown in [28] with Landsat 5
TM, EO-1 ALI, Landsat 8 OLI, and Sentinel-1A data pointed
out the capability of this approach, applied with all afore-
mentioned regression methods, to compute representative
estimates of the image of each acquisition date through the
modality of the other date and to derive accurate change maps.
A special interest was noted for random forest, owing to its
appealing computational properties. These results suggest the
effectiveness of local affinity matrices in characterizing the
spatial structure of multimodal data set for fully unsupervised
heterogeneous CD. Details can be found in [28].

4.2. Deep image-to-image translation with affinity prior

Motivated by the powerful regression capabilities of deep
neural networks and by the aforementioned potential of af-
finity matrix concepts for fully unsupervised heterogeneous
CD, methods based on their combination and aimed at lear-
ning (φ, ψ) and (ξ, ζ) have recently been proposed in [34, 35].
The key idea is to formalize heterogeneous CD through a deep
image-to-image translation problem and to incorporate affi-
nity matrix information to condition the regression process
to H0. This idea is formalized by integrating into the loss
functions associated with image translation a pixelwise prior
computed as a function of the local affinity matrices. In this
framework, architectures involving cyclically consistent au-
toencoders, adversarial networks, and CCA are developed.
Details and experimental results can be found in [34, 35].

5. CONCLUSION

In this paper, the topic of heterogeneous CD from multitem-
poral multimodal remote sensing data has been addressed.
It is a topic of great potential, especially in relation to the
currently available wealth of satellite imagery. Yet, it is met-



hodologically very challenging due to the intrinsic difficulty
in modeling the dependence among highly heterogeneous
data sources, especially in fully unsupervised scenarios. With
the goal of outlining the main background concepts and
challenges of this highly promising research area, previous
methodological solutions have been reviewed, ranging from
the first formulation as semi-parametric regression to current
deep image-to-image translation, and recent techniques, ba-
sed on the integration of local affinity matrices into traditional
or deep image regression, have been briefly discussed.
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