Outlier classification using Autoencoders: application for
fluctuation driven flows in fusion plasmas
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Universality: Density profiles in the SOL broaden with increasing plasma
line-averaged density
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How are changes in fluctuation driven flows connected to this broadening?



Working hypothesis: Fluctuation driven ExB flows govern SOL dynamics
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MLP measures plasma state parameters on time scales shorter than the
turbulent flows
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» Use average T, sample value from last 1ms

> Intermittent, large-amplitude bursts require large fit domain.



Some large amplitude T.-peaks are inconsistently identified




Poor fits can be identified

through T, o1, and AV/T,
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-30

-20 -10 0 10 -30 -20 -10 10
02 NW NE
<<
=
¢ 01
2
g
£ 00
£
T
E-01 \
>‘ \
702 Te=13.13eV ) Te=9.22eV
0.2 SE
0.1
<
g 00
£
-01
02 T.=31.93eV T.=68.73eV
~30 -20 -1o 0 10  -30 -20 -10 10
Vorove/V Vorope/V

0.0

-0.1

-0.2

0.2

aukdr i durdse

IprobelA

Tprobe/A



Error threshold allow to identify good and bad samples. What about the

rest?
Quantity ‘ relaxed ‘ mid ‘ strict ‘
Te/eV 45/50 40/45 35/40
oT, 0.75/1 0.5/0.75 0.25/0.5
AV T, 25/15 3/2 3.5/2.5

uncertain/ bad | 20.3% / 0.1% | 30.0% / 0.1% | 40.2% / 0.2%
outliers: > 2 bad fits
inliers: > 2 good fits
uncertain: neither condition is fulfilled

: Label uncertain data as valid or invalid, depending on how
“close” they are to good/bad data.
Problem: The data is 12-dimensional.



Dimensionality reduction

» Reduces the number of random variables in the data by obtaining a set of
principal variables.

» Two different approaches: feature selection and features extraction.

» Feature extraction transforms the data in the high-dimensional space to a space of
fewer dimensions.



Anomaly detection

» |dentification of items, events or observations which do not conform to an
expected pattern or other items in a dataset.

» Methods based on dimensionality reduction procedures: anomalous samples do
not belong to the subspace containing nominal data learned during training.

» Subspace is computed considering only samples of a nominal class (in our case,
measurements with a good fit).

> The representations generated for samples of a new, unseen class will arguably fail
to capture important characteristics of the data.

» Such representations will be very different from the ones of good measurements.

» Easy to discriminate between good and bad measurements in the low dimensional
space.



Principal Component Analysis

> Performs a linear mapping of the data to a lower-dimensional space in such a way
that the variance of the data in the low-dimensional representation is maximized.

» The new space is spanned by the first eigenvectors of the empirical covariance
matrix.

» PCA is a linear method and captures only 2nd order moments of variations among
the data.

» Nonlinear models, such as kernel PCA and Autoencoder, learn nonlinear
embeddings of the data.

» Those methods can model higher order dependencies in the data.



Autoencoders

» AEs are a particular class of neural networks, which

=TT learn unsupervised compressed, or lossy, representations
of data.

; » AEs are trained to map the input into a lower

x % dimensional space through a bottleneck layer and then

reconstruct the original input.

» The output of the innermost layer of the network z is
hf—J “r-J . . . .
Encoder  Code  Decoder called code and is the low dimensional representation of
the input x.



Autoencoders

""""""""""
» AE learns two functions at the same time. The first one
is called encoder and provides a mapping from an input
. x domain, X, to a code domain, Z, i. e. the latent

representation space.

» The second function, called decoder, implements a
(E——— Je—— mapping from Z back to X.

Encoder Code Decoder



Autoencoders

» The encoding function E(-) : X — Z and the decoding
function D(-) : Z — X of the AE define the following

S U ; deterministic posteriors
i z = E(x) = p(z|x; 0g)
N . x = D(z) = q(X|z;0p),
z » O and Op are the trainable parameters of the two
functions.
—_— —_—
Encoder  Code  Decoder » The encoding and decoding function are usually

implemented as two feed-forward neural networks,
which are constrained to be symmetric.



Autoencoders

> To minimize the discrepancy between x and X, the
PSSR s P : parameters O and fp are adjusted by minimizing
’ through stochastic gradient descent the following
reconstruction loss

x % L=L,+ Ao =Eyox [[x = &[[*] + X (16e]* + |0p]) -
* » The term L, minimizes the mean squared error between
— — original inputs and their reconstructions.
Encoder Code Decoder

» L5 penalizes large model weights. The hyperparameter
A controls the latter contribution to the total loss.



Autoencoders hyperparameters

> Regularization parameter A for the L norm penalty in the loss function L.
» Network configuration (number of layers and neurons per layer).

» Probability pgrop to drop neural connections during the training (prevents
overfitting).

> Learning rate 1 used in stochastic gradient descent:
ek+1 =0, + nVL(@k).

with © = {QE,QD}.
» Type of activation function implementing the non-linearities within each AE layer.
> In case of fully connected layers, each layer output is

Xt = f(WtXt_l + bt)7

with f() the activation function.



Activation functions
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Classification

One the AE is trained on good data X8, both good and bad data are processed to
obtain the low dimensional representations Z& and X°.

v

v

A classifier is trained to discriminate between Z€ and X’°.

Thanks to the AE pre-processing, the class should be easier to separate, compared
to the original input space.

v

In our work, we considered:

v

» Support Vector Machine classifier;
» Least square classifier;
» Prototype classifier.



Prototype classifier

» For each class ¢, a prototype is computed as

> X (1)

iexe

B 1
fe = Jae]

> The class label ¢ of an uncategorized data sample X is assigned as

. . 2
€ = argminje g, py [[X — (2)
» This classifier does not depend on any hyperparameter and requires to maintain
only the representative of each cluster to classify new data.

» Due to its simplicity, this classifier cannot identify complex decision boundaries to
separate samples of different classes.

> Is a viable option for easily separable data.



Classifier algorithms learn a decision boundary in code space from labelled
data
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> Least-squares classifier (brown): Tight
boundary around outliers

» Nearest prototype (Red): Boundary
approximately equidistant between
prototypes

» SVM with Radial basis function kernel
(purple): Tight boundary around
inliers




Assign label to uncategorized data in code space
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Proposed pipeline to find the optimal classifier M
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Classifiers remove qualitatively different samples
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Large amplitude fluctuations are often identified as outliers.




Removing outliers reduces mean contributions by 10 — 20%.
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