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ii. Abstract 

Multiple studies on the performance of machine-learning stock portfolios have shown the 

efficacy of machine-learning portfolios on large stock exchanges, especially the American- and 

Chinese market. Fewer studies have been conducted on smaller cap markets, which consists of 

smaller, less-liquid investment options. The purpose of this thesis is therefore to explore the 

possibilities to beat the Norwegian stock market using machine-learning modalities. Eight 

different machine-learning portfolios have been constructed based on probability outputs of 

support vector machines, random forests and logistic regression created using the R software and 

packages “e1071”, “randomForest”, “gbm” and “caret”. 

Portfolios are tested from the end of 2013 to the end of 2022. Results of the thesis are in line 

with previous research that apply machine learning on the Oslo stock exchange for early periods 

in the sample, but find different results for the extended period. Machine-learning portfolios with 

monthly holding periods perform well before 2020, particularly the random forest portfolio. 

They do however lose their predictive power after this period and generate negative return 

beginning in 2021. Returns from daily portfolios are eaten up by transaction costs in multiple 

periods before 2020 and thus fail to consistently outperform the market. Some daily portfolios so 

show promise in the later period where the monthly portfolios underperform. The thesis therefore 

concludes that while machine-learning does show some promise on the Norwegian stock market, 

they cannot be relied upon to generate consistent outperformance over the benchmark index.  
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1 Introduction 

Financial literature has previously focused on market efficiency and whether it is possible to 

outperform the market. It is currently inconclusive if it is possible to consistently beat the 

market with trading strategies. However, new strategies and methods are being employed 

constantly. Investors consider technical and fundamental properties within a stock or stock 

market when creating strategies.  

In recent years, machine-learning has been applied to the stock markets to predict future price 

movements. These models use powerful algorithms to capture relationships between technical 

and fundamental factors for an asset and the underlying returns. Amongst the popular models 

are Artificial Neural Networks, Support Vector Machines (SVM), Logistic Regression (LR), 

and Random Forest (RF).  

Krauss et al. (2017) found that Deep Neural Networks, Gradient Boosted Trees, and RF 

models performed well on the S&P 500. Their feature space was the same developed by 

Takeuchi and Lee (2013), consisting of price momentums across different periods. They 

achieved a Sharpe ratio of 5,11 before transaction costs with the RF model and a Sharpe ratio 

of 1,9 after costs. In addition, the RF model performed well compared to the market index 

Sharpe ratio of 0,35. However, the period analyzed by Krauss et al. (2017) ranged from 1992 

to 2015. They discovered that their machine-learning models performed well at the start and 

that returns declined in the later years, leading to negative returns after transaction costs. 

Tan et al. (2019) used a RF model to predict stock excess returns on the Chinese stock 

exchange. They used a 5-class classification problem combined with technical and 

fundamental features for the RF model, and they achieved a Sharpe ratio of 2,75. However, 

Tan et al. (2019) compared their model with a model featuring the same feature space as the 

one used in Krauss et al. (2017) and found that the momentum features granted greater returns 

and Sharpe ratios.  

Expanding upon Tan et al. (2019), Kilskar (2020) wrote her master thesis using the same 

model and features on the Norwegian stock exchange. She found similar results as the ones 

on the Chinese stock exchange, with a Sharpe ratio of 2,44. Similar to previous findings 
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(Krauss et al., 2017; Tan et al., 2019), Kilskar (2020) found that machine-learning models 

tend to perform well in earlier periods before their performance drops later.  

1.1 Problem statement 

Extensive research shows that machine-learning models have been able to perform well in 

large stock markets, like the USA and Chinese markets. However, few articles explore how 

the machine-learning models perform in smaller markets such as the Oslo Stock Exchange 

(OSE). Many machine-learning studies use large market indexes as their investment universe. 

In large stock markets, these consists of many large and highly liquid stocks. This is not the 

case for lower-cap markets such as the Oslo Stock Exchange (OSE). As a comparison, the 

S&P500 consists of 500 of the largest stocks on the American market, while the entire dataset 

used in this thesis has 424 unique stocks, and 356 after filtering out low-priced stocks (under 

5NOK). Therefore, we will check how some of the popular machine-learning models perform 

on OSE compared to the OSEBX and against each other. To check if the machine-learning 

models can beat the OSEBX, we have chosen the following problem statement: 

"Can machine-learning models beat the OSEBX?" 

To answer this question, portfolios with daily and monthly holding periods are constructed 

using machine-learning models and compared with the performance of the OSEBX. Although 

the RF model has been applied to the OSE with monthly and daily holding periods previously 

(Kilskar, 2020), no study has applied the same methodology with other machine-learning 

models. Therefore, we seek to answer another research question as well: 

"How do the different machine-learning models compare to each other?" 

To answer these questions, a method like the ones of Kilskar (2020), Tan et al. (2019), and 

Krauss et al. (2017) will be used.  
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2 Risk and return in the financial market 

2.1 Modern Portfolio Theory 

Markowitz (1952) is one of the most pathbreaking scientific publications in financial 

economics and typically marks the start of what's referred to as modern portfolio theory. The 

paper presents an important contribution to the understanding of the relationship between the 

selection of specific financial assets, their returns, and the overall portfolio risk. Given the 

assumption that an investor is rational and that risk is something to be avoided, a theoretical 

framework for maximizing returns for a given level of risk or minimizing risk for a given 

level of return is provided.  

For a portfolio consisting of different financial assets, the expected return of the portfolio can 

be given by the expression: 

 
𝐸(𝑟𝑝) = ∑ 𝑤𝑖𝐸(𝑟𝑖)

𝑛

𝑖=1

 
(1) 

Where E(rp) is the expected value of the portfolio, wi is the weight of asset i in the portfolio, 

and E(ri) is the expected return of asset i. 

The variance, or risk, of this portfolio can then be calculated as: 

 
𝜎𝑝

2 = ∑ ∑(𝑤𝑖 ∗ 𝜎𝑖) ∗ (𝑤𝑗 ∗ 𝜎𝑗) ∗ 𝜌𝑖,𝑗

𝑛

𝐽=1

𝑛

𝑖=1

 
(2) 

 

Where:  

𝜎𝑝
2 is the variance of the portfolio,  

𝑤𝑖 and 𝑤𝑗 are the weights of assets i and j, 

 𝜎𝑖  𝑎𝑛𝑑 𝜎𝑗  are the standard deviations, or volatilities, of the returns on asset i and j, 

𝜌𝑖,𝑗 is the correlation between returns of assets i and j 
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Equation (2) shows that the portfolio risk, represented by the portfolio's variance, is 

dependent on the risk of the individual components of the portfolio, their weights, and the 

correlation of their returns. Because portfolio risk depends on the correlation of the individual 

assets in the portfolio, overall portfolio risk can be reduced by including assets with lower 

correlations. Arguing that an investor should be concerned with not only maximizing the 

returns of the portfolio but also minimizing its risk, Markowitz (1952) shows that an efficient 

frontier of portfolios that maximizes returns for every unit of risk (or alternately minimizes 

risk for every unit of return) can be made. The efficient fronter provides a framework for how 

a rational investor should allocate their wealth in accordance with their own risk tolerance. It 

also shows that in a market of rational investors, an investor would have to increase their risk 

exposure in order to increase returns. 

2.2 Capital Asset Pricing Model 

Building on the findings of Markowitz (1952) and Tobin (1958), the capital market pricing 

model (CAPM) was co-developed by Sharpe (1964), Lintner (1965), Mossin (1966), and 

Black (1972). It is a market-equilibrium model where efficient asset combinations can 

represent the market. Moreover, because an individual asset is part of the market portfolio, the 

relationship between the returns of the individual asset and the market portfolio is similar to 

that of a linear regression. 

The CAPM can be given with the expression: 

 𝐸(𝑟𝑖) − 𝑟𝑓 = 𝛼 + 𝛽(𝑟𝑚 − 𝑟𝑓) (3) 

Or: 

 𝐸(𝑟𝑖) = 𝛼 + 𝛽(𝑟𝑚 − 𝑟𝑓) + 𝑟𝑓 (4) 

Where E(ri) is the expected return of asset i, rf is the risk-free borrowing and lending rate, β is 

the sensitivity of returns of asset i with regards to market returns, and rm is the market return. 

The market factor coefficient β can be expressed as: 



 

5 

 

 
𝛽 =

𝜎𝑖𝑚
2

𝜎𝑚
2

 
(5) 

Where 𝜎𝑖𝑚
2  is the covariance of returns for asset i and the market, and 𝜎𝑚

2  is the variance of 

returns in the market portfolio. 

Because the individual asset is correlated with the market, some of the returns of the 

individual asset can be explained by the returns for the market. Since the market "portfolio" in 

theory includes the individual asset, there are no more options to diversify the individual 

asset's risk away. The slope of the regression therefore signifies risk that cannot be diversified 

and should impact the expected return for the individual asset. An asset that has a higher 

(lower) beta is more (less) sensitive to general changes in the market and has higher (lower) 

undiversifiable risk. The asset should therefore also be expected to give a higher (lower) 

return. 

2.3 Three – and four-factor model 

While the CAPM assumes that all expected returns can be approximated by the general 

expectation of market returns and the beta, empirical studies have found that company-related 

variables such as size (Banz, 1981), price-to-earnings ratios (Basu, 1983), and book-to-market 

ratios (Rosenberg et al., 1998) can, in part, explain returns of a specific stock. Based on these 

findings, Fama and French (1993) expand the CAPM by including size and value factors. 

Fama and French's three-factor model is expressed as: 

 𝑅𝑖𝑡 = 𝛼 + 𝛽1𝑅𝑚𝑡 + 𝛽2𝑆𝑀𝐵 + 𝛽3𝐻𝑀𝐿 + Σ𝜖 (6) 

   

Where 𝑅𝑖𝑡 is the risk premium for asset i at time t, 𝑅𝑚𝑡 is the market risk premium at time t, 

SMB is a factor for size, HML is a factor for book-to-market ratio and 𝛽1, 𝛽2 and 𝛽3 are the 

factor coefficients, Σ𝜖 is the regression error which is assumed to have a mean of zero, and 𝛼 

are returns not explained by the factors in the model. 

SMB stands for "small minus big" and is a factor consisting of the difference in returns for 

portfolios of small market value stocks and big market value stocks. In Fama and French's 
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original model, for example, the data was divided into a total of six value-weighted portfolios, 

with three portfolios being in the lowest decile with regard to size and three varying degrees 

of book-to-market ratios. The other three portfolios consisted of the largest decile of market-

value stocks with the same three levels of book-to-market ratios. SMB then became the 

monthly difference of the simple average of the three small market value portfolios and the 

three big market value portfolios (Fama & French, 1993). The SMB formula is given in (7): 

 
𝑆𝑀𝐵 =

1

3
(𝑆, 𝐻 + 𝑆, 𝑀 + 𝑆, 𝐿) −

1

3
(𝐵, 𝐻 + 𝐵, 𝑀 + 𝐵, 𝐿) 

(7) 

Where: 

S = The market value of the companies in the portfolio are in the small size category 

B = The companies in the portfolio are in the large-size category 

H = The companies in the portfolio have a high book-to-market equity ratio 

M = The companies in the portfolio have an average book-to-market equity ratio 

L = The companies in the portfolio have a low book-to-market equity ratio 

 

HML stands for "high minus low" and is a factor for the difference in returns for portfolios of 

companies with high book-to-market equity and those with low book-to-market equity. The 

HML factor was constructed similarly to SMB. Two of the portfolios used in creating SMB 

were removed, as these had an average level of book-to-market ratios. HML then becomes the 

difference in simple average monthly returns for the two high book-to-market portfolios and 

the two low book-to-market portfolios. Following the same notation as (7), Equation (8) 

shows the HML function.  

 
𝐻𝑀𝐿 =

1

2
(𝑆, 𝐻 + 𝐵, 𝐻) −

1

2
(𝑆, 𝐿 + 𝐵, 𝐿) 

(8) 

Fama and French (1993) argue that while neither of their factors are based on theoretical 

concepts such as modern portfolio theory and equilibrium models, they can serve as proxies 

for common risk factors because they reflect economic fundamentals. Companies with a high 
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book value of equity compared to their market value of equity tend to have low earnings on 

assets, while companies with a high market value of equity compared to their book value tend 

to have high earnings (Rosenberg et al., 1998). High book-to-market ratio companies are 

therefore riskier and should demand a higher return. Larger companies also tended to have 

higher earnings during the period Fama and French analyzed, as bigger companies were more 

likely to still perform well during an economic downturn (Fama & French, 1993). 

Carhart (1997) adds to the model of Fama and French by including a factor that is commonly 

referred to as the momentum factor. The factor is based on an anomaly explored in Jegadeesh 

and Titman (1993), who found significantly higher returns than the market by utilizing a 

trading rule of buying stocks that had performed well in the recent past and selling those who 

had performed badly. Carhart's four-factor model can be expressed as: 

 𝑅𝑖𝑡 = 𝛼 + 𝛽1𝑅𝑚𝑡 + 𝛽2𝑆𝑀𝐵 + 𝛽3𝐻𝑀𝐿 + 𝛽4𝑊𝑀𝐿 + 𝜖𝑖𝑡    (9) 

 

The winners-minus-loser (WML) factor is created by utilizing the same method as in 

Jegadeesh and Titman (1993), constructing a portfolio that sells past losers and buys past 

winners. Losers are defined as the lowest 30% of the prior year return distribution, while 

winners are the top 30%. 

As the effects of the different factors on stock returns have been empirically proven, it is 

normal to view them as common market effects. Because of this, it is possible to use the 

three- or four-factor model as an analytical tool when evaluating the performance of specific 

portfolios. Performing a linear regression of a portfolio's returns with the factors in the three- 

or four-factor model can reveal specific characteristics of the portfolio. Using the model's 

regression coefficients, it is possible to see if a portfolio's returns come from investing in, for 

example, smaller companies, value companies, or growth companies.  

The regression intercept is also interesting, as it shows the returns in the portfolio not 

captured by the common market factors, and typically shows returns that are attributable to 

the investor's choices. A significant intercept, commonly referred to as alpha, therefore 

signifies that the investor's strategy has added (or subtracted) some value to (from) the 

portfolio that cannot be attributed to common factors. 
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2.4 Sharpe-ratio 

Another comparative tool when analyzing portfolios is rates that display the relationship 

between a portfolio's return and risk. The most well-known of these rates is the Sharpe-rate 

developed in Sharpe (1966).  

The Sharpe-ratio can be written as: 

  𝑆𝑝 =
𝑟𝑝 − 𝑟𝑓

𝜎𝑝
 

(10) 

Where: 

𝑆𝑝 is the Sharpe-ratio of portfolio p. 

𝑟𝑝 are the returns of portfolio p. 

𝑟𝑓 is the risk-free rate. 

𝜎𝑝 is the standard deviation for portfolio p. 

By dividing a portfolio's excess return by the portfolio's standard deviation, the Sharpe-ratio 

shows the excess return for each unit of standard deviation, which should be interpreted as the 

return for each unit of portfolio risk. The Sharp ratio thus captures the risk and return 

relationship first presented in Markowitz (1952). 

The Fama-French-Carhart model is used to explain the returns of different machine-learning 

portfolios created in this thesis, while the Sharpe-ratio is used to compare the performance of 

the portfolios with the OSEBX index. It should be noted that we do not use an approximation 

of risk-free rate in this thesis. The Sharpe ratio will therefore not be calculated using returns 

in excess of the risk-free rate but simply the returns of the portfolios and the market index. 

This is not an issue, since the goal is to compare these portfolios to the market index. Still, it 

is worth noting that Sharpe ratios presented in this thesis might be higher for a given return 

than what is commonly reported elsewhere. 
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2.5 Beating the market 

Traditional finance theories propose that financial markets consist of rational, risk-averse 

investors seeking to maximize returns for any given level of risk. The market thus reaches an 

equilibrium where no opportunities to generate excess returns without bearing larger risk 

exist. Despite this implication from the theoretical framework, many investors seek to create 

strategies that give a better risk-reward relationship than the general market can achieve. This 

is commonly referred to as trying to "beat the market".  

There are many possible strategies to choose from when attempting to beat the market, but it 

is common to split these strategies into two categories; fundamental- and technical analysis. 

Fundamental analysis seeks to calculate the true intrinsic value of a stock by analyzing 

fundamental economic factors, often by estimating an expected net future cashflow. 

Typically, this includes studying the company's financials, industry, competitors, and the 

economy as a whole. A fundamental analyst looks for companies that are undervalued 

according to their analysis and buys them, expecting the price to increase to their "true" value 

in the future. As a result, fundamental analysts often have a long-term investment horizon and 

invest more in "value"-stocks (Jordanoski & Petrusheva, 2016).  

Technical analysis, also called charting, only uses past trading data, such as trading volumes, 

bid-ask spreads, and prices to predict future price movements. The technical analyst is 

therefore not interested in the underlying company of the stock, but simply the stock itself. A 

few assumptions about the market are often attributed to the technical analyst. Firstly, all 

relevant company information is already priced in the stock, so fundamental analysis is 

unnecessary. Secondly, it is assumed that prices are not random, but move in trends. Lastly, 

history is repeated, or in other words, past prices can predict future prices (Bonga, 2015).   

Despite the underlying assumptions about asset prices differing between fundamental- and 

technical analysts, there is an assumption both have in common: the market does, at least 

sometimes, price assets incorrectly. Whether fundamental or technical analysis can 

consistently beat the market is inconclusive, however. Due to the difficulty of predicting 

financial time series, there is no universal consensus among academics and practitioners 

regarding the plausibility of predicting them at all. An important point of contention in this 

debate is the efficiency of financial markets.  
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According to Fama (1965)'s efficient market hypothesis, markets will be efficient as long as 

there is a sufficient amount of intelligent fundamental- and technical analysts. If a correlation 

between the development of an asset price and either its price- and order history or the 

fundamental values of the underlying company exists, these investors will find the 

relationships and act on them in order to profit. When enough investors find these patterns, 

prices will be driven to a new equilibrium quickly after the relationship is discovered. Fama 

(1965) thus concludes that a market will be efficient if the prices fully reflect all current 

relevant information.  

Fama (1970) further divides market efficiency into three degrees of efficiency; weak, semi-

strong- and strong-form efficiency. The degree of market efficiency is based on the amount of 

information that is used to price an asset. In weak form efficiency, the information set "only" 

consists of all historical market data, such as previous and current asset prices and purchase 

volumes. This implies that if weak form efficiency holds, trading using technical indicators 

would be impossible. In semi-strong form efficiency, the information set consists of historical 

price data and all publicly relevant information for a company's securities. For semi-strong 

efficient markets, it is implied that neither technical- nor fundamental analysis can be used to 

beat the market. For strong form efficient markets, the information set contains absolutely all 

information that could be relevant to a company's securities, both private and public. In strong 

form efficient markets, not even company insiders should be able to use their private 

information to generate long-term returns in excess of the market. 

Closely related to the efficient market hypothesis is the idea of prices in financial markets as a 

random walk. Empirically this was first observed in Kendall and Hill (1953), where Kendall 

remarked that time series from industrial indexes behaved "…almost like a wandering series" 

(Kendall & Hill, 1953). Malkiel (2003) provides a suggestion for the practical reasoning 

behind this phenomenon. If the efficient market hypothesis is correct, asset prices will reflect 

all current available information. When prices instantly or almost instantly reflect new 

information, tomorrow's price becomes a function of tomorrow's news. News is argued to be 

random and unpredictable and because tomorrow’s prices are a function of tomorrows’ news, 

they must also be random and unpredictable (Malkiel, 2003). 
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Many finance academics and practitioners challenge the assumption of the efficient market 

hypothesis and random walk theory, however. For instance, De Bondt and Thaler (1985) 

discovered a reversal effect in stock momentum from 1962-1982, where portfolios of 

previous losers outperformed the market by about 19.6%, while a market of past winners 

underperformed the market by about 5%. As mentioned in the previous section, Jegadeesh 

and Titman (1993) found that portfolios which bought winners and sold losers of past three- 

to twelve months generated significant returns above the market in in the following three- to 

twelve months. Brock et al. (1992) found that buy and sell signals from simple moving 

average strategies showed predictive capabilities in the American stock market. Similar 

results were found for multiple European stock markets in Metghalchi et al. (2012), where 

simple moving average strategies also showed significant excess returns compared to market 

indexes. A literature review on technical trading rules by Park and Irwin (2007) shows that 56 

out 95 modern studies find positive results while utilizing technical trading rules. Coval et al. 

(2021) also find persistence in the performance of individual investors over a period of six 

years from 1991 to 1997, where top decile performers in the first three years, outperformed 

bottom decile performers in the following three years. 

In defense of the efficient market hypothesis, Malkiel (2003) argues that while some 

strategies provide statistically significant excess returns in the periods they were tested, their 

economic relevance is not certain. As an example, Malkiel states that while momentum 

strategies showed abnormal returns in some periods of the 1990s, they subsequently 

underperformed in the year 2000. Schwert (2003) reviews studies on many of the common 

"anomalies" in returns over the '80s and '90s, such as the size effect, momentum, and the 

value effect. He notes that many of these effects seem to disappear in the years after they were 

initially introduced. The apparent reduction in significance is speculated to be due to inherent 

bias in academics and journals towards presenting findings that challenge existing theory, or 

that market participants quickly take advantage of new academic findings and cause the 

effects to disappear (Schwert, 2003). Both Malkiel and Schwert also stress the point of Jensen 

(1978) that an apparent market inefficiency is only valid if a market participant is able to 

realize returns from the strategy. In practice this means that the portfolio must survive the 

transaction costs incurred by employing the strategy.  
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3 Machine-learning 

The early financial theory relies heavily on regression analysis, and most of the financial 

relationships presented in the previous sections are assumed to be linear. With continuing 

advances in computing power and the increasing availability of larger electronic datasets, 

econometricians, statisticians, and data scientists now easily utilize models that can discover 

nonlinear relationships between variables. Machine-learning models, specifically, have 

become more common in finance research, and strategies based on probability- or regression 

output from machine-learning models show promising results compared to older, more 

"economically intuitive" strategies.  

The term "machine-learning" has grown in popularity in recent years. Machine-learning can 

be described as "A model that uses an algorithm to analyze input variables to produce an 

output" (Baloglu et al., 2022). Machine-learning algorithms can detect complex relationships 

between the input variables in large datasets. Typically, variables are called features when 

talking about machine-learning models. 

The dataset must be divided into training and testing data for the machine-learning algorithm 

to detect relationships between the features. First, the algorithm will analyze training data to 

produce an output. Then the testing data will be tested against the output to see if the 

machine-learning model was able to predict the outcome (Baloglu et al., 2022). The following 

section presents the three machine-learning models that will be applied to our data: random 

forests, logistic regression, and support vector machines. 

3.1 Random forest 

As the name suggests, random forest is a form of tree-based models. Tree-based models are 

made by checking features, then moving on to the next feature in a binomial fashion. Since 

the tree moves in a binomial fashion, it means that each feature can only have two outcomes. 

Therefore, such tree-based models can be used to predict the variable being run through the 

model.  
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Figure 3.1: Illustration of a Decision Tree 

Figure 3.1 shows how a possible decision tree could look like if it were to predict if a stock is 

“good” or “bad”. It shows that the tree starts by checking the value of a feature, then moves 

down and checks the next feature. When the tree has reached its end, a prediction will be 

made. 

The tree-based model is made by using training data, which will decide the importance of 

each feature. If a feature is important, it will be placed further up on the tree, since it will 

affect the outcome to a greater extent than a less important feature. Since the training data is 

used separately from the test data, errors can be expected regarding deviations from training 

data and testing data (James et al., 2021, s.327-345).  

To prevent some of the errors in the tree-based model related to differences in training and 

test data, you can employ the use of bagging. Bagging is a form of bootstrapping, which 

means that you take the training data, split it up, and fit the tree. When this method is applied 

several times, it will reduce the variance of the prediction made by the model, since it 

simulates more training data. We denote the number of bags as  𝑛𝑡𝑟𝑒𝑒. (James et al., 2021, 

s.340-343) 
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Another implication when making predictions based on a tree-model, is that some features 

will not contribute as much as they should since the important features are placed further up 

the tree. This can lead to some false predictions when using tree-based models. When bagging 

trees, this will lead to the trees becoming correlated with each other since all the trees will 

include the important features at the start of each tree. (James et al., 2021, s.340-345) 

In order to reduce the error related to important features, we can use the random forest model. 

Random forest reduces the number of features the tree is allowed to choose at each split when 

making the tree. This will reduce the number of important features at the top of each tree, 

decorrelating the trees from each other. Features for each split can be denoted as 𝑚𝑡𝑟𝑦. (James 

et al., 2021, s.343-345) 

Since the trees are created using bagging, the variance related to different training data and 

testing data will be reduced as well. The combination of bagging and reducing the impact of 

important features make the random forest quite good when making predictions.  

3.2 Logistic regression 

James et al. (2021, s.133-134) present the logistic regression as a probability function which 

can be written as: 

 
𝑝(𝑋) =

𝑒𝛽0+𝛽1𝑋

1 + 𝑒𝛽0+𝛽1𝑋
 

(11) 

The logistic regression contains an intercept 𝛽0 which will capture any bias or correct for 

large values of the X feature. When interpreting the 𝛽1 coefficient, we have to consider if the 

coefficient is positive or negative, since it will explain if the X feature increases or decreases 

the probability of the outcome. A positive 𝛽1 coefficient will increase the probability of the 

outcome, while a negative 𝛽1 coefficient will decrease the probability of the outcome. (James 

et al., 2021, s.133-137) 

When fitting the logistic regression, a method called maximum likelihood is used. Maximum 

likelihood is used to find the coefficients for the logistic regression that fits best with the 

model and the training data. (James et al., 2021, s.135-136)  

The maximum likelihood function can be written as: 
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 ℓ(𝛽0, 𝛽1) = ∏ 𝑝(𝑥𝑖)

𝑖:𝑦=1

∏ (1 − 𝑝(𝑥𝑖′))

𝑖′:𝑦𝑖′=0

 
(12) 

When the logistic regression model tests for probabilities, the outcome will be presented as a 

number between 0 and 1. This is due to the regression being placed in the numerator and 

denominator of the probability function. Because the probability function yields a number 

between 0 and 1, the probability can be interpreted as a percentage. (James et al., 2021, s.136-

137) 

As shown in the logistic regression (11), there is only one feature. However, the function can 

easily be expanded to include multiple features. We can rewrite the (11) function into: 

 
𝑝(𝑋) =

𝑒𝛽0+𝛽1𝑋+⋯+𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋…+𝛽𝑝𝑋𝑝
 

(13) 

Function (13) shows the expanded logistic regression model. This extension to the logistic 

regression allows the use of more features. Same as in the regular logistic regression model, 

the interpretation of the model is the same. When fitting the coefficients, the maximum 

likelihood method is still employed. (James et al., 2021, s.137-139) 

3.3 Support vector machine 

The support vector machine (SVM) is an extension of the support vector classifier and utilizes 

kernels to enlarge the feature space. (James et al., 2021, s.380) 

When creating a SVM, we have to consider a hyperplane, which can be expressed in p-

dimensions and written mathematically as: 

 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 = 0 (14) 
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Figure 3.2: Visualization of hyperplane for two dimensions (James et al., 2021, s.378). 

Equation (14) shows the hyperplane for p-dimensions and indicates the separation of the 

observations. Figure 3.2 illustrates the hyperplane for p = 2 dimensions. Separation is caused 

by (14) not being satisfied. If the equation is greater than 0, it shows that the observation is on 

one side of the hyperplane. In turn, if (14) is less than 0, the observation is on the other side of 

the hyperplane. (James et al., 2021, s.368) 

In some cases, the hyperplane cannot separate two different observations with different 

classes. This means that some observations have been placed on the wrong side of the 

hyperplane. However, the SVM allows for some observations to be placed on the wrong side 

of the separating hyperplane as long as the majority of the observations are on the right side. 

The hyperplane will therefore include a margin for classifying the observations. (James et al., 

2021, s.371-379) 

The linear support vector classifier can be written as: 

 
𝑓(𝑥) = 𝛽0 + ∑ 𝛼𝑖〈𝑥, 𝑥𝑖〉

𝑛

𝑖=1

 
(15) 

Where 〈𝑥, 𝑥𝑖〉 is: 

 

〈𝑥𝑖 , 𝑥𝑖′〉 = ∑ 𝑥𝑖𝑗 , 𝑥𝑖′𝑗

𝑝

𝑗=1

 

(16) 
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When we apply the radial kernel method, we can write the support vector machine as: 

 

𝐾(𝑥, 𝑥𝑖′) = exp(−γ ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)2

𝑝

𝑗=1

) 

(17) 

A radial kernel is chosen for the SVMs in this thesis as it is the most common kernel 

configuration in stock market prediction (e.g., Yu et al., 2014; Zhang et al., 2018; Ma et al., 

2021). An illustration of the hyperplane in a radial kernel SVM with p = 2 dimensions is 

shown in Figure 3.3. 

 

Figure 3.3: Visualization of a radial kernel with two dimensions (James et al., 2021, s.383). 

4 Methodology 

4.1 Data 

The data consists of daily stock data from the Oslo stock exchange and several macro-

economic factors. The time period for the dataset ranges from early 2010 to the start of 2023. 

However, the dataset is trimmed down while generating the model features. After including 

all macro-economic factors and features, the dataset spans 2548 days from 05/10/2011 to 

15/11/2022. An additional 260 days are removed from the investment period to allow for 

training of the initial models (more on model training and “testing” is explained below). As 

such, the investment window consists of 2288 days from 29/06/2013 to 15/11/2022. 

Stock data from the Oslo stock exchange were collected from the database TITLON. It is 

worth noting that after the Oslo stock exchange was merged with Euronext on the 30th of 
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November 2020 (Sirnes, n.d.), TITLON split the datasets into one prior to the merge and one 

following the merge. Both datasets contain daily stock prices as well as the main OSEBX 

index. The dataset prior to the merge has access to Fama-French-Carhart factors, yearly 

accounting data, and outstanding shares, while the dataset after the merge does not. 

Index data that are collected from sources other than TITLON are the VIX index, Vanguard's 

European Stock Index Fund Admiral Shares, the S&P 500, and OMX Nordic 40. Other 

factors that have been collected are the European Brent Oil spot price, exchange rates 

between euros and NOK and between US dollars and NOK, as well as the LIBOR 3-month 

rate. The section "Features: macro-factors" gives a short introduction to these features. 

VIX index daily data was downloaded from yahoo finance historical prices (Yahoo Finance, 

n.d.), OMX Nordic 40 data was downloaded from Nasdaq (Nasdaq Nordic, n.d.), the S&P500 

and the Vanguard European index were retrieved from google finance in google spreadsheets 

using the GOOGLEFINANCE function with the ticker values "INDEXP:.INX" and 

"MUTF:VEUSX". Europe brent spot prices were downloaded from the U.S. Energy 

Information Administration (EIA, n.d.). Three month LIBOR rates, as well as EURO-NOK 

and USD-NOK exchange rates were downloaded from Marketwatch (Marketwatch, n.d-a; 

Marketwatch, n.d-b; Marketwatch, n.d-c). 

4.2 Preprocessing 

Some stocks have missing trading days in the dataset, which can be due to an error in the data 

collection process, instances where the stock was not traded for that respective day, or that the 

trading for of stock was suspended on the respective day. In cases of missing data, prices are 

set to the last registered closing price, and trading volume is set to zero. 

We have also investigated stocks that have had an extreme return and have found that there 

are some discrepancies in the dataset. Some stocks have had large price-changes in the dataset 

that did not coincide with their development on Euronext. These stocks are Seabird 

Exploration, Seadrill, Carbon Transition, TECO 2030, and Awilco Drilling.  

In these specific instances, we have removed Seabird Exploration and Carbon Transition from 

the dataset outright, while TECO 2030 and Awilco Drilling have been modified. TECO 2030 

was found to have their price multiplied by ten and trading volume divided by ten for every 
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day prior to the 2nd of March 2021. Price and volume have therefore been divided and 

multiplied by ten, respectively. Awilco Drilling was discovered to have a wrong series of 

stock prices after the 21st of December 2022, and the dates preceding have been removed 

from the dataset. Seadrill was discovered to have gone bankrupt in late 2018 and re-

established in the same year, and the re-established stock had therefore not been separated 

from the predecessor. This has been resolved by separating the two into two different entities. 

It is worth noting that Seadrill went bankrupt again in 2022, but due to feature generation, the 

stock does not meet the feature-generation requirement of having more than 240 trading days. 

4.3 Training and testing periods 

After edge-cases were removed and missing days were filled in, the dataset was split into 

training- and testing sections. Typically, the testing section is a hold-out-sample of the data 

that is used to test a model's performance on samples it has not encountered yet, hence the 

name "test data". In this thesis, the test portions of the data are used to simulate a trading 

strategy. For cross-sectional data, it is common to randomly allocate 70-80% of the cross-

sectional data to training and 30-20% for testing. It makes little sense to randomly allocate 

training- and testing data in time series however, as the goal is to predict something that will 

happen in the future. When splitting time series’, it becomes important to take the chronology 

of the data into account.  

While it is possible to use any period before testing to train the data, in order to account for 

changes in market dynamics over time, an intuitive approach to splitting the data is using a 

rolling window. For this paper, a financial year is assumed to contain 240 days, split evenly 

among twelve 20-day months. Using these assumptions, a rolling window approach is 

illustrated in Figure 4.1.       
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Figure 4.1: Rolling window approach for intraday and monthly models 

In period P1, data for 240 days, or approximately a year, is used to train a model, while data 

from the following 20 days are used to test the model. After testing the model on the 20 days 

allocated for testing, the training and testing periods are shifted forward by 20 days to period 

P2. Data corresponding to the first 240 days in period P2 is then used to train a second model, 

which is used to predict observations within the last 20 days in period P2. This pattern 

continues until all testing periods have been predicted. 

In this paper, two iterations of each machine-learning model are made. One where the model 

uses daily data to predict the relative position of a stock's next-day intraday returns. The other 

model uses daily data to predict the relative position of a stock's future monthly (20-day) 

returns. Daily data is used for the "monthly" models under the hypothesis that keeping the 
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data frequency daily instead of monthly will lead to better predictions due to the model 

having more observations to use for training. 

Since future monthly returns are calculated for each day as 𝑟𝑡+20 = log (
𝐶𝑡+20

𝑂𝑡+1
), it is important 

to adjust the rolling window such that the training data does not include features that contain 

information not available at the time of its calculation. At the start of period t the most recent 

price information available would be the closing price at time t, meaning that the most recent 

date we could use to train the model would be at t-20. The training- and testing period thus 

needs to be separated by a 20-day period to avoid the model using data that would not be 

available at the time of prediction. 

4.4 Penny-stocks 

It is common practice to remove "penny stocks", which is usually defined as a stock with a 

price lower than 5 USD. This is commonly done to reduce the large impact a small absolute 

change in price has on returns. Since the Oslo stock exchange is a smaller market, using 5 

USD as a cut-off would remove most of the investment options. Therefore, stocks that close 

at a price under 5NOK are counted as penny stocks. For each training-testing period, stocks 

are removed if either the normal close price or adjusted close price is registered below 5NOK 

during any day within the testing period or the skippet period between the training and testing 

set in the case of the 20-day models. In other words, stocks are removed if they close at under 

5NOK for any of the 240 days prior to the testing period in the case of the intraday models 

and removed if they close under 5NOK in any of the 260 days prior to the testing period for 

the 20-day models. Additionally, stocks with a previous close price or an adjusted close price 

below 5NOK at the time of investing will not be invested in. 

4.5 Data scaling  

For distance-based models, such as support vector machines and logistic regression, large 

differences in sizes and ranges of features can make some features disproportionately affect 

the predictions of the model, simply because the feature has larger numeric values and larger 

numeric ranges. To avoid features based on, for example, volume to largely impact the 

models, the features can be scaled. Each feature is rescaled using (18) to have a zero mean 

and unit variance. 
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𝑧 =  

(𝑥 − 𝑥̅)

𝜎
  

(18) 

Features are not rescaled for the random forest as it only utilizes bagging and should not be 

affected by feature sizes. Feature scaling is done separately for each training-testing period. 

Because the ranges of the test period would not practically be known at the time of prediction, 

features are scaled based on means and variances from the corresponding training data. The 

"e1071" package for R has a scale argument in the svm() function that creates the SVM that 

internally scales the data using the same methodology as (18). For the logistic regression 

models, the preProcess() function from the "caret" package is used to scale the data.  

4.6 Features 

4.6.1 Classification feature 

The models will use a classification problem to predict if a stock will become a winner or a 

loser, which can be interpreted as the probability of a stock being a winner. Classification 

problems have been shown to perform better than regression problems for predicting financial 

markets (Leung et al., 2000; Enke & Thawornwong, 2005). When creating a feature to define 

winners and losers, we follow the method of Krauss et al. (2017), using median returns as a 

baseline. The output of our models can then be interpreted as the probability of a stock being 

a winner for the given holding period. We will calculate the returns for each holding period 

by using the open price, this will allow us to calculate features using the close-price for the 

day before. Returns for stock s can therefore be written as (19), where t is the point in time 

from today, and m is the holding period: 

 
𝑅𝑡,𝑚

𝑠 = log (
𝐶𝑙𝑜𝑠𝑒𝑡+𝑚

𝑂𝑝𝑒𝑛𝑡+1
) 

(19) 

With the defined returns, we can define the classification problem by: 

 𝑦𝑠 = 𝑊𝑖𝑛𝑛𝑒𝑟 | 𝑅𝑡.𝑚
𝑠 ≥ 𝑅̃𝑡,𝑚 (20) 

 

 𝑦𝑠 = 𝐿𝑜𝑠𝑒𝑟 | 𝑅𝑡.𝑚
𝑠 < 𝑅̃𝑡,𝑚 (21) 
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Our classification feature seeks to capture which stocks will be considered winners by 

comparing the returns for stock s to the median returns for the given trading period.  

Trading periods will be limited to intraday and monthly periods where t = 1 and m = [1, 20]. 

Both trading periods will apply the same features. Features that are stock specific will be 

constructed from the dataset as a whole. After the features are constructed, the dataset will 

look like a u X v matrix, where u are the stocks for each available trading day, and v is the 

features for each stock.  

4.6.2 Predictor features 

The predictor features can be broadly separated into four "feature spaces"; Krauss, TTR, Tan, 

and macro features. "Krauss" and "Tan" features are the momentum features used in Krauss et 

al. (2017) and the technical indicators of Tan et al. (2019) without turnover (as outstanding 

share data is not present in the dataset after the Oslo Stock Exchange-Euronext merge). These 

features were chosen as models created with these features significantly outperformed 

benchmark indexes on the American- and Chinese stock market in their respective studies, as 

well as the OSEBX in Kilskar (2020). TTR is a collection of technical indicators made using 

the TTR (technical trading rules) package in R, while macro factors are based on exchange 

rates, market indices, and LIBOR. The components of the TTR and macro factor groups are 

explained in more detail below.  

Krauss 

  
𝑚𝑜𝑚𝑡,𝑚

𝑠 =
𝑃𝑡

𝑠

𝑃𝑡−𝑚
𝑠 − 1  𝑚 ∈ ((1, … ,20) ∪ (40, … ,240)) 

(22) 

Where m is days.  

This represents daily momentum factors for the most recent month and monthly momentum 

factors for the most recent year. 

 

Tan 
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Table 4.1: Tan Feature Space 

Features Description Formula 

close_0/close_9, 

close_0/close_19, 

close_0/close_39, 

close_0/close_59, 

close_0/close_119 

 

A momentum feature to 

capture the trends for stock 

prices. 

𝑃𝑡
𝑠

𝑃𝑡−𝑚
𝑠 − 1 

𝑚 ∈ {9,19,39,59,119} 

close_19/close_0, 

close_39/close_0, 

close_59/close_0, 

close_119/close_0 

 

A reversal of the 

momentum feature. 

𝑃𝑡−𝑚
𝑠

𝑃𝑡
𝑠 − 1 

𝑚 ∈ {19,39,59,119} 

adjusted_close_19/close_59, 

adjusted_close_19/close_119 

 

A momentum feature 

excluding the most recent 

month. 

𝑃𝑡−19
𝑠

𝑃𝑡−𝑚
𝑠 − 1 

𝑚 ∈ {59,119} 

vol10/vol20, vol10/vol40,  

vol10/vol60, vol20/vol40,  

vol20/vol60, vol40/vol60 

 

 

Volume acceleration.  

𝑚𝑜𝑣𝑎𝑣𝑔(𝑣𝑜𝑙𝑢𝑚𝑒, 𝑚1)

𝑚𝑜𝑣𝑎𝑣𝑔(𝑣𝑜𝑙𝑢𝑚𝑒, 𝑚2)
  

𝑚1 ∈ {10,10,10,20,20,40} 

𝑚2 ∈ {20,40,60,40,60,60} 

volatility_10, volatility_20,  

volatility_40, volatility_60,  

volatility_120 

 

Volatility for different time 

periods for the daily returns 

of the stocks. 

𝑚𝑜𝑣𝑠𝑡𝑑(𝑑𝑎𝑖𝑙𝑦𝑅 , 𝑚)  

𝑚 ∈ {10,20,40,60,120} 

std(volume_10), 

std(volume_20), 

std(volume_40), 

std(volume_60), 

std(volume_120) 

Standard deviation for the 

trading volume for the past 

m days for each stock. 

𝑚𝑜𝑣𝑠𝑡𝑑(𝑣𝑜𝑙𝑢𝑚𝑒, 𝑚) 

𝑚 ∈ {10,20,40,60,120} 
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TTR 

Due to the prevalence of moving average trading rules in academic papers on technical 

analysis, both simple- and exponential moving averages are included. The ratios of the close-

price to moving averages, as well as ratios of short- and longer-term moving averages, are 

calculated to simulate the common strategy of providing sell or buy signals when one moving 

average overlaps the other. Oscillators like the relative strength index (RSI) and the stochastic 

oscillator are meant to show when a certain stock is overbought or oversold by comparing the 

previous n-period highs and lows with the current closing price. Some measurements of 

intraday volatility and overnight returns are also included specifically because half of the 

models predict intraday returns.  

Table 4.2: TTR feature space 

Feature name Description (R) Formula 

SMA5, SMA10, 

SMA20, SMA50, 

SMA200 

Simple moving averages over 

different time frames 
𝑚𝑜𝑣𝑎𝑣𝑔(𝑐𝑙𝑜𝑠𝑒, 𝑚, 𝑡𝑦𝑝𝑒 = "s") 

𝑚 ∈ {5, 10, 20, 50, 200} 

SMAdifflong, 

SMAdiffmid, 

SMAdiffshort 

The ratio of close price to a 20- 

and 50-day simple moving 

average and the ratio of a 50-day 

and 200-day simple moving 

average 

Long = 
𝑆𝑀𝐴20

𝑆𝑀𝐴200
 

Mid = 
𝐶𝑙𝑜𝑠𝑒

𝑆𝑀𝐴20
 

Short = 
𝐶𝑙𝑜𝑠𝑒

𝑆𝑀𝐴5
 

EMA5, EMA10, 

EMA20, EMA50, 

EMA200 

Exponential moving averages 

over different time frames 
𝑚𝑜𝑣𝑎𝑣𝑔(𝑐𝑙𝑜𝑠𝑒, 𝑚, 𝑡𝑦𝑝𝑒 = "𝑒") 

𝑚 ∈ {5, 10, 20, 50, 200} 

EMAdifflong, 

EMAdiffmid, 

EMAdiffshort 

The difference in two exponential 

moving averages 
EMAdifflong = 

𝐸𝑀𝐴20

𝐸𝑀𝐴200
 

EMAdiffmid = 
𝐶𝑙𝑜𝑠𝑒

𝐸𝑀𝐴20
 

EMAdiffshort = 
𝐶𝑙𝑜𝑠𝑒

𝐸𝑀𝐴5
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RSI10, RSI20, 

RSI50, RSI100 

Relative strength index over 

different time periods, calculated 

using simple moving averages 

𝑅𝑆𝐼(𝑐𝑙𝑜𝑠𝑒, 𝑚, 𝑚𝑎𝑇𝑦𝑝𝑒 = "SMA") 

𝑚 ∈ {5, 20, 50, 100} 

BIAS5, BIAS10, 

BIAS20 

The relative deviation of a stock's 

current price to that of a moving 

average 

𝑐𝑙𝑜𝑠𝑒 − 𝑆𝑀𝐴(𝑚)

𝑆𝑀𝐴(𝑚)
∗ 100 

𝑚 ∈ {5, 10, 20} 

eTRIX15, 

eTRIX40 

The daily change in a triple 

exponential average. 
𝑇𝑅𝐼𝑋(𝑐𝑙𝑜𝑠𝑒, 𝑛 = 𝑚, 𝑛𝑠𝑖𝑔

= 9, 𝑚𝑎𝑇𝑦𝑝𝑒
= "EMA") 

𝑚 ∈ {15, 40} 

williamR, 

williamR20 

A variant of Williams %R that 

measures daily price in relation 

to its previous highest high (HH) 

and lowest low (LL) 

𝐻𝐻𝑡:𝑡−𝑚 − 𝐶𝑙𝑜𝑠𝑒𝑡

𝐻𝐻𝑡:𝑡−𝑚 − 𝐿𝐿𝑡:𝑡−𝑚
 

𝑚 ∈ {5,20} 

ROC1, ROC10, 

ROC20 

The rate of change in price over 

certain time periods 

𝑐𝑙𝑜𝑠𝑒𝑡

𝑐𝑙𝑜𝑠𝑒𝑡−𝑚
 𝑚 ∈ {1,10,20} 

Disparity5 Shows the relative position of the 

current closing price to a 5-day 

simple moving average, 

expressed in percentage 

𝑐𝑙𝑜𝑠𝑒

𝑆𝑀𝐴5
 

fastK The %K of a stochastic oscillator, 

where the %K is the relationship 

between the current close price, 

the highest high (HH), and lowest 

low (LL) over a 20day period 

𝐶𝑙𝑜𝑠𝑒 − 𝐿𝐿𝑡:𝑡−20

𝐻𝐻𝑡:𝑡−20 − 𝐿𝐿𝑡:𝑡−20
 

fastD The three-day moving average of 

the fastK 

𝑓𝑎𝑠𝑡𝐾𝑡 + 𝑓𝑎𝑠𝑡𝐾𝑡−1 + 𝑓𝑎𝑠𝑡𝐾𝑡−2

3
 

slowD The three-day moving average of 

the fastD 

𝑓𝑎𝑠𝑡𝐷𝑡 + 𝑓𝑎𝑠𝑡𝐷𝑡−1 + 𝑓𝑎𝑠𝑡𝐷𝑡−2

3
 

CLV The close location value; is the 

position of the current close price 

relative to the same-day high and 

low price. Also known as the 

"money flow multiplier" 

(𝐶𝑙𝑜𝑠𝑒 − 𝐿𝑜𝑤) − (𝐻𝑖𝑔ℎ − 𝐶𝑙𝑜𝑠𝑒)

𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤
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OBV1, OBV20, 

OBV40, OBV60, 

OBV120, 

OBV240 

The relative change in the 

running total of a stock's trading 

volume (On-Balance Volume) 

over a period of m 

𝑂𝐵𝑉(𝐶𝑙𝑜𝑠𝑒, 𝑉𝑜𝑙𝑢𝑚𝑒) 

 

𝑂𝐵𝑉𝑚 =
𝑂𝐵𝑉𝑡 − 𝑂𝐵𝑉𝑡−𝑚

𝑂𝐵𝑉𝑡−𝑚
 

𝑚 ∈ {1,20,40,60,120,240} 

OvernightMove_t The simple overnight returns for 

a stock at time t 

𝑂𝑝𝑒𝑛𝑡 − 𝐶𝑙𝑜𝑠𝑒𝑡−1

𝐶𝑙𝑜𝑠𝑒𝑡−1
 

Intrday_Voll The logarithmic "return" of the 

high and low within a day 
ln (

𝐻𝑖𝑔ℎ

𝐿𝑜𝑤
) 

DeltaIntraDay The one-day change in intraday 

volatility 
𝐼𝑛𝑡𝑟𝑑𝑎𝑦_𝑉𝑜𝑙𝑙𝑡

− 𝐼𝑛𝑡𝑟𝑑𝑎𝑦_𝑉𝑜𝑙𝑙𝑡−1 

 

Macro-factors 

The macro-factor feature space consists of the market indexes OSEBX, OMX Nordic 40, 

S&P500, the Vanguard European Stock Index Fund, and the Chicago Board Options 

Exchange (CBOE) 's VIX index, the currency exchange rates between EUR-NOK and USD-

NOK, the daily three-month Libor rate and daily European brent oil spot prices. Because the 

dataset has a daily frequency, factors with daily changes were chosen, and both features of 

day-to-day, as well as month-to-month changes were generated. 

As the Norwegian stock exchange's benchmark, the OSEBX is included in the macro-factor 

feature space as a proxy for market trends in the Norwegian market. 

OMX Nordic 40 is meant to capture the general market trend in Norway's neighboring 

markets. It is a market-weighted price index of the 40 largest and most actively traded stocks 

on the Nasdaq Nordic exchanges: Copenhagen, Stockholm, Helsinki, and Iceland. The index 

composition is revised twice a year, and the price is quoted in euros. 

The S&P500 is the most recognized stock index on the planet and is a market-weighted index 

consisting of the 500 largest and most liquid stocks listed on the New York Stock Exchange 

(NYSE) and Nasdaq. As the S&P500 is followed by most investors worldwide and is made 
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up of some of the largest companies in the world, it is intended to serve as a proxy for 

international market trends.  

Vanguard's European Stock Index Fund (VUESX) aims to track the FTSE Developed Europe 

All Cap index, which is a market-cap weighted index representing stocks from 16 European 

markets (including the UK). The fund contains assets in excess of 1200 companies across 

Europe. VUESX is therefore chosen as a proxy for the market trends in European markets. 

The volatility index (VIX) by the Chicago Board Options Exchange is an index that aims to 

reflect market expectations of future volatility. Using prices from options on the S&P500 

index that expire in 23-37 days, it gives a quantitative measurement for market sentiment 

about the 30-day forward period.  

LIBOR, or London interbank offered rate, is a daily benchmark for interest rates at which 

global banks are willing to lend to one another, given for five different currencies: US dollar, 

Swiss franc, euros, British pound sterling, and Japanese yen. It is administered and published 

by the Intercontinental Exchange (ICE), based on transaction data, transaction-based data or 

expert judgment based on availability. As a benchmark rate, LIBOR is assumed to influence 

other, more local, interest rates. In this thesis, the US dollar Libor is included as a feature to 

represent interest levels. 

We use the prices for the indexes to calculate log returns for a given time period. Intraday 

investing will use the daily returns for index i, and monthly investing will use the monthly 

returns for index i. Index returns for both investing periods are given in (23) and (24): 

 
𝑖𝑛𝑑𝑒𝑥𝑡

𝑖 = 𝑙𝑜𝑔(
𝑃𝑡

𝑖

𝑃𝑡−1
𝑖

) 
(23) 

 

 
𝑖𝑛𝑑𝑒𝑥20𝑡

𝑖 = 𝑙𝑜𝑔(
𝑃𝑡

𝑖

𝑃𝑡−20
𝑖

) 
(24) 

The other macro-economic features will use the same feature generation as the indexes, which 

will give the following equations: 
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𝑙𝑛𝐿𝐼𝐵𝑂𝑅𝑡,1 = 𝑙𝑜𝑔(

𝐿𝑡

𝐿𝑡−1
) 

(25) 

 
𝑙𝑛𝐵𝑟𝑒𝑛𝑡𝑂𝑖𝑙𝑡,1 = 𝑙𝑜𝑔(

𝑂𝑖𝑙𝑡

𝑂𝑖𝑙𝑡−1
) 

(26) 

 
𝑙𝑛𝑈𝑆𝐷_𝑁𝑂𝐾𝑡,1 = 𝑙𝑜𝑔(

𝑈𝑆𝐷𝑁𝑂𝐾𝑡

𝑈𝑆𝐷𝑁𝑂𝐾𝑡−1
) 

(27) 

 
𝑙𝑛𝐸𝑈𝑅_𝑁𝑂𝐾𝑡,1 = 𝑙𝑜𝑔(

𝐸𝑈𝑅𝑁𝑂𝐾𝑡

𝐸𝑈𝑅𝑁𝑂𝐾𝑡−1
) 

(28) 

Monthly macro-economic features will therefore be denoted as: 

𝑙𝑛𝐿𝐼𝐵𝑂𝑅20𝑡 = 𝑙𝑜𝑔(
𝐿𝑡

𝐿𝑡−20
) 

(29) 

𝑙𝑛𝐵𝑟𝑒𝑛𝑡𝑂𝑖𝑙20𝑡 = 𝑙𝑜𝑔(
𝑂𝑖𝑙𝑡

𝑂𝑖𝑙𝑡−20
) 

(30) 

𝑙𝑛𝑈𝑆𝐷_𝑁𝑂𝐾20𝑡 = 𝑙𝑜𝑔(
𝑈𝑆𝐷𝑁𝑂𝐾𝑡

𝑈𝑆𝐷𝑁𝑂𝐾𝑡−20
) 

(31) 

𝑙𝑛𝐸𝑈𝑅_𝑁𝑂𝐾20𝑡 = 𝑙𝑜𝑔(
𝐸𝑈𝑅𝑁𝑂𝐾𝑡

𝐸𝑈𝑅𝑁𝑂𝐾𝑡−20
) 

(32) 

4.7 Transaction cost 

In order to estimate realistic portfolio returns, transaction costs are subtracted from portfolio 

returns. The portfolio returns before transaction costs can be denoted as: 

 
𝑅𝑡

𝑝 = ∑ 𝑤𝑡
𝑠 ∗ 𝑟𝑡

𝑠

𝑛

𝑛=0

 
(33) 

Where: 

𝑅𝑡
𝑝
 are the returns of portfolio p in period t. 

n is the number of stocks chosen in each period. 
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𝑤𝑡
𝑠 is the weight of stock s in period t. 

𝑟𝑡
𝑠 are the returns of stock s in period t.  

When the transactional costs are added, the portfolio can be denoted as: 

 
𝑅𝑡

𝑝 = ∑ 𝑤𝑡
𝑠 ∗ (𝑟𝑡

𝑠 − 𝑡𝑐 ∗ 2)

𝑛

𝑛=0

 
(34) 

Where 𝑡𝑐 is the transaction costs, which is multiplied by two to show that the transactional 

costs are added when buying and selling an asset. 

Transaction costs are based on the costs of trading using Nordnet, as it is one of Scandinavia's 

most popular stock brokers. As all assets are “bought” at the start of the period and “sold” at 

the end of the period, a total of 20 transactions are assumed to happen every month. 

Transactional costs for the monthly portfolios will be set to 0,04%, which is gathered from 

Nordnet (Nordnet, n.d.), given the number of trades being made each month. Since the 

intraday portfolios will make more trades than the monthly portfolios, the transaction costs 

for the intraday portfolios are set as 0,035%, given the price listing on Nordnet (Nordnet, 

n.d.). 

4.8 Model specifications  

The models will be used to create a monthly and an intraday portfolio. Since the feature space 

generated is so large, the features will be split across the monthly and intraday strategies. 

Monthly models will use the Tan-, 20-day macro features, and the TTR features. The intraday 

models will use the volume and volatility features of Tan, momentum features from Krauss, 

daily macro features, and all the TTR features. All models have been run using the program 

R.  

4.8.1 Random Forest 

As explained in section 2.1, a random forest must have a depth, be bagged, and decide how 

many features that are applied to each split. When modeling the random forest model, we can 

decide upon these variables. In order to run the random forest model, we have used the 

package "randomForest".  
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For 𝑗𝑟𝑓 we have left it to the default value for the model, which ranges from 1 ↔ ∞. 

We have decided to run 𝑛𝑡𝑟𝑒𝑒 = 500. Previously, Tan et al. (2019) tested the random forest 

model with 20-120 trees using 20 tree-increments. They found that 60 trees performed best in 

their case, but that more trees led to greater accuracy for the in-sample training. However, it 

has been shown that it is hard to overfit a random forest (James et al., 2021, s.340-341). 

Therefore, we have opted to use a greater number of trees since it would make the model 

more concise when making decisions throughout the period.  

Features per split have been set to the default value 𝑚𝑡𝑟𝑦 = √𝑝, as well since there does not 

seem to be any increase in performance by changing 𝑚𝑡𝑟𝑦 ≠ √𝑝. This would give our 

monthly model an 𝑚𝑡𝑟𝑦 ≅ 10, and our intraday model an 𝑚𝑡𝑟𝑦 ≅ 9. 

4.8.2 Support Vector Machine 

In a radial kernel SVM, the hyperparameters to be adjusted are the cost C and gamma γ. 

Additionally, the weighting of the classes can be adjusted in any SVM. The SVMs were 

constructed using the svm() function in the "e1071"- package for R. For the svm() function, 

the default value of γ is 
1

𝑑𝑎𝑡𝑎 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
 and the default value of C is 1. Altering these 

parameters manually showed no significant improvement in prediction performance when 

tested on a smaller subset of stocks. Therefore, the values have been kept at their default 

settings. This means that, with 102 input features for the intraday model and 93 features for 

the monthly model, the specifications for the SVMs constructed in this paper are a C of 1 and 

γ’s of 
1

102
≅ 0,0098 and 

1

79
≅ 0,0127 for monthly and intraday models, respectively. Using 

above and below median returns as the class separation criteria, the two classes should be 

symmetric. The class weights were therefore left equal.  

Ideally, evaluation of performance in the training period using cross-validation and a grid 

search could be utilized to optimize the parameters for the SVM based on a target criterion, 

such as accuracy or AUC-score. The SVM is a computationally demanding model, however, 

and estimating a total of 218 SVMs without cross-validation and grid search already demands 

a lot of computation time. Given faster computation, both cross-validation and recursive 

feature selection could have been done for each period, and the results are hypothesized to 

have improved as a result. We regard this as a limitation in the study design that could 
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significantly impact the conclusions of the paper and as a suggestion for future research 

opportunities. 

4.8.3 Logistic Regression 

The Logistic Regression model has been fitted with the calculated features as the x variables 

and the classification feature as the y variable. When a Logistic Regression is fitted, the 

results may vary each time the model is fitted. To reduce variation, a gradient-boosted logistic 

regression is chosen. This entails methods like the ones of the boosting in random forest 

models and will be denoted as 𝑛𝑡𝑟𝑒𝑒. 

The Logistic Regression model will have 𝑛𝑡𝑟𝑒𝑒 = 500. When performing the Logistic 

Regression, we have used the package “gbm” in R. 

5 Results 

5.1 Model performance 

A classification model with a binary classification feature can have four different outcomes, 

often displayed in a confusion matrix. These outcomes are true positive (TP), true negative 

(TN), false positive (FP), and false negative (FN). True positives and -negatives are instances 

where a classification model is able to correctly predict a positive or negative outcome, 

whereas false positives and -negatives are instances where a classification model incorrectly 

predicts either a positive or negative. An illustration of a confusion matrix is given in Figure 

5.1, and the confusion matrices for our models are provided in appendix A. 

  
True Class 

  
Negative Positive 
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Negative TN FN 

Positive FP TP 

Figure 5.1: Illustration of a confusion matrix 

Some important performance measurements can be calculated from the confusion matrix. For 

this thesis, the performance measurements accuracy, recall, precision, F1-score, specificity, 
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and negative predicted value (NPV) are used for model comparison. Accuracy refers to the 

total amount of times a model is able to predict a true outcome and is the sum of true positives 

and true negatives divided by the total amount of observations the model is trying to classify. 

Recall is the true positives divided by all positives and shows the number of positive 

outcomes that the model is able to detect. Precision shows the percentage of instances when a 

positive prediction is correct and can be calculated by dividing the true positives by all 

positive predictions. F1-score is an alternative measurement to accuracy that provides a better 

estimation of model performance when class sizes are not equal. It is calculated as the 

geometric mean of precision and recall. Specificity can be seen as the recall equivalent for 

negative observations and shows how many of the total negative observations that the model 

is able to detect. NPV is the equivalent of precision for the negative observations and shows 

how many of the total negative prediction is actually correct.  

Table 5.1: Model evaluation metrics 

Evaluation metric Formula 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1-score 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Negative Prediction Value 𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 

Another useful evaluation measurement is the area under the receiving operating 

characteristic (ROC) curve, called AUC. The ROC curve is a graph that shows the 

performance of a classification on different classification thresholds based on percentages. It 

is made by plotting the true positive rate (recall) against the false positive rate 
𝐹𝑃

𝐹𝑃+𝑇𝑁
 for 

different prediction thresholds. The AUC can be interpreted as the probability that a model 
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will rank a positive observation above a negative observation when the probability of a 

positive observation is higher. For example, a score of 1, or 100%, would mean a model that 

can perfectly separate all positives and negatives into their respective classes, a model with an 

AUC of 0.5, or 50%, would be a model where the classification of the observations is 

random, and a model with an AUC of 0 would be a model where classes are predicted 

completely opposite of their true classes. 

Table 5.2: Performance of monthly- and intraday models 

 SVM  

(monthly) 

SVM  

(intraday) 

RF  

(monthly) 

RF  

(intraday) 

LR  

(monthly) 

LR  

(intraday) 

Accuracy 0,5268 0,5381 0,5229 0,5342 0,5271 0,5356 

Recall 0,5634 0,3082 0,6160 0,3964 0,6094 0,3721 

Precision 0,5413 0,5203 0,5340 0,5102 0,5382 0,5130 

F1-Score 0,5521 0,3871 0,5721 0,4462 0,5716 0,4313 

Specificity 0,4874 0,7447 0,4230 0,6581 0,4387 0,6825 

NPV 0,5098 0,5450 0,5064 0,5482 0,5113 0,5475 

AUC 0,5350 0,5417 0,5274 0,5420 0,5320 0,5438 

 

Table 5.2 shows the performance of the models using the selected evaluation criteria, where 

the highest value of each criterion is marked in bold. From recall and specificity numbers, it is 

apparent that the monthly models are more "positive" in their predictions than their intraday 

counterparts. There is no model that singles out as the best model, however. The intraday LR 

has the highest AUC value, while the intraday SVM has the highest accuracy, and the 

monthly RF has the best F1-score. Generally, intraday models have slightly higher accuracies 

and AUC-scores than monthly models, while the monthly models have significantly higher 

F1-scores due to the low recall values of the intraday models.  

While a higher accuracy is intuitively desirable, other metrics can be equally or more 

important if the cost of a false negative and a false positive is different. For example, in a 

portfolio that only enters long positions, a false positive will likely be more detrimental than a 

false negative. The false positive will reduce the portfolio value while a false negative simply 

causes the portfolio to not increase in value. In "long-only" portfolios, model precision could 

be among the more important measurements. Despite having significantly higher recall, the 

monthly models also have higher precision than the intraday models. Typically, a higher 
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recall means a softer predictor that predicts positives more often at the cost of precision. With 

both higher recall and precision, the monthly models are expected to perform better than their 

intraday counterparts. 

5.2 Feature importance 

Figures B.1-B.12 in appendix B show the mean importance of the different input features for 

each model. All three models calculate importance differently, so the actual values are not 

comparable across models. Feature importance is therefore shown as the relative importance 

of each feature to the most important feature in every model. Due to the large number of 

inputs, the figures are large and therefore reserved for the appendix.  

The distribution of feature importance in RF and the LR models is larger for the monthly 

portfolios than for intraday, while the opposite is true for the SVM. Generally, the RF models 

have a smaller distribution of feature importance, with both models having more than half of 

the features above a relative importance of 0,5, and all features above a relative importance of 

0,5 for intraday models. Meanwhile, LR has a larger distribution for monthly and intraday 

models, with only four features above a 0,5 relative importance for the monthly model and 

two features above a 0,5 relative importance intraday. The SVM functions as a sort of in-

between with around the top quartile of feature importance above 0,5 and around the bottom 

quartile under 0,25 for both intraday and monthly models. Distribution of feature importance 

within the models indicate that some form of feature  

For individual feature categories, mid to long-term on-balance volumes are important for all 

models. On-balance volume features are the five most important features for the intraday 

SVMs, while some on-balance volume features are among the eight most important features 

for all models. The intraday SVM also ranks all pure momentum features highly, as well as 

the ratios of closing price and short- and medium-term moving averages. Momentum is also 

important for the monthly SVM, both regarding pure momentum, such as close_19 and 

close_39, the reversal of momentum, such as close19_0 and close39_0, and rate-of-change 

features. Deviations from moving averages are also important for the monthly SVM, as 

BIAS20, SMAdiffmid, EMAdiffmid, and BIAS10 are the four highest-ranked features.  

Moving averages are also important for the monthly LR and RF models, though more the 

moving averages themselves than their relationship with closing price. Both models also find 
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return volatility important. For example, the vol120 feature is the most important feature for 

both models. Another shared feature type for the two models is the standard deviations of 

trading volumes. The feature volumestd120 is the fourth highest ranked feature in the LR 

model and the second highest ranked feature in the RF model. Interestingly, none of the 

monthly models find any of the macro factors particularly important. The highest ranking of a 

macro feature in any of the three monthly models is lnDeltaLibor20 at 31st in the RF model, 

and it is the only macro feature ranked in the top half of any model. 

The macro features are significantly more important for the intraday RF, however. While the 

feature importance distribution is generally low for the intraday RF, all nine macro factors 

rank among the top 15 features, with lnOil ranking highest at the top three and lnVanguard 

ranking lowest at the 15th. Macro features also rank higher for the intraday LR model than its 

monthly counterpart, but are somewhat more dispersed among the top half, while the intraday 

SVM ranks all macro features in the bottom half. Similarly to the monthly models, the RF and 

LR models share their most important feature: OvernightMove_t. Unlike the other models, the 

intraday LR model has a mix of all the different features amongst the most important features.  

5.3 Portfolio construction 

Portfolios are constructed based on the likelihood that an observation will give higher returns 

than the median return over the next period. The ten most likely "winners", based on the 

model's prediction, are equally weighted in the portfolio. Equally weighted portfolios are 

chosen as they outperform mean-variance in many instances when a mean-variance approach 

is applied to out-of-sample data (DeMiguel et al., 2009). An additional inclusion criterion is 

that the probability of being a winner is above 50%. In other words, a stock must be more 

likely to become a winner than a loser to be included in the portfolio. Additionally, two 

ensemble portfolios are made using the simple averages of the probability output of the three 

different machine-learning types. Sometimes the models predict that none or fewer than ten 

stocks will be classed as winners. In such instances, portfolios with fewer than ten stocks are 

constructed. If two or more stocks have been assigned the same probability of becoming a 

winner and this causes more than ten stocks to be eligible for inclusion, the portfolio has been 

allowed to exceed ten stocks.  
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All stocks are assumed to be bought at the open price at the start of the period and sold to 

close price at the end of the period. Returns for the portfolios are only based on the mean 

return of the n number of stocks held over the chosen period. Practically this means that all 

available funds would be allocated equally among the stocks in the portfolio, regardless of if 

the portfolio consists of 1 stock or ten stocks. We note that when the portfolio has a full 

investment in fewer than ten stocks, the diversification effect is reduced and removed in some 

cases. However, since this paper aims to see if machine-learning models can select winner 

stocks, we will allow these investments to be made without adjustments. 

5.4 Returns Monthly 

Following the method described in the section above, we will present the monthly portfolios. 

Figure 5.2 shows the cumulative returns before transaction costs for the monthly portfolios 

and the monthly returns for the OSEBX. The figure shows that the machine-learning 

portfolios perform well during the first four years of the sample period, before stagnating 

somewhat from the beginning of 2017. All portfolios are impacted by the financial downturn 

beginning in the last quarter of 2018 before rebounding a year later, meaning that all machine-

learning portfolios are valued higher than an investment in OSEBX would be before the 

Covid-19 pandemic began in 2020. After 2020, the machine learning models seem unable to 

predict future monthly returns accurately. The RF portfolio, which is the highest performing 

monthly portfolio, rebounds quickly after the initial pandemic crash with three months of 

good predictions but fails to generate consistent positive returns for the following 26 months. 

All machine-learning portfolios end below the OSEBX as a result. 
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Figure 5.2: Monthly cumulative returns before transaction costs 

Table 5.3 shows annual returns, volatility, and the Sharpe ratio for the full period without 

transaction costs. As illustrated in Figure 5.2, no machine-learning portfolio is able to 

outperform the OSEBX. Even before transaction costs are considered, the machine-learning 

portfolios generate a lower annualized return at a higher risk than the market. Among the 

machine-learning portfolios, the RF model portfolio performs the best, with both higher 

returns and lower volatility than its machine-learning counterparts. The logistic regression 

portfolio performs the worst, generating an annual return of just 0,0016% at an annual 

volatility of 22,63%.  

Table 5.3: Monthly portfolio performance without transaction costs 

Full Period  

 SVM RF LR EN OSEBX 

Annualized Returns 2,44 % 6,69 % 0,0016 % 0,33 % 7,49 % 

Annualized Volatility 23,47 % 21,53 % 22,63 % 24,95 % 17,20 % 

Sharpe 0,10 0,31 0,00 0,01 0,44 

 

As is apparent from Figure 5.2, the reason machine-learning portfolios underperform the 

OSEBX is in large part due to the poor performance after 2020. Table 5.4 therefore reports 

the performance of the portfolios in subsets of the sample timeframe as well as the full period 

after subtracting the approximated transactional costs.  
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All machine-learning portfolios generate higher returns and lower volatility than the OSEBX 

for the 26.09.2013 - 31.12.2015 period.  The RF portfolio performs particularly well in this 

period, with a Sharpe ratio of 2,25 and annual returns of 27,08%.  Machine-learning 

portfolios are also less volatile than the market in the first four years of the sample period, and 

most portfolios outperform the market during these four years, with the exception being the 

RF portfolio which has a slightly lower Sharpe ratio over the 01.01.2016 - 31.12.2017 period.  

Among the machine-learning portfolios the RF portfolio tends to perform better in periods of 

market decline. It had the lowest volatility and highest Sharpe ratio during both the market 

downturn in 2018 and after the pandemic hit at the start of 2020. As shown in Figure 5.2, it 

suffers the smallest initial losses at the start of these periods and quickly rebounds in the 

following months. In general, the results from the decomposed time periods are in accordance 

with the previous findings of Krauss et al. (2017) and Kilskar (2020), that machine-learning 

portfolios perform worse in the later time periods. 
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Table 5.4: Monthly portfolio performance after transaction costs 

Monthly portfolios after transaction costs 

Full period 

  SVM RF LR EN OSEBX 

Annualized Returns 1,49 % 5,73 % -0,96 % -0,63 % 7,49 % 

Annualized Volatility 23,47 % 21,53 % 22,63 % 24,95 % 17,20 % 

Sharpe 0,06 0,27 -0,04 -0,03 0,44 

            

26.09.2013 - 31-12.2015 

  SVM RF LR EN OSEBX 

Annualized Returns 12,15 % 27,08 % 15,19 % 16,60 % 7,10 % 

Annualized Volatility 11,34 % 12,03 % 13,47 % 10,55 % 15,55 % 

Sharpe 1,07 2,25 1,13 1,57 0,46 

            

01.01.2016 - 31.12.2017 

  SVM RF LR EN OSEBX 

Annualized Returns 14,45 % 8,63 % 12,50 % 18,16 % 13,04 % 

Annualized Volatility 12,29 % 10,85 % 11,53 % 11,07 % 15,96 % 

Sharpe 1,18 0,79 1,08 1,64 0,82 

            

01.01.2018 - 31.12.2019 

  SVM RF LR EN OSEBX 

Annualized Returns -1,46 % 10,52 % 6,50 % 3,87 % 6,85 % 

Annualized Volatility 20,86 % 16,34 % 17,55 % 17,62 % 13,88 % 

Sharpe -0,07 0,64 0,37 0,22 0,49 

            

01.01.2020 - 31.12.2020 

  SVM RF LR EN OSEBX 

Annualized Returns -45,14 % -5,23 % -43,48 % -60,93 % -0,69 % 

Annualized Volatility 53,18 % 45,03 % 46,89 % 57,38 % 27,16 % 

Sharpe -0,85 -0,12 -0,93 -1,06 -0,03 

            

01.01.2021 - 15.11.2022 

  SVM RF LR EN OSEBX 

Annualized Returns 2,90 % -22,88 % -20,39 % -14,32 % 7,08 % 

Annualized Volatility 20,42 % 24,32 % 24,61 % 24,64 % 16,74 % 

Sharpe 0,14 -0,94 -0,83 -0,58 0,42 
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5.5 Returns Intraday 

Quantitative trading is often associated with high trading frequencies, and as such, a daily 

trading strategy is tested for machine-learning portfolios. Figure 5.3 shows the cumulative 

returns before transaction costs for the intraday machine-learning portfolios as well as the 

market index. A similar pattern to the monthly portfolios can be observed. The intraday 

portfolios differ in some respects, however. They are not as highly impacted by the market 

decline in late 2018 and contrary to the monthly portfolios, they show positive returns after 

the initial market drop in early 2020. A probable explanation for this is that while monthly 

and daily models are trained on and predict the same number of observations, only the 

observations in the beginning of the 20-day testing periods are used to create the monthly 

portfolios. Without any form of stop-loss as part of the portfolio strategy, monthly portfolios 

commit to a prediction longer than any of the intraday portfolios do. Developments past the 

initial day of a testing period will not have any effect on a monthly portfolio's composition. 

 

Figure 5.3: Intraday cumulative returns before transaction costs 

Table 5.5 reports annual returns, annual volatility, and Sharpe ratio for all the intraday 

machine-learning portfolios without transaction costs compared with the market index. 

Without transaction cost, all intraday portfolios yield high annualized returns, and all 

portfolios outperform the OSEBX. The highest performer is the EN portfolio, with the highest 

return and Sharpe ratio. All portfolios except for the RF portfolio are more volatile than the 

market, however. The LR portfolio is again the worst performer among the machine-learning 

portfolios, with the lowest return and the second-highest annual volatility. Portfolios based on 
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the SVM and RF perform similarly for the full period, but with different characteristics. Both 

have Sharpe ratios of 1,25, but the SVM yields higher returns and is more volatile than the 

random forest portfolio. 

Table 5.5: Intraday portfolio performance before transaction costs 

Full Period  

 SVM RF LR EN OSEBX 

Annualized Returns 22,87 % 19,51 % 17,85 % 23,92 % 7,49 % 

Annualized Volatility 18,32 % 15,60 % 18,02 % 17,91 % 17,20 % 

Sharpe 1,25 1,25 0,99 1,34 0,44 

 

As with the monthly portfolios, intraday portfolio performance is separated into subsections 

and reported after transaction costs. Table 5.6 shows the portfolio performance for the 

intraday strategy after considering transaction costs. As expected, transaction costs greatly 

impact the portfolio return when trading daily compared to monthly portfolio rebalancing. 

Full-period returns show that the machine-learning portfolios made positive returns, but that 

all were outperformed by the OSEBX.  

Decomposing the intraday portfolio returns after transaction costs into the same time periods 

as in Table 5.6 shows no systematic pattern like the monthly holding periods. No portfolio 

outperforms the market in the early 26.09.2013 - 31.12.2015 period or the pandemic year of 

2020. However, at least two of the three machine-learning portfolios outperform the market in 

the remaining periods. The EN strategy does particularly well for the intraday portfolios. It is 

the highest performer for two of the periods, and the only portfolio that outperforms the 

market in all three positive periods. Interestingly, one portfolio based on an individual 

predictor generates negative returns for both periods where the EN performs best, while the 

SVM portfolio performs better during the 01.01.2018 - 31.12.2019 period, where all 

individual predictor portfolios generate positive returns. The SVM also performs better than 

both the EN portfolio and the RF portfolio during periods where no machine-learning 

portfolios were able to beat the market, despite the RF portfolio having the lowest volatility 

during these periods. Contrary to the monthly portfolios, the SVM, LR and EN intraday 

portfolios also generate high returns after transaction costs for the period after Covid-19. 
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Table 5.6: Intraday portfolio performance after transaction costs 

Intraday portfolios after transaction costs 

Full period 

  SVM RF LR EN OSEBX 

Annualized Returns 5,38 % 1,87 % 0,31 % 6,42 % 7,49 % 

Annualized Volatility 18,32 % 15,60 % 18,02 % 17,91 % 17,20 % 

Sharpe 0,29 0,12 0,02 0,36 0,44 

            

26.09.2013 - 31-12.2015  

  SVM RF LR EN OSEBX 

Annualized Returns 5,06 % -2,25 % -11,23 % -10,97 % 7,10 % 

Annualized Volatility 22,95 % 15,82 % 21,95 % 22,60 % 15,55 % 

Sharpe 0,22 -0,14 -0,51 -0,49 0,46 

            

01.01.2016 - 31.12.2017 

  SVM RF LR EN OSEBX 

Annualized Returns -6,78 % 17,62 % 12,91 % 23,23 % 13,04 % 

Annualized Volatility 18,35 % 16,14 % 16,76 % 16,85 % 15,96 % 

Sharpe -0,37 1,09 0,77 1,38 0,82 

            

01.01.2018 - 31.12.2019 

  SVM RF LR EN OSEBX 

Annualized Returns 16,40 % 2,11 % 6,03 % 10,35 % 6,85 % 

Annualized Volatility 13,59 % 13,17 % 13,82 % 13,14 % 13,88 % 

Sharpe 1,21 0,16 0,44 0,79 0,49 

            

01.01.2020 - 31.12.2020 

  SVM RF LR EN OSEBX 

Annualized Returns -12,02 % -12,11 % -29,02 % -21,86 % -0,69 % 

Annualized Volatility 20,70 % 18,73 % 23,27 % 22,65 % 27,16 % 

Sharpe -0,58 -0,65 -1,25 -0,96 -0,03 

            

01.01.2021 - 15.11.2022 

  SVM RF LR EN OSEBX 

Annualized Returns 16,46 % -2,80 % 10,38 % 20,32 % 7,08 % 

Annualized Volatility 14,64 % 15,26 % 14,37 % 13,51 % 16,74 % 

Sharpe 1,12 -0,18 0,72 1,50 0,42 
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5.6 Stock selection 

Table 5.7 shows the 15 most held stocks throughout the period for each of the monthly 

machine-learning portfolios. The table reports how many periods a stock was held and the 

average returns before transaction costs that stock had for the holding periods. Transaction 

costs are excluded to show how well the machine-learning portfolios pick winner stocks.  

There are some overlaps for the most traded stocks among the four monthly portfolios. Since 

the EN portfolio is created using an average for the probability of the other portfolios, it 

would be expected that the EN portfolio shares the same stock selection as the other 

portfolios. Interestingly, the returns for overlapping stocks between the portfolios do not 

mean that the stock provides the same returns to the portfolio. For instance, Schibsted ser. A 

is traded amongst the top 15 stocks for all the portfolios. However, they provide negative 

returns for the EN and RF portfolios and positive returns for the LR and SVM portfolios. 

Although the machine-learning portfolios share many of the most traded stocks, it is evident 

that they do not share the same timing for when to add the stocks into the portfolio. 

Overlapping assets might therefore perform entirely differently between the four portfolios.  

Table 5.7: The 15 most held stocks for monthly portfolios 

Support Vector Machine  Random Forest 

Name 

Frequenc

y 

Return

s  Name 

Frequenc

y 

Return

s 

ORKLA 23 0,0104  VEIDEKKE 27 0,0150 

TELENOR 21 0,0060  MOWI 25 0,0092 

MOWI 19 0,0136  SPAREBANK 1 SR-BK 25 0,0141 

TOMRA SYSTEMS 19 0,0182  ATEA 23 

-

0,0016 

GJENSIDIGE FORSIKR 18 0,0106  BOUVET 20 

-

0,0692 

AF GRUPPEN 17 0,0143  GJENSIDIGE FORSIKR 20 0,0050 

HAFSLUND SER. B 17 0,0359  ORKLA 20 0,0127 

SCHIBSTED SER. A 15 0,0085  LERØY SEAFOOD GP 19 

-

0,0125 

ARENDALS 

FOSSEKOMP 14 0,0300  

NORWAY 

ROYALSALMON 19 0,0135 

BOUVET 14 

-

0,0817  TOMRA SYSTEMS 19 0,0279 

EQUINOR 14 0,0135  AUSTEVOLL SEAFOOD 17 0,0102 

OLAV THON EIENDOMS 14 0,0172  ENTRA 17 0,0106 

YARA INTERNATIONAL 14 0,0001  SCHIBSTED SER. A 17 

-

0,0053 

BAKKAFROST 13 0,0225  SCHIBSTED SER. B 17 0,0063 

FLEX LNG 13 0,0190  SALMAR 15 0,0247 
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Logistic Regression  Ensemble 

Name 

Frequenc

y 

Return

s  Name 

Frequenc

y 

Return

s 

EQUINOR 28 0,0028  VEIDEKKE 25 0,0182 

PIONEER PROPERTY 22 0,0065  ORKLA 24 0,0129 

MOWI 21 0,0138  TELENOR 20 0,0000 

ORKLA 21 0,0062  TOMRA SYSTEMS 20 0,0239 

YARA INTERNATIONAL 
20 

-

0,0043  BOUVET 19 

-

0,0831 

BOUVET 
19 

-

0,0918  EQUINOR 19 0,0122 

SCHIBSTED SER. A 19 0,0105  MOWI 19 0,0119 

VEIDEKKE 18 0,0203  AF GRUPPEN 17 0,0241 

AKER 
17 

-

0,0133  EUROPRIS 17 0,0014 

HAFSLUND SER. A 
17 

0,0352  SCHIBSTED SER. A 17 

-

0,0045 

SPAREBANK 1 SR-BK 
16 

-

0,0046  ATEA 16 

-

0,0090 

AF GRUPPEN 15 0,0123  HAFSLUND SER. B 16 0,0308 

ARENDALS 

FOSSEKOMP 
15 

0,0196  LERØY SEAFOOD GP 16 

-

0,0041 

NORWEGIAN 

PROPERTY 
15 

0,0178  ENTRA 15 0,0159 

GOODTECH 
14 

-

0,0216  GJENSIDIGE FORSIKR 15 0,0101 

 

Table 5.8 show the 15 most frequently held stocks for the intraday portfolios. In addition, the 

table shows the periods each stock is held and the returns they provide to the portfolio before 

transaction costs.  

Like with the monthly portfolios, there is an overlap of stocks across the portfolios. Returns 

for a stock are not the same across the portfolios, meaning that the intraday portfolios also do 

not share the same timing.  

Both the monthly and intraday portfolios share the same stocks among the 15 most traded 

stocks. Indicating that the different machine-learning models create portfolios which tend to 

pick the same stocks, albeit at different points in time. Seeing as the models use the same 

feature space, it could explain why there are similar trades. However, the difference in the 

models makes it so that the portfolios are not 1:1 in terms of trades. 
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Table 5.8: The 15 most held stocks for intraday portfolios 

Support Vector Machine  Random Forest 

Name Frequency Returns  Name Frequency Returns 

TELENOR 789 -0,0007  GJENSIDIGE FORSIKR 648 0,0002 

YARA INTERNATIONAL 774 -0,0002  MOWI 633 0,0003 

EQUINOR 770 0,0007  ORKLA 608 0,0004 

MOWI 768 0,0015  YARA INTERNATIONAL 595 -0,0001 

DNB 750 -0,0004  TELENOR 517 -0,0010 

NORSK HYDRO 485 0,0000  EQUINOR 499 0,0017 

GJENSIDIGE FORSIKR 429 0,0004  DNB 483 0,0002 

SCHIBSTED SER. A 382 0,0002  MAGNORA 450 0,0132 

SUBSEA 7 382 0,0008  SALMAR 445 0,0006 

ORKLA 377 0,0008  SCHIBSTED SER. A 386 0,0004 

SALMAR 358 0,0003  STOREBRAND 359 0,0010 

AKER BP 327 0,0010  BAKKAFROST 354 0,0004 

BAKKAFROST 310 0,0009  NORSK HYDRO 345 0,0004 

NORWEGIAN ENERGY 277 0,0049  TGS 344 0,0015 

STOREBRAND 276 0,0006  SPAREBANK 1 SR-BK 333 0,0001 

   

Logistic Regression  Ensemble 

Name Frequency Returns  Name Frequency Returns 

YARA INTERNATIONAL 767 -0,0003  YARA INTERNATIONAL 840 -0,0003 

EQUINOR 620 0,0016  MOWI 782 0,0006 

MOWI 551 0,0013  EQUINOR 694 0,0014 

DNB 527 -0,0002  TELENOR 681 -0,0004 

TELENOR 516 -0,0002  DNB 653 -0,0009 

SALMAR 482 0,0010  GJENSIDIGE FORSIKR 620 0,0003 

ORKLA 459 0,0005  ORKLA 549 0,0010 

MAGNORA 448 0,0101  SALMAR 495 0,0012 

GJENSIDIGE FORSIKR 438 0,0005  NORSK HYDRO 452 0,0004 

NORSK HYDRO 418 0,0002  SCHIBSTED SER. A 439 0,0011 

SCHIBSTED SER. A 405 0,0006  MAGNORA 329 0,0113 

TOMRA SYSTEMS 338 0,0009  BAKKAFROST 328 0,0008 

TGS 320 -0,0005  TGS 322 0,0002 

PIONEER PROPERTY 294 0,0011  SUBSEA 7 321 0,0008 

AKER BP 293 0,0007  AKER BP 305 0,0020 
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5.7 Fama-French-Carhart Regression 

As mentioned in section 2,4, the Fama-French-Carhart model is used to explain the return 

characteristics of the machine-learning portfolios. The factors have been collected from 

TITLON. Since access to the Fama-French-Carhart factors is only available for the OSE part 

of TITLON, we have limited the regression analysis to the period of 26th of September 2013 

to 27th of November 2020. 

Table 5.9 shows the results for the monthly and intraday portfolios before transaction costs. 

Interestingly, the monthly portfolios do not have any significant coefficients for the Fama-

French-Carhart factors. In addition, the R2 is low, indicating that the factors poorly explain the 

returns of the portfolios. Since there is a low R2 as well as non-significant coefficients, the 

returns do not seem to follow any patterns in terms of investments. Neither portfolio report a 

significant α, despite the fact that transaction costs are excluded, and the analysis does not 

include dates after 27.11.2020.  

The intraday portfolios however, do have some significant factors. Every intraday portfolio 

has a significant α, indicating that the portfolios produce returns unexplained by the other 

factors. While not presented in Table 5.9, none of the intraday portfolios have significant 

positive alphas after transaction costs are subtracted from returns. Interestingly, the SVM 

portfolio does not bias any of the factors, while the other three portfolios do bias some 

factors. Amongst the other three portfolios, all of them biases stocks which are underpriced. 

Additionally, the RF and LR portfolios biases small company stocks, while the EN portfolio 

shows some bias towards the market. Similarly to the monthly portfolios, the intraday 

portfolios have a low R2, indicating that the factor model does not explain the portfolios' 

returns well. 
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Table 5.9: Fama-French-Carhart regression for monthly- and intraday portfolios 

Fama-French-Carhart regression with monthly portfolios 

 SVM RF LR EN 

Intercept (α) 0,0047 0,0110 0,0068 0,0066 

MKT -0,1707 -0,0981 -0,1568 -0,0934 

SMB -0,0719 -0,2646 -0,2748 -0,2289 

HML 0,1102 0,0460 -0,0297 0,0422 

MOM -0,1535 0,1223 -0,1729 -01689 

R2 0,0271 0,0507 0,0503 0,0389 

Fama-French-Carhart regression with intraday portfolios 

 SVM RF LR EN 

Intercept (α) 0,00079** 0,00081*** 0,00059* 0,00083** 

MKT 0,03562 0,01170 0,03790 0,04774(.) 

SMB -0,04683 -0,01439* -0,06580* -0,02730 

HML -0,02718 -0,01931(.) -0,03859(.) -0,04355* 

MOM -0,02354 0,00101 -0,03473 -0,02731 

R2 0,00383 0,00085 0,00705 0,00510 

***p < 0,001, **p < 0,01, *p < 0,05, (.) p < 0,1 
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6 Conclusion 

The aim of this thesis is to examine if utilizing machine-learning for stock portfolio 

construction on the Oslo stock exchange can create portfolios that generate higher returns 

than the OSEBX. Three of the most common machine-learning models are used: Support 

Vector Machines, Random Forest, and Logistic Regression. Because multiple models are 

applied to financial data, the thesis has a secondary goal of comparing the machine-learning 

models. 

Common classification model criteria suggest that the models are not especially good at 

classifying future stock placements, with general accuracies just above 50% for all models. 

Monthly model prediction seems to fit the construction of long-only portfolios better than 

intraday models, as they report both higher recall and precision than intraday models, and in 

turn achieve a significantly higher F1-score. Feature importance distributions for all but the 

intraday RF model suggest that some features have little explanation power and could 

potentially be removed to reduce noise. 

Two portfolio strategies are created based on probability outputs from each machine-learning 

model. One portfolio strategy involves predicting 20-day future returns and has a holding 

period of 20 days, while the other strategy involves predicting next-day intraday returns and 

has a holding period from exchange open to exchange close on the same day. An ensemble 

portfolio for both strategies is also created based on a simple average of the three model 

probabilities. The portfolios consist of the ten stocks most likely to outperform the median 

future return based on the machine-learning model predictions, given a constraint that stocks 

included must be more likely to have above median returns than below (i.e.. the probability of 

being classified as above median is 50% or above).  

There is an overlap among the 15 most traded stocks in the portfolios for the monthly and 

intraday strategies. Where they seem to pick the same stocks, however, they do not provide 

the same returns for each portfolio. The overlap and difference in returns can be explained by 

timing, where the different portfolios do not trade the stocks at the same time. It is however 

not surprising that the portfolios hold the same stocks, since the models are using the same 

feature space. 
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After transaction costs of 3,5- and 4 basis points are subtracted from the intraday and 20-day 

portfolios, respectively, all monthly portfolios outperform the OSEBX up until the start of 

2020, while neither intraday portfolio outperforms the OSEBX over the same period. This 

aligns with previous research on applying monthly- and daily trading strategies created by 

machine-learning on the Norwegian stock market (Kilskar, 2020).  

None of the models avoided the large market dip caused by the start of the Covid-19 

pandemic. After 2020, monthly portfolios either stagnate or decline in value. This drastic 

performance dip during- and post Covid- 19 caused monthly portfolios to underperform 

compared to the index over the study period. Contrary to the monthly portfolios, SVM, LR 

and EN intraday portfolios showed promise in generating returns post 2020, as all portfolios 

were able to beat the market in this period. 

Comparing our findings to the ones of Tan et al. (2019) and Krauss et al. (2017), there is 

some discrepancy between the returns from our portfolios and their portfolios. However, this 

might be due to their portfolios being run for a longer period, granting the portfolios a longer 

time to accumulate returns when compared to the benchmark index. Our paper also looks at 

an extended period for a smaller market than the US and Chinese markets. The machine-

learning portfolios' performance decline over time could be explained by their more frequent 

use within the stock markets. 

A Fama-French-Carhart four-factor regression on returns before transaction costs for the 

29.06.2013 - 27.11.22 period shows no significant alpha for any of the monthly machine-

learning portfolios, but did show significant alphas for all the intraday portfolios. 

Additionally, the intraday portfolios did show some bias towards underpriced stocks as well 

as smaller company stocks. In addition, the regressions are generally unable to explain any 

significant portion of the portfolio variances, with R2- values below 12% for all portfolios.  

In summary, this thesis concludes that machine-learning techniques cannot be utilized to 

achieve consistently higher risk-adjusted returns than the general market on the Norwegian 

stock exchange. Despite the promising results in the period before 2020, monthly rebalanced 

machine-learning portfolios are not able to keep outperforming the OSEBX in later periods. 

Intraday portfolios do however show promise for later periods, even after transactional costs. 



 

51 

 

Due to inconsistent performance in earlier periods however, we are not able to conclude that 

these are a reliable source of outperformance in the Oslo stock exchange. 

6.1 Limitations 

When writing this thesis, we have had to consider limitations to our work. These limitations 

can be caused by the dataset, or simplifications of reality in order to maintain focus on the 

objective of the thesis.  

Limitations that occur from the dataset is that accounting data is not available for periods after 

the end of 2020, as well as the lack of Fama-French-Carhart factors. Access to accounting 

data could improve the features used within the machine-learning models. The lack of Fama-

French-Carhart factors after the end of 2020 means that testing which kinds of stocks are 

biased within the machine-learning portfolios will not be done after the end of 2020. 

Further, the transactional costs are only regarded as direct costs, meaning that transaction 

costs related to bid-ask spread will not be considered. There is also an assumption that the 

portfolio investments are large enough to meet the minimum transaction costs. 

Stocks are assumed to be purchased and sold to the open and close price. Hence there are 

assumed to be no liquidity issues. 

This thesis only uses data with daily fluctuations. Accounting data and macro factors that are 

not updated daily are therefore not considered as features for our models. Many of the models 

in previous research make use of such features, especially accounting data to achieve good 

results. Other potentially relevant features such as NIBOR, inflation rate and unemployment 

rate are also excluded.  

Computing power has also been a particularly significant limitation for this study. More 

powerful computing power would allow easier parameter tuning and more model variations.  

6.2 Future work 

When working on this paper, we have gotten many ideas on how to build upon our paper. In 

this section, we will give some possible extensions to our paper. 
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Since our paper has looked at different machine-learning models, one could pick one and try 

to optimize the feature space or do more thorough testing of hyperparameters. Suggestions 

would be recursive feature elimination and principal component analysis. 

We have also discovered, through early testing, that the classification feature is important, and 

different classification methods yield different results when applied to the models. Therefore, 

we suggest comparing results from different classification features, such as the multi-class 

predictions of Tan et al. (2019), the median binary approach utilized in this thesis, an up-or-

down classification variable, or a binary classification using cross-sectional quantiles of 

return, such as Zhang et al. (2018) or Yu et al. (2014).  Pinelis and Ruppert (2022) also test an 

interesting regression approach where machine-learning is utilized to predict the future 

returns and volatility of a market index, and a mean-variance model is used to allocate 

resources between the market index and a risk-free asset.  

We only applied equally weighted portfolios when creating our portfolios with the machine-

learning models. Another possibility is the mean-variance portfolios or the minimum-variance 

portfolio, and the weights could even be adjusted by the probability given by the models. 

Combining modern portfolio theory with machine-learning models could improve their 

performance in later periods. 
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iii. Appendix 
Appendix A: Confusion matrices for the different models 

Logistic Regression Monthly Logistic Regression Intraday 
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Figure A.0.1: Confusion Matrices for LR Models 

Random forest Monthly Random forest intraday 
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Figure A.0.2: Confusion Matrices for RF Models 

Support Vector Machine Monthly Support Vector Machine Intraday 
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Figure A.0.3: Confusion Matrices for SVM Models 
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Appendix B: Relative feature importance for each model 

Logistic Regression for intraday prediction 

 

 

 

 

 

 

 

Figure B.1: Features in the Top Half of Relative 
Feature Importance for the Intraday LR Model 

Figure B.2: Features in the Bottom Half of Relative 
Feature Importance for the Intraday LR Model 

Figure B.1: Features in the Top Half of Relative 
Feature Importance for the Intraday LR Model 
Figure B.1: Features in the Top Half of Relative 
Feature Importance for the Intraday LR Model 

Figure B.2: Features in the Bottom Half of Relative 
Feature Importance for the Intraday LR Model 

Figure B.1: Top Feature Importance for Intraday LR 
Model 
Figure B.1: Features in the Top Half of Relative 
Feature Importance for the Intraday LR Model 

Figure B.2: Feature in the Bottom Half of Relative 
Feature Importance for the Intraday LR Model 
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Logistic Regression for monthly prediction 

 

Figure B.3: Features in the Top Half of Relative Feature 
Importance for the Monthly LR Model 

 

 

 

 

 

 

Figure B.7: Features in the Bottom Half of Relative 

Feature Importance for the Monthly LR Model 

Figure 0.7: Features in the Bottom Half of Relative 

Feature Importance for the Monthly LR Model 
Figure B.4: Features in the Bottom Half of Relative 
Feature Importance for the Monthly LR Model 
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Random forest for intraday prediction 

 

Figure B.5: Features in the Top Half of Relative Feature 
Importance for the Intraday RF Model 

 

 

 

 

 

  

Figure B.9: Features in the Bottom Half of Relative 
Feature Importance for the Intraday RF Model 
Figure B.6: Features in the Bottom Half of Relative 
Feature Importance for the Intraday RF Model 
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Random forest for monthly prediction 

  

 

 

 

  

Figure B.7: Features in the Top Half of Relative 
Feature Importance for the Monthly RF Model 

Figure B.8.4: Features in the Bottom Half of Relative 
Feature Importance for the Monthly RF Model 

Figure B.7: Features in the Top Half of Relative 
Feature Importance for the Monthly RF Model 



 

63 

 

Support Vector Machine for intraday predictions 

 

Figure B.9: Features in the Top Half of Relative Feature 
Importance for the Intraday SVM Model 

  

Figure B.11: Features in the Bottom Half of Relative 

Feature Importance for the Intraday SVM Model 

Figure B.5: Features in the Bottom Half of Relative 

Feature Importance for the Intraday SVM Model 
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Support Vector Machine for monthly prediction 

 

Figure B.7: Features in the Top Half of Relative Feature 
Importance for the Monthly SVM Model 

 

 

 

Figure B.0.13: Features in the Bottom Half of 
Relative Feature Importance for the Monthly SVM 
Model 

Figure B.6: Features in the Bottom Half of Relative 
Feature Importance for the Monthly SVM Model 



 

 

 


