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1 Introduction

Data without annotation are easy to obtain in the
real-world, however, established supervised learn-
ing methods are not applicable to analyze them.
Several learning approaches have been proposed in
recent years to exploit the underlying structure of
the data without requiring annotations [1, 2]. Semi-
supervised learning aims to improve the predic-
tive performance of these unsupervised approaches,
by exploiting partially acquired annotations in the
dataset. One recent promising line of work in this
scheme makes use of graph neural networks (GNN)
[3]. The data is expressed as a graph, where vertices
are data samples and edges, given by an adjacency
matrix A, represent pairwise relationships between
data points. Although these approaches achieve
promising performance, they have so far been lim-
ited to applications, where the graph, in form of
the adjacency matrix, is available. This is a severe
limitation, as most available datasets do not in-
clude a predefined graph structure. To address this
shortcoming, we investigate if the adjacency matrix
A can be replaced with affinity matrices obtained
directly from the data. As a first step into this di-
rection, and in order to analyze its potential, we
provide an analysis of how the current state-of-the-
art semi-supervised approach, Personalized Propa-
gation of Neural Predictions(PPNP)[4], is affected
by changes in the affinity matrix.

2 Background

A popular concept of exploiting structured datasets
is neighborhood aggregation, where large node
neighborhoods are combined to achieve a more
comprehensive representation. However, this of-
ten tends to cause over-smoothing and leads to a
loss of the local structure in the neighborhood as
the neighborhood size increases [5, 4]. To improve

the over-smoothing issue commonly found in previ-
ous graph-based approaches, Klicpera et al.[4] sug-
gest PPNP by adopting an idea from Personalized
PageRank(PPR)[6]. Their model is given as,

Z(0) = H = fθ(X)

Z(k+1) = (1− α) ˆ̃AZ(k) + αH

Z(K) = σ
(

(1− α) ˆ̃AZ(K−1) + αH
) (1)

where fθ denotes a neural network, H =
{
hi
}N
i=1

is the network prediction, α is the teleport prob-

ablity, σ is the softmax, and X =
{
xi
}N
i=1

is
an input feature matrix, where each data point
is represented as a vertex in the graph. The ad-

jacency matrix A =
{
aij ∈

{
0, 1
}}N

i,j=1
repre-

sents the pairwise relationship of the points in X

and ˆ̃A = D̃−1/2ÃD̃−1/2, where Ã = A + IN and
D̃ii = ΣjÃij . The main idea of PPR is to assign
the restart state hi for the node i and to aggre-

gate neighborhood using the matrix ˆ̃A with restart
at any random propagation layer k. In addition,
shown in Eq. (1), approximated PPNP has a sepa-
rate two-step architecture with individual function-
ality; (a) neural network fθ(X) which is related to
the learning procedure; and (b) a K-layer propa-
gation stack which exploits A.

3 Methodology

For the robustness analysis of the PPNP frame-
work, we define an ideal affinity matrix Aide and
analyze the effect of reducing the quality of the
affinity matrix. We do this by replacing A in the
framework with degenerative versions of Aide. This
analysis aims to observe the change in accuracy
with respect to the degree of degeneration.
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Figure 1: Degenerative versions of sorted Aide of
Cora-ML dataset, where the number of the classes
C = 7, and the sample size in each class is[
354, 402, 452, 442, 857, 193, 295

]
(a) β = γ = 0.00 (b)

β = 0.99, γ = 0 (c) β = 0.99, γ = 2.32e−3 (d) ob-
served/given graph Aobs. Best viewed in electronic for-
mat (zoomed in).

Edge-reducing and Edge-activating Proba-

bilities, β and γ: Let Y =
{
yi
}N
i=1

be a set
of one-hot encoded label information for classifica-
tion. We define the ideal matrix Aide = YYT−IN .

Note that the ideal graph consists of several sub-
graphs where each of them represents one class as
shown in Fig. 1(a). All nodes in a subgraph are
fully connected to each other, meaning that for a
node all other nodes in the class are the one-hop
neighborhood. Meanwhile, nodes between different
classes are disconnected.

Two variables, β and γ, are introduced to de-
grade the ideal graph. β = r

M and γ = t
N2−N−M ,

where M is the total number of edges in Aide, r
corresponds to the number of reduced edges (0 ≤
r ≤ M), and t is the number of activated edges
(0 ≤ t ≤ N2 −N −M). Edge-reducing probability
β implies the removal of the edges in the graph of
Aide as shown in Fig. 1(b). It destroys the structure
within a subgraph but, on the other hand, makes
the matrix sparse and may increase the efficiency.

4 Analysis and Insight

Edge-activating probability γ implies the addition
of edges between nodes in different classes. It
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Figure 2: Result of the robustness analysis. Each bar-
graph represents the accuracy from different affinity
matrix.

causes the matrix do become more dense and noisy
(see Fig. 1(c)).

To enable comparisons, hyperparameters match
the original PPNP paper [4], including α = 0.1
and K = 10 in Eq. (1). The Cora-ML benchmark
dataset [3] is chosen for the analysis. Input fea-
ture matrix X has N = 2, 905 datapoints with
D = 2, 819 features each and the observed adja-
cency matrix Aobs has 16,316 edges. By varying
the β and γ parameters and performing extensive
experiments, we observe among others, that per-
fect accuracy can be achieved even if 97.2% of the
edges in Aide are removed (β = 0.972) by reducing
the ”ideal” number of edges (1, 542, 316) to 43, 186
(see Figure 2). This is intuitive, as removing edges
at random, still leaves the individual classes con-
nected unless the graph is thinned too much. As
long as there is a path that connects all nodes in the
same class 100.0 % can be obtained. At the same
time, this thinning reduces inference time approx-
imately 15%. Further, the accuracy decreases as
the number of wrong edges increase. Interestingly,
thinning the graph to a similar size as the original
Cora-ML dataset (by choosing β = 0.99) and dou-
bling the number of edges by adding wrong edges
(γ = 0.0023) still gives a performance of 84.91%.
This is still more than the reported accuracy ob-
tained by the PPNP approach, which is 83.77%.

5 Conclusion

We have analysed the state-of-the-art semi-
supervised learning approach PPNP and provided
insights into its robustness to the graph structure.
This is done by replacing the adjacency matrix with
degenerative versions of the ideal matrix Aide. In
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future work, we will extend this framework to semi-
supervised problems without adjacency matrix to
learn the network representations and the affinity
matrix simultaneously.
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