
 

 

GEMM-eMFIS (FRI/E): A Novel General Episodic 
Memory Mechanism For Fuzzy Neural Networks 

 

Sheng Wei Pang  
Sch. of Computer Science & Engg. 
Nanyang Technological University 

Singapore, Singapore 639798  

Chai Quek  
Sch. of Computer Science & Engg. 
Nanyang Technological University 

Singapore, Singapore 639798 
ashcquek@ntu.edu.sg 

Dilip K. Prasad 
Dept. of Computer Science  

UiT The Arctic University of Norway 
Tromso, Norway 9006 

dilip.prasad@uit.no  

Abstract— In fields such as finance, medicine, engineering, 
and science, making real-time predictions during transient 
periods characterized by sudden and large changes is a hard 
challenge for machine learning. Humans keep memory of these 
transient events, abstractly learn the most relevant rules and 
reuse them when similar events occur, which stems from 
episodic memory that allows storage and recall of similar events. 
This paper proposes a novel online general episodic memory 
mechanism (GEMM) and demonstrates its integration into the 
Neuro-Fuzzy system (NFS) architecture called evolving 
Mamdani Fuzzy Inference System (eMFIS) with Fuzzy Rule 
Interpolation and Extrapolation (FRI/E). Our proposition, 
called GEMM-eMFIS(FRI/E), learns from past events by 
storing and retrieving them from an episodic memory cache 
during event-driven transient behavior, thereby boosting 
performance while using a few rules only. GEMM-
eMFIS(FRI/E) further has several in-built mechanisms that 
enable it to learn effectively from continuous stream of online 
data. They include associative-dissociative learning theory to 
keep its rule base updated, 2-stage incremental clustering; (2-
SIC) to determine cluster width, interpolation and extrapolation 
of rules to deal with concept shifts and drifts in the time-variant 
data, and rule pruning and merging to keep the rule base 
compact. GEMM-eMFIS (FRI/E) is benchmarked against other 
NFS’ on various time-variant datasets such as stock index prices 
and rainfall runoff  with 3%-5% improvement during transient 
period and shows strong forecasting performances with 4%-5% 
more interpretability with lesser rules. 

Keywords— Fuzzy Neural Networks, Episodic Memory, 
Inference Systems, Financial Forecasting 

I. INTRODUCTION 
One of the hardest challenges for machine learning of any 

predictive model is to make predictions during periods of 
sudden and larger than normal spike or drop in the values. This 
phenomenon is known as transient behavior, which is often 
defined to be a system’s response to a change from a steady 
state [1] due to any event that affects the system’s equilibrium. 
Take the example of a stock’s price suddenly crashing upon 
its release of corporate events. Initially, we see that the price 
increases steadily, this is known as the steady state. Macro-
economic events such as global recession or trade war as well 
as company related events such as corporate earnings release 
of adverse reaction of investors to breaking news can tip the 
equilibrium off and trigger a transient behavior. One type of 
predictive model that performs well in the domain of finance 
are Neuro-Fuzzy Systems (NFS). NFS combine the best traits 
of both architectures, i.e. accuracy of prediction from ANN 
and derivation of highly interpretable rule sets from FIS to 
result into interpretable and accurate learning models [3]. 
Most works on NFS cope with concept drifts [2] in the 
dynamic data using techniques like fuzzy rule interpolation-

extrapolation and incremental clustering techniques. Concept 
drift occurs when the statistical characteristics of the features 
and target evolve over time in unexpected ways. However, 
they struggle to deal with sudden spikes or drops in the data 
because these incremental techniques assume that all the rule 
antecedents activated have the same significance, which 
results in inaccurate interpolation outcomes [4].  

In this work, a novel approach of mimicking general 
episodic memory mechanism (GEMM) of human brain is 
used to detect transient behavior and perform prediction using 
suitable rules during the transient period in the event-driven 
financial domain. Episodic memory cache is implemented and 
integrated in FIS for the first time. It encodes, stores and 
retrieves the relevant ‘events and rules’ that the model has 
previously experienced, in order to simultaneously improve 
model accuracy while using a fewer number of rules. For this 
purpose, eMFIS(FRI/E) is chosen as the foundational FIS on 
which GEMM is integrated. Here, the choice of 
eMFIS(FRI/E) deserves an explanation. It preserves the 
interpretability of Mamdani type fuzzy membership functions 
even while providing accuracy similar to that supported by 
TSK type fuzzy functions. It adopts both compositional rule 
of inference (CRI) inference and the interpolation and 
extrapolation [3] from the n-nearest rules, which in known for 
good handling of concept drifts and shifts. In addition, eMFIS 
(FRI/E) also adopts a self-reorganizing network approach 
using BCM theory to self-reorganize the rules’ potentials in 
the fuzzy rule base. Its fuzzy clusters have the ability to self-
reorganize, ensuring the optimum representation of recent 
data distribution.The paper is organized in 4 sections. Section 
II presents GEMM - eMFIS(FRI/E). Section III presents 
several experiments for benchmarking, financial modeling 
and analysis of results. Section IV presents conclusion. 

 
Fig. 1. Network architecture of GEMM-eMFIS (FRI/E) is derived from 
eMFIS(FRI/E).  



 

 

II. INCORPORATING EPISODIC MEMORY INTO EMFIS(FRIE) 

A. Neuro-fuzzy architecture of GEMM-eMFIS(FRI/E) 
The basic architecture is adapted from eMFIS(FRI/E)[3]. 

As an evolving and self-organizing network, GEMM-eMFIS 
(FRI/E) begins with no neurons or links initially. The neurons 
and links are incrementally created as knowledge is learnt 
from the arriving data. This mimics human cognition which 
incrementally creates schema via accommodation when 
existing schemas become obsolete in representing the new 
information. GEMM-eMFIS (FRIE) follows a five layer 
structure as described in Fig. 1. At the th time step, the data 
is defined as the ordered pair ( , ) of input data values =, , … ,  and the target data value =, , … , . Here,  and  are the th attributes of the 
input and output, respectively. The mathematical details of the 
architecture can be found in [4] and are left here for brevity. 

GEMM-eMFIS (FRIE-M) adopts BCM theory [5] which 
self-reorganizes its rule base to ensure that its fuzzy rules are 
representative of the current data. The best fit fuzzy labels are 
computed for every data value pair (  , ) which yields the 
highest membership value. Fig. 2 shows our episodic 
mechanism acting as a form of meta-learning on top of the 
inference mechanisms of eMFIS(FRIE). This means that all 
recalled rules undergo the same inference mechanism with 
rule pruning and merging. Moreover, it also implies that our 
episodic mechanism can be plugged into any online neuro-
fuzzy model with a dynamic rule base. 

 
Fig. 2. Episodic mechanism integrated with eMFIS(FRIE)’s learning 
mechanisms. 

The creation of a new cluster occurs when drift or shift is 
detected by the movement of data distribution to an unknown 
location. This is due to the second derivatives of the age curve 
becoming significant, implying that the clustering age is 
increasing at an increasing rate. Inspired by the categorical 
learning of infants and adults and adapted from [6], 
eMFIS(FRIE) adopts 2-SIC which uses both top-down 
divisive clustering approach [7], and bottom-up clustering 
approach [8]. It is able to overcome the issues of (1) over-
smoothing masking the structure of the data distribution and 
(2) too many small clusters generated due to a smaller slope.  

The interpolation and extrapolation approach, adapted 
from [9], works by building a new inference rule from its 
nearest n (n ≥ 2) rules, before applying scale and move 
transformations to derive the final results. The advantages of 

this approach allow it to involve multiple rules, each 
consisting of multiple antecedents, handle fuzzy sets with 
vertically sloped membership functions, and extrapolate the n-
closest rules should they all lie on one side of given 
observation. This is also applied to the newly recalled rules, 
giving the system flexibility to interpolate on a larger rule base 
and likelihood of increasing accuracy. It involves choosing the 
closest n rules, constructing the intermediate rule and applying 
a scale and move transformation. 

A pseudo-pruning mechanism is an online state-selection 
mechanism to put some prioritization on the fuzzy rules. Rules 
are set to off state if the weight falls below certain threshold. 
However, the rule is only removed when it has been set to off 
for a significant period of time, or it has a very small weight. 
Only the rule with higher weight is kept if the antecedents 
match the new rule, but consequents do not. In the case of 
duplicate rules, the duplicated rule is removed. The weights of 
the rules are normalized to the value of [0-1] in order to 
prevent newly created rule to always have highest weight, and 
results in overly biased toward new rules. The newly recalled 
rules are also subjected to removal should their weight fall 
below a certain threshold or are duplicates.  

B. Fuzzy Rule Episodic Cache Mechanism 
The GEMM comprises of a multi-store mechanism, event 

detection, episode encoding, episode recognition, and episode 
recall. Each of them is discussed below.   

Multi-Store Model: The multi-store model consists of three 
types of memories, namely sensory, short term, and long-
memory. Sensory memory is where any observed information 
is first registered. This is analogous to each input tuple of the 
data registered by the model. Short-term memory refers to 
active memory capable of holding small amounts of 
information for a brief-period of time. This is analogous to the 
dynamic rule base and membership functions, as rules get 
created and pruned over time. Long-term memory can store 
large quantity of information for a very long duration, 
analogous to the episodic cache introduced here. Let us 
represent them by the following notation:  

Overall memory                = + +              (2.1) 
Sensory memory                 = [ , , … ]              (2.3) 
Short-term memory           = [ , , … ]             (2.4) 
Long-term memory            = [ , , … ]             (2.5) 

where contains the vector  of inputs at time , contains 
the i-th memory  computed at time , and  comprises of 
mi, i.e. the i-th memory in a long-term memory store. It is 
noted that each memory type at time t is made up of a series 
of memories. Given our interests in predicting event-driven 
trading, we shall focus on exploring use of explicit long term 
memory to recall the events leading up to financial crises, 
which would be useful in predicting transient behavior. In the 
short-term memory, a series of real-time computations take 
place to make sense of the events and the associated 
contextual information that occurs over a short period of time. 
We may further represent the different types of information xi 
stored short term memory as: = [ℎ , ℎ , … ℎ ]                                               (3.1) = { , , … }                                          (3.2) 

 = ( − )⁄                                         (3.3) = { , , … }                                      (3.4) = { , , … }                                                 (3.5) = [ , , … ]                                         (3.6) 



 

 

where   is the i-th event made up of a vector of inputs h with 
m dimensions,  is the i-th sliding window containing a 
series of j events,  is the price volatility difference between 
the i-th and (i - 1)th price,  is the i-th sliding window 
containing a series of j-1 price volatility differences,  is the 
rule base of the system at time t, and B is a set of rule bases at 
time t with length equal to window_size j. 

Event Detection: Event detection refers to the process of 
detecting which events can be used to trigger episode 
encoding and recall [10]. The process of event detection for 
GEMM-FNN, , is defined  as: ( ) = 1,  ( ) >0 ,  ℎ                   (3.7) ( ) = (max( ) − min ( )) min ( )⁄                (3.8) 

where  takes in an episode  and determines whether to 
trigger the episodic memory mechanism (1) or not (0),  is 
the i-th sliding window containing a series of j events , T(x) 
computes the maximum percentage difference between the 
highest and lowest values in a vector x, and  is volatility 
threshold parameter that is used to detect transient events.  

Episode Encoding: Episode Encoding Ee  is defined as the 
process of storing a set of events as an episode [10] in a long 
term memory structure Lm. We denote episodic memory mi 
mathematically as a window of distinct events (e), that is 
triggered by a cue (c) as follows: 

e̅i, j  =  mean(wi)                                                           (3.9) 
b̅i, j  = C(B) = {r1, r2, … r3 }                                           (3.10) 
di    =  {t, T(wt),  e̅i, j , b̅i, j}                                              (3.11) ( , ) = mi   =    {ci ∶  d}= + ,  ( ( )) > 0, ℎ  ℎ                  (3.12) 

where ci is a cue that contains a vector of price volatility 
differences { , , … } , t is the time index of the 
current input tuple e̅i, j is the average of j input events of the i-
th episode, C(B) is a rule consolidation process that creates a 
set of unique rules aggregated from the i-th window rulebase 
Bi, b̅i, j is a set of unique rules aggregated from the i-th window 
rulebase Bi, and mi is the i-th episodic memory made up of cue 
ci and di. The set of details di of the i-th memory m, consisting 
of a set of a cue, volatility, average input, and 
window_rulebase. Ee(mi ) is a function that creates a memory 
from ci and di and appends to the long-term memory store. 
Hence, the short-term memory stores a series of events made 
up of windows of past inputs, rulebases and volatilities. A 
transient event triggers episode encoding if no similar episode 
exists in the long term memory.  

Episode recognition: Episode recognition refers to the 
identification of a stored episode in the episodic memory in 
response to a partial event sequence [10]. Suppose an event is 
detected, it should then be checked if there are any episodes 
with similar events associated with it. We may define episode 
recognition Ie as: given a new cue ct  at time t and a long-term 
memory store Lm containing a set of episodes, there exists a 
set of episodes with cues that are similar if any of them fall 
within a similarity threshold s as defined below: 

Ie(ct ) = {m1 , …, mt-1} ⊆ Lm , where S(ct , ct-1) < s    (3.13) ( , ) = | − | 2 = ∑ , − ,           (3.14) 
S(ct , ct-1) computes the similarity of two episodes mt and mt-1 
using Euclidean distance between their cues ct and ct-1. If there 
exists a subset of stored episodes that have cues similar to the 

current event, then episode with the most similar cue is 
recalled. Otherwise, this event is encoded as a novel episode 
to be stored in the memory. The pseudocode to aggregate all 
rules within a window B containing a set of j rule bases for 
rule consolidation C(B) is presented in Algorithm 1.  
Algortihm 1: Pseudocode to aggregate all rules within a window B 
containing a set of j rule bases for the function rule consolidation C(B). 
rule_consolidation(B): 
 all_rules = list() 
 unique_rules  = list() 
for rulebase in B: 
  for rule in rulebase: 
   all_rules.append(rule) 
 for rule in A: 
  rule.relevance = mean(rule.weight) 
  rule.rmse = mean(rule.rmse) 
  new_rule = {rule.antecedent, rule.consequent, 
rule.relevance, rule.rmse} 
 unique_rules.append(new_rule) 
return unique_rules 

Episode recall: Episode recall comprises of the replaying of 
an episode when an external cue is presented [10]. We denote 
episode recall Re as: given a set of similar episodes from RCe, 
retrieve the most similar episode ms and create new rules 
based on their relevance as follows. 

Re(A, max_a, max_c)  = { , , … }, where . >  

where   is a set of modified rules belonging to the closest 
episode , A is a set of similar recalled memories Ie(ct ) = {m1 
, …, mt-1}. Hence, episode recall returns a unique set of 
relevant rules. The pseudocode that aggregates all rules within 
a window B containing a set of j rulebases for rule retrieval 
Re(A, max_a, max_c) is presented in Algorithm 2. 
Algorithm 2: Pseudocode to aggregate all rules within a window B 
containing a set of j rule bases for rule retrieval Re(A, max_a, max_c). 
R(A, max_a, max_c):  
closest_episode = Min(A.diff) 
rules = list() 
for rule in closest_episode: 
 w = rule.relevance 
 if w > r: 
  new_rule.a = w . rule.a + (1- w) . max_a 
  new_rule.c = w . rule.c + (1- w) . max_c 
  new_rule.relevance = w 
  new_rule.rmse = rule.rmse 
  rules.append(new_rule) 
return rules 

Types of episodes in the financial domain: The significance 
of a financial event Cs,i is indicated by its volatility, i.e. the 
fluctuation of price in the market. Based on the value of 
volatility Vm, we define three types of episodes, namely 
regular (mR), déjà vu (mD), and PTSD (mP) as follows: 

m = mP , if Vm ≤  - 25%   
m = mD , if  - 25%  <  Vm < - 15% or 15%  <  Vm < 25%    
m = mR , else otherwise     (3.15) 

PTSD episodes occur during the most negative of events, 
followed by Deja Vu and regular episodes. 

Summary of episodic mechanisms: To summarize, the 
sensory memory actively takes in input targets and features, 
or the details of each event. We create a sliding window of 
fixed length w, each containing 1) A rule base containing all 
active rules 2) Input data for both the target and features. Next, 
for each window, we compute the overall volatility, volatility 
window, average inputs and relevance of each rule using the 
mean of their weights. These are stored in the short-



 

 

term/working memory. Using event detection, if the overall 
volatility crosses a certain threshold, the episodic mechanism 
is activated. Event encoding then converts an event into an 
episode. The long-term memory store is checked for similar 
episodes using episode recognition. If no previously similar 
episodes are found, the episode is cached in the long term 
memory store alongside its relevant rules. If a similar episode 
is found, the stored similar episode is retrieved, its rules are 
modified by computing a weighted average with the current 
max_set antecedent/consequent, and the modified rules are 
injected into the working memory of the system.  

We note the five hyper-parameters of our episodic 
memory mechanism for financial data. They are the window 
size (W), transient volatility threshold ( v), volatility 
similarity threshold ( s), rule relevance threshold ( r), and 
error allowance threshold ( e). Further experiments have been 
conducted in [11] to tweak and understand their effect on the 
mechanism. The subsequent benchmarks and analysis use the 
optimized hyper-parameters. 

III. BENCHMARK EXPERIMENTS AND ANALYSIS

To evaluate the performance of the proposed GEMM-
eMFIS (FRI/E), a series of benchmarks are performed, 
followed by investigation of other potential applications. 
Three types of benchmark experiments were performed: 

A. Exchange traded funds (ETF) indices - DJIA and S&P 500  
B. Individual stocks (e.g. Ford, Apple) 
C. Rainfall Runoff [12] 

The performance measures used in the experiments are 
root mean-square error (RMSE) and Pearson’s product-
moment correlation coefficient. The average number of rules 
created by each model during the prediction process is also 
included as an interpretability measure. Further, to evaluate 
the efficiency of the episodic memory cache, the number of 
transient events, episodes cached, successful recalls and 
percentage of relevant episodes are investigated. Finally, an 
execution time used for training and testing are also included 
as a measure of speed. 

A. Using Global Macro Events To Predict ETF Indices 
This experiment seeks to validate several key hypotheses 

that demonstrate the plausibility of predicting the impact of 
financial crisis’ on ETFs through the implementation of an 
episodic memory mechanism on a Neuro-Fuzzy System. 
Throughout, the analysis will show that not only is the 
mechanism able to capture global financial macro events, it 
also provides better performance in accuracy and 
interpretability, that traders may use for profit. 

Datasets: Two datasets, SNP500 and DJIA, were chosen to 
give a balanced representation of price movements of ETF. 
Extracted from Bloomberg Terminal [13], US Bureau of 
Economic Analysis [11] and US National Bureau of 
Economic Research [11], each dataset contain 54-years of 
daily prices of the respective stocks/indices, from December 
1964 to February 2019. Rows of non-trading days were 
removed to prevent duplicate prices and to simulate a real 
trading scenario. The dataset consists of six features for 
presented in TABLE I. The features were selected to provide 
a good mix of technical indicators and macro-economic 
events. 

 

TABLE I.  FEATURES FOR MACROECONOMIC EVENTS DATASET 

# Feature Description 
1 Volume A decimal number representing the total daily 

trading volume of the security.  
2 Moving 

Average 
A decimal number that computes a simple moving 
average of the securities’ price for the past 15 days.   

3 7 Days Ago 
Prices

A decimal number representing the price of the 
security 7 days ago from today. 

4 21 Days 
Ago Prices 

A decimal number representing the price of the 
security 21 days ago  from today. 

5 21 Days 
Ago Prices 

A decimal number representing the price of the 
security 21 days ago  from today. 

6 Event GDP 
Affect 

A negative percentage value between 0 to -100, 
that represents the decline in GDP of the US 
economy during a recession (peak-to-trough).  

TABLE II.  EXPERIMENTAL RESULTS FOR THE SNP500 INDEX DATASET 

Architecture RMSE Correlation Average 
# Rules 

Run
Time (s) 

GEMM-
eMFIS(FRIE)  

25.7548 0.99932 19.01 3522.80 

eMFIS(FRIE)[11] 26.5938 0.99928 19.35 1411 
eMFIS[6] 27.0472 0.99926 22.9 1076 
EFUNN[21] 26.4 - 3189 291.8 
SAFIN[18] 98.7 - 1 312.32 
ANFIS[20] 25.72 0.99500 3 44.32 

TABLE III.  EXPERIMENTAL RESULTS FOR THE DJIA INDEX DATASET 

Architecture RMSE Correlation Average 
# Rules 

Run
Time(s) 

GEMM-
eMFIS(FRIE)  

190.02 0.99953 20.80 2965 

eMFIS(FRIE)[11] 191.05 0.99954 21.54 1326 
eMFIS[6] 196.56 0.99950 21.56 1407 
EFUNN[21] 358.02 - 3028 121 
SAFIN[18] 877.87 - 1 23.7 
ANFIS[20] 192.55 0.99950 2 21.16 

 
Fig. 3. Comparison of the real data (red) of SNP500 dataset and predictions 
by GEMM-eMFIS(FRIE) in blue and eMFIS(FRIE) in green. 

Performance evaluation: The experimental results and 
comparison with several state-of-the-art methods for SNP 500 
and DJIA are presented in TABLE II. and TABLE III. , 
respectively. We see that GEMM-eMFIS(FRIE) outperforms 
all other Mamdani systems as it is both more accurate and 
requires fewer rules. GEMM-eMFIS(FRIE) performs better 
overall compared to other Mamdani models and is even on par 
with TSK models, having not just better accuracy but also 
better interpretability as it has fewer rules. Fig. 3 presents the 
comparison of real data and trends predicted by GEMM-



 

 

eMFIS (FRI/E) and eMFIS (FRI/E). We see that eMFIS 
(FRI/E) struggles during periods of transient behavior as it is 
simply unable to derive accurate rules based on the existing 
rules. In contrast, we see the true power of the episodic 
memory mechanism coming into play here as GEMM-eMFIS 
(FRIE) (blue) is able to quickly adapt to the sudden drop in 
prices to achieve better accuracy. Using GEMM-eMFIS 
(FRIE) will allow traders to not only use macroeconomic 
features to predict sudden changes in price, but will also 
provide them with an episode base that they can reference in 
the future to understand the reasons for the swings in the 
market. As the model learns, its episode base grows and 
becomes more resilient to financial crises. Finally, traders can 
go one step further to employ GEMM-eMFIS(FRIE) for 
anticipatory trading by increasing the window size such that 
the model can learn the behavior of fluctuation of prices 
several time steps ahead of the sudden drop or spike, enabling 
them to perform long and short term planning on the market. 

Analysis of episode recall: The main hypothesis of the 
episodic mechanism is that it learns, stores and recalls relevant 
episodes. We use the list of global financial crises since 1965 
[14] as a reference on our timeline to identify the events being 
cached and recalled on the SNP500 dataset. Out of 300+ 
episodes cached, TABLE IV. shows some top ones. We see 
that episodes from previous events are indeed recalled, and 
that the model is able to correctly recognize similar events.  
For example, episode id 347 was detected and stored in the 
episodic memory cache in September 1990 close to the 1990s 
recession (A). It was retrieved during several later US 
financial downturns (B-F). This provides a new dimension of 
interpreting the model to stock market traders. By knowing 
which episodes trigger certain movements in the prices, they 
essentially now have ‘inside information’ as to how the market 
will likely react when a certain financial crisis is impending, 
potentially giving them competitive advantage over other 
models that do not have such episodic memory. 

TABLE IV.  LIST OF EPISODES RECALLED AT THEIR RESPECTIVE EVENTS 
AND DATES FOR SNP500 DATASET. THE EVENTS ARE REPRESENTED AS 
(INPUT TUPLE #, DATE, NAME) 

Episode 53 Cached: 1933, 1973-05-17 Britain stock market crash 
Recalled: 2174, 1974-05-01 OPEC Oil Crisis 

3754, 1980-07-15 1980s recession 
5587, 1987-04-20 Black Monday 
10250, 2002-01-02 Recession by September 11  
13737, 2015-11-06 Chinese stock market crash 

Episode 104 Cached: 2182 1974-05-13 Opec oil crisis 
Recalled: 3775,  1980-08-13 1980s recession 

4043, 1981-08-11 Iranian Revolution 
8752, 1997-11-07 Asian Financial Crisis  
12408, 2010-07-29 Flash Crash 

Episode 265 Cached: 4198, 1982-03-05 Iranian Revolution 
Recalled: 6108, 1989-03-28 Friday the 13th Flash Crash 

6554, 1990-09-28 1990s recession 
6805, 1991-08-06 Japanese Asset Bubble 
7134, 1992-10-01 Black Wednesday 
11691, 2007-09-24 SSE Index Crash 

Episode 347 Cached: 6549, 1990-09-28 Early 1990s Recession (A) 
Recalled: 7136, 1992-10-05 Black Wednesday (B) 

9127, 1998-07-21 Russian Financial Crisis (C) 
10023, 2001-02-02 US Tech stock bubble crash (D) 
11633, 2007-07-02  SSE Index Crash (E) 
12607, 2011-05-12 US Bear Market (F) 

Episode 369 Cached: 8643 1997-08-20 Asian Financial Crisis 
Recalled: 10240, 2001-12-17 September 11 Attacks 

12227, 2009-11-06  08-09 Financial Crisis’ 
13699, 2015-09-15 Global Stock Market Sell Off 

TABLE V.  TYPES OF EPISODIC MEMORIES BEING CACHED. 

Episode ID Date Cached Volatility Type 
531 (A) 1987-10-26 -28.87% PTSD 
802 (B) 2008-10-10 -25.47% PTSD 
878 (D) 12334 2011-11-08 10.31% Deja Vu 
756 (B) 9992 2002-10-17 11.48% Deja Vu 
825 (C) 11653  2009-02-27 -11.09% Deja Vu 
699 (A) 9578 2001-09-19 -14.52% Deja Vu 
765 10159 5.05% Regular 
775 11304 5.55% Regular 
867 12285 -6.20% Regular 
917 13922 -7.19% Regular 

Types of episodes being recalled: Earlier we mentioned that 
there 3 types of memories (regular, DeJaVu and PTSD). Let 
us now investigate whether we are indeed able to classify 
memories into 3 distinct types based on the volatility of the 
price window. We explore the episodes created from running 
GEMM-eMFIS(FRIE) on the DJIA dataset and observe the 
types of episodes cached. The list of episodes and their 
characteristics were saved into a flat-file and an analysis was 
performed using pandas data frames to classify the various 
episode types based on their window volatility, Vm. 

TABLE V. shows the caching of 2 PTSD type episodes 
during catastrophic events like the 2008 global financial crisis 
where there were sudden drop in prices greater than 25%. 
These represent traumatic incidents in the dataset and for the 
model, which occur rarely through the lifetime of the model. 
Déjà vus are events that seems familiar and with vivid 
photographic detail. This contrast with normal remembrances 
where certain sensory details have eroded over a long time. 
The memory can be both a positive or negative. TABLE V. 
shows the caching of 4 DeJa Vu type episodes during periods 
where there were either sudden rises or fall in prices between 
15-25%. These events are not as severe as PTSD, but occur 
more occasionally and are still significant enough for the 
model to cache them. TABLE V. also shows the caching of 4 
regular type episodes during periods where there were either 
sudden rises or fall in prices between 15 to -15%. These events 
are relatively more common than PTSD and DeJa Vu, and 
represent quarterly corporate sentiments in the dataset but are 
less significant in their price volatility. 

B. Using Corporate Events To Predict Stock Prices  
This experiment seeks to validate several key hypotheses 

that demonstrate the plausibility of predicting the impact of 
corporate events on stock prices using GEMM-eMFIS 
(FRI/E). The analysis will show that not only the mechanism 
is able to capture internal corporate events, but it also provides 
better performance in accuracy and interpretability that traders 
may potentially use to help improve profits.  

Dataset: The individual stock prices of Ford and Microsoft 
were chosen because these companies have existed for at least 
30 years and extensive data has been collected about them. 
Extracted from the NTU Bloomberg Terminal, each dataset 
contain at least 30-years of daily prices of the respective stocks 
until February 2019. However, Microsoft begins from March 
1986 as it was incorporated only then while Ford begins from 
December 1964, as the oldest date available. Rows of non-
trading days were removed to prevent duplicate prices and to 
simulate a real trading scenario. Each dataset consists of seven 
features listed in TABLE VI. The features were selected to 
provide a good mix of technical indicators and corporate 
actions, and have been tested to be leading indicators. While 
technical indicators are relatively straight forward, it is worth 



 

 

it to mention that earnings surprise [11] is a powerful feature 
as future revenues are what analysts mainly use to decide on 
the valuation of share prices. Other sources of data they take 
into consideration include quarterly and annual reports, 
current economic conditions and the company’s own revenue 
guidance [15]. Should the company experience a negatively 
unexpected earnings surprise due to poor performance that 
quarter, analysts will likely become bearish on the stock and 
reduce their future forecasts, lowering the company’s 
valuation and hence stock price. 

Performance evaluation: The experimental results and 
comparison with several state-of-the-art approaches for the 
two companies are given in TABLE VII. and TABLE VIII. 
We see that GEMM-eMFIS(FRIE) performs better compared 
to other Mamdani models and at par with TSK models, having 
not just better accuracy but also better interpretability as it has 
fewer rules. We also see that it makes better predictions 
specifically during transient events at t=3900 and t=7600. Fig. 
4 presents the comparison of real data and trends predicted by 
GEMM-eMFIS (FRI/E) and eMFIS (FRI/E). Similar to the 
observation in Fig. 3, we note here also that GEMM-
eMFIS(FRIE) (blue) is able to quickly adapt to the sudden 
drop in prices to achieve better accuracy than eMFIS (FRI/E).  

Analysis of episode recall: The timeline events of Microsoft 
listed in [16] is used as a reference on our timeline to assess 
the recall of episodes. Out of 1000+ episodes cached, the 
episodes that have been recalled several times are presented in  
TABLE IX. It is interesting to note that episode id 468 was 
detected and stored in the episodic memory in December 
1990, when MS Office was released (A). It was then retrieved 
later during several other product releases (B-G) such as 
Internet Gaming Zone, Windows XP and Microsoft Surface. 

TABLE VI.  LIST OF FEATURES FOR FORD AND MICROSOFT CORPORATE 
EVENT DATASETS 

# Feature Description 
1 Volume Total daily trading volume of the security.  
2 Moving Average Simple moving average of the securities’ 

price for the past 15 days.   
3 Prices 7 Days Ago  The price of the security 7 days ago from 

today. 
4 Prices 14 Days Ago  The price of the security 14 days ago from 

today. 
5 Prices 21 Days Ago  The price of the security 21 days ago  from 

today. 
6 Earnings Surprise A percentage value that signifies how well 

a company’s earnings beat bloomberg 
analyst expectations for that quarter. A 
negative value means the company 
performed poorer than expected.  

7 Description An integer value of 1-3, categorizing the 
type of corporate event on a particular date, 
which could be an earnings release (1), a 
public conference/ announcement (2) or 
shareholder/ partnership meeting (3).  

TABLE VII.  EXPERIMENTAL RESULTS FOR FORD DATASET 

Architecture RMSE Corre-
lation 

Average 
# Rules 

Run Time 
(s) 

GEMM-eMFIS(FRIE)  0.4138 0.9960 17.55 1475.5 
eMFIS(FRIE)[11] 0.4210 0.9958 16.40 750.7 
eMFIS[6] 0.4261 0.9957 16.45 749.0 
EFuNN[21] 0.334 0.9996 4401 363.8 
SAFIN[18] 0.6699 0.9928 1 291.96 
ANFIS[20] 0.464 0.9973 7 36.4 
DENFIS[19] 0.475 - 4 7.9 

TABLE VIII.  EXPERIMENTAL RESULTS FOR MICROSOFT DATASET 

Architecture RMSE Corre-
lation 

Average 
# Rules 

RunTime 

GEMM-eMFIS(FRIE)  1.1381 0.9989 21.51 1685.8 
eMFIS(FRIE)[11] 1.2809 0.9986 21.86 936.9 
eMFIS[6] 1.2952 0.9985 21.86 706.0 
EFuNN[21] 1.346 - 2416 263.8 
SAFIN[18]  4.606 0.9622 1 167.91 
ANFIS[20] 1.73 0.9947 3 12.49 
DENFIS[19] 1.258 - 9 7.4 

 

 
Fig. 4. Comparison of real data (in red) of Microsoft with the predictions of 
GEMM-eMFIS(FRI/E) in blue color and eMFIS *FRI/E) in green color.  

TABLE IX.  LIST OF EPISODES RECALLED AT THEIR RESPECTIVE EVENTS 
AND DATES FOR THE MICROSOFT DATASET. THE EVENTS ARE REPRESENTED 
AS (INPUT TUPLE #, DATE, NAME) 

Episode 54 Cached: 117, 1986-08-28, Microsoft goes public (IPO) 
Recalled:   670, 1988-11-03 Apple sues Microsoft 

1044, 1990-04-30 Microsoft launches Windows 3.0 
4043, 2002-03-20 .NET initiative was launched 
6528, 2011-10-20 Skype Acquisition 

Episode 103 Cached: 204, 1987-01-02, Microsoft announces OS/2 
Recalled: 1010, 1990-03-12 Microsoft launches Windows 3.0 

1440, 1991-11-20 Microsoft Research launches 
4300, 2003-03-27 Windows Mobile Launches 
7760, 2016-07-14 Microsoft acquires LinkedIn 

Episode 206 Cached: 510, 1988-03-18, Apple sues Microsoft
Recalled: 2074, 1994-05-25 Windows NT 3.5 launches 

2855, 1997-06-26 Apple Inc partners with Microsoft  
5913, 2009-06-15 Microsoft Bing launches 

Episode 468 Cached: 1209 1990-12-21, MS Office Launched (A)  
Recalled: 1648, 1992-09-17 Microsoft releases Windows 3.1.(B) 

2557, 1996-04-23 Internet Gaming Zone launches (C) 
3864, 2001-06-27 Microsoft releases Windows XP (D) 
4414, 2003-09-09 Windows Mobile launches (E) 
5708, 2008-08-25 Bill Gates retires (F) 
6618, 2012-02-22 Microsoft Surface,launches (G) 

Episode 606 Cached: 1913, 1993-10-05, Windows NT 3.1 released 
Recalled: 2145, Microsoft releases Windows NT 3.5.  

2709, Microsoft launches Expedia 
4909, Microsoft launches the Xbox 360. 
6272, Microsoft announces Windows Phone 

C. Experiment: Rain Runoff 
This experiment demonstrates the feasibility of predicting 

rainfall runoff through the implementation of an episodic 
memory mechanism on a Neuro-Fuzzy System, as an example 
of non-financial application.  



 

 

TABLE X.  SUMMARY OF RECORDED RAINFALL EVENTS 

 

 
Fig. 5. GEMM-eMFIS(FRIE) rainfall runoff prediction 

TABLE XI.  EXPERIMENTAL BENCHMARK FOR BAY 1 RAINFALL DATASET 

Event Architecture RMSE Correlat
ion 

Average 
# Rules 

Run 
Time 

4 GEMM-eMFIS 
(FRIE)  

0.0605 0.92971 3.6155 15.67 

4 eMFIS(FRIE) 0.0653 0.91729 2.0273 8.16 
6 GEMM-eMFIS 

(FRIE)  
0.0839 0.84895 3.2222 17.444

3 
6 eMFIS(FRIE) 0.0851 0.84321 1.9419 8.7449 
7 GEMM-eMFIS 

(FRIE)  
0.0209 0.9721 1.4076 16.243

4 
7 eMFIS(FRIE) 0.0209 0.9721 1.3172 7.4354 
9 GEMM-eMFIS 

(FRIE)  
0.1109 0.83867 1.9495 15.201

5 
9 eMFIS(FRIE) 0.1110 0.83876 1.7323 6.4353 
10 GEMM-eMFIS 

(FRIE)  
0.0804 0.66813 2.7702 19.326 

10 eMFIS(FRIE) 0.0886 0.50866 1.5328 6.6309 

TABLE XII.  CROSS VALIDATION RESULTS FOR RAINFALL 
DATASET 

Train Pred RMSE Correlation Avg # Rules 
4 6 0.0885 0.832 3.9 
7 6 0.0868 0.835 3.56 
9 6 0.0896 0.851 3.6641 
10 6 0.087 0.83 2.9 
4 7 0.0203 0.971 1.37 
6 7 0.0205 0.972 1.3 
9 7 0.0203 0.970 1.23 
10 7 0.0202 0.971 1.5 
4 9 0.0796 0.919 2.1 
6 9 0.0806 0.916 2.02 
7 9 0.1048 0.857 2.22 
10 9 0.063 0.949 1.87 

Dataset collection: The dataset consists of several rainfall 
events, each consisting of unit rainfall collected (1) using 
ground level sensors and (2) in a water catchment bay after 
run-off over different periods of time. The idea is to be able to 
forecast the amount of rainwater collected in the catchment 
bay during a rain event. The data have been obtained from an 
outdoor experimental plot set up at the Nanyang 
Technological University, Singapore. The experimental plot 
comprises four 25m long by 1m wide test sections. Further 
details of the experimental plot can be found in [17]. A 
summary of the recorded rainfall data is shown in TABLE X. 
Note that the discharge at the beginning of the rain for bay 1 
is higher than that in bay 2, however, the discharge rate is 
much higher for bay 2 when the rain intensity increases as 
well. There is also some noise in the data as rainfall and 
environmental conditions are erratic. Out of all events, we use 
events 4, 6, 7, 9 and 10 as they last at least 100 mins and 
represent a good distribution of peak discharge and intensity: 

 Event 4: High peak discharge and rain intensity. 
 Event 6: High peak discharge with multiple peak events. 
 Event 7: Low peak discharge. 
 Event 9: High peak discharge, single peak event. 
 Event 10: Low peak discharge. 

 Intuitively, discharge rate depends on the amount of 
rainwater is in the collection bays and in turn the amount of 
rainwater depends on the intensity of the rain. Hence, we 
expect that the models with rainfall as input should give a fair 
accuracy of discharge. The features used for each event are the 
rainfall amount at time t-5 t-4, t-3, t-2, t-1 to predict the 
discharge at time t in Bay 1.  

Results: Fig. 5 shows that the model is able to represent the 
rainfall data relatively well and is able to handle sharp 
transient spikes and drops in the dynamic data at t=120 and 
t=220, using its episodic memory cache. From TABLE XI. , 
we see that GEMM-eMFIS(FRI/E) outperforms EMFIS 
(FRI/E). Fig. 5 shows that interpolation/extrapolation methods 
of eMFIS(FRIE) (green) are unable to react quickly to 
transient changes, whereas GEMM-eMFIS(FRIE) is able to 
learn from the first spike episode and use it to react much more 
quickly and accurately during the next transient event. This is 
very important for governments monitoring rainfall data 
because the episode base built up can be potentially to predict 
weather crises’ such as floods or hurricanes, that could save 
lives.  

Results – cross validation: Next, we took our experiment 
further to investigate the extent to which the episodes from 
one rainfall event could help us predict another. This was done 
by training GEMM-eMFIS(FRIE) on a single dataset and then 
testing on another dataset, while still retaining the rules that 
the model learned during training. Ideally, we should expect 
better test performance on events where the data distribution 
of the training and testing are more similar. For this 
experiment, we shall only explore prediction of datasets 6, 7 
and 9 in order to reduce complexity.  

 TABLE XII. shows that the model achieve relatively lower 
RMSE and higher correlation when training on datasets 4 and 
10 before predicting on dataset 9. This makes sense as the 
three of them have large spikes around the 150-200 timestamp 
as seen in Fig. 6. It is suspected that event 7 performed much 
worse because the spike was much sharper and brief than in 
event 9. Next it also shows the best performance when training 
on dataset 10, before predicting on 7, because they both 



 

 

experience similar sharp spikes at the beginning of the dataset. 
Finally, we see that relatively better performance is achieved 
when training on datasets 7 and 10 before predicting on 6. This 
is likely because they are not only both experience similar 
sharp spikes at the beginning of the dataset, but event 10 also 
has a relatively similar distribution compared to 6. This we 
can conclude to a large extent, that the cached episodic 
memories are able to improve accuracy when predicting 
similar events. 

  
(a) Event 4, bay 1 (b) Event 6, bay 1 

  
(c) Event 7, bay 1 (d) Event 9, bay 1 

 
(e) Event 10, bay 1 

Fig. 6. Rainfall Runoff Target Volumes over time for each event 

IV. CONCULSIONS AND REMARKS 
This paper has proposed a novel and generic episodic 

memory mechanism that integrates with neuro-fuzzy system 
with the following features. First, an episodic mechanism 
based on human psychology, that can encode, store, recognize 
and recall similar transient events in online real-time data, has 
been devised. Second, the episodic mechanism has been 
integrated into a neuro-fuzzy model and is able to provide it 
superior accuracy in solving complex real-world problems, 
mainly in the domain of finance. Lastly, the model provides 
human-readable decision-making logic, which can be 
analyzed and understood by the decision makers. Uses the 
processes of Event Detection, Episode Encoding, Episode 
Recognition and Episode Recall to store and retrieve transient 
events. Relevant rules from most similarly recalled episode 
are injected into the system to deal with rapid changes in the 
target. This paper also provides benchmarking of the proposed 
GEMM-eMFIS(FRIE) against similar neuro-fuzzy models. It 
is demonstrated to provide both superior accuracy and 
interpretability when applied to financial and rainfall datasets. 
Results also show that the mechanism is able to correctly store 
and recall relevant events in the financial domain. Overall, this 
points towards the generalizability of the episodic mechanism 
on both model type and domain. Some limitations remain in 
the episodic mechanism and it can be further improved in 
several aspects. The first is that the episodic memory cache 

has only been demonstrated to work effectively on online 
fuzzy-neuro systems. In theory, it should be feasible to apply 
it to offline scenarios and other types of computationally 
intelligent models. Second, depending on the dataset and 
model, an external tuning algorithm may be required to 
optimize its hyper-parameters. These aspects will be explored 
in the future. 
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