

GEMM-eMFIS (FRI/E): A Novel General Episodic
Memory Mechanism For Fuzzy Neural Networks

Sheng Wei Pang
Sch. of Computer Science & Engg.
Nanyang Technological University

Singapore, Singapore 639798

Chai Quek
Sch. of Computer Science & Engg.
Nanyang Technological University

Singapore, Singapore 639798
ashcquek@ntu.edu.sg

Dilip K. Prasad
Dept. of Computer Science

UiT The Arctic University of Norway
Tromso, Norway 9006

dilip.prasad@uit.no

Abstract— In fields such as finance, medicine, engineering,
and science, making real-time predictions during transient
periods characterized by sudden and large changes is a hard
challenge for machine learning. Humans keep memory of these
transient events, abstractly learn the most relevant rules and
reuse them when similar events occur, which stems from
episodic memory that allows storage and recall of similar events.
This paper proposes a novel online general episodic memory
mechanism (GEMM) and demonstrates its integration into the
Neuro-Fuzzy system (NFS) architecture called evolving
Mamdani Fuzzy Inference System (eMFIS) with Fuzzy Rule
Interpolation and Extrapolation (FRI/E). Our proposition,
called GEMM-eMFIS(FRI/E), learns from past events by
storing and retrieving them from an episodic memory cache
during event-driven transient behavior, thereby boosting
performance while using a few rules only. GEMM-
eMFIS(FRI/E) further has several in-built mechanisms that
enable it to learn effectively from continuous stream of online
data. They include associative-dissociative learning theory to
keep its rule base updated, 2-stage incremental clustering; (2-
SIC) to determine cluster width, interpolation and extrapolation
of rules to deal with concept shifts and drifts in the time-variant
data, and rule pruning and merging to keep the rule base
compact. GEMM-eMFIS (FRI/E) is benchmarked against other
NFS’ on various time-variant datasets such as stock index prices
and rainfall runoff with 3%-5% improvement during transient
period and shows strong forecasting performances with 4%-5%
more interpretability with lesser rules.

Keywords— Fuzzy Neural Networks, Episodic Memory,
Inference Systems, Financial Forecasting

I. INTRODUCTION
One of the hardest challenges for machine learning of any

predictive model is to make predictions during periods of
sudden and larger than normal spike or drop in the values. This
phenomenon is known as transient behavior, which is often
defined to be a system’s response to a change from a steady
state [1] due to any event that affects the system’s equilibrium.
Take the example of a stock’s price suddenly crashing upon
its release of corporate events. Initially, we see that the price
increases steadily, this is known as the steady state. Macro-
economic events such as global recession or trade war as well
as company related events such as corporate earnings release
of adverse reaction of investors to breaking news can tip the
equilibrium off and trigger a transient behavior. One type of
predictive model that performs well in the domain of finance
are Neuro-Fuzzy Systems (NFS). NFS combine the best traits
of both architectures, i.e. accuracy of prediction from ANN
and derivation of highly interpretable rule sets from FIS to
result into interpretable and accurate learning models [3].
Most works on NFS cope with concept drifts [2] in the
dynamic data using techniques like fuzzy rule interpolation-

extrapolation and incremental clustering techniques. Concept
drift occurs when the statistical characteristics of the features
and target evolve over time in unexpected ways. However,
they struggle to deal with sudden spikes or drops in the data
because these incremental techniques assume that all the rule
antecedents activated have the same significance, which
results in inaccurate interpolation outcomes [4].

In this work, a novel approach of mimicking general
episodic memory mechanism (GEMM) of human brain is
used to detect transient behavior and perform prediction using
suitable rules during the transient period in the event-driven
financial domain. Episodic memory cache is implemented and
integrated in FIS for the first time. It encodes, stores and
retrieves the relevant ‘events and rules’ that the model has
previously experienced, in order to simultaneously improve
model accuracy while using a fewer number of rules. For this
purpose, eMFIS(FRI/E) is chosen as the foundational FIS on
which GEMM is integrated. Here, the choice of
eMFIS(FRI/E) deserves an explanation. It preserves the
interpretability of Mamdani type fuzzy membership functions
even while providing accuracy similar to that supported by
TSK type fuzzy functions. It adopts both compositional rule
of inference (CRI) inference and the interpolation and
extrapolation [3] from the n-nearest rules, which in known for
good handling of concept drifts and shifts. In addition, eMFIS
(FRI/E) also adopts a self-reorganizing network approach
using BCM theory to self-reorganize the rules’ potentials in
the fuzzy rule base. Its fuzzy clusters have the ability to self-
reorganize, ensuring the optimum representation of recent
data distribution.The paper is organized in 4 sections. Section
II presents GEMM - eMFIS(FRI/E). Section III presents
several experiments for benchmarking, financial modeling
and analysis of results. Section IV presents conclusion.

Fig. 1. Network architecture of GEMM-eMFIS (FRI/E) is derived from
eMFIS(FRI/E).

II. INCORPORATING EPISODIC MEMORY INTO EMFIS(FRIE)

A. Neuro-fuzzy architecture of GEMM-eMFIS(FRI/E)
The basic architecture is adapted from eMFIS(FRI/E)[3].

As an evolving and self-organizing network, GEMM-eMFIS
(FRI/E) begins with no neurons or links initially. The neurons
and links are incrementally created as knowledge is learnt
from the arriving data. This mimics human cognition which
incrementally creates schema via accommodation when
existing schemas become obsolete in representing the new
information. GEMM-eMFIS (FRIE) follows a five layer
structure as described in Fig. 1. At the th time step, the data
is defined as the ordered pair (,) of input data values =, , … , and the target data value =, , … , . Here, and are the th attributes of the
input and output, respectively. The mathematical details of the
architecture can be found in [4] and are left here for brevity.

GEMM-eMFIS (FRIE-M) adopts BCM theory [5] which
self-reorganizes its rule base to ensure that its fuzzy rules are
representative of the current data. The best fit fuzzy labels are
computed for every data value pair (,) which yields the
highest membership value. Fig. 2 shows our episodic
mechanism acting as a form of meta-learning on top of the
inference mechanisms of eMFIS(FRIE). This means that all
recalled rules undergo the same inference mechanism with
rule pruning and merging. Moreover, it also implies that our
episodic mechanism can be plugged into any online neuro-
fuzzy model with a dynamic rule base.

Fig. 2. Episodic mechanism integrated with eMFIS(FRIE)’s learning
mechanisms.

The creation of a new cluster occurs when drift or shift is
detected by the movement of data distribution to an unknown
location. This is due to the second derivatives of the age curve
becoming significant, implying that the clustering age is
increasing at an increasing rate. Inspired by the categorical
learning of infants and adults and adapted from [6],
eMFIS(FRIE) adopts 2-SIC which uses both top-down
divisive clustering approach [7], and bottom-up clustering
approach [8]. It is able to overcome the issues of (1) over-
smoothing masking the structure of the data distribution and
(2) too many small clusters generated due to a smaller slope.

The interpolation and extrapolation approach, adapted
from [9], works by building a new inference rule from its
nearest n (n ≥ 2) rules, before applying scale and move
transformations to derive the final results. The advantages of

this approach allow it to involve multiple rules, each
consisting of multiple antecedents, handle fuzzy sets with
vertically sloped membership functions, and extrapolate the n-
closest rules should they all lie on one side of given
observation. This is also applied to the newly recalled rules,
giving the system flexibility to interpolate on a larger rule base
and likelihood of increasing accuracy. It involves choosing the
closest n rules, constructing the intermediate rule and applying
a scale and move transformation.

A pseudo-pruning mechanism is an online state-selection
mechanism to put some prioritization on the fuzzy rules. Rules
are set to off state if the weight falls below certain threshold.
However, the rule is only removed when it has been set to off
for a significant period of time, or it has a very small weight.
Only the rule with higher weight is kept if the antecedents
match the new rule, but consequents do not. In the case of
duplicate rules, the duplicated rule is removed. The weights of
the rules are normalized to the value of [0-1] in order to
prevent newly created rule to always have highest weight, and
results in overly biased toward new rules. The newly recalled
rules are also subjected to removal should their weight fall
below a certain threshold or are duplicates.

B. Fuzzy Rule Episodic Cache Mechanism
The GEMM comprises of a multi-store mechanism, event

detection, episode encoding, episode recognition, and episode
recall. Each of them is discussed below.

Multi-Store Model: The multi-store model consists of three
types of memories, namely sensory, short term, and long-
memory. Sensory memory is where any observed information
is first registered. This is analogous to each input tuple of the
data registered by the model. Short-term memory refers to
active memory capable of holding small amounts of
information for a brief-period of time. This is analogous to the
dynamic rule base and membership functions, as rules get
created and pruned over time. Long-term memory can store
large quantity of information for a very long duration,
analogous to the episodic cache introduced here. Let us
represent them by the following notation:

Overall memory = + + (2.1)
Sensory memory = [, , …] (2.3)
Short-term memory = [, , …] (2.4)
Long-term memory = [, , …] (2.5)

where contains the vector of inputs at time , contains
the i-th memory computed at time , and comprises of
mi, i.e. the i-th memory in a long-term memory store. It is
noted that each memory type at time t is made up of a series
of memories. Given our interests in predicting event-driven
trading, we shall focus on exploring use of explicit long term
memory to recall the events leading up to financial crises,
which would be useful in predicting transient behavior. In the
short-term memory, a series of real-time computations take
place to make sense of the events and the associated
contextual information that occurs over a short period of time.
We may further represent the different types of information xi
stored short term memory as: = [ℎ , ℎ , … ℎ] (3.1) = { , , … } (3.2)

 = (−)⁄ (3.3) = { , , … } (3.4) = { , , … } (3.5) = [, , …] (3.6)

where is the i-th event made up of a vector of inputs h with
m dimensions, is the i-th sliding window containing a
series of j events, is the price volatility difference between
the i-th and (i - 1)th price, is the i-th sliding window
containing a series of j-1 price volatility differences, is the
rule base of the system at time t, and B is a set of rule bases at
time t with length equal to window_size j.

Event Detection: Event detection refers to the process of
detecting which events can be used to trigger episode
encoding and recall [10]. The process of event detection for
GEMM-FNN, , is defined as: () = 1, () >0 , ℎ (3.7) () = (max() − min ()) min ()⁄ (3.8)

where takes in an episode and determines whether to
trigger the episodic memory mechanism (1) or not (0), is
the i-th sliding window containing a series of j events , T(x)
computes the maximum percentage difference between the
highest and lowest values in a vector x, and is volatility
threshold parameter that is used to detect transient events.

Episode Encoding: Episode Encoding Ee is defined as the
process of storing a set of events as an episode [10] in a long
term memory structure Lm. We denote episodic memory mi
mathematically as a window of distinct events (e), that is
triggered by a cue (c) as follows:

e̅i, j = mean(wi) (3.9)
b̅i, j = C(B) = {r1, r2, … r3 } (3.10)
di = {t, T(wt), e̅i, j , b̅i, j} (3.11) (,) = mi = {ci ∶ d}= + , (()) > 0, ℎ ℎ (3.12)

where ci is a cue that contains a vector of price volatility
differences { , , … } , t is the time index of the
current input tuple e̅i, j is the average of j input events of the i-
th episode, C(B) is a rule consolidation process that creates a
set of unique rules aggregated from the i-th window rulebase
Bi, b̅i, j is a set of unique rules aggregated from the i-th window
rulebase Bi, and mi is the i-th episodic memory made up of cue
ci and di. The set of details di of the i-th memory m, consisting
of a set of a cue, volatility, average input, and
window_rulebase. Ee(mi) is a function that creates a memory
from ci and di and appends to the long-term memory store.
Hence, the short-term memory stores a series of events made
up of windows of past inputs, rulebases and volatilities. A
transient event triggers episode encoding if no similar episode
exists in the long term memory.

Episode recognition: Episode recognition refers to the
identification of a stored episode in the episodic memory in
response to a partial event sequence [10]. Suppose an event is
detected, it should then be checked if there are any episodes
with similar events associated with it. We may define episode
recognition Ie as: given a new cue ct at time t and a long-term
memory store Lm containing a set of episodes, there exists a
set of episodes with cues that are similar if any of them fall
within a similarity threshold s as defined below:

Ie(ct) = {m1 , …, mt-1} ⊆ Lm , where S(ct , ct-1) < s (3.13) (,) = | − | 2 = ∑ , − , (3.14)
S(ct , ct-1) computes the similarity of two episodes mt and mt-1
using Euclidean distance between their cues ct and ct-1. If there
exists a subset of stored episodes that have cues similar to the

current event, then episode with the most similar cue is
recalled. Otherwise, this event is encoded as a novel episode
to be stored in the memory. The pseudocode to aggregate all
rules within a window B containing a set of j rule bases for
rule consolidation C(B) is presented in Algorithm 1.
Algortihm 1: Pseudocode to aggregate all rules within a window B
containing a set of j rule bases for the function rule consolidation C(B).
rule_consolidation(B):
 all_rules = list()
 unique_rules = list()
for rulebase in B:
 for rule in rulebase:
 all_rules.append(rule)
 for rule in A:
 rule.relevance = mean(rule.weight)
 rule.rmse = mean(rule.rmse)
 new_rule = {rule.antecedent, rule.consequent,
rule.relevance, rule.rmse}
 unique_rules.append(new_rule)
return unique_rules

Episode recall: Episode recall comprises of the replaying of
an episode when an external cue is presented [10]. We denote
episode recall Re as: given a set of similar episodes from RCe,
retrieve the most similar episode ms and create new rules
based on their relevance as follows.

Re(A, max_a, max_c) = { , , … }, where . >

where is a set of modified rules belonging to the closest
episode , A is a set of similar recalled memories Ie(ct) = {m1
, …, mt-1}. Hence, episode recall returns a unique set of
relevant rules. The pseudocode that aggregates all rules within
a window B containing a set of j rulebases for rule retrieval
Re(A, max_a, max_c) is presented in Algorithm 2.
Algorithm 2: Pseudocode to aggregate all rules within a window B
containing a set of j rule bases for rule retrieval Re(A, max_a, max_c).
R(A, max_a, max_c):
closest_episode = Min(A.diff)
rules = list()
for rule in closest_episode:
 w = rule.relevance
 if w > r:
 new_rule.a = w . rule.a + (1- w) . max_a
 new_rule.c = w . rule.c + (1- w) . max_c
 new_rule.relevance = w
 new_rule.rmse = rule.rmse
 rules.append(new_rule)
return rules

Types of episodes in the financial domain: The significance
of a financial event Cs,i is indicated by its volatility, i.e. the
fluctuation of price in the market. Based on the value of
volatility Vm, we define three types of episodes, namely
regular (mR), déjà vu (mD), and PTSD (mP) as follows:

m = mP , if Vm ≤ - 25%
m = mD , if - 25% < Vm < - 15% or 15% < Vm < 25%
m = mR , else otherwise (3.15)

PTSD episodes occur during the most negative of events,
followed by Deja Vu and regular episodes.

Summary of episodic mechanisms: To summarize, the
sensory memory actively takes in input targets and features,
or the details of each event. We create a sliding window of
fixed length w, each containing 1) A rule base containing all
active rules 2) Input data for both the target and features. Next,
for each window, we compute the overall volatility, volatility
window, average inputs and relevance of each rule using the
mean of their weights. These are stored in the short-

term/working memory. Using event detection, if the overall
volatility crosses a certain threshold, the episodic mechanism
is activated. Event encoding then converts an event into an
episode. The long-term memory store is checked for similar
episodes using episode recognition. If no previously similar
episodes are found, the episode is cached in the long term
memory store alongside its relevant rules. If a similar episode
is found, the stored similar episode is retrieved, its rules are
modified by computing a weighted average with the current
max_set antecedent/consequent, and the modified rules are
injected into the working memory of the system.

We note the five hyper-parameters of our episodic
memory mechanism for financial data. They are the window
size (W), transient volatility threshold (v), volatility
similarity threshold (s), rule relevance threshold (r), and
error allowance threshold (e). Further experiments have been
conducted in [11] to tweak and understand their effect on the
mechanism. The subsequent benchmarks and analysis use the
optimized hyper-parameters.

III. BENCHMARK EXPERIMENTS AND ANALYSIS

To evaluate the performance of the proposed GEMM-
eMFIS (FRI/E), a series of benchmarks are performed,
followed by investigation of other potential applications.
Three types of benchmark experiments were performed:

A. Exchange traded funds (ETF) indices - DJIA and S&P 500
B. Individual stocks (e.g. Ford, Apple)
C. Rainfall Runoff [12]

The performance measures used in the experiments are
root mean-square error (RMSE) and Pearson’s product-
moment correlation coefficient. The average number of rules
created by each model during the prediction process is also
included as an interpretability measure. Further, to evaluate
the efficiency of the episodic memory cache, the number of
transient events, episodes cached, successful recalls and
percentage of relevant episodes are investigated. Finally, an
execution time used for training and testing are also included
as a measure of speed.

A. Using Global Macro Events To Predict ETF Indices
This experiment seeks to validate several key hypotheses

that demonstrate the plausibility of predicting the impact of
financial crisis’ on ETFs through the implementation of an
episodic memory mechanism on a Neuro-Fuzzy System.
Throughout, the analysis will show that not only is the
mechanism able to capture global financial macro events, it
also provides better performance in accuracy and
interpretability, that traders may use for profit.

Datasets: Two datasets, SNP500 and DJIA, were chosen to
give a balanced representation of price movements of ETF.
Extracted from Bloomberg Terminal [13], US Bureau of
Economic Analysis [11] and US National Bureau of
Economic Research [11], each dataset contain 54-years of
daily prices of the respective stocks/indices, from December
1964 to February 2019. Rows of non-trading days were
removed to prevent duplicate prices and to simulate a real
trading scenario. The dataset consists of six features for
presented in TABLE I. The features were selected to provide
a good mix of technical indicators and macro-economic
events.

TABLE I. FEATURES FOR MACROECONOMIC EVENTS DATASET

Feature Description
1 Volume A decimal number representing the total daily

trading volume of the security.
2 Moving

Average
A decimal number that computes a simple moving
average of the securities’ price for the past 15 days.

3 7 Days Ago
Prices

A decimal number representing the price of the
security 7 days ago from today.

4 21 Days
Ago Prices

A decimal number representing the price of the
security 21 days ago from today.

5 21 Days
Ago Prices

A decimal number representing the price of the
security 21 days ago from today.

6 Event GDP
Affect

A negative percentage value between 0 to -100,
that represents the decline in GDP of the US
economy during a recession (peak-to-trough).

TABLE II. EXPERIMENTAL RESULTS FOR THE SNP500 INDEX DATASET

Architecture RMSE Correlation Average
Rules

Run
Time (s)

GEMM-
eMFIS(FRIE)

25.7548 0.99932 19.01 3522.80

eMFIS(FRIE)[11] 26.5938 0.99928 19.35 1411
eMFIS[6] 27.0472 0.99926 22.9 1076
EFUNN[21] 26.4 - 3189 291.8
SAFIN[18] 98.7 - 1 312.32
ANFIS[20] 25.72 0.99500 3 44.32

TABLE III. EXPERIMENTAL RESULTS FOR THE DJIA INDEX DATASET

Architecture RMSE Correlation Average
Rules

Run
Time(s)

GEMM-
eMFIS(FRIE)

190.02 0.99953 20.80 2965

eMFIS(FRIE)[11] 191.05 0.99954 21.54 1326
eMFIS[6] 196.56 0.99950 21.56 1407
EFUNN[21] 358.02 - 3028 121
SAFIN[18] 877.87 - 1 23.7
ANFIS[20] 192.55 0.99950 2 21.16

Fig. 3. Comparison of the real data (red) of SNP500 dataset and predictions
by GEMM-eMFIS(FRIE) in blue and eMFIS(FRIE) in green.

Performance evaluation: The experimental results and
comparison with several state-of-the-art methods for SNP 500
and DJIA are presented in TABLE II. and TABLE III. ,
respectively. We see that GEMM-eMFIS(FRIE) outperforms
all other Mamdani systems as it is both more accurate and
requires fewer rules. GEMM-eMFIS(FRIE) performs better
overall compared to other Mamdani models and is even on par
with TSK models, having not just better accuracy but also
better interpretability as it has fewer rules. Fig. 3 presents the
comparison of real data and trends predicted by GEMM-

eMFIS (FRI/E) and eMFIS (FRI/E). We see that eMFIS
(FRI/E) struggles during periods of transient behavior as it is
simply unable to derive accurate rules based on the existing
rules. In contrast, we see the true power of the episodic
memory mechanism coming into play here as GEMM-eMFIS
(FRIE) (blue) is able to quickly adapt to the sudden drop in
prices to achieve better accuracy. Using GEMM-eMFIS
(FRIE) will allow traders to not only use macroeconomic
features to predict sudden changes in price, but will also
provide them with an episode base that they can reference in
the future to understand the reasons for the swings in the
market. As the model learns, its episode base grows and
becomes more resilient to financial crises. Finally, traders can
go one step further to employ GEMM-eMFIS(FRIE) for
anticipatory trading by increasing the window size such that
the model can learn the behavior of fluctuation of prices
several time steps ahead of the sudden drop or spike, enabling
them to perform long and short term planning on the market.

Analysis of episode recall: The main hypothesis of the
episodic mechanism is that it learns, stores and recalls relevant
episodes. We use the list of global financial crises since 1965
[14] as a reference on our timeline to identify the events being
cached and recalled on the SNP500 dataset. Out of 300+
episodes cached, TABLE IV. shows some top ones. We see
that episodes from previous events are indeed recalled, and
that the model is able to correctly recognize similar events.
For example, episode id 347 was detected and stored in the
episodic memory cache in September 1990 close to the 1990s
recession (A). It was retrieved during several later US
financial downturns (B-F). This provides a new dimension of
interpreting the model to stock market traders. By knowing
which episodes trigger certain movements in the prices, they
essentially now have ‘inside information’ as to how the market
will likely react when a certain financial crisis is impending,
potentially giving them competitive advantage over other
models that do not have such episodic memory.

TABLE IV. LIST OF EPISODES RECALLED AT THEIR RESPECTIVE EVENTS
AND DATES FOR SNP500 DATASET. THE EVENTS ARE REPRESENTED AS
(INPUT TUPLE #, DATE, NAME)

Episode 53 Cached: 1933, 1973-05-17 Britain stock market crash
Recalled: 2174, 1974-05-01 OPEC Oil Crisis

3754, 1980-07-15 1980s recession
5587, 1987-04-20 Black Monday
10250, 2002-01-02 Recession by September 11
13737, 2015-11-06 Chinese stock market crash

Episode 104 Cached: 2182 1974-05-13 Opec oil crisis
Recalled: 3775, 1980-08-13 1980s recession

4043, 1981-08-11 Iranian Revolution
8752, 1997-11-07 Asian Financial Crisis
12408, 2010-07-29 Flash Crash

Episode 265 Cached: 4198, 1982-03-05 Iranian Revolution
Recalled: 6108, 1989-03-28 Friday the 13th Flash Crash

6554, 1990-09-28 1990s recession
6805, 1991-08-06 Japanese Asset Bubble
7134, 1992-10-01 Black Wednesday
11691, 2007-09-24 SSE Index Crash

Episode 347 Cached: 6549, 1990-09-28 Early 1990s Recession (A)
Recalled: 7136, 1992-10-05 Black Wednesday (B)

9127, 1998-07-21 Russian Financial Crisis (C)
10023, 2001-02-02 US Tech stock bubble crash (D)
11633, 2007-07-02 SSE Index Crash (E)
12607, 2011-05-12 US Bear Market (F)

Episode 369 Cached: 8643 1997-08-20 Asian Financial Crisis
Recalled: 10240, 2001-12-17 September 11 Attacks

12227, 2009-11-06 08-09 Financial Crisis’
13699, 2015-09-15 Global Stock Market Sell Off

TABLE V. TYPES OF EPISODIC MEMORIES BEING CACHED.

Episode ID Date Cached Volatility Type
531 (A) 1987-10-26 -28.87% PTSD
802 (B) 2008-10-10 -25.47% PTSD
878 (D) 12334 2011-11-08 10.31% Deja Vu
756 (B) 9992 2002-10-17 11.48% Deja Vu
825 (C) 11653 2009-02-27 -11.09% Deja Vu
699 (A) 9578 2001-09-19 -14.52% Deja Vu
765 10159 5.05% Regular
775 11304 5.55% Regular
867 12285 -6.20% Regular
917 13922 -7.19% Regular

Types of episodes being recalled: Earlier we mentioned that
there 3 types of memories (regular, DeJaVu and PTSD). Let
us now investigate whether we are indeed able to classify
memories into 3 distinct types based on the volatility of the
price window. We explore the episodes created from running
GEMM-eMFIS(FRIE) on the DJIA dataset and observe the
types of episodes cached. The list of episodes and their
characteristics were saved into a flat-file and an analysis was
performed using pandas data frames to classify the various
episode types based on their window volatility, Vm.

TABLE V. shows the caching of 2 PTSD type episodes
during catastrophic events like the 2008 global financial crisis
where there were sudden drop in prices greater than 25%.
These represent traumatic incidents in the dataset and for the
model, which occur rarely through the lifetime of the model.
Déjà vus are events that seems familiar and with vivid
photographic detail. This contrast with normal remembrances
where certain sensory details have eroded over a long time.
The memory can be both a positive or negative. TABLE V.
shows the caching of 4 DeJa Vu type episodes during periods
where there were either sudden rises or fall in prices between
15-25%. These events are not as severe as PTSD, but occur
more occasionally and are still significant enough for the
model to cache them. TABLE V. also shows the caching of 4
regular type episodes during periods where there were either
sudden rises or fall in prices between 15 to -15%. These events
are relatively more common than PTSD and DeJa Vu, and
represent quarterly corporate sentiments in the dataset but are
less significant in their price volatility.

B. Using Corporate Events To Predict Stock Prices
This experiment seeks to validate several key hypotheses

that demonstrate the plausibility of predicting the impact of
corporate events on stock prices using GEMM-eMFIS
(FRI/E). The analysis will show that not only the mechanism
is able to capture internal corporate events, but it also provides
better performance in accuracy and interpretability that traders
may potentially use to help improve profits.

Dataset: The individual stock prices of Ford and Microsoft
were chosen because these companies have existed for at least
30 years and extensive data has been collected about them.
Extracted from the NTU Bloomberg Terminal, each dataset
contain at least 30-years of daily prices of the respective stocks
until February 2019. However, Microsoft begins from March
1986 as it was incorporated only then while Ford begins from
December 1964, as the oldest date available. Rows of non-
trading days were removed to prevent duplicate prices and to
simulate a real trading scenario. Each dataset consists of seven
features listed in TABLE VI. The features were selected to
provide a good mix of technical indicators and corporate
actions, and have been tested to be leading indicators. While
technical indicators are relatively straight forward, it is worth

it to mention that earnings surprise [11] is a powerful feature
as future revenues are what analysts mainly use to decide on
the valuation of share prices. Other sources of data they take
into consideration include quarterly and annual reports,
current economic conditions and the company’s own revenue
guidance [15]. Should the company experience a negatively
unexpected earnings surprise due to poor performance that
quarter, analysts will likely become bearish on the stock and
reduce their future forecasts, lowering the company’s
valuation and hence stock price.

Performance evaluation: The experimental results and
comparison with several state-of-the-art approaches for the
two companies are given in TABLE VII. and TABLE VIII.
We see that GEMM-eMFIS(FRIE) performs better compared
to other Mamdani models and at par with TSK models, having
not just better accuracy but also better interpretability as it has
fewer rules. We also see that it makes better predictions
specifically during transient events at t=3900 and t=7600. Fig.
4 presents the comparison of real data and trends predicted by
GEMM-eMFIS (FRI/E) and eMFIS (FRI/E). Similar to the
observation in Fig. 3, we note here also that GEMM-
eMFIS(FRIE) (blue) is able to quickly adapt to the sudden
drop in prices to achieve better accuracy than eMFIS (FRI/E).

Analysis of episode recall: The timeline events of Microsoft
listed in [16] is used as a reference on our timeline to assess
the recall of episodes. Out of 1000+ episodes cached, the
episodes that have been recalled several times are presented in
TABLE IX. It is interesting to note that episode id 468 was
detected and stored in the episodic memory in December
1990, when MS Office was released (A). It was then retrieved
later during several other product releases (B-G) such as
Internet Gaming Zone, Windows XP and Microsoft Surface.

TABLE VI. LIST OF FEATURES FOR FORD AND MICROSOFT CORPORATE
EVENT DATASETS

Feature Description
1 Volume Total daily trading volume of the security.
2 Moving Average Simple moving average of the securities’

price for the past 15 days.
3 Prices 7 Days Ago The price of the security 7 days ago from

today.
4 Prices 14 Days Ago The price of the security 14 days ago from

today.
5 Prices 21 Days Ago The price of the security 21 days ago from

today.
6 Earnings Surprise A percentage value that signifies how well

a company’s earnings beat bloomberg
analyst expectations for that quarter. A
negative value means the company
performed poorer than expected.

7 Description An integer value of 1-3, categorizing the
type of corporate event on a particular date,
which could be an earnings release (1), a
public conference/ announcement (2) or
shareholder/ partnership meeting (3).

TABLE VII. EXPERIMENTAL RESULTS FOR FORD DATASET

Architecture RMSE Corre-
lation

Average
Rules

Run Time
(s)

GEMM-eMFIS(FRIE) 0.4138 0.9960 17.55 1475.5
eMFIS(FRIE)[11] 0.4210 0.9958 16.40 750.7
eMFIS[6] 0.4261 0.9957 16.45 749.0
EFuNN[21] 0.334 0.9996 4401 363.8
SAFIN[18] 0.6699 0.9928 1 291.96
ANFIS[20] 0.464 0.9973 7 36.4
DENFIS[19] 0.475 - 4 7.9

TABLE VIII. EXPERIMENTAL RESULTS FOR MICROSOFT DATASET

Architecture RMSE Corre-
lation

Average
Rules

RunTime

GEMM-eMFIS(FRIE) 1.1381 0.9989 21.51 1685.8
eMFIS(FRIE)[11] 1.2809 0.9986 21.86 936.9
eMFIS[6] 1.2952 0.9985 21.86 706.0
EFuNN[21] 1.346 - 2416 263.8
SAFIN[18] 4.606 0.9622 1 167.91
ANFIS[20] 1.73 0.9947 3 12.49
DENFIS[19] 1.258 - 9 7.4

Fig. 4. Comparison of real data (in red) of Microsoft with the predictions of
GEMM-eMFIS(FRI/E) in blue color and eMFIS *FRI/E) in green color.

TABLE IX. LIST OF EPISODES RECALLED AT THEIR RESPECTIVE EVENTS
AND DATES FOR THE MICROSOFT DATASET. THE EVENTS ARE REPRESENTED
AS (INPUT TUPLE #, DATE, NAME)

Episode 54 Cached: 117, 1986-08-28, Microsoft goes public (IPO)
Recalled: 670, 1988-11-03 Apple sues Microsoft

1044, 1990-04-30 Microsoft launches Windows 3.0
4043, 2002-03-20 .NET initiative was launched
6528, 2011-10-20 Skype Acquisition

Episode 103 Cached: 204, 1987-01-02, Microsoft announces OS/2
Recalled: 1010, 1990-03-12 Microsoft launches Windows 3.0

1440, 1991-11-20 Microsoft Research launches
4300, 2003-03-27 Windows Mobile Launches
7760, 2016-07-14 Microsoft acquires LinkedIn

Episode 206 Cached: 510, 1988-03-18, Apple sues Microsoft
Recalled: 2074, 1994-05-25 Windows NT 3.5 launches

2855, 1997-06-26 Apple Inc partners with Microsoft
5913, 2009-06-15 Microsoft Bing launches

Episode 468 Cached: 1209 1990-12-21, MS Office Launched (A)
Recalled: 1648, 1992-09-17 Microsoft releases Windows 3.1.(B)

2557, 1996-04-23 Internet Gaming Zone launches (C)
3864, 2001-06-27 Microsoft releases Windows XP (D)
4414, 2003-09-09 Windows Mobile launches (E)
5708, 2008-08-25 Bill Gates retires (F)
6618, 2012-02-22 Microsoft Surface,launches (G)

Episode 606 Cached: 1913, 1993-10-05, Windows NT 3.1 released
Recalled: 2145, Microsoft releases Windows NT 3.5.

2709, Microsoft launches Expedia
4909, Microsoft launches the Xbox 360.
6272, Microsoft announces Windows Phone

C. Experiment: Rain Runoff
This experiment demonstrates the feasibility of predicting

rainfall runoff through the implementation of an episodic
memory mechanism on a Neuro-Fuzzy System, as an example
of non-financial application.

TABLE X. SUMMARY OF RECORDED RAINFALL EVENTS

Fig. 5. GEMM-eMFIS(FRIE) rainfall runoff prediction

TABLE XI. EXPERIMENTAL BENCHMARK FOR BAY 1 RAINFALL DATASET

Event Architecture RMSE Correlat
ion

Average
Rules

Run
Time

4 GEMM-eMFIS
(FRIE)

0.0605 0.92971 3.6155 15.67

4 eMFIS(FRIE) 0.0653 0.91729 2.0273 8.16
6 GEMM-eMFIS

(FRIE)
0.0839 0.84895 3.2222 17.444

3
6 eMFIS(FRIE) 0.0851 0.84321 1.9419 8.7449
7 GEMM-eMFIS

(FRIE)
0.0209 0.9721 1.4076 16.243

4
7 eMFIS(FRIE) 0.0209 0.9721 1.3172 7.4354
9 GEMM-eMFIS

(FRIE)
0.1109 0.83867 1.9495 15.201

5
9 eMFIS(FRIE) 0.1110 0.83876 1.7323 6.4353
10 GEMM-eMFIS

(FRIE)
0.0804 0.66813 2.7702 19.326

10 eMFIS(FRIE) 0.0886 0.50866 1.5328 6.6309

TABLE XII. CROSS VALIDATION RESULTS FOR RAINFALL
DATASET

Train Pred RMSE Correlation Avg # Rules
4 6 0.0885 0.832 3.9
7 6 0.0868 0.835 3.56
9 6 0.0896 0.851 3.6641
10 6 0.087 0.83 2.9
4 7 0.0203 0.971 1.37
6 7 0.0205 0.972 1.3
9 7 0.0203 0.970 1.23
10 7 0.0202 0.971 1.5
4 9 0.0796 0.919 2.1
6 9 0.0806 0.916 2.02
7 9 0.1048 0.857 2.22
10 9 0.063 0.949 1.87

Dataset collection: The dataset consists of several rainfall
events, each consisting of unit rainfall collected (1) using
ground level sensors and (2) in a water catchment bay after
run-off over different periods of time. The idea is to be able to
forecast the amount of rainwater collected in the catchment
bay during a rain event. The data have been obtained from an
outdoor experimental plot set up at the Nanyang
Technological University, Singapore. The experimental plot
comprises four 25m long by 1m wide test sections. Further
details of the experimental plot can be found in [17]. A
summary of the recorded rainfall data is shown in TABLE X.
Note that the discharge at the beginning of the rain for bay 1
is higher than that in bay 2, however, the discharge rate is
much higher for bay 2 when the rain intensity increases as
well. There is also some noise in the data as rainfall and
environmental conditions are erratic. Out of all events, we use
events 4, 6, 7, 9 and 10 as they last at least 100 mins and
represent a good distribution of peak discharge and intensity:

 Event 4: High peak discharge and rain intensity.
 Event 6: High peak discharge with multiple peak events.
 Event 7: Low peak discharge.
 Event 9: High peak discharge, single peak event.
 Event 10: Low peak discharge.

 Intuitively, discharge rate depends on the amount of
rainwater is in the collection bays and in turn the amount of
rainwater depends on the intensity of the rain. Hence, we
expect that the models with rainfall as input should give a fair
accuracy of discharge. The features used for each event are the
rainfall amount at time t-5 t-4, t-3, t-2, t-1 to predict the
discharge at time t in Bay 1.

Results: Fig. 5 shows that the model is able to represent the
rainfall data relatively well and is able to handle sharp
transient spikes and drops in the dynamic data at t=120 and
t=220, using its episodic memory cache. From TABLE XI. ,
we see that GEMM-eMFIS(FRI/E) outperforms EMFIS
(FRI/E). Fig. 5 shows that interpolation/extrapolation methods
of eMFIS(FRIE) (green) are unable to react quickly to
transient changes, whereas GEMM-eMFIS(FRIE) is able to
learn from the first spike episode and use it to react much more
quickly and accurately during the next transient event. This is
very important for governments monitoring rainfall data
because the episode base built up can be potentially to predict
weather crises’ such as floods or hurricanes, that could save
lives.

Results – cross validation: Next, we took our experiment
further to investigate the extent to which the episodes from
one rainfall event could help us predict another. This was done
by training GEMM-eMFIS(FRIE) on a single dataset and then
testing on another dataset, while still retaining the rules that
the model learned during training. Ideally, we should expect
better test performance on events where the data distribution
of the training and testing are more similar. For this
experiment, we shall only explore prediction of datasets 6, 7
and 9 in order to reduce complexity.

 TABLE XII. shows that the model achieve relatively lower
RMSE and higher correlation when training on datasets 4 and
10 before predicting on dataset 9. This makes sense as the
three of them have large spikes around the 150-200 timestamp
as seen in Fig. 6. It is suspected that event 7 performed much
worse because the spike was much sharper and brief than in
event 9. Next it also shows the best performance when training
on dataset 10, before predicting on 7, because they both

experience similar sharp spikes at the beginning of the dataset.
Finally, we see that relatively better performance is achieved
when training on datasets 7 and 10 before predicting on 6. This
is likely because they are not only both experience similar
sharp spikes at the beginning of the dataset, but event 10 also
has a relatively similar distribution compared to 6. This we
can conclude to a large extent, that the cached episodic
memories are able to improve accuracy when predicting
similar events.

(a) Event 4, bay 1 (b) Event 6, bay 1

(c) Event 7, bay 1 (d) Event 9, bay 1

(e) Event 10, bay 1

Fig. 6. Rainfall Runoff Target Volumes over time for each event

IV. CONCULSIONS AND REMARKS
This paper has proposed a novel and generic episodic

memory mechanism that integrates with neuro-fuzzy system
with the following features. First, an episodic mechanism
based on human psychology, that can encode, store, recognize
and recall similar transient events in online real-time data, has
been devised. Second, the episodic mechanism has been
integrated into a neuro-fuzzy model and is able to provide it
superior accuracy in solving complex real-world problems,
mainly in the domain of finance. Lastly, the model provides
human-readable decision-making logic, which can be
analyzed and understood by the decision makers. Uses the
processes of Event Detection, Episode Encoding, Episode
Recognition and Episode Recall to store and retrieve transient
events. Relevant rules from most similarly recalled episode
are injected into the system to deal with rapid changes in the
target. This paper also provides benchmarking of the proposed
GEMM-eMFIS(FRIE) against similar neuro-fuzzy models. It
is demonstrated to provide both superior accuracy and
interpretability when applied to financial and rainfall datasets.
Results also show that the mechanism is able to correctly store
and recall relevant events in the financial domain. Overall, this
points towards the generalizability of the episodic mechanism
on both model type and domain. Some limitations remain in
the episodic mechanism and it can be further improved in
several aspects. The first is that the episodic memory cache

has only been demonstrated to work effectively on online
fuzzy-neuro systems. In theory, it should be feasible to apply
it to offline scenarios and other types of computationally
intelligent models. Second, depending on the dataset and
model, an external tuning algorithm may be required to
optimize its hyper-parameters. These aspects will be explored
in the future.

REFERENCES
[1] G. Bin, H. S.-L. James, “Computing Transient Response of Dynamic

Systems in the Frequency Domain”, Journal of Engineering Mechanics
doi: 10.1061/(ASCE)EM.1943-7889.0001398, 2018.

[2] M. Ashrafi, “Online Neuro-Fuzzy Models For Real Time Flow
Forecasting”, Nanyang Technological University, Singapore, 2017.

[3] Susanti, "The Evolving Mamdani Fuzzy Inference System with Fuzzy
Rule Interpolation/ Extrapolation" Nanyang Technological University,
School of Computing, Singapore, 2014.

[4] F. Li, Y. Li, C. Shang, Q. Shen, “Improving fuzzy rule interpolation
performance with information gain-guided antecedent weighting.”,
Soft Computing, 2017.

[5] J. Tan and C. Quek, "A BCM-theory of meta-plasticity for online self-
reorganizing fuzzy-associative learning," IEEE Trans. Neural Netw.,
vol. 21, no. 6, pp. 985-1003, 2010.

[6] M. Hartanto, "The Evolving Mamdani Fuzzy Inference System
(eMFIS)," Nanyang Technological University, School of Computer
Engineering, Singapore, 2014.

[7] J. M. Mandler, P. Bauer and L. McDonough, "Separating the sheep
from the goats: Di," Cognitive Psychology, vol. 23, pp. 263-298, 1991.

[8] T. J. Palmeri and M. A. Flanery, "Prototype abstraction in category
learning?," in Proceedings of the 23rd Annual Meeting of the Cognitive
Science Society, Edinburgh, 2001.

[9] Z. H. Huang and Q. Shen, “Fuzzy interpolation and extrapolation: a
practical approach,” IEEE Trans. Fuzzy Syst., vol. 16, no. 1, pp. 13–
28, Feb. 2008.

[10] W. Wang, “Neural Modeling of Multiple Memory Systems and
Learning”, Nanyang Technological University, Singapore, 2015.

[11] S.W. Pang, “GEMM-eMFIS(FRIE): A General Episodic Memory
Mechanism For Fuzzy Neural Networks”, FYP Report, Nanyang
Technological University, Singapore, 2019.

[12] Y. L.-T. Larry, “Experimental Investigation into Benchmarking of
Neural Networks in Rainfall-Runoff Prediction”, Nanyang
Technological University, Singapore, 2008.

[13] Bloomberg L.P. Stock Price and News for SNP500 and DJIA indices
Bloomberg terminal, 29-Jan-2019. .

[14] Wikipedia contributors, "List of stock market crashes.", Wikipedia,
The Free Encyclopedia, date of access. 23 Jan. 2020, 2020.

[15] J.E. Pinto, E. Henry; T. R. Robinson; J. D. Stowe “Equity Asset
Valuation (2nd ed.)”, John Wiley & Sons, 2010.

[16] Wikipedia contributors. "Timeline of Microsoft." Wikipedia, The Free
Encyclopedia. Wikipedia, The Free Encyclopedia, 9 Feb. 2020. Web.
23 Mar. 2020.

[17] T. Kohonen, “Analysis of a Simple Self-Organizing Process.”,
Biological Cybernetics. 44. 135-140, 1982.

[18] S. W. Tung, C. Quek, and C. Guan, “SaFIN: A Self-Adaptive Fuzzy
Inference Network”, IEEE Transactions on Neural Networks, 2011.

[19] N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-
fuzzy inference system and its application for time-series prediction,"
IEEE Trans. Systs., Man, Cybern. B, vol. 10, 2002.

[20] J. S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference
system," IEEE Trans. Systs, Man & Cyberns., vol. 23, no. 3, pp. 665-
685, 1993.

[21] N. Kasabov, "Evolving fuzzy neural networks for
supervised/unsupervised online knowledge-based learning." IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
31, no. 6, 902-918, 2001.

