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Universality: Density profiles in the SOL broaden with increasing plasma
line-averaged density
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How are changes in fluctuation driven flows connected to this broadening?



Working hypothesis: Fluctuation driven ExB flows govern SOL dynamics
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MLP measures plasma state parameters on time scales shorter than the
turbulent flows
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I Turbulence time scale tturb ≈ 10µs.

I Classical Langmuir probes: tsweep ≈ 1ms

I MLP electronics switches between V+, V 0, V− in 1µs

I Attempt Fit on U-I characteristic

I Map Isat, Vf , Te one-to-one on Iprobe, Vprobe samples

Problem: How do we set V+, V 0, V−?

I Use average Te sample value from last 1ms

I Intermittent, large-amplitude bursts require large fit domain.



Some large amplitude Te-peaks are inconsistently identified
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Poor fits can be identified through Te, σTe
and 4V /Te
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Error threshold allow to identify good and bad samples. What about the
rest?

Quantity relaxed mid strict

Te/eV 45/50 40/45 35/40
σTe 0.75/1 0.5/0.75 0.25/0.5
4V /Te 2.5/1.5 3/2 3.5/2.5

uncertain/ bad 20.3% / 0.1% 30.0% / 0.1% 40.2% / 0.2%
outliers: ≥ 2 bad fits
inliers: > 2 good fits

uncertain: neither condition is fulfilled

Idea: Label uncertain data as valid or invalid, depending on how
“close” they are to good/bad data.

Problem: The data is 12-dimensional.



Dimensionality reduction

I Reduces the number of random variables in the data by obtaining a set of
principal variables.

I Two different approaches: feature selection and features extraction.

I Feature extraction transforms the data in the high-dimensional space to a space of
fewer dimensions.



Anomaly detection

I Identification of items, events or observations which do not conform to an
expected pattern or other items in a dataset.

I Methods based on dimensionality reduction procedures: anomalous samples do
not belong to the subspace containing nominal data learned during training.

I Subspace is computed considering only samples of a nominal class (in our case,
measurements with a good fit).

I The representations generated for samples of a new, unseen class will arguably fail
to capture important characteristics of the data.

I Such representations will be very different from the ones of good measurements.

I Easy to discriminate between good and bad measurements in the low dimensional
space.



Principal Component Analysis

I Performs a linear mapping of the data to a lower-dimensional space in such a way
that the variance of the data in the low-dimensional representation is maximized.

I The new space is spanned by the first eigenvectors of the empirical covariance
matrix.

I PCA is a linear method and captures only 2nd order moments of variations among
the data.

I Nonlinear models, such as kernel PCA and Autoencoder, learn nonlinear
embeddings of the data.

I Those methods can model higher order dependencies in the data.



Autoencoders3/23/2018 Autoencoder

1/1

Lr

x x
~

z

Encoder DecoderCode  

I AEs are a particular class of neural networks, which
learn unsupervised compressed, or lossy, representations
of data.

I AEs are trained to map the input into a lower
dimensional space through a bottleneck layer and then
reconstruct the original input.

I The output of the innermost layer of the network z is
called code and is the low dimensional representation of
the input x.



Autoencoders3/23/2018 Autoencoder

1/1
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z

Encoder DecoderCode  

I AE learns two functions at the same time. The first one
is called encoder and provides a mapping from an input
domain, X , to a code domain, Z, i. e. the latent
representation space.

I The second function, called decoder, implements a
mapping from Z back to X .



Autoencoders3/23/2018 Autoencoder
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I The encoding function E (·) : X → Z and the decoding
function D(·) : Z → X of the AE define the following
deterministic posteriors

z = E (x) = p(z|x; θE )

x̃ = D(z) = q(x̃|z; θD),

I θE and θD are the trainable parameters of the two
functions.

I The encoding and decoding function are usually
implemented as two feed-forward neural networks,
which are constrained to be symmetric.



Autoencoders3/23/2018 Autoencoder
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Encoder DecoderCode  

I To minimize the discrepancy between x and x̃, the
parameters θE and θD are adjusted by minimizing
through stochastic gradient descent the following
reconstruction loss

L = Lr + λL2 = Ex∼X
[
‖x− x̃‖2

]
+ λ

(
‖θE‖2 + ‖θD‖2

)
.

I The term Lr minimizes the mean squared error between
original inputs and their reconstructions.

I L2 penalizes large model weights. The hyperparameter
λ controls the latter contribution to the total loss.



Autoencoders hyperparameters

I Regularization parameter λ for the L2 norm penalty in the loss function L.

I Network configuration (number of layers and neurons per layer).

I Probability pdrop to drop neural connections during the training (prevents
overfitting).

I Learning rate η used in stochastic gradient descent:

Θk+1 = Θk + η∇L(Θk).

with Θ = {θE , θD}.
I Type of activation function implementing the non-linearities within each AE layer.

I In case of fully connected layers, each layer output is

xt = f (Wtxt−1 + bt),

with f () the activation function.



Activation functions

Logistic function tanh

ReLU Maxout (k=4)



Classification

I One the AE is trained on good data X g , both good and bad data are processed to
obtain the low dimensional representations Zg and X b.

I A classifier is trained to discriminate between Zg and X b.

I Thanks to the AE pre-processing, the class should be easier to separate, compared
to the original input space.

I In our work, we considered:
I Support Vector Machine classifier;
I Least square classifier;
I Prototype classifier.



Prototype classifier

I For each class c , a prototype is computed as

µc =
1

|X c |
∑
i∈X c

xi (1)

I The class label ` of an uncategorized data sample x̄ is assigned as

` = argminj∈{g ,b}‖x̄ − µj‖2 (2)

I This classifier does not depend on any hyperparameter and requires to maintain
only the representative of each cluster to classify new data.

I Due to its simplicity, this classifier cannot identify complex decision boundaries to
separate samples of different classes.

I Is a viable option for easily separable data.



Classifier algorithms learn a decision boundary in code space from labelled
data
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boundary around outliers

I Nearest prototype (Red): Boundary
approximately equidistant between
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I SVM with Radial basis function kernel
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inliers



Assign label to uncategorized data in code space
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Proposed pipeline to find the optimal classifier M
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Classifiers remove qualitatively different samples
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(a) All data, X

0 20 40 60
Te

0

1

2

σ
T

e
/T

e

−12
−10
−8
−6
−4
−2
0
2

lo
g

P
D

F

(b) Only good data, X g
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(c) No bad data, X \ X b
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(d) SVC
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(e) Nearest prototype
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(f) Least squares



Large amplitude fluctuations are often identified as outliers.
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Removing outliers reduces mean contributions by 10− 20%.

X X g X \ X b X ′g
pro X ′g

SVC X ′g
lsq

ΓT ,cond
Mean 21.0 1.83 19.4 18.3 9.93 17.0
Std 101 11.9 82.2 74.4 32.8 66.0

ΓT ,conv
Mean 11.8 2.18 11.3 11.0 7.18 10.4
Std 38.8 8.83 35.0 33.1 19.3 39.0

ΓT ,tcor
Mean 8.72 -0.093 6.58 5.72 1.21 4.65
Std 102 2.63 59.0 49.5 13.3 39.0

ΓT
Mean 41.4 3.92 37.3 34.9 18.3 32.1
Std 232 19.8 170 151 61.0 130

Heat flux in units of heat flux, in units of 1020 eVm−2s−1


