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Abstract 

Background: The cost brought about by healthcare systems in western society is high and 

likely to increase in the future. Governments with activity-based funding (ABF) systems 

attempt to increase efficiency by introducing financial incentives, using internal market 

mechanisms for hospitals under the umbrella of new public management. The prospective 

payment system in Norway nudges hospitals into becoming quantity-adjusting market 

participants, by adding self-adjusting prices to diagnostic groups based on national averages. 

Hospitals then compete for financial surplus and thus the ability to fund future investments. 

Problem: The Norwegian government has utilized activity-based funding (ABF) for over 20 

years and the effect of the profit incentive innate to the system is still not fully understood. This 

means that hospital decision-makers may be using illegitimate strategies to increase  

profitability. New data that allows analysis of profit incentives at the diagnosis-related group 

(DRG) level became available in 2017, and no analysis of financial incentives including this 

cost information has yet to be published.  

Method: An iterative approach to achieve a parsimonious crossed multilevel model design to 

isolate the effect of profit from other financial incentives for somatic hospitals in Norway. This 

was done using the R-package lme4. The data included price, cost, and quantity data from 18 

hospitals between 2018 and 2021.  

Results: The results show that there is a small association between the average profit of a DRG 

and number of admissions. With a semi-elasticity for the population effect of 3.21% for 

admissions per 1 unit increase in average DRG profit.  

Conclusion: This thesis shows how analyzing profit in a divided funding healthcare system is 

possible given a few assumptions of the mechanisms in the funding systems. The results 

indicate that there is an association between the profit incentive and admissions of a DRG. The 

model should be considered robust to the deviations in model assumptions of residual normality 

and variance. Future research including either more years of analysis or a different model is 

still needed to confirm the effect of profit and the impact of including patient characteristics in 

the analysis. 
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1 Introduction 

Norwegian healthcare spending per capita was reported as the fourth highest among OECD-

countries in 2016 when adjusted for purchasing power. Amounting to 10.5% of gross 

domestic product, only surpassed by the US, Switzerland, and Luxembourg (Vold, 2017). 

Like many others, the Norwegian healthcare system has been put through several reforms 

with the aim to reduce cost and increase productivity (Hagen & Kaarbøe, 2006). One of the 

reforms was the introduction of an activity-based funding system (ABF). Aimed at increasing 

efficiency and control to ensure timely access to healthcare services for the population, in 

accordance with the waiting list guarantee introduced in 1990. (Meld. St. 44, 1995-1996) 
ABF is a prospected payment system based on differentiating funding between groups of 

diagnoses. In an economic context these diagnosis related groups (DRG) can be thought of as 

the products of hospitals where each have their own price, reflecting the resources needed for 

treatment of patients within the group (Januleviciute et al., 2016). The DRG system was 

developed by Fetter and Thompson at Yale University in the 1970s and implemented for the 

first time in the US in 1983. Since then, the DRG and ABF systems have been adopted to 

different degrees by policymakers in the US, UK, China, as well as several European 

countries (Palmer et al., 2014). 

Miraldo, Goddard and Smith (2006) shows that the aims of ABF implementation in the UK, 

was increased efficiency, reduced waiting lists, better allocation of resources and improved 

development, among others. They also state that “... there is potential for prospective payment 

systems to create perverse incentives and encourage unwanted behaviours from providers” 

(Miraldo et al., 2006, p. 13) and that there may be shifts in available services that hospitals 

provide, and which patients are treated. 

Complex financial healthcare systems are prone to gaming practices (Lægreid et al., 2015). 

Several strategies can be applied to increase reimbursements legitimately or illegitimately. 

Ellis (1998) on page 538 defines 3 illegitimate strategies as “‘creaming’, the over-provision 

of services to low cost patients, ‘skimping’, the under-provision of services to high cost 

patients, and ‘dumping’, the explicit avoidance of high cost patients.” A later definition used 

by Martinussen and Hagen (2009, p. 139) define a similar strategic concept of cream 

skimming as “…the selective treatment of patients that demand few resources while 

providing high economic refunds” and can occur both within and between DRGs. Another 
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similar strategy is upcoding, defined by Simborg (1981) referenced in Anthun et al. (2016) on 

page 84 as “a deliberate and systematic shift in a hospital’s reported case mix in order to 

improve reimbursement”. 

In publicly owned healthcare systems, the demand for services tend to exceed supply 

(Januleviciute et al., 2016). Because of the excess demand, the influence of economic 

incentives on the provision of services does not necessarily mean that hospitals undermine 

their duties. Providing the population with an increased volume of services within the 

hospitals budget constraints may increase the amount of “health” being produced. As 

mentioned previously, this is one of the main reasons for implementing ABF in the first place. 

Understanding the effect of economic incentives in ABF on treatment volumes is therefore 

vital to evaluating the effects of ABF implementations.  

The lion’s share of literature on financial incentives of hospitals are based on price and price 

changes. In Norway, some research has been done on the subject (Januleviciute et al, 2016; 

Melberg et al., 2016; Anthun et al., 2016). A Taiwanese study by Liang (2015) examined the 

own-price elasticity of profit. They tried to overcome the lack of cost data by using inpatient 

fees as a proxy on a small sample of DRGs. See section 2.3 and 2.4 for a short review of the 

selected studies. However, little or no research has been done at a high level on the effect of 

profit on DRG admissions. As indicated by both Martinussen and Hagen (2009) and 

Januleviciute et al, (2016), the information required for a high-level analysis of between DRG 

skimming effects was unavailable to them at the time. Due to new data collection 

requirements from the national health authorities, such data now exists. 

Norwegian regional health authorities and hospitals have been tasked with collecting cost data 

connected to DRGs in the cost-per-patient (KPP) management system since 2018 (Ministry of 

Health and Care Services, 2017) The KPP system ties both direct and indirect accounting 

information to activities connected to each individual patient treatment. The development of 

the KPP system is a natural extension of the implementation of ABF and has been in 

development since 2005 (Sandvik et al., 2006: p. 2).  

The data collected through the KPP system provides hospitals with information that can be 

acted upon to become more cost-efficient in areas where they are below national averages. In 

situations where increased cost-efficiency seems infeasible, managers or physicians may 
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attempt to utilize the different strategies defined by Ellis (1998) or attempt to increase 

profitability within the funding system in other ways. 

1.1 Research questions 

It seems clear, given the newly available data, that an analysis that includes cost data to 

expand on the price-based analysis of previous research is necessary. Leading to the subject 

of this thesis. Do Norwegian somatic hospitals respond to profit incentives? 

This subject can be analyzed from different perspectives, among them looking at the three 

strategies formulated by Ellis (1998) and through upcoding. However, the scope of this thesis 

will be limited to a profit-based analysis of cream skimming between DRGs and effects on 

DRG admissions. Using the definition of cream skimming by Martinussen and Hagen (2009). 

This can be operationalized with the following main research question (RQ) below. 

RQ 1: “Is there an association between the number of admissions and the profit 

incentive of DRGs in the Norwegian somatic hospitals, when controlling for price, 

patient and time effects?” 

In other words, does the financial incentive of profit affect the number of admissions in a 

systemic way in Norway? This is not certain. Hospital organizations are complex and 

includes internal allocation rules (Januleviciute et al. 2016). This means that many other 

factors, both financial and otherwise, may influence decisions regarding the number of 

patients treated within a DRG, other than the profit margin.  

An economic model of the utility function of hospital decision-making is described by Biørn 

et al. (2003). The utility function, naturally, includes other elements than the profit incentive. 

Which leads to the second research question:  

RQ 2: “How elastic are DRG admissions to changes in profit?”  

This will be answered by calculating the elasticity of admissions to changes in profit relative 

to the level of profit from the DRG. 

Most of the factors that impact admission decisions can probably not be accounted for in this 

analysis, but data on price, patient and time has been collected for this analysis. This means 

that both systemic budget effects and exogenous price and patient shocks are removed from 
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the profit effect, leaving the hospital’s own profit-increasing and admission-adaptation efforts 

in focus since the implementation of KPP.  

The first controlled variable is price, which should have negative association between number 

of treatments and the resource intensity of the DRG reflected by the DRG-weight. Previous 

research found changes in the DRG-weights to be associated with changes in admissions to a 

small degree. This effect can occur because of widely applied technological changes or other 

possible cost inflationary changes like described in Januleviciute et al. (2016).  

The composition of patients within a DRG for each year may impact the number of 

admissions and costs associated with treatment. The collected variables include averages of 

age, gender, and length of stay, based on elements of the analysis in Anthun et al. (2016). The 

last included aspect that may affect the number of admissions is time. The data from 2018 to 

2019 includes the years of 2020 and 2021, in which most aspects of Norwegian society were 

impacted by restrictions to decrease the spread of the covid-19 pandemic. 

The analysis is based on a multilevel model using the maximum likelihood estimator (ML). 

To generalize any results from RQ 1 and 2, the assumptions for multilevel modeling and 

maximum likelihood estimator need to be adequately satisfied. This will be tested using 

visual residual analysis. 

1.2 Structure of the thesis 

Chapter 1 has introduced the financial incentives in the Norwegian ABF system and previous 

research on the subject. It also identified gaps in the literature and defined two key aspects in 

RQ 1 and 2 that has the capacity to add to the current understanding of the subject. The 

remainder of this thesis is structured as follows. 

Chapter 2 provides an understanding of the financial context of the Norwegian healthcare 

funding system, previous studies on similar topics and the elasticity of admissions with 

regards to profit.  

Chapter 3 describes the theory on multilevel modeling and its application in maximum 

likelihood estimation.  

Chapter 4 describes the data, model and applied methods. 

Chapter 5 presents results from the selected model, elasticity calculation and residual analysis.  
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Chapter 6 includes a discussion of the results in light of available theory. 

Chapter 7 offers concluding remarks on the findings, limitations, and future research. 

2 Activity-based funding in Norway 

This chapter describes the fixed and activity-based parts of the funding system, the 

relationship between them and uses available literature to assemble a theoretical framework 

for examining the profit incentive. This is achieved by interpreting the Norwegian ABF 

system as an artificial internal market as defined by Le Grand (1991) and defining hospital 

reactions to price and profit incentives as described by Januleviciute et al (2016) and Biørn et 

al. (2003) respectively. The approach of both papers is inspired by Chalkley and Malcomson 

(1998). 

2.1 Reforms and fixed funding 

In 1997 and 2002 respectively, the financial system and ownership of Norwegian somatic 

hospitals were reorganized to increase efficiency, scope of hospital care, and adapt to activity-

based financing (ABF) systems in other western countries such as the UK in the early 1990s. 

(Biørn, et al., 2003; Hagen & Kaarbøe, 2006)  

The responsibility of supplying an adequate degree of health services and allocating funding 

between hospitals was then divided between 5 regional health authorities (RHF) which were 

later reduced to 4 in 2007. The hospitals within the 4 regions are organized into health trusts 

(HF), some of which may include several units in different geographical locations (Braut, 

2022).  

The responsibility to ensure health care services includes requirements about availability, 

quality, cost efficiency and adapted to the needs of the patients. The main purpose of the 

funding system is to contribute to the fulfillment of the requirements (Ministry of Health and 

Care Services, 2015). The funding system as a whole is complex and include several different 

subsystems. The ABF system includes in addition to DRGs, special service groups, while 

they function similarly to DRG, that cover different aspects of treatment (Norwegian 

Directorate of Health, 2019). 

The funding of RHFs is divided into two parts. The first portion is fixed, and the second is 

activity based. These parts are divided to contribute equally to the financing of RHF and 

distributed autonomously between hospitals. The fixed funding is updated yearly, and the 
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model has been adjusted two times by the Magnussen-committee in 2008 and 2019 (Ministry 

of Health and Care Services, 2021) The fixed funding is designed to account for differences in 

gender, age, health, social and geographic aspects which may differ between hospital regions. 

With an overall goal to deliver equal financial conditions to the RHFs, and therefore more 

equal quality of health services to the population on an aggregate level (NOU2019:24, p. 42) 

2.2 ABF as a quasi-market 

In the funding and ownership transitions, the state went from being both the provider and 

insurer of specialist healthcare services through its counties to primarily acting as the insurer. 

Creating a quasi-market for the provision of somatic healthcare services (Le Grand, 1991). 

According to Le Grand (1991), quasi-markets, also known as internal markets, differ from 

free markets in several ways. 

The quasi-market is achieved by introducing market imitating mechanisms (Chalkley & 

Malcomson, 1998). In contrast to retrospective reimbursement, with ABF, hospitals cannot 

set prices and are incentivized to reduce costs (Biørn et al., 2003). In the Norwegian context, 

the quasi-market consists of not-for-profit public organizations and for-profit organizations 

that compete for public contracts and customers. 

In Norway between 2018 and 2021, patients could freely decide which of preapproved 

hospital organization to be referred to (“fritt behandlingsvalg”, 2015, § 2-4). This introduces 

competition for demand. Chalkley & Malcomson, (1998) on p. 2 state that patient demand is a 

“natural economic mechanism for maintaining quality” and that “If patients are free to 

choose where to go for treatment, their choices will reflect their perceptions of the quality of 

services on offer, even if they do not themselves pay directly for those services.” 

2.3 Price incentives in ABF 

Within ABF the treatment of patients is divided into relatively homogenous DRG product 

categories (Eastaugh, 1999). Each patient is assigned a DRG based on a DRG-algorithm. 

Revenue in monetary terms from each patient treated in the DRG is calculated in the 

following way according to Januleviciute et al. (2016) 

𝑝𝑖𝑡 = 𝑔𝑖𝑡𝑧𝑡𝑀𝑡 (1) 

Where 𝑝𝑖𝑡 is the price for treatment of patients in DRG i in year t, 𝑔𝑖𝑡 is the cost-weighting for 

DRG i in year t, 𝑧𝑡 is the funding share of ABF for year t and 𝑀𝑡 is the national average 
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treatment cost (NATC) used for patients in year t. The first element 𝑔𝑖𝑡 is a result of 

averaging the treatment cost of patients within each DRG i for all hospitals based on historical 

data. The second element is the politically determined impact of the ABF-share in percent of 

total RHF revenue. The ABF-share is constant throughout the years of analysis at 50%. The 

last element NATC 𝑀𝑡 is calculated from historical data from 2 years before year t 

(Januleviciute et al. 2016). 

Chalkley and Malcomson (1998) as referenced in Januleviciute et al, (2016) states that 

increased prices within a prospective payment system gives an incentive to increase the 

number of admissions. Norwegian hospital’s reaction to price incentives has been analyzed in 

previous studies and documented over time through the three studies mentioned here, 

spanning 10 years of ABF in Norway. 

The first study by Januleviciute et al. (2016) examined the association between price and 

number of admissions within DRGs in Norway between 2003 and 2007. They found a small 

effect of price on admissions. They report an overall price elasticity of 0.042% and 0.08-

0.13% for medical DRGs using fixed-effects models for all DRGs while controlling for time, 

hospital and DRG fixed-effects. They found no effect for surgical DRGs.  

A second study on price changes by Melberg et al., (2016), compared the mean increase of 

treatments for DRGs between 2006 and 2013 with increasing and decreasing price of different 

treatment type and diagnostic subgroups. They found a significant difference between the 

increasing and decreasing price groups who had a 3.16% and 0.74% increase in admissions 

respectively. 

The studies show that hospitals may react to changes in price (Januleviciute et al, 2016), 

possibly by allocating more resources towards DRGs with increasing prices over time 

(Melberg et al., 2016). The DRGs with a relatively higher admissions growth may potentially 

be more profitable than others for some hospitals. However, these results, though they seem 

to indicate some form of reaction to economic incentives are not transferable to the profit 

incentive. 

Other studies have examined upcoding, where according to the definition of Anthun et al. 

(2016) patients are merely coded to a complicated, higher paying, DRG than necessary to 

increase the profitability of treatment. For these studies, the actual costs of treatment for the 

upcoded patient remain unaffected, while the price difference is the potential gain from 



 

Page 8 of 73 

upcoding. This approach is more closely related to the profit incentive because costs are equal 

for the potentially upcoded patient. Anthun et al. (2016) used a multi-level model on data for 

the period of 1999 to 2008 and found that 1 DRG-point difference in price between 

complicated and uncomplicated DRG pairs was associated with a 14.2 percentage point 

increase in complicated discharges for the un-/complicated DRG pair. For a 1 DRG-point 

change in the price difference was 0.4% and not significantly different from 0. Januleviciute 

et al., (2016) also analyzed upcoding, and found that a 10% increase in price-ratio 

complicated-uncomplicated DRG pairs increased the proportion of complicated patients by 

0.3-0.4 percentage points. 

2.4 Profit incentives in ABF 

The theoretical framework of how hospitals can maximize profit in the Norwegian funding 

system is not well elaborated in the literature because of the missing data required for 

analysis. However, the mechanisms can be described by using the available information from 

the studies by Januleviciute et al. (2016), Biørn et al. (2003) and Liang (2015).  

Biørn, et al. (2003) defines the profit incentive as a part of hospitals utility function in 

equation 2. 

𝜋 = 𝐵 + 𝑤(𝑒2) − 𝑐(𝑛, 𝑒1) − 𝑔 (2) 

Where the profit 𝜋 is given as the sum of the fixed revenue 𝐵 and the difference between the 

marginal revenue w(𝑒2) and cost elements 𝑐(𝑛, 𝑒1) and 𝑔. Where 𝑐(𝑛, 𝑒1) is the marginal cost 

and 𝑔 is a cost component for geographical location and age of the hospital buildings. The 

marginal revenue is a function of the hospitals coding efforts 𝑒2 and the marginal cost is a 

function of the number of treatments 𝑛 and level of effort in cost reduction or efficiency 𝑒1 

(Biørn et al. 2003). They include in this definition the assumptions of increasing revenue with 

higher coding efforts and a positive and non-decreasing marginal cost. 

Hospitals may be able to increase profit in the short run by adjusting admissions of DRGs 

based on their profitability. The hospitals responsiveness to the profit incentive would depend 

on internal bargaining between managers and health professionals (Biørn et al. 2003). A 

hospital would not be able to simply increase the output of profitable DRGs. In the 

Norwegian context, the number of admissions is limited by the fixed budget, which acts as a 

maximum treatment limit for each DRG as shown in equation 3 (NOU 2003:1 p. 269). 

Equation 3 comes naturally as the sum of DRG-points accumulated from the revenue 
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elements in equation 2 from treated patients given constant coding efforts and the 50% ABF 

share. 

∑ 𝑔𝑖𝑡𝑦𝑖𝑡

𝑖

𝑖=1

= 𝐵𝑡 (3) 

Where 𝑔𝑖𝑡 is the DRG-weight and 𝑦𝑖𝑡 is the number of admissions for DRG i in year t. 𝐵𝑡 is 

the portion of the fixed funding that is available to cover the missing 50% that are not covered 

under ABF in year t in DRG-points. 

The first element is the revenue per admission 𝑔𝑖𝑡 in a DRG. The DRG-weight 𝑔𝑖𝑡 is updated 

yearly based on averaged historical cost data from all hospitals that treat patients in the DRG. 

In the short term, DRG-weights for the years t and t+1 is available to hospital decision-

makers. The second element is number of admissions, of which hospitals are assumed to have 

some influence. And the limiting factor is the fixed budget. 

If a hospital does not have adequate activity to match their fixed funding with ABF funding, 

then they do not provide the health services necessary to fulfill their responsibility of meeting 

the modeled healthcare needs of the population it serves. If a hospital’s ABF funding exceeds 

their fixed funding, then they will only be compensated with the ABF-share of the revenue for 

the volume of treatment above the fixed budget. 

According to the utility function Biørn et al. (2003), profit maximizing hospital must attempt 

to optimize their activity to fit the two requirements placed on them of fiscal responsibility 

and provision of services. The implication for the analysis of the profit incentive in this thesis 

is that hospitals are unable to deviate from this admissions goal and therefore can be assumed 

to operate with a 100% ABF share. The increase in admissions of a profitable DRG would 

over time have to be accompanied by an admissions reduction with equal reduction in DRG-

points as the increase.  

Hospitals are then able to optimize the profit from treatment by adjusting the number of 

admissions of each DRG in response to the known quantities of price, cost, and budget share 

of the subsequent years. This admissions adjustment is then separate from price changes, 

efficiency and cost reduction efforts by the hospital and aligns well with the definition of 

cream skimming that Martinussen and Hagen (2009) used for the selection effect within 

DRG.  
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Liang (2015) also assumes that hospitals will act on the profit incentive when the information 

on the difference between price and cost is known. They approach the subject of the profit 

incentive by building on the framework of Hodgkin and McGuire (1994) and research by 

Dranove (1987), among others. Dranove (1987) as cited in Liang (2015) on page 455 claims 

that “hospitals will expand supply in Medicare DRGs for which they enjoy the largest price–

cost margins”.   

The study by Liang (2015) examines the profitability own-price and cross-price effects of 

competing and complementary surgical DRGs in Taiwan. Analyzing changes in DRG 

treatment volume with changes in DRG profitability using inpatient fees as a proxy for costs 

with a small sample of 54 surgical DRGs. They found positive own-price effects when a DRG 

becomes more profitable, negative cross-price effects when DRGs are substitutes and positive 

cross-price effects when DRGs are complementary due to economies of scope. Indicating a 

degree of treatment specialization to profitable DRGs when an estimate of profitability was 

possible. 

2.5 Elasticity of admissions to profit 

The elasticity is calculated to estimate to what degree hospitals react to the profit incentive by 

increasing or decreasing DRG admissions. Using the log-linear regression form in Hill, 

Griffiths and Lim (2018), the elasticity 𝐸𝑖𝑗 of a DRG i within a hospital j, is given as  

𝐸𝑖𝑗 =

∆𝑦
𝑦

∆𝜋
𝜋

=
∆𝑦

∆𝜋

𝜋

𝑦
= 𝑏𝜋 

(4) 

Where 𝜋 and ∆𝜋 are respectively the profit and change in profit, 𝑦 and ∆𝑦 number of 

admissions and change in admissions. The elasticity for DRG i in hospital j is equal to the 

product of the slope of the profit coefficient 𝑏 and 𝜋. This form gives the relationship where 

the constant 𝑏 is the semi-elasticity, meaning a percent increase in y with a unit increase in 𝜋, 

and the elasticity increases with the absolute value of 𝜋.  

3 Multilevel models 

This chapter will review the theory of multilevel models and application with maximum 

likelihood estimation. This includes, firstly, data characteristics indicative of using multilevel 

models,  the assumptions of the model and how to apply the model to time-series data. 
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Secondly, how to balance type-I and type-II errors in the model specification and how to 

interpret the implications of deviations from the model assumptions with the maximum 

likelihood estimator.  

MLM, often called mixed-effects model or hierarchical model, are often used in social 

sciences, and uses hierarchical random effect structures for analyzing data with innate 

hierarchical properties. MLM separates the variance into distinct levels or groups (Leyland & 

Groenewegen, 2020). Nalborczyk et al., (2019) on page 1227 define multilevel models 

(MLM) as a regression model where the parameters are the outcomes of another regression 

model with hyperparameters at the second level. 

Good examples of this kind of structure can be students within classes within schools or firms 

within industries within countries and other situations where observations share 

characteristics or traits and therefore may not be independent of each other (Creemers et al., 

2010, chapter 11). Maas and Hox (2004) state on page 128 that “Standard multivariate 

models are not appropriate for the analysis of such hierarchical systems, even if the analysis 

includes only variables at the lowest (individual) level”. 

3.1 Clustering in regression models 

Demidenko (2013) on page 3 and 4 say that classical statistics uses the assumption that the 

data is collected from independent and homogenous individuals and that the residuals have 

constant variance and a mean of 0. When these assumptions are broken, and the data is 

clustered in groups, inferences may become very different between models that account for 

clustering and hierarchical structures in the data or not, as illustrated in figure 1. 

In MLMs each group can have their own hyperparameters, for instance the slope and 

intercept, that can be expressed in the form of the group level equation (Maas & Hox, 2004b). 

𝛼0𝑖 = 𝛼00 + 𝑢0𝑖 (5) 

Where the intercept 𝛼𝑖 for group i is the sum of the grand mean 𝛼0 and the deviation of the 

group mean from the grand mean 𝑢0𝑖 with the assumption that 𝑢0𝑖~𝑁(0, 𝜏00
2 ). 

In figure 1 below the DRGs may differ in several ways. Compared to the no clustering model 

on the left, and  the group specific intercepts and coefficients in the subject clustering on the 
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right give a very different understanding of the effect of the effect of profit (DRGP) on 

admissions (lnAdm).  

Figure 1 Differences between assumptions of observational independence 

 

The amount of variance described by the hierarchical structure is represented by the intraclass 

correlation (ICC), which expresses the variance explained at the group level in percentage of 

the total variance of the errors in the null model (Maas & Hox, 2004). The ICC calculated in 

equation 5, given a model of the variance structure like equation 4, where 𝑦𝑖𝑗   is the response 

variable, 𝛼00 is the grand mean, 𝑢0𝑗 is the deviation of group j from the grand mean and 휀𝑖𝑗 is 

the deviation of the observations from the group mean. 

𝑦𝑖𝑗 = 𝛼00 + 𝑢0𝑗 + 휀𝑖𝑗 (6) 

𝐼𝐶𝐶 =
𝜏00

2

(𝜏00
2 + 𝜎𝜀

2)
 (7) 

The ICC is the quotient of the of the group variance 𝜏00
2  of the deviations 𝑢0𝑗 and the total 

variance (𝜏00
2 + 𝜎𝜀

2). Described by the group variance 𝜏00
2   and the individual variance 𝜎𝑒

2 for 

the deviations in 휀𝑖𝑗. Ignoring the presence of a multilevel structure can increase type I errors 

even at ICC levels of as low as 0.01 according to Huang (2018). 

MLM has clear advantages when it comes to observing the effects of predictors across 

different levels of the data, but they come at a cost of increased complexity. The variability in 
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the parameter estimates of the MLM design can be compared to a random sample design by 

the design effect statistic. Kish (1965) on page 258 as referenced in Lai and Kwok (2015) on 

page 424 defined the design effect as “the ratio of the actual variance of a sample to the 

variance of a simple random sample of the same number of elements” This statistic expresses 

the variance inflation that would occur if an assumption of random sampling was used on the 

data and can be calculated in multilevel models from the ICC and the average cluster size c 

(Lai & Kwok, 2015).  

𝑑𝑒𝑓𝑓 = 1 + (𝑐 − 1)𝐼𝐶𝐶 
(8) 

The design effect can be used to evaluate the need for a multilevel model structure in certain 

scenarios with a generally accepted threshold value of 2, but this threshold should be used 

with caution (Huang, 2018). 

3.2 Assumptions in multilevel models 

Multilevel regression assumes, like multiple ordinary least square regression, a linear 

relationship between dependent and independent variables, no multicollinearity, 

homoscedastic and normally distributed residuals, and a large enough sample size. (Maas & 

Hox, 2004b). MLM also assumes normality and homogenous variance within groups (Huang 

et al., 2022). 

The relationship between the variance terms is more complicated in MLM than in classical 

multivariate regressions. Residuals can be divided into marginal and conditional residuals. 

The error terms of the group level equations with two error terms or more should have a 

multivariate normal distribution, be homogenous across groups within levels and be 

independent from the individual level error term. 

(
𝑢0𝑗

𝑢1𝑗
) = 𝑁 (

0
0

,
𝜏00

2 𝜏01

𝜏01 𝜏00
2 ), (9) 

In the example of equation 7, 𝑢0𝑗 and 𝑢1𝑗 are the group deviations from the grand mean and 

𝜏00
2 and 𝜏01 are the variance and covariance terms between them. If the variance is not 

normally distributed and independent, then inference from significance tests in the random 

structure can be untrustworthy even with large samples (Huang et. al. 2022; Maas & Hox, 

2004b). 
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3.3 Multilevel models with longitudinal data 

When MLM is applied to panel data it is important to account for both the cross-sectional and 

time-series aspects of the data. For instance when a test is administered on multiple occasions 

for students in a classroom. Shor et al. (2007) tested multiple models using Monte Carlo 

simulations found that for cross-sectional time-series data, MLM is substantially more 

efficient than ordinary least-squared and fixed effects estimators and can compensate for 

limited data within groups by partial pooling. They also say that MLM should be better than 

OLS estimators for wide panels with fewer observations over time. To account for 

contemporaneous correlation between subjects at time t, the parameter 𝛾𝑡 is added to vary in 

the time dimension (Shor et al., 2007). 

Shor et. al. (2007) presented a random intercept and fixed slope two-level model 

𝑦𝑗𝑡 = 𝛼𝑗 + 𝛾𝑡 + 𝛽𝑥𝑗𝑡 + 휀𝑗𝑡 (10) 

𝛼𝑗 = 𝛼0 + 𝑢𝑗 (11) 

To achieve the multilevel form, equation 11 is substituted in equation 10, giving the 

multilevel model in equation 12. 

𝑦𝑗𝑡 = (𝛼0 + 𝑢𝑗) + 𝛾𝑡 + 𝛽𝑥𝑗𝑡 + 휀𝑗𝑡 (12) 

Where 𝑦𝑗𝑡 is the dependent variable for subjects j in time t. The intercept 𝛼𝑗 is the sum of the 

hyperparameters 𝛼0 and 𝑢𝑗 , and 𝛼𝑗 + 𝛾𝑡 are respective initial states for subjects j and time t. 

𝛽𝑥𝑗𝑡 is the coefficient and varying predictor for subjects and time and 휀𝑗𝑡 is the error term for 

subjects j at time t.  In the level two equation 𝛼𝑗 is defined as the deviation 𝑢𝑗  of the subject 

from the grand mean initial state 𝛼0 and the error term is normally distributed 𝑢𝑗~𝑁(0, 𝜎𝑢
2). 

3.4 Design and model selection  

Barr et al. (2013) argue that for confirmatory hypothesis testing researchers should “Keep it 

maximal”. Stating on page 257 that “Failure to include maximal random-effect structures … 

inflates Type I error rates.”.  They argue against data driven model-selection because of the 

number of decisions involved and lack of guidelines in specifying the correct random-effect 

structure can cause anti-conservativity in inferences. 
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In studies where the researcher wishes to test a hypothesis regarding a fixed effect, Bates et al. 

(2015) recommends a procedure to increase parsimony in the model. On page 3, they say that 

the optimization problem in maximum likelihood estimation increases with the complexity of 

the model. This is because of the large number of variance and covariance parameters 

estimated in the random effects structure and when too complex for the information present in 

the data it can be constrained in complicated ways. This according to them, leads to 

overparameterized models that can have harmful consequences for inferences. They also state 

on page 4 that 

"The primary reason for dealing with the random-effects structure is to obtain as 

powerful tests as justified of the fixed effects ... Therefore, it is reasonable to remove 

variance components/correlation parameters from the model if they are not supported 

by the data." 

The procedure proposed by Bates et al. (2015) is as follows. First, to check the number of 

dimensions supported by the data with principal component analysis (PCA) and secondly, 

attempt to reduce the dimensionality of the variance-covariance matrices for random effects 

by removing higher-order interaction effects. Thirdly, test if forcing zero-correlation between 

parameters reduces the goodness of fit according to the log-likelihood ratio test (LRT), 

Akaike information criterion (AIC) and Bayes information criterion (BIC). Fourth, taking out 

variance components one by one while checking for a significant reduction in goodness of fit. 

Fifth, adding in correlation components after removing terms from the model in step four. 

And sixth, to check the dimensionality of a zero-correlation model using PCA. 

Following these six steps should lead to a more parsimonious model, allowing healthy and 

converging reduced models while considering the concerns by Barr et al (2013) of increasing 

type I errors and retaining as much statistical power as possible (Matuschek et al., 2017). 

3.5 Misspecifications in the error distribution 

The multilevel model will be estimated using the ML estimator. ML is a method of finding 

the mean and variance values for the observations that maximizes the probability, or 

likelihood, of observing the data from the model (Kuttatharmmakul et al., 2000). Other than 

this brief description, the contents of this section is the assumptions for residuals to achieve 

correct standard errors and inference for MLM in ML and restricted maximum likelihood 
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(REML). If the assumptions are not met or been shown in literature to still be tolerated, then a 

robust estimator should be used to decrease standard error bias. 

REML is a modified approach to ML estimation that uses information on loss of degrees of 

freedom for estimating variance components when population effects are included in the 

model. Other assumptions are considered equal between the two methods. Leading to 

unbiased variance and covariances estimates and higher precision than ML (Liu et al., 2017; 

Baayen et al., 2008). 

ML is asymptotic and assumes large sample sizes for all levels in MLM. This assumption 

means that maximum likelihood also assumes normal distributions in accordance with the 

central limit theorem for all variance elements in the model. According to Nalborczyk et. al 

(2019) estimating MLM with maximum-likelihood methods can be problematic because the 

data may not contain enough information to estimate the high number of parameters present 

in the random effects structure. 

For population effects, if conditional residuals are not normal or heteroscedastic, then 

inference based on asymptotic standard errors can be considered robust if the heteroscedastic 

variance does not depend on a covariate with interaction with time. Population effects are also 

robust when the covariance structure is misspecified. (Jacqmin-Gadda et al., 2007).  

For estimates in the random structure with less than 100 groups the confidence intervals may 

be biased. With between 24 and 30 groups an operating alpha level of about 6.4% with a 

nominal significance level of 5% can be expected according to Maas and Hox (2004a). 

Standard errors of group estimates were 15% smaller with 30 groups than with an adequate 

sample size Maas and Hox (2004b). 

Some of these weaknesses can be overcome by using robust standard errors estimations like 

the CR2 correction or robust estimation methods like the bias-reduced linearization estimator 

or the robust scoring equations estimator (Huang et. al. 2022; Koller, 2016) 

4 Method and data 

This chapter will examine the data structure and material, the maximal formulation of the 

model in accordance with Barr et al. (2013) and the model reduction procedure to achieve a 

converging and parsimonious model by Bates et al. (2015). 
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The subject of the research is all patients treated within the publicly funded somatic specialist 

healthcare providers in Norway aggregated at the DRG level. The research design is 

exploratory, attempting to ascertain the presence of an association and relationship between 

admissions and the profit of treating a patient within a DRG. The model can separate the 

effects of profit on individual DRGs, DRGs within specific hospitals and the whole 

population of treatments. It can also increases the power of the analysis by decreasing the 

number of observations needed to answer the research question as described by the design 

effect. 

4.1 Data Structure 

A nested structure occurs when each nested factor only occurs for one of the nesters. In other 

words, the observations for DRG i in each hospital j are specific to the hospital j and are 

different to other hospitals. A crossed structure occurs when the observations in a factor occur 

equally for all nesters. Again, in other words, that each DRG observation is similar for all 

hospitals j (Grace-Martin, 2020). 

 

Figure 2 The impact of HF and DRG on DRGs within HFs for one data point 

As illustrated above, the DRGs are nested in hospitals, but the DRG-weights are not. The 

nested structure of the data impact the predictive variables more directly than in previous 

research on price like in Januleviciute et al. (2016) and Melberg et al. (2016). This is because 

of the cost variable used to calculate the profit is specific to the hospital where the expenses 

were accrued and occurs only in that hospital. This means that the different DRGs i are tied to 

specific hospitals j, giving each DRG the possibility of different institutional, administrative, 

and demographic contexts. 
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The price-weight of DRG i, however, is not tied to the hospitals and occurs equally in all 

hospitals that include DRG i, it is therefore crossed and not nested. Resulting in a nested 

crossed design common for complicated subject-item experiments. Where DRG i is nested in 

hospital j and each DRG i in hospital j is affected by the DRG-weight of DRG i which is not 

dependent on hospital j. 

To clarifying the influence of and need of the different group levels according to Huang 

(2018). Take the example of the intercept of a DRG i in a hospital j. It may not be represented 

correctly by the mean of the intercepts for all DRG i and the mean the intercepts for all 

hospital j. Leaving a small deviation to be estimated by the DRG in hospital group. In other 

words, the portion of the variance that cannot account for by the mean intercept for DRGs i 

and hospitals j separately are estimated in the DRG within hospital group.  

The relationship can be expressed more directly in the figure below that includes 3 HFs and 3 

DRGs. 

 

Figure 3 Illustration of data dependency in crossed and nested design 

4.2 Data material 

The data is secondary data received from two sources each at the HF and RHF level that, 

respectively, supplied cost data and DRG-weights data. The RHF also supplied the 

aggregated demographic variables for age and gender and the length of stay for each DRG 

within hospitals from the Norwegian patient registry (NPR). Because the data was received 

from two different sources, there was an average of 2.4% discrepancy in the total number of 

admissions for each DRG in each hospital. The cost data was adjusted to fit the admissions 

connected with the DRG-weight data. 
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The collected data included 49123 observations of 901 DRGs in 25 hospitals. 10603 

observations of 223 DRGs were removed after balancing the panel. This was done to remove 

changes and substitutions that might happen in the DRG-system. Other removed observations 

were specialized DRGs where two or less hospitals administered the treatment, DRGs with a 

weight of 0 and rehabilitation DRGs 462A and 462B that have a scaling DRG-weight. After 

these removals the remaining data for analysis consisted of 8839 yearly observations for 611 

DRG in 18 hospitals from 2018 to 2021. 

The random variables that are available for use in the model for each DRG are admissions, 

the difference between DRG weight and cost in DRG-points (DRGP), DRG-weight (DRGW), 

change in DRG-weight (dDRGW), age, gender, and length of stay (LOS). Admissions are 

transformed with the natural logarithm based on the Box-Cox test, improving the normality of 

the data. The profit, price and change in price are measured as DRG-points, where 1 DRG-

point is equal to the NATC 𝑀𝑡 for year t. Age is in years, gender is the percentage of female 

patients and LOS is number of days in treatment. 

 

Descriptive statistics for all years can be seen in table 1. Some aspects of the data are worthy 

of elaboration. Firstly, the differences between the mean and median of the variables indicate 

that some of the distributions are skewed. Secondly, the funding-related variables DRGP, 

DRGW and dDRGW all have extreme minimum and maximum values. For all 3, the extreme 

values come from single year spikes or a few highly weighted DRGs, mainly tracheostomies 

in DRG 482 and 483 and neonatal care for children with low birthweights in DRGs 385C, 

386N, 388A and 389A.  DRGW shows a minimal value of 0 as DRG 809R has a DRG-weight 

of below 0.005 in one of the four years.  
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Thirdly, the minimum and maximum values of the patient characteristic variables also have 

some extreme values. The minimum value of 0 for age indicate birth related DRGs, for 

gender it indicates exclusively male diagnoses and for LOS it indicates outpatient treatment 

DRGs. The maximum values for gender are exclusively female DRGs. 

Table 2 shows the mean values and standard deviations of admissions, DRGP, DRGW and 

number of DRGs that were treated in each hospital continuously between 2018 and 2021.  

 

The groups in the data are unbalanced. The number of DRGs present does not directly imply 

that a hospital with 587 DRGs in the sample treated all DRGs of a hospital with only 313 

DRG in the sample. However, because the treatment of most specialized DRGs is 

concentrated at the largest hospitals, it is reasonable that the hospital with 587 DRGs includes 

a large part of DRGs treated in the hospital with 313 DRGs. 
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Table 2 shows the correlation matrix of the dependent and independent variables. Admissions 

is negatively correlated with DRGW at -29.3%, with dDRGW at -3% and positively 

correlated with DRGP at 7%. DRGPs correlation to DRGW and dDRGW is respectively -

19.6% and 7.5%. The dependent variables all have a variance inflation factor very close to 1, 

indicating that they are not multicollinear. 

The dependent variable ln(Adm), was transformed by the natural logarithm after the Box-Cox 

test was performed, improving the normality of the data. The transformation improved both 

the skewness and kurtosis of the data with skewness of 0,46 and kurtosis of 0,49 in the log 

form. 

 

Figure 4 Distribution of raw and log admissions, and DRG profit. 
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Table 4 shows the transformed value of admissions at percentage intervals of the distribution 

with minimum and maximum values. 

The main independent variable of interest, DRGP, is the result of expressing the costs for 

each patient in DRG-point form and subtracting it from the revenue for treating patients 

within each DRG with the following calculation. 

𝜋𝑖𝑡 = 𝑔𝑖𝑡 −
𝐶𝑖𝑡

𝑀𝑡𝑦𝑡
 

(11) 

Where 𝐷𝑅𝐺𝑃𝑖𝑡 is the profit of treatment and only the DRG-weight 𝑔𝑖𝑡 is used to express 𝑝𝑖𝑡 

as the revenue for DRG i in year t. The costs 𝐶𝑖𝑡 were obtained as yearly monetary costs and 

reduced to DRG-point form to match the form of revenue by 𝑀𝑡𝑦𝑡. This violates the 

relationship expressed in equation 1 but follows the assumptions of ABF-share = 100% from 

section 4.1.  

 

Table 5 shows the value of DRGP at percentage intervals of the distribution with minimum 

and maximum values. The distribution of DRGP can be seen in figure 4 and has a skewness 

of            -9.31 and kurtosis of 265. 

4.3 Model 

This section will present the maximal model without patient characteristic data. The patient 

characteristic data was eliminated from inclusion in early testing due to overparameterization 

in relation to the data that was available. 

The model has 3 levels for coefficient 𝑏1𝑖𝑗 and intercept 𝑏0𝑖𝑗 and two levels for coefficients 

𝑏2𝑖 and 𝑏3𝑖. In the context of the hyperparameters of the coefficients for independent variables 

DRGP 𝜋𝑖𝑗𝑡,  DRGW 𝑝𝑖𝑡 and dDRGW Δ𝑝𝑖𝑡, the grand mean is the population effect. Each 

have their own hyperparameters where the group variance terms v represents the deviation of 

DRG i from hospital (HF) j mean, w the deviation of HF j mean from the grand mean and u is 

the deviation from grand means of DRG i. 

The level 1 equation for the maximal model is as follows. 
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𝑙𝑛(𝜋𝑖𝑗𝑡) = 𝑏0𝑖 + 𝑏0𝑖𝑗 + 𝑇𝑡 + 𝑏1𝑖𝑗𝜋𝑖𝑗𝑡 + 𝑏2𝑖𝑝𝑖𝑡 + 𝑏3𝑖Δ𝑝𝑖𝑡 + 휀𝑖𝑗𝑡 (12) 

Where 𝑦𝑖𝑗𝑡 is the number of patients treated, and 𝜋𝑖𝑗𝑡 is the profit per patient for DRG 𝑖 in HF 

𝑗 for year 𝑡. 𝑏0𝑖𝑗 is the intercept for DRG i, in HF j and 𝑏0𝑡 the time effect. 𝑝𝑖𝑡 is the price and 

Δ𝑝𝑖𝑡 is the change in price from the previous year for DRG i in year t. 

The level 2 equations for the coefficients of DRGs within HFs are  

𝑏0𝑖𝑗 = 𝛾00𝑗 + 𝑣0𝑖𝑗 (13) 

𝑏1𝑖𝑗 = 𝛾10𝑗 + 𝑣1𝑖𝑗 (14) 

Where the coefficients in equation 1 of the intercept 𝑏0𝑖𝑗 and slope  𝑏1𝑖𝑗 of 𝜋𝑖𝑗𝑡, respectively 

are calculated by the hyper parameters the HF j mean intercept 𝛾00𝑗 and slope 𝛾10𝑗 and the 

deviations 𝑣0𝑖𝑗 and 𝑣1𝑖𝑗 of DRG i within HF j. 

The level-3 equations are similarly calculating the mean intercept and slope of HF j from the 

grand mean. 

𝛾00𝑗 = 𝛿000 + 𝑤00𝑗 (15) 

𝛾10𝑗 = 𝛿100 + 𝑤10𝑗 (16) 

Where the HF j hyperparameters for intercept 𝛾00𝑗 and slope 𝛾10𝑗  are calculated from the of 

the grand mean intercept 𝛿000 and slope 𝛿100 and 𝑤00𝑗 and 𝑤10𝑗 is the deviation of. 

The level 2 equations for the coefficients in the DRG group are 

𝑏0𝑖 = 𝛿000 + 𝑢0𝑖 (17) 

𝑏2𝑖 = 𝛾20 + 𝑢2𝑖 (18) 

𝑏3𝑖 = 𝛾30 + 𝑢3𝑖 (19) 

The DRG coefficients for the intercept 𝑏0𝑖, and slopes 𝑏2𝑖 and 𝑏3𝑖 are the result of the grand 

intercept 𝛿000, and population effects 𝛾20 and 𝛾30  and the deviation for DRG i for the 

intercept 𝑢0𝑖, and slopes 𝑢2𝑖 and 𝑢3𝑖. 
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The variance-covariance matrix for group level error terms estimated in his model are for HF 

in equation 20, DRGs in HF in equation 21 and DRG in equation 22. 

(
𝑣0𝑖𝑗

𝑣1𝑖𝑗
) ~𝑁 (

0
0

,
𝜏00

2 𝜏01

𝜏01 𝜏10
2 )  

(20) 

(
𝑤00𝑗

𝑤10𝑗
) ~𝑁 (

0
0

,
𝜓00

2 𝜓01

𝜓01 𝜓10
2 ) (21) 

Where the … 

(

𝑢0𝑖

𝑢2𝑖

𝑢3𝑖

) ~𝑁 (
0
0
0

,

𝜑00
2 𝜑01 𝜑02

𝜑01 𝜑10
2 𝜑12

𝜑02 𝜑12 𝜑20
2

) 

(22) 

Substituting equations 13 to 19 in equation 12 gives the formulation in equation 23 

𝑙𝑛(𝑦𝑖𝑗𝑡) = (𝛿000 + 𝑢0𝑖 + 𝑤00𝑗 + 𝑣0𝑖𝑗) + 𝑇𝑡 + (𝛿100 + 𝑤00𝑗 + 𝑣1𝑖𝑗)𝜋𝑖𝑗𝑡

+ (𝛾20 + 𝑢2𝑖)𝑝𝑖𝑡 + (𝛾30 + 𝑢3𝑖)Δ𝑝𝑖𝑡 +  휀𝑖𝑗𝑡 
(23) 

The model can then be rephrased again by changing the directionality of the levels to 

illustrate the form of the fixed effect and random effect structure more clearly, visualized by 

the random structure is brackets this formulation is more like the output from the software 

that will be presented in section 5. 

 𝑙𝑛(𝑦𝑖𝑗𝑡) = 𝑏0 + 𝑇𝑡 + 𝑏1𝜋𝑖𝑗𝑡 + 𝑏2𝑝𝑖𝑡 + 𝑏3Δ𝑝𝑖𝑡

+ [𝑢0𝑖 + 𝑣0𝑖𝑗 + 𝑤00𝑗 + (𝑣1𝑖𝑗 + 𝑤10𝑗)𝜋𝑖𝑗𝑡 + 𝑢2𝑖𝑝𝑖𝑡 + 𝑢3𝑖Δ𝑝𝑖𝑡 + 휀𝑖𝑗𝑡] 

(24) 

Where the first unbracketed elements are population effects, intercept 𝑏0, time effect 𝑇𝑡, profit 

effect 𝑏1, price effect 𝑏2 and change in price effect 𝑏3. 𝑢0𝑖, 𝑣0𝑖𝑗 and 𝑤00𝑗 is the deviation 

from the grand mean for DRG i, HF j and DRG i in HF j. The other parameters in the random 

structure are the deviations of profit for hospital j 𝑤10𝑗from 𝑏1,  𝑣1𝑖𝑗 is the deviation of DRG i 

from the mean of HF j and 𝑤10𝑗 is the deviation of HF j from  𝑏1. 𝑢2𝑖 and 𝑢3𝑖 is the deviation 

of price and change in price in DRG i from 𝑏2 and  𝑏3, respectively. The final element 휀𝑖𝑗𝑡 is 

the individual time t deviation for DRG i in HF j.  
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It is easy to see the function of multilevel models in the final formulation in equation 24. 

Dividing the residual variance into groups allows for more variance to be modeled from the 

population effects by the different error terms in the different groups. 

4.4 Testing procedure 

The testing procedure involves model comparison with the procedure from Bates et al. (2015) 

and residual analysis on the final model to evaluate conditions for inference from population 

effects. The maximal model described in section 4.2 did not converge, therefore, a reduction 

in model complexity was necessary. In the first step, the maximal model met the criterion for 

number of supported variance dimensions, so the second step of reducing variance 

components was not needed. For the third step, several models with reduced covariances 

converged, but all had significant loss of goodness-of-fit from the maximal model. In the 

fourth step, 3 specifications converged, however all had significant loss of goodness-of-fit 

according to RLT and lower log likelihood than the maximal model without correlations. Step 

five did not improve the converging models with a variable removed to a significant degree. 

Step six was not relevant to this model because the maximal model was computable.  

The correlation reduced models can be viewed in table 6 below. The maximal model is 

described with code from the lmer function in the lme4 package in R. Descriptions for 

subsequent models include the changed code snippets from the maximal model. The LRT was 

calculated using the lrtest package and AIC and BIC were calculated with ML instead of 

REML models using the flexplot package in R. Reduced model number 2 and 4 with no 

correlation for respectively HF:DRG and DRG were excluded from consideration because 

they did not converge. 

The model reduction suggestions in steps 4 and 5 were executed together. All attempts to 

remove variance components resulted in significantly worse fitting models. The a priori 

assumption of the author was that changes in price (dDRGW) was the least informative 

variable. However, the removal of changes in price from both the maximal model and the 

best-fitting no-correlation model was significant. 



 

Page 26 of 73 

 

The attempts to fit a reduced model without loss of goodness-of-fit were unsuccessful for all 5 

steps. The procedure found a converging, non-singular models in step 3 and no significant 

improvements over reduced correlation models in sequential steps. The candidates that were 

evaluated for final model fit were the 2 reduced models with reduced covariance structure for 

HF, and HF and DRGs in HFs (HF:DRG). When tested against each other using LRT, there 

was no difference between the models or when individually tested against the maximal model. 

Suggesting that the correlation between the intercept and DRGP coefficient in the HF:DRG 

group were not significantly different from 0. Correlations for the selected reduced model 

were removed from both groups because of the non-significant correlation in the HF:DRG 

group. This seems to be aligned with the reasoning by Bates et al. (2015) for model 

simplification when estimating population effects. 

The variance-covariance matrix for the main model becomes simplified for two out of the 

three groups. Removing covariances between the intercept and slope of DRGW for HF j and 

DRG i in HF j. 

 

(
𝑣0𝑖𝑗

𝑣1𝑖𝑗
) ~𝑁 (

0
0
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𝜏00

2 0
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(

𝑢0𝑖

𝑢2𝑖

𝑢3𝑖

) ~𝑁 (
0
0
0

,

𝜑00
2 𝜑01 𝜑02

𝜑01 𝜑10
2 𝜑12

𝜑02 𝜑12 𝜑20
2

) (26) 

 

Assumptions of linearity, normality, and homogeneity of variance will be tested on the 

selected model. The residual assumptions were tested by visual inspection. Visually 

inspecting residuals is contested by some, but remains a highly used approach (Yang, 2012). 

For testing conditional residuals this method closely resembles visual tests for non-multilevel 

models. 

5 Results 

This chapter presents the results from the analysis. From the theory in chapter 2, the expected 

results of the population effects based on previous research was firstly, that there would be a 

negative relationship between the price and the number of admissions and secondly a positive 

relationship between changes in price and number of admissions. The time effect was 

assumed to be equal between 2018 and 2019, negative for the year of the pandemic 

restrictions in 2020 and a rebound effect in 2021. The effect of profit on number of treatments 

does not have previous studies to compare to directly for the population effect, as the Liang 

(2015) study only included a small portion of surgical DRGs. The population effect of profit 

was, based on the theoretical framework of financial incentives in general, expected to be 

small in a positive direction or not significantly different from 0. 

The expectation of finding a negative price effect is because highly weighted DRGs occupy a 

larger share of the maximally allowed activity from fixed funding. The profitability of these 

DRGs would have to be higher proportional to the difference in weight. When considering the 

mechanisms in the ABF system to adjust profit towards 0, it is unlikely that highly weighted 

DRGs have a profit margin proportional to their budget share when compared to lower 

weighted DRGs. 

5.1 Population effects 

The result from the selected model specification is presented in table 7 with estimates for 

population effects and random effect variances. The first section of the table shows the 

population effects. All effects were significant when using the maximum likelihood standard 
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error. The grand mean (Intercept) is high at 4.5459 and which is above the median of the 

response variable. The differences between years are 0.0352, -0.02 and 0.0416 respectively 

for 2019, 2020 and 2021 when compared to the intercept of 2018. 

The coefficient for profit (DRGP) was 0.0321, the coefficient for price (DRGW) was -0.2877 

and the coefficient for change in price (dDRGW) was -0.01888. 

 

5.2 Random effects 

The random effects are indexed by grouping.  Most of the variance of admissions can, 

according to the ICC, be explained by the DRGs at 82.1% of total variance. The variance of 

DRGs in HFs is and only accounts for 6.4% of the total variance. This is also the case for 

HFs, that can explain 9.7%. The grouping of the variance resulted in a design effect of 3.94. 

 The intercepts specific to HFs had a variance of 0.309, specific to DRG had a variance of 

3.3046 and specific to DRGs in HFs had a variance of 0.2356. The effect of DRGP for HFs 

had a variance of 0.0005 and for DRGs in HFs a variance of 0.3609. The effect of DRGW had 

a variance of 0.1653 and the effect of dDRGW had a variance of 1.13236.  
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The correlations modeled for coefficients that varied by DRG were -0.811 between the 

intercept and DRGW, -0.257 between the intercept and dDRGW and -0.257 between DRGW 

and dDRGW.  

Other parameters can be extracted from the random structure, however the forced 0 

correlation between the intercept and DRGP for HFs and DRGs within HFs limits the 

usefulness of the results. A more detailed summary of the random effects can be seen in table 

8. 

 

The mean effects for HFs can be viewed in table 9 in Tables and Figures. Where the intercept 

represents the conditional mean of the HFs and indicates the differences in mean admissions 

in HFs from the grand mean. The same can be said for DRGP, where the conditional mean is 

the difference in effect of DRGP at HF j from the population effect. The HF deviations for the 

intercept vary from -1.219 to 1.042 and for DRGP from -0.025 to 0.033. 

The coefficients for DRG group variables can be viewed in table 10 in Tables and Figures. A 

full list of coefficients for DRGs within HFs group are extremely long and will not be 

reported.  
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5.3 Profit elasticity of admissions 

Figure 5 shows elasticity of DRG admissions to profit as a linear function of profit according 

to the definition in equation (2) aggregated at the population level. The absolute value of the 

elasticity increases with the absolute value of DRGP. The thick blue line is the elasticity of 

the population and black lines are DRG elasticities aggregated to the HF level. The red line is 

the population mean DRGP, and red dots are HF specific elasticity at HF specific mean 

DRGP.  

The figure shows that there may be different elasticities between hospitals. The HF elasticities 

calculated from analysis coefficients has a spread of 5.8% when DRGP is at either -1 or 1 

Each respectively has a minimum and maximum elasticity of -0.7% and -6.5%, and 0.7% and 

6.5%. Indicating that the DRG admissions at different HFs have varying responsiveness to 

changes in profitability.  

The elasticity changes in relation to the positive or negative value of DRGP, meaning that the 

admissions of highly profitable or unprofitable DRGs are relatively more elastic to changes in 

DRGP. The admissions of DRGs are inelastic to changes in DRGP while DRGs with DRGP 

of 0 are perfectly inelastic. 

 

Figure 5 Profit elasticity of DRG admissions at hospital level 
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5.4 Residual analysis 

Figure 6 is used to evaluate linearity by plotting residuals against the response variable. The 

assumption of linearity holds if there are no systematic patterns in the plot. Nonrandom 

residual patterns could indicate the existence of nonlinear relationships between the response 

and predictive variables (Yang, 2012). The plot shows that the majority of residuals are close 

to 0, with no visible patterns. 

 

Figure 6 Residual plotted against ln(Adm) 

Figure 7 is used to evaluate normality of residuals using methods in Yang (2012). In the left 

plot of figure 7 is the sample residual quantile against theoretical normal distribution 

quantiles. This plot indicates where in the distribution sample residuals diverge from the 

theoretical distribution. A completely normal distribution would all follow the diagonal line. 

The flatness of the points and diagonal line indicates ties in the data or a large amount of 

values close to the mean value of the distribution as seen in the density plot. The residuals 

have a skew of -0.316 and kurtosis of 9.2, indicating that the residuals are not normally 

distributed and has a too high peak and too fat tails. 
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Figure 7 Plot of residuals in sample against theoretical quantiles and distribution 

 

Heteroscedasticity is evaluated in figure 8, This figure shows residuals plotted against 

estimated values and clearly shows a non-homogenous variance of the residuals based on the 

fitted values for observations of the response variable. Residuals for larger fitted values have 

lower variance than low estimates. 

 

Figure 8 Residuals plotted against fitted values 
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6 Discussion 

This thesis is focused on financial incentives. Investigating the effect of profit ceteris paribus 

at a national level using secondary, real-world data. Eliminating all other influence on 

treatment allocation within hospitals is not possible with the collected data, hospitals can be 

assumed to be required to be financially responsible and can therefore be influenced by 

financial incentives. 

RQ 1 asks if there is an association between the number of admissions and the profit 

incentive of DRGs. The model estimates a linear function between the natural logarithm of 

admissions and DRG-points of profit for each DRG in the DRGP variable. 

The results for DRGP showed significant effects at the population, HF and HF:DRG group 

levels, and has a small population effect on admissions of 0.0321.  

The variables for price and changes in price are DRG specific and equal between all hospitals. 

From the DRG specific results, the own-price elasticity was -0.3136 at the mean value of 

price for all years. Januleviciute et. al. (2016) found a small own-price elasticity of 0.042. The 

difference between the two findings is very large and the unit of measurement is in different 

scales. Januleviciute et. al. (2016) used NOK and this thesis used DRG-points. Since there are 

both differences in model and unit of measurements, direct comparison between the results is 

not possible. 

RQ 2 asks to what the elasticity of admissions is in response to profit to inquire about the size 

of the effect of the profit incentive. The positive directionality of the semi-elasticity of 

admissions to profit was consistent with the findings of Liang (2015) for the population 

effect. The profit elasticity as a function of the profit incentive seems plausible. Also, the 

elasticity reflects the adaptation predicted of Dranove (1987), as cited in Liang (2015), that 

hospitals will increase admissions of highly profitable DRGs. The result from the analysis 

adds the decreased admissions of negative profitability DRG and low responsiveness to small 

profit margins in either direction in a congruent way to the findings of Liang (2015) and 

prediction of Dranove (1987). 

The study Januleviciute et al. (2016) questioned whether financial incentives “bite” within the 

Norwegian institutional context, partly because of the partial adoption of ABF and lack of 

recipients for profit outside hospital organizations. Solely for exogenous changes in price, this 
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uncertainty seems suitable. From the theory and results in this thesis, the assumption that the 

partial adoption impacts financial incentives to a large degree seems to be a misinterpretation 

of financial incentives in the Norwegian context. Based on Chalkley and Malcomson (1998) 

and the utility function by Biørn et al. (2003), public not-for-profit hospitals under 

prospective payment systems based on new public management principles still have innate 

organizational incentives to maintain healthy earnings to secure their existence. The effect of 

the fixed funding on decision-making in hospitals is as a limit to the total number of activity-

based DRG-points produced, as expressed in equation (3). 

A more appropriate question with regards to the fixed funding is whether the partial adoption 

increases the negative cross-price or profit elasticity of admissions of DRGs that are 

substitutes. 

From the previous chapter, all population effects, except change in price, were significantly 

different from 0. This depends on the estimated confidence intervals. The ML estimator 

assumes a linear relationship between the dependent and independent variables and that the 

errors are normally distributed and homoscedastic (Maas & Hox, 2004b). Visual inspection of 

figure 6 did not show a non-linear formation in the residuals. The high kurtosis of the 

residuals in this model indicates a non-normal distribution with a larger proportion of 

observations around the mean, and in the tails, than the normal distribution as seen in figure 7. 

The residuals are also heteroscedastic, and their variance decreases with increasing values of 

admissions as seen in figure 8.  

Despite these deviations from the assumed error specification, the population effect estimates 

and confidence intervals may still be valid. Jacqmin-Gadda et al. (2007) showed that 

parameter estimates were unbiased and standard errors were not increased with non-normal 

distributions. They also showed that population effects are robust to heterogenous residual 

variance when the variance is not dependent on covariates that have interactions with time. 

Examination of the residuals confirmed that the variance was dependent on the value of 

admissions, see the end of R-code in appendix 9.4, to which the model should be robust 

according to Jacqmin-Gadda et al. (2007). 

Jacqmin-Gadda et al. (2007) does not test the two misspecifications together, but a premise 

for their testing of robustness to deviations in normality was the use of untransformed 

dependent variables. This resulted in density functions with much larger deviations from the 
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normal distribution than in the model of this thesis. The estimated effect of the profit 

incentive has a high p-values for the population effects. The influence of higher kurtosis on 

the standard errors should be limited. Therefore, the results from the analysis should be 

accepted as valid because of the robustness of the model to heteroscedasticity and relatively 

mild deviation from normality. 

The use of both a robust estimator and robust standard error calculations was also attempted. 

However, the attempts were unsuccessful because of limited computational capacity and lack 

of function packages in R that could accommodate a crossed effect design. 

Inference from the results of random structures are, in general, possible in MLM. The results 

may still be interesting for some to explore in this instance. However, the model has forced 

correlation between the grouped variables in the groups for HF and HF:DRG from the 

procedure by Bates et al. (2015) and both a misspecified error distribution and variance. The 

basis for the procedure by Bates et al. (2015) is also that the random structure is included in 

the model to increase the power of population effect estimates. The results from specific 

hospitals, DRGs or DRGs within hospitals from the random structure are unreliable. 

An argument can be made, based on the results, that a multilevel model was unnecessary for 

early, exploratory research with few years of data. The random effect structure does increase 

the power of the test with respect to the population effects, but the number of observations 

and clusters necessary to support all estimate and variance components in the maximal model 

is very high compared to other methods.  

The choice of simplified model based on the suggestions of Bates et. al (2015) could also 

have been incorrect due to the additional penalty to the reliability of profit effect results over 

change in price, which only affected the variance separated to the DRG group specifically. 

Removing an explanatory variable from DRG specific effects, to allow for correlations in 

groups that included the profit variable, could increase the usefulness of hospital specific 

results.  

The major limitations of the analysis were the low number and quality of years included in 

the study which necessitated the removal of patient characteristic variables. These limitations 

impact both the reliability and validity of the results. If the collected patient characteristic 

variables had been included in the model, they would have occupied the same group variance 

space as DRGP and could impact the magnitude of the effect. Also, the two years that were 
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subject to the restrictions from measures to reduce the spread of the disease may have 

impacted the admission changes.  

The data was also collected from two sources. The difference between the admissions of the 

two sources was adjusted to fit the RHF data. This could affect the price and profit variables 

for low admission DRGs. However, for the majority of DRGs the number of admissions 

should be high enough that average cost per patient was unlikely to be affected to a significant 

degree by costs from the missing observations that caused the 2.4% discrepancy between the 

data sources. The possibility that the scaling affected the financial variables is still present. 

7 Conclusion 

This thesis shows how analyzing profit in a divided funding healthcare system, and how 

adaptation of maximal multilevel models to limited data, is possible. The purpose of this 

study was to investigate systematic influence profit incentives in the Norwegian ABF system. 

The necessary cost data that allowed this analysis has not been available to previous studies. 

It was done using a multilevel model on the available data from the relatively short period 

from 2018 to 2021.  

The profit incentive was operationalized as the DRG-point difference between revenue and 

cost for each DRG. A multilevel model was used to test if the data supported an association 

between the average profit margin and the number of admissions of DRGs. The results and 

residual analysis indicate that the association is present at the population level, but the 

differences between the effects for specific hospitals are unreliable. 

Secondly, the elasticity was estimated to express the size of the effect on admissions relative 

to the profit incentive. The DRG admissions sensitivity to changes in profit has a linear 

relationship to the size of the profit incentive with a semi-elasticity of 3.21%. The size of the 

effect of profit could be overstated because of the missing degrees of freedom to include 

patient characteristics. 

The major limitation of this study was the concessions made to  the variance-covariance 

structure and independent variables to achieve a parsimonious model. More years of data 

seems to be necessary to accommodate a more complex structure and variables. 

This thesis only examined a sliver of the legitimate or illegitimate strategies that could be 

utilized by hospitals to impact earnings. Allowing the financial incentive of profit to impact 
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decisions could be both legitimate and illegitimate, however the result from this thesis seems 

to align with the definition of cream skimming by Martinussen and Hagen (2009) and 

indicates that cream skimming is present in the Norwegian healthcare system. 

More research covering either more years of data or a different model specification is needed 

to confirm the presence of cream skimming and the differences in effect of the profit 

incentive between hospitals. More research is also. 

Future research should especially utilize the new cost data in other areas of “hospital 

misbehavior”. Such as the within DRG patient selection or upcoding. Researchers could also 

attempt to identify DRGs that are substitutes and complementary with regards to profit. 

Other angles that could also be investigated are the difference of effect between the 

categorizations of medical or surgical and elective or emergency as used in Januleviciute et al. 

(2016), or DRG-groups as used in Melberg et al. (2016). 

  



 

Page 38 of 73 

 

 

 

  



 

Page 39 of 73 

8 Works cited 

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed 

random effects for subjects and items. Journal of Memory and Language, 59(4), 390-412. 

https://doi.org/https://doi.org/10.1016/j.jml.2007.12.005 

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for 

confirmatory hypothesis testing: Keep it maximal. J Mem Lang, 68(3), 255-278. 

doi:10.1016/j.jml.2012.11.001 

Bates, D. a. K., Reinhold and Vasishth, Shravan and Baayen, Harald. (2015). Parsimonious 

Mixed Models. doi:10.48550/ARXIV.1506.04967  

Braut, G. S. 2022.  regionalt helseforetak [regional health trust]. Store medisinske 

leksikon på snl.no    https://sml.snl.no/regionalt_helseforetak 

Chalkley, M., & Malcomson, J. M. (1998). Contracting for health services when patient 

demand does not reflect quality. J Health Econ, 17(1), 1-19. https://doi.org/10.1016/S0167-

6296(97)00019-2 (Journal of Health Economics) 

Ellis, R. P. (1998). Creaming, skimping and dumping: provider competition on the intensive 

and extensive margins. This is a substantially rewritten version of a paper entitled `Creaming, 

Skimping, and Dumping: Provider Competition for Patients'. Journal of Health Economics, 

17(5), 537-555. doi:https://doi.org/10.1016/S0167-6296(97)00042-8 

Grace-Martin, K. estimated 2014. The difference between crossed and nested factors. Read 

01.02.2023, https://www.theanalysisfactor.com/the-difference-between-crossed-and-nested-

factors/ 

Hagen, T. P., & Kaarbøe, O. M. (2006). The Norwegian hospital reform of 2002: Central 

government takes over ownership of public hospitals. Health Policy, 76(3), 320-333. 

https://doi.org/10.1016/j.healthpol.2005.06.014 (Health Policy) 

Hill R. C, Griffiths E., and Lim G. C. (2018). Principles of Econometrics (Fifth Edition). John 

Wiley and Sons, Inc. 

https://doi.org/https:/doi.org/10.1016/j.jml.2007.12.005
https://sml.snl.no/regionalt_helseforetak
https://doi.org/10.1016/S0167-6296(97)00019-2
https://doi.org/10.1016/S0167-6296(97)00019-2
https://doi.org/10.1016/S0167-6296(97)00042-8
https://doi.org/10.1016/j.healthpol.2005.06.014


 

Page 40 of 73 

Biørn, E., Hagen, T. P., Iversen, T., & Magnussen, J. (2003). The effect of activity-based 

financing on hospital efficiency: a panel data analysis of DEA efficiency scores 1992-2000. 

Health Care Manag Sci, 6(4), 271-283. https://doi.org/10.1023/A:1026212820367 

Huang, F. L. (2018). Multilevel modeling myths. School Psychology Quarterly, 33, 492-499. 

doi:10.1037/spq0000272 

Huang, F. L., Wiedermann, W., & Zhang, B. (2022). Accounting for Heteroskedasticity 

Resulting from Between-Group Differences in Multilevel Models. Multivariate Behavioral 

Research, 1-21. https://doi.org/10.1080/00273171.2022.2077290 

Jacqmin-Gadda, H., Sibillot, S., Proust, C., Molina, J.-M., & Thiébaut, R. (2007). Robustness 

of the linear mixed model to misspecified error distribution. Computational statistics & data 

analysis, 51(10), 5142-5154. https://doi.org/10.1016/j.csda.2006.05.021 (Computational 

Statistics & Data Analysis) 

Koller, M. (2016). robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects 

Models. Journal of Statistical Software, 75(6), 1 - 24. https://doi.org/10.18637/jss.v075.i06 

Kuttatharmmakul, S., Smeyers-Verbeke, J., Massart, D. L., Coomans, D., & Noack, S. 

(2000). The mean and standard deviation of data, some of which are below the detection 

limit: an introduction to maximum likelihood estimation. TrAC, Trends in analytical 

chemistry (Regular ed.), 19(4), 215-222. https://doi.org/10.1016/S0165-9936(99)00197-1 

Lai, M. H. C., & Kwok, O.-m. (2015). Examining the Rule of Thumb of Not Using Multilevel 

Modeling: The "Design Effect Smaller Than Two" Rule. The Journal of experimental 

education, 83(3), 423-438. https://doi.org/10.1080/00220973.2014.907229 

Le Grand, J. (1991). Quasi-Markets and Social Policy. The Economic journal (London), 

101(408), 1256-1267. https://doi.org/10.2307/2234441 

Leyland, A. H., & Groenewegen, P. P. (2020). Multilevel Modelling for Public Health and 

Health Services Research: Health in Context. Cham: Springer International Publishing AG. 

Liang, L. L. (2015). Do diagnosis-related group-based payments incentivise hospitals to 

adjust output mix? Health Econ, 24(4), 454-469. doi:10.1002/hec.3033 

https://doi.org/10.1023/A:1026212820367
https://doi.org/10.1080/00273171.2022.2077290
https://doi.org/10.1016/j.csda.2006.05.021
https://doi.org/10.18637/jss.v075.i06
https://doi.org/10.1016/S0165-9936(99)00197-1
https://doi.org/10.1080/00220973.2014.907229
https://doi.org/10.2307/2234441


 

Page 41 of 73 

Liu, Y., Luo, F., Zhang, D., & Liu, H. (2017). Comparison and robustness of the REML, ML, 

MIVQUE estimators for multi-level random mediation model. Journal of applied statistics, 

44(9), 1644-1661. https://doi.org/10.1080/02664763.2016.1221904 

Maas, C. J. M., & Hox, J. J. (2004a). Robustness issues in multilevel regression analysis. 

Statistica Neerlandica, 58(2), 127-137. https://doi.org/10.1046/j.0039-0402.2003.00252.x 

(Statistica Neerlandica) 

Maas, C. J. M., & Hox, J. J. (2004b). The influence of violations of assumptions on multilevel 

parameter estimates and their standard errors. Computational statistics & data analysis, 46(3), 

427-440. doi:10.1016/j.csda.2003.08.006 

Martinussen, P., & Hagen, T. (2009). ‘Reimbursement Systems, Organizational Forms and 

Patient Selection: Evidence from Day Surgery in Norway. Health Economics, Policy and 

Law, 4, 139-158. https://doi.org/10.1017/S1744133109004812 

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I 

error and power in linear mixed models. Journal of Memory and Language, 94, 305-315. 

doi:https://doi.org/10.1016/j.jml.2017.01.001 

Ministry of Health and Care Services. (2015). En gjennomgang av finansieringsordningene i 

spesialisthelsetjenesten [A review of financing systems of specialist healthcare services] 

Ministry of Health and Care Services. (2017). Oppdragsdokument 2017 – tilleggsdokument 

etter Stortingets behandling av Prop. 129 S (2016-2017) [Mission statement 2017 – Appendix 

to parlament’s treatment of Prop. 129. S (2016-2017)]  

Ministry of Health and Care Services. (2021). Statlig finansiering av de regionale 

helseforetakene [State funding of the regional health trusts]. 

https://www.regjeringen.no/no/tema/helse-og-omsorg/sykehus/innsikt/statlig-finansiering-av-

de-regionale-hel/id227797/ 

Norwegian Directorate of Health. (2019, 22. August) STG-systemet [The STG-system] 

https://www.helsedirektoratet.no/tema/finansiering/innsatsstyrt-finansiering-og-drg-

systemet/stg-systemet  

Miraldo, M., Goddard, M., & Smith, P. (2006). The Incentive Effects of Payment by Results.  

https://doi.org/10.1080/02664763.2016.1221904
https://doi.org/10.1046/j.0039-0402.2003.00252.x
https://doi.org/10.1017/S1744133109004812
https://doi.org/10.1016/j.jml.2017.01.001
https://www.regjeringen.no/no/tema/helse-og-omsorg/sykehus/innsikt/statlig-finansiering-av-de-regionale-hel/id227797/
https://www.regjeringen.no/no/tema/helse-og-omsorg/sykehus/innsikt/statlig-finansiering-av-de-regionale-hel/id227797/
https://www.helsedirektoratet.no/tema/finansiering/innsatsstyrt-finansiering-og-drg-systemet/stg-systemet
https://www.helsedirektoratet.no/tema/finansiering/innsatsstyrt-finansiering-og-drg-systemet/stg-systemet


 

Page 42 of 73 

Palmer, K. S., Agoritsas, T., Martin, D., Scott, T., Mulla, S. M., Miller, A. P., . . . Guyatt, G. 

H. (2014). Activity-Based Funding of Hospitals and Its Impact on Mortality, Readmission, 

Discharge Destination, Severity of Illness, and Volume of Care: A Systematic Review and 

Meta-Analysis. PLOS ONE, 9(10), e109975. doi:10.1371/journal.pone.0109975 

Sandvik, Weider & Solstad. (2006). KPP ved norske sykehus Prinsipper og retningslinjer 

A154 [KPP at Norwegian hospitals, Principes and guidelines]. SINTEF Helse. 

Shor, B., Bafumi, J., Keele, L., & Park, D. (2007). A Bayesian Multilevel Modeling 

Approach to Time-Series Cross-Sectional Data. Polit. anal, 15(2), 165-181. 

https://doi.org/10.1093/pan/mpm006 

Vold, B. (2017). Norge bruker fjerde mest på helse i OECD [Norways spends fourth most on 

healthcare in OECD]]. Statistics Norway. https://www.ssb.no/helse/artikler-og-

publikasjoner/norge-bruker-fjerde-mest-pa-helse-i-oecd  

Yang, P. (2012). Visual Assessment of Residual Plots in Multiple Linear Regression: A 

Model-Based Simulation Perspective. 38. 

 

 

 

 

 

 

  

https://doi.org/10.1093/pan/mpm006
https://www.ssb.no/helse/artikler-og-publikasjoner/norge-bruker-fjerde-mest-pa-helse-i-oecd
https://www.ssb.no/helse/artikler-og-publikasjoner/norge-bruker-fjerde-mest-pa-helse-i-oecd


 

Page 43 of 73 

9 Appendix 

9.1 Table 8: HF coefficients 

 

 

 

9.2 Table 9: DRG coefficients 
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9.3 R code for data  

library(tidyverse) 
# Set WD 
setwd("C:/Users/sigur/OneDrive/Dokumenter/Helsedata") 
getwd() 
rm(list=ls()) 
 
# Import data 
library(readxl) 
data1 <- read_excel("Aggregerte-sykehusopphold.xlsx") 
data2 <- read_excel("KPP-2017-2019.xlsx", sheet = 1) 
data3 <- read_excel("KPP-2017-2019.xlsx", sheet = 2) 
data4 <- read_excel("KPP-2020-2021.xlsx") 
NordDRG_2019_compl <- read_excel("NordDRG 2019 compl.xlsx") 
CC_Egenskaper <- read_excel("DRG_Masterliste_2017_Somatikk.xlsx",  
                            sheet = "CC_Egenskaper") 
DRG_Masterliste_2017_Somatikk <- read_excel("DRG_Masterliste_2017_Somatikk.xlsx",  
                                            sheet = "Masterliste") 
vekt2017 <- DRG_Masterliste_2017_Somatikk[,c(1,6)] 
vekt2017$Year <- 2017 
colnames(vekt2017)[1] = "DRG" 
colnames(vekt2017)[2] = "DRGWeight" 
vekt2017$DRG <- as.factor(vekt2017$DRG) 
 
##################### 
### Admissions data # 
##################### 
 
# Gender as factor, 1 = Female and 2 = Male 
data1 %>%  
  group_by(DRG) %>%  
  mutate(Sex=as.numeric(as.factor(Gender))) -> data1 
 
# Column bind female data to male data rows 
Fdata1 <- subset(data1, Sex==1) 
data1 <- subset(data1, Sex==2) 
data1 <- full_join(data1,Fdata1, by = c("DRG","HF","Year")) 
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# Replacing NA with 0 
data1$Admissions.x[is.na(data1$Admissions.x)] <- 0 
data1$Admissions.y[is.na(data1$Admissions.y)] <- 0 
data1$Age.x[is.na(data1$Age.x)] <- 0 
data1$Age.y[is.na(data1$Age.y)] <- 0 
data1$Sum_stay_DRGpoints.x[is.na(data1$Sum_stay_DRGpoints.x)] <- 0 
data1$Sum_stay_DRGpoints.y[is.na(data1$Sum_stay_DRGpoints.y)] <- 0 
data1$LOS.x[is.na(data1$LOS.x)] <- 0 
data1$LOS.y[is.na(data1$LOS.y)] <- 0 
 
# making factors 
data1$HF <- as.factor(data1$HF) 
data1$DRG <- as.factor(data1$DRG) 
data1$RHF <- as.factor(data1$RHF.x) 
 
# Calculate combined admissions, DRG-point value, gender neutral age avg and % female admissions 
data1 %>%  
  mutate( 
    Admissions = Admissions.x+Admissions.y, 
    Sum_stay_DRG = Sum_stay_DRGpoints.x+Sum_stay_DRGpoints.y, 
    DRGWeight = Sum_stay_DRG/Admissions, 
    LOS = (LOS.x*Admissions.x+LOS.y*Admissions.y)/Admissions, 
    LOSxDRGW = LOS*DRGWeight, 
    #dDRGWeight = DRGWeight-lag(DRGWeight), 
    Age = (Age.x*Admissions.x+Age.y*Admissions.y)/Admissions, 
    Femalepct = Admissions.y/(Admissions.x+Admissions.y) 
    ) -> data1 
 
# Selecting variables for analysis and tidying 
data1 %>%  
  select( 
    Year, HF, RHF, DRG, DRG_Name.x, Type_DRG.x, Admissions,  
    Sum_stay_DRG, DRGWeight, LOS, LOSxDRGW, Age, Femalepct 
    ) -> df 
rm("data1", "Fdata1") 
 
############### 
### Cost data # 
############### 
 
# Selecting variables, combining and tidying 
data4 <- data4[c(-(3:13),-15,-17)] 
data4 <- data4[, c(4, 3, 1, 2, 5)] 
 
costdata <- rbind(data2,data3,data4) 
costdata$HF <- as.factor(costdata$HF) 
costdata$DRG <- as.factor(costdata$DRG) 
df <- full_join(df, costdata, by = c("DRG","HF","Year")) 
rm("data2", "data3", "data4", "costdata") 
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# Omit observations without either price or cost data and n < 5 
# for compliance to request from data provider 
df <- df[complete.cases(df[ , c('Admissions.x', 'Sum_stay_DRG', 'Admissions.y', 'Sum')]), ] 
df <- df[df$Admissions.x > 4,] 
which(df$Admissions < 5) 
# Admissions data does not match between the two data sources. 
# Data1 is compiled by RHF and data2:4 is compiled by HF, 
# causing prices and costs to be be based on a different number of patients. 
# continue with the admission numbers provided by Helse Nord and adjust 
# hospital costs. 
 
# Adjusting cost numbers to price-linked quantities 
df %>%  
  mutate( 
    Sum = Sum/Admissions.y*Admissions.x 
    ) -> df 
names(df)[names(df) == "Admissions.x"] <- "Admissions" 
df <- df[-14] 
which(is.na(df)) 
 
# Sorting and checking for equal HF factors between datasets manually. 
# leaving dates as number format 
attach(df) 
df <- df[order(Year, HF, DRG),] 
detach(df) 
 
# Converting costs to DRG-points and calculating dDRGWeight by dividing 
# Sum by the yearly avg patient cost (DRGWeight = 1) from Helsedirektoratet. 
df2018 <- df %>% 
  subset(Year == 2018) %>%  
  mutate( 
    DRGCost = Sum/43428/Admissions, 
    DRGProfit = DRGWeight-DRGCost, 
    TotProfit = DRGProfit*Admissions) # Unit price = 43 428 
df2019 <- df %>% 
  subset(Year == 2019) %>%  
  mutate( 
    DRGCost = Sum/44654/Admissions, 
    DRGProfit = DRGWeight-DRGCost, 
    TotProfit = DRGProfit*Admissions) # Unit price = 44 654 
df2020 <- df %>% 
  subset(Year == 2020) %>%  
  mutate( 
    DRGCost = Sum/45808/Admissions, 
    DRGProfit = DRGWeight-DRGCost, 
    TotProfit = DRGProfit*Admissions) # Unit price = 45 808 
df2021 <- df %>% 
  subset(Year == 2021) %>%  
  mutate( 
    DRGCost = Sum/46719/Admissions, 
    DRGProfit = DRGWeight-DRGCost, 
    TotProfit = DRGProfit*Admissions) # Unit price = 46 719  
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df <- rbind(df2018, df2019, df2020, df2021) 
rm("df2018", "df2019", "df2020", "df2021") 
 
# Making a more balanced panel 
length(levels(df$HF))  # 25 Hospitals in unbalanced panel 
length(levels(df$DRG)) # 901 DRGs in unbalanced panel 
length(df$DRG)         # 49123 Observations in unbalanced panel 
df <- df %>%  
  group_by(HF, DRG) %>%  
  tally() %>%  
  full_join(df) 
df <- subset(df, n==4) 
 
# Easiest way to check if some factors are unused 
df$HF <- as.factor(as.character(df$HF)) 
df$DRG <- as.factor(as.character(df$DRG)) 
df$RHF <- as.factor(as.character(df$RHF)) 
 
# Only change in observations 
length(levels(df$HF))  # 20 Hospitals in unbalanced panel 
length(levels(df$DRG)) # 678 DRGs in balanced panel 
length(df$DRG)         # 38520 Observations in unbalanced panel 
 
# Making yearly change in profit variable 
df <- df %>%  
  group_by(HF, DRG) %>%  
  mutate(dDRGW = DRGWeight-lag(DRGWeight), 
         dDRGP = DRGProfit-lag(DRGProfit), 
         dDRGC = DRGCost-lag(DRGCost), 
         SumDRGP = Admissions*DRGProfit) 
df$dDRGW[is.na(df$dDRGW)] <- 0 
df$dDRGP[is.na(df$dDRGP)] <- 0 
df$dDRGC[is.na(df$dDRGC)] <- 0 
 
# quick fix to implement dDRGW values for 2018 
df <- full_join(df,vekt2017[1:2], by = c("DRG")) 
df2018 <- df %>% subset(Year == 2018) %>% mutate(dDRGW = DRGWeight.x-DRGWeight.y) 
dfother <- df %>% subset(Year > 2018) 
df <- rbind(df2018,dfother) 
df <- subset(df, select = -DRGWeight.y) 
 
## Make time Dummy 
df <- cbind(df, as.data.frame(model.matrix( ~ as.factor(Year) - 1, assign=c(0,1,1,1), data=df ))) 
which(is.na(df$Admissions)) 
df <- df %>% subset(HF != "Diakonhjemmet Sykehus") 
df <- df %>% subset(HF != "Haraldsplass Diakonale sykehus") 
 
# Tidying 
names(df) <- c("HF", "DRG", "n", "Year", "RHF", "DRG_Name", "Type_DRG",  
               "Admissions", "SumDRGW", "DRGW", "LOS", "LOSxDRGW",  
               "Age", "Fpct", "SumDRGC", "DRGC", "DRGP", "TDRGP", "dDRGW",  
               "dDRGP", "dDRGC", "SumDRGP", "Y2018", "Y2019", "Y2020", "Y2021" )  
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col_order <- c("Year", "RHF", "HF", "DRG", "n", "DRG_Name", "Type_DRG",  
               "Admissions","Age", "Fpct", "LOS", "LOSxDRGW", "SumDRGW", "SumDRGC", "SumDRGP", 
               "DRGW", "DRGC", "DRGP", "dDRGW", "dDRGC", "dDRGP", 
               "Y2018", "Y2019", "Y2020", "Y2021" ) 
df <- df[, col_order] 
 
na_rows <- df[is.na(df$dDRGW), ] 
na_rows$DRG <- as.factor(as.character(na_rows$DRG)) 
levels(na_rows$DRG) 
df <- anti_join(df, na_rows, by = "DRG") 
df2 <- df[,-5] 
df <- df %>%  
  group_by(HF, DRG) %>%  
  tally() %>%  
  full_join(df) 
df <- subset(df, n==4) 
 
# Hide HF 
df$HF <- as.factor(as.numeric(as.factor(as.character(df$HF)))) 
levels(df$HF) 
 
 
################### 
### Saving file ### 
################### 
### write xlsx 
library(writexl) 
attach(df) 
exceldf <- df[order(HF, DRG, Year),] 
detach(df) 
write_xlsx(exceldf, "C:/Users/sigur/OneDrive/Dokumenter/Helsedata/data.xlsx") 
 
# More changes and save again 
rm(list=ls()) 
full.df <- read_excel("data.xlsx") 
 
colnames(full.df)[3]  <- "#ofYears" 
# Filter away DRGs with weight of 0 and less than two hospitals do treatment 
full.df <- full.df %>% filter(DRGW>0) 
full.df <- full.df %>% group_by(DRG) %>% tally() %>% full_join(full.df) 
full.df <- full.df %>% filter(n>8) 
# Remove rehabilitation 462A and 462B 
full.df <- full.df %>% filter(DRG != "462A" & DRG != "462B") 
# Add subject indicators and ln(Admissions) 
subject <- rep(1:8839,each=4) 
full.df <- cbind(full.df, subject) 
full.df <- full.df %>% mutate(lnAdm=log(Admissions)) 
full.df$LOS <- full.df$LOS/full.df$Admissions 
 
write_xlsx(full.df, "C:/Users/sigur/OneDrive/Dokumenter/Helsedata/data.xlsx") 
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9.4 R code for model and testing 

library(tidyverse) # ggplot, dplyr etc 
library(plm) # panel data models 
library(lme4) # mixed effect models 
library(flexplot) # model comparison and visualization for mlm 
library(modelsummary) # Summary 
library(lmtest) 
library(moments) 
library(gridExtra) 
library(multilevelTools) 
 
setwd("C:/Users/sigur/OneDrive/Dokumenter/Helsedata") 
getwd() 
rm(list=ls()) 
#load(".RData") 
 
#Load prepared data 
library(readxl) 
full.df <- read_excel("data.xlsx") 
 
# Fixing factors 
full.df$Year <- as.factor(full.df$Year) 
full.df$HF <- as.factor(full.df$HF) 
full.df$DRG <- as.factor(full.df$DRG) 
full.df$RHF <- as.factor(full.df$RHF) 
 
# select data for use, variables for patient characteristics were unused 
df <- full.df %>% subset(select=c("subject", "HF", "Year", "DRG", "Admissions", "lnAdm", "DRGP", 
"DRGW",  
                                  "dDRGW", "Age", "Fpct", "LOS", "LOSxDRGW")) 
df <- arrange(df, HF, DRG) 
pdf <- pdata.frame(df, index = c("subject", "Year")) 
 
# Grouping variables 
df %>% group_by(HF) %>% tally() # DRGs in each hospital, /4 
df %>% group_by(DRG) %>% tally() %>% print() 
 
# Looking at extreme values 
full.df[1:22] %>% filter(DRGP > 5) 
full.df[1:22] %>% filter(DRGW > 20) 
full.df[1:22] %>% filter(DRGP < (-10)) 
full.df[1:22] %>% filter(DRGP > 10) 
full.df[1:22] %>% filter(dDRGW > 3) 
full.df[1:22] %>% filter(dDRGW < (-3)) 
full.df[1:22] %>% filter(DRGW < 0.01)  
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# Cox-box test of Admissions 
hist(df$Admissions) 
admission <- df$Admissions 
boxcox(lm(admission ~ 1)) # Visual examination gives lambda close to 0, indicates log transformation 
is suitable for the data 
 
# Skewness and kurt 
library(moments) 
skewness(new) # skewed right of mean, result 0,59 
kurtosis(new) # below the threshold of excess kurtosis, result 2,6 (<3) 
skewness(df$DRGP) # skewed -9.314194 
kurtosis(df$DRGP) # 265.0091 
################################### 
######## 1st level models ######### 
################################### 
 
# 1 level models 
# Simple model 
pooled1 <- lm(lnAdm ~ DRGP, data=df) 
summary(pooled1)  
 
# Controlling for HF, DRG and Year 
# Like model 1 in Januleviciute et. al. 
pooled2 <- lm(lnAdm ~ HF + DRG + Year + DRGP, data=pdf) 
summary(pooled2) 
# DRGP: estimate 0.0188968, 
#       Std. er  0.0036522, 
#       t-value  5.174, 
#       p-value  2.30e-07 
 
# Like model 1 in Januleviciute et. al. with price and change in price 
pooled3 <- lm(lnAdm ~ HF + DRG + Year + DRGP + DRGW + dDRGW, data=pdf) 
summary(pooled3) 
# DRGP: estimate 0.019330, 
#       Std. er  0.003683, 
#       t-value  5.174, 
#       p-value  2.30e-07 
 
# Like model 2 in Januleviciute et. al. 
pooled4 <- lm(lnAdm ~ HF + DRG + Year + DRG*Year + DRGP, data=pdf) 
summary <- summary(pooled3)[["coefficients"]]  
# DRGP: estimate 0.01901994,  
#       Std. er  0.003826312,  
#       t-value  4.970828,  
#       p-value  6.700232e-07 
 
# PLM 
fixed  <- plm(lnAdm ~ HF + DRG + Year + DRGP, data=pdf, model = "within") 
random <- plm(lnAdm ~ HF + DRG + Year + DRGP, data=pdf, model = "random") 
random2 <- plm(lnAdm ~ HF + DRG + Year + DRGP + DRGW + dDRGW, data=pdf, model = "random") 
summary(fixed) # DRGP      0.0137762,  0.0027471,  5.0149, 5.341e-07 *** 
summary(random) # DRGP         0.01453093  0.00262273   5.5404 3.018e-08 ***  
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summary(random2) # DRGP         0.0153773  0.0026732   5.7523 8.803e-09 *** 
# Hausman test 
phtest(fixed, random) # Random effect wins, p = 0.9312 
phtest(fixed, random2) # Random effect wins, p = 0.4649 
 
 
################################# 
### Multi-level model in lme4 ### 
################################# 
 
# Base model for HF/DRG nested structure 
base.HF.HFDRG <- lmer(lnAdm ~ 1 + (1 | HF) + (1 | HF:DRG), data=df) 
performance::icc(base.HF.HFDRG, by_group = TRUE) # HF:DRG 0.947, HF 0.033 
 
# Base model for HF/DRG nested structure with crossed DRG 
base.DRG.HF.HFDRG <- lmer(lnAdm ~ 1 + (1 | DRG) + (1 | HF) + (1 | HF:DRG), data=df) 
summary(base.DRG.HF.HFDRG) 
performance::icc(base.DRG.HF.HFDRG, by_group = TRUE) # Group ICC, HF:DRG  0.064, DRG 0.821, HF 
0.097 
 
### Testing crossed structure and simple nested structure 
anova(base.HF.HFDRG, base.DRG.HF.HFDRG) # Nested and crossed structure wins, it represents the 
variation in the model bettwe 
 
# Testing from maximal to converging reduced 
maximal <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW | DRG) + (1 + 
DRGP | HF) + (1 + DRGP | HF:DRG), data = df) 
summary(maximal) 
estimates(maximal) 
### Step 1, Number of dimensions supported 
maximal.PCA<-rePCA(maximal) 
summary(maximal.PCA) # HF 2, DRG 3, HF:DRG 2, though n-1 components has above 0.99% 
### Step 2, Model is within number of supported parameters 
 
### Step 3, Forcing 0 correlation 
maximal <- readRDS(file = "maximal.rds") 
maximal.noCor1 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW | DRG) 
+ (1 + DRGP | HF) + (1 + DRGP || HF:DRG), data = df) 
summary(maximal.noCor1) 
lrtest(maximal, maximal.noCor1) # Maximal model wins, but only 4% 
 
maximal.noCor2 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW | DRG) 
+ (1 + DRGP || HF) + (1 + DRGP || HF:DRG), data = df) 
summary(maximal.noCor2) # Converged 
lrtest(maximal, maximal.noCor2) # Maximal model wins, but only 4% 
lrtest(maximal.noCor1, maximal.noCor2) # Maximal.noCor1 
 
 
maximal.noCor2.1 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW | 
DRG) + (1 + DRGP || HF) + (1 + DRGP | HF:DRG), data = df) 
summary(maximal.noCor2.1) # Converged 
lrtest(maximal, maximal.noCor2.1) # Maximal model wins, but only 2%  
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lrtest(maximal.noCor2, maximal.noCor2.1) # Equal, 25% 
 
maximal.noCor4 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW || DRG) 
+ (1 + DRGP | HF) + (1 + DRGP | HF:DRG), data = df) 
summary(maximal.noCor4) # Did not converge 
lrtest(maximal, maximal.noCor4) # Maximal model wins! p < 2.2e-16 *** 
 
maximal.noCor4.1 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW || 
DRG) + (1 + DRGP | HF) + (1 + DRGP || HF:DRG), data = df) 
summary(maximal.noCor4.1) # Converged 
lrtest(maximal, maximal.noCor4.1) # Maximal model wins! p < 2.2e-16 *** 
 
maximal.noCor4.2 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW || 
DRG) + (1 + DRGP || HF) + (1 + DRGP | HF:DRG), data = df) 
summary(maximal.noCor4.2) # Converged 
lrtest(maximal, maximal.noCor4.2) # Maximal model wins! p < 2.2e-16 *** 
lrtest(maximal.noCor4.1, maximal.noCor4.2) # noCor4.1 wins! p < 2.2e-16 *** 
                                           # However the models are not nested, but overlapping.  
                                           # unsure about this high p with low LRT diff Vuong (1989) LRT model 
selection 
 
maximal.noCor3 <- readRDS(file = "maximal.noCor3.rds") 
maximal.noCor3 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW || DRG) 
+ (1 + DRGP || HF) + (1 + DRGP || HF:DRG), data = df) 
summary(maximal.noCor3) # converged 
maximal.noCor3.PCA<-rePCA(maximal.noCor3) 
summary(maximal.noCor3.PCA) 
lrtest(maximal, maximal.noCor3) # Maximal model wins! p < 2.2e-16 *** 
 
# For markdown 
comp1 <- model.comparison(maximal, maximal.noCor2.1) 
comp2 <- model.comparison(maximal, maximal.noCor1) 
comp3 <- model.comparison(maximal, maximal.noCor2) 
comp4 <- model.comparison(maximal, maximal.noCor4) 
comp5 <- model.comparison(maximal, maximal.noCor4.2) 
comp6 <- model.comparison(maximal, maximal.noCor4.1) 
comp7 <- model.comparison(maximal, maximal.noCor3) 
 
##################### 
### Extra testing ### 
##################### 
 
# Split DRG group 
# DRGW with intercept 
#maximal.noCor4.3 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW | DRG) + (0 + 
dDRGW | DRG) + (1 + DRGP | HF) + (1 + DRGP | HF:DRG), data = df) 
#summary(maximal.noCor4.3) # Converged less than noCor1 
#maximal.noCor4.3.1 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW | DRG) + (0 + 
dDRGW | DRG) + (1 + DRGP | HF) + (1 + DRGP || HF:DRG), data = df) 
#summary(maximal.noCor4.3.1) # Does not converge 
#maximal.noCor4.3.2 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW | DRG) + (0 + 
dDRGW | DRG) + (1 + DRGP || HF) + (1 + DRGP | HF:DRG), data = df)  
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#summary(maximal.noCor4.3.2) # Converges 
#maximal.noCor4.3.3 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW | DRG) + (0 + 
dDRGW | DRG) + (1 + DRGP || HF) + (1 + DRGP || HF:DRG), data = df) 
#summary(maximal.noCor4.3.3) # Converges 
#lrtest(maximal, maximal.noCor4.3.2) # Maximal model wins, however a much smaller p than others, 
p = 0.00158 
#lrtest(maximal, maximal.noCor4.3.3) # Maximal model wins, however a much smaller p than others, 
p = 0.00227 
#lrtest(maximal.noCor4.3.2, maximal.noCor4.3.3) # Not significantly different, favouring 4.3.3 for 
complexity penalty 
 
# This for inclusion dDRGW correlation 
#lrtest(maximal.noCor2, maximal.noCor4.3.3) 
 
# dDRGW with intercept, not favourite 
#maximal.noCor4.4 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + dDRGW | DRG) + (0 + 
DRGW | DRG) + (1 + DRGP | HF) + (1 + DRGP | HF:DRG), data = df) 
#summary(maximal.noCor4.4) # Converged 
#lrtest(maximal, maximal.noCor4.4) # Maximal model wins! p < 2.2e-16 *** 
#maximal.noCor4.4.1 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + dDRGW | DRG) + (0 
+ DRGW | DRG) + (1 + DRGP | HF) + (1 + DRGP || HF:DRG), data = df) 
#summary(maximal.noCor4.4.1) # Converged 
#lrtest(maximal, maximal.noCor4.4.1) # Maximal model wins! p < 2.2e-16 *** 
#maximal.noCor4.4.2 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + dDRGW | DRG) + (0 
+ DRGW | DRG) + (1 + DRGP || HF) + (1 + DRGP | HF:DRG), data = df) 
#summary(maximal.noCor4.4.2) # Converges 
#lrtest(maximal, maximal.noCor4.4.2) # Maximal model wins! p < 2.2e-16 *** 
#maximal.noCor4.4.3 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + dDRGW | DRG) + (0 
+ DRGW | DRG) + (1 + DRGP || HF) + (1 + DRGP || HF:DRG), data = df) 
#summary(maximal.noCor4.4.3) # Converges 
#lrtest(maximal, maximal.noCor4.4.2) # Maximal model wins! p < 2.2e-16 *** 
 
#lrtest(maximal.noCor4.4, maximal.noCor4.4.1) # Not significantly different 
#lrtest(maximal.noCor4.4, maximal.noCor4.4.2) # Sign diff 2% 
#lrtest(maximal.noCor4.4, maximal.noCor4.4.3) # Sign diff 4.4% 
#lrtest(maximal.noCor4.3.3, maximal.noCor3) # Significant difference, 4.3.3 wins! 
 
### Step 4 Removing variance components from maximal model and 
### Step 5 Adding correlations 
# Estimating model without dDRGP, but with correlations 
#submaximal <- readRDS(file = "submaximal.rds") 
#submaximal <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + (1 + DRGW | DRG) + (1 + DRGP | HF) + (1 + 
DRGP | HF:DRG), data = df) 
#summary(submaximal) # Converges with all correlations 
#submaximal.PCA<-rePCA(submaximal) 
#summary(submaximal.PCA) 
#lrtest(maximal, submaximal) # Maximal model wins! p < 2.2e-16 *** 
# Removing HF:DRG specific intercept 
#sub2maximal <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW | DRG) + 
(1 + DRGP | HF) + (0 + DRGP | HF:DRG), data = df) 
#summary(sub2maximal) # Singular, supported dimensions in HF reduced to 1 
#lrtest(maximal, sub2maximal) # Maximal model wins, DRG intercept significant  
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# Removing DRG specific intercept 
#sub3maximal <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (0 + DRGW + dDRGW | DRG) + 
(1 + DRGP | HF) + (1 + DRGP | HF:DRG), data = df) 
#summary(sub3maximal) 
#lrtest(maximal, sub3maximal) # Maximal model wins, DRG intercept significant 
# Removing correlations 
#sub3maximal.1 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (0 + DRGW + dDRGW | DRG) 
+ (1 + DRGP | HF) + (1 + DRGP || HF:DRG), data = df) 
#sub3maximal.2 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (0 + DRGW + dDRGW | DRG) 
+ (1 + DRGP || HF) + (1 + DRGP || HF:DRG), data = df) 
#summary(sub3maximal.2) 
#lrtest(maximal, sub3maximal.2) # Maximal no correlation model wins! p < 2.2e-16 *** 
# Removing HF specific intercept 
#sub4maximal <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW | DRG) + 
(0 + DRGP | HF) + (1 + DRGP | HF:DRG), data = df) 
#sub4maximal.2 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW | DRG) 
+ (0 + DRGP || HF) + (1 + DRGP || HF:DRG), data = df) 
 
#summary(sub4maximal) # Does not converge 
#lrtest(maximal, sub4maximal.2) # Maximal model wins, HF intercept significant 
# Removing HF:DRG DRGP 
#sub5maximal <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW | DRG) + 
(1 + DRGP | HF) + (1 | HF:DRG), data = df) 
#sub5maximal.2 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW | DRG) 
+ (1 + DRGP || HF) + (1 | HF:DRG), data = df) 
#lrtest(maximal, sub5maximal.2) # Maximal no correlation model wins! 
#summary(sub5maximal) # Does not converge 
# Removing HF DRGP 
#sub6maximal <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + DRGW + dDRGW | DRG) + 
(1 | HF) + (1 + DRGP | HF:DRG), data = df) 
#summary(sub6maximal) # Does not converge 
# Removing DRG DRGW 
#sub7maximal <- lmer(lnAdm ~ 1 + Year + DRGP + dDRGW + (1 + dDRGW | DRG) + (1 | HF) + (1 + 
DRGP | HF:DRG), data = df) 
#sub7maximal.2 <- lmer(lnAdm ~ 1 + Year + DRGP + dDRGW + (1 + dDRGW | DRG) + (1 + DRGP || HF) 
+ (1 | HF:DRG), data = df) 
#summary(sub7maximal) # Does not converge 
 
### Step 4 and 5  for the selected reduce correlation model 
# Reduced number of steps 
#summary(maximal.noCor4.4.3) # reduced correlation winner 
# Drop dDRGW 
#reduced.noCor.win.nodDRGW <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + (1 + DRGW | DRG) + (1 + 
DRGP || HF) + (1 + DRGP || HF:DRG), data = df) 
#summary(reduced.noCor.win.nodDRGW) 
#lrtest(maximal.noCor2, reduced.noCor.win.nodDRGW) # dDRGW is significant 
# reintroduce correlation 
#reduced.noCor.win.nodDRGW.moreCor1 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + (1 + DRGW | 
DRG) + (1 + DRGP | HF) + (1 + DRGP || HF:DRG), data = df) 
#reduced.noCor.win.nodDRGW.moreCor2 <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + (1 + DRGW | 
DRG) + (1 + DRGP || HF) + (1 + DRGP | HF:DRG), data = df) 
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#lrtest(reduced.noCor.win.nodDRGW,reduced.noCor.win.nodDRGW.moreCor1) # HF correlation is 
not significantly different, 17% 
#lrtest(reduced.noCor.win.nodDRGW,reduced.noCor.win.nodDRGW.moreCor2) # HF correlation is 
not significantly different, 17% 
 
# Drop HF:DRG DRGP 
#reduced.noCor.win.noDRGP.HFDRG <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + 
DRGW | DRG) + (0 + dDRGW | DRG) + (1 + DRGP || HF) + (1 | HF:DRG), data = df) 
#summary(reduced.noCor.win.noDRGP.HFDRG) # Does not converge 
 
# Drop HF:DRG Intercept 
#reduced.noCor.win.noInterc.HFDRG <- lmer(lnAdm ~ 1 + Year + DRGP + DRGW + dDRGW + (1 + 
DRGW | DRG) + (0 + dDRGW | DRG) + (1 + DRGP || HF) + (0 + DRGP | HF:DRG), data = df) 
#summary(reduced.noCor.win.noInterc.HFDRG) # Singular 
#reduced.noCor.win.noInterc.HFDRG.PCA<-rePCA(reduced.noCor.win.noInterc.HFDRG) 
#summary(reduced.noCor.win.noInterc.HFDRG.PCA) # dDRGW ~0 sd, HF:DRGP low df 
                                              # No reason to add more correlation to singular 
 
### Step 6 Not solution, maximal model can find solution. 
### Procedure failed to provide a model converging alternative without loss of goodness-of-fit 
 
#################################################### 
##### Comparing the alternatives that converged #### 
#################################################### 
#lrtest(maximal, maximal.noCor3) # Maximal model wins, covariance is significant 
#lrtest(maximal, submaximal) # Maximal model wins, dDRGW is significant 
#lrtest(maximal, maximal.noCor4.3.3) # Maximal model wins, covariance is significant, but only 2% 
#lrtest(maximal.noCor4.3.3, maximal.noCor3) # Significant diff. 4.3.3 wins 
 
# Using no maximal model without correlations because Bates et. al. (2015) 
# "the primary reason for dealing with the random-effects structure is to 
# obtain as powerful tests as justified of the fixed effects ...                                 
# Therefore, it is reasonable to remove variance components/correlation parameters  
# from the model if they are not supported by the data" 
 
#fixef(maximal); fixef(maximal.noCor2) # t-values of max -2.9, noCor3 -1.2 
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##################################### 
######### Post analysis ############# 
##################################### 
 
# Displaying results 
modsum_list <- modelsummary(maximal.noCor2, 
               shape = response + term + statistic ~ model, 
               coef_map = c('(Intercept)' = '(Intercept)', 'Year2019' = 'Year 2019', 
                            'Year2020' = 'Year 2020', 'Year2021' = 'Year 2021', 
                            'DRGP' = 'DRGP', 'DRGW' = 'DRGW', 'dDRGW' = 'dDRGW', 
                            'SD (Intercept HF)' = 'SD Intercept HF', 
                            'SD (Intercept DRG)' = 'SD Intercept DRG', 
                            'SD (Intercept HF.DRG)' = 'SD Intercept HF:DRG', 
                            'SD (DRGP HF)' = 'SD DRGP HF', 
                            'SD (DRGP HF.DRG)' = 'SD DRGP HF:DRGP', 
                            'SD (DRGW DRG)' = 'SD DRGW', 
                            'SD (dDRGW DRG)' = 'SD dDRGW', 
                            'SD (Observations)' = 'Residuals'), 
               output = "modelsummary_list")  
modsum_list <- saveRDS(modsum_list, file = "modsumlist.max.noCor.rds") 
 
 
# Extracting random effects 
maximal.noCor2 <- readRDS(file = "maximal.noCor2.rds") # No name change in code, but model is 
noCor2 
maximal.ranef <- ranef(maximal.noCor2) 
 
maximal.ranef.df <- as.data.frame(maximal.ranef) 
maximal.ranef.df <- separate(maximal.ranef.df, grp, sep = ":", fill = "left", into = c("HF", "DRG")) 
 
# Bad low tech edit fix HF number in DRG column 
maximal.ranef.df$HF[19512] <- 1;maximal.ranef.df$HF[19513] <- 10;maximal.ranef.df$HF[19514] <- 
11;maximal.ranef.df$HF[19515] <- 12; 
maximal.ranef.df$HF[19516] <- 13;maximal.ranef.df$HF[19517] <- 14;maximal.ranef.df$HF[19518] <- 
15;maximal.ranef.df$HF[19519] <- 16; 
maximal.ranef.df$HF[19520] <- 17;maximal.ranef.df$HF[19521] <- 18;maximal.ranef.df$HF[19522] <- 
2;maximal.ranef.df$HF[19523] <- 3; 
maximal.ranef.df$HF[19524] <- 4;maximal.ranef.df$HF[19525] <- 5;maximal.ranef.df$HF[19526] <- 
6;maximal.ranef.df$HF[19527] <- 7; 
maximal.ranef.df$HF[19528] <- 8;maximal.ranef.df$HF[19529] <- 9;maximal.ranef.df$HF[19530] <- 
1;maximal.ranef.df$HF[19531] <- 10; 
maximal.ranef.df$HF[19532] <- 11;maximal.ranef.df$HF[19533] <- 12;maximal.ranef.df$HF[19534] <- 
13;maximal.ranef.df$HF[19535] <- 14; 
maximal.ranef.df$HF[19536] <- 15;maximal.ranef.df$HF[19537] <- 16;maximal.ranef.df$HF[19538] <- 
17;maximal.ranef.df$HF[19539] <- 18; 
maximal.ranef.df$HF[19540] <- 2;maximal.ranef.df$HF[19541] <- 3;maximal.ranef.df$HF[19542] <- 
4;maximal.ranef.df$HF[19543] <- 5; 
maximal.ranef.df$HF[19544] <- 6;maximal.ranef.df$HF[19545] <- 7;maximal.ranef.df$HF[19546] <- 
8;maximal.ranef.df$HF[19547] <- 9; 
 
maximal.ranef.HF <- maximal.ranef.df[19512:19547,]  
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maximal.ranef.HF <- full_join(subset(maximal.ranef.HF, term == "(Intercept)"), 
subset(maximal.ranef.HF, term == "DRGP"), by = "HF") 
maximal.ranef.HF <- maximal.ranef.HF %>%  
  rename("HF.Intercept.Value" = "condval.x", 
         "HF.Intercept.SD" = "condsd.x", 
         "HF.DRGP.Value" = "condval.y", 
         "HF.DRGP.SD" = "condsd.y",) %>%  
  select(HF, HF.Intercept.Value, HF.Intercept.SD, HF.DRGP.Value, HF.DRGP.SD) 
 
maximal.ranef.DRG <- maximal.ranef.df[17679:19511,] 
maximal.ranef.DRG2 <- full_join(subset(maximal.ranef.DRG, term == "(Intercept)"), 
subset(maximal.ranef.DRG, term == "DRGW"), by = "DRG") 
maximal.ranef.DRG <- full_join(maximal.ranef.DRG2, subset(maximal.ranef.DRG, term == "dDRGW"), 
by = "DRG") 
maximal.ranef.DRG <- maximal.ranef.DRG %>%  
  rename("DRG.Intercept.Value" = "condval.x", 
         "DRG.Intercept.SD" = "condsd.x", 
         "DRG.DRGW.Value" = "condval.y", 
         "DRG.DRGW.SD" = "condsd.y", 
         "DRG.dDRGW.Value" = "condval", 
         "DRG.dDRGW.SD" = "condsd",) %>%  
  select(DRG, DRG.Intercept.Value, DRG.Intercept.SD, DRG.DRGW.Value, DRG.DRGW.SD, 
DRG.dDRGW.Value, DRG.dDRGW.SD) 
saveRDS(maximal.ranef.DRG, file = "maximal.ranef.DRG.rds") 
maximal.ranef.HFDRG <- maximal.ranef.df[1:17678,] 
maximal.ranef.HFDRG <- full_join(subset(maximal.ranef.HFDRG, term == "(Intercept)"), 
subset(maximal.ranef.HFDRG, term == "DRGP"), by = c("HF", "DRG")) 
maximal.ranef.HFDRG <- maximal.ranef.HFDRG %>%  
  rename("HFDRG.Intercept.Value" = "condval.x", 
         "HFDRG.Intercept.SD" = "condsd.x", 
         "HFDRG.DRGP.Value" = "condval.y", 
         "HFDRG.DRGP.SD" = "condsd.y",) %>%  
  select(HF, DRG, HFDRG.Intercept.Value, HFDRG.Intercept.SD, HFDRG.DRGP.Value, HFDRG.DRGP.SD) 
saveRDS(maximal.ranef.HFDRG, file = "maximal.ranef.HFDRG.rds") 
maximal.ranef.sorted <- full_join(maximal.ranef.HF, maximal.ranef.HFDRG, by = "HF")  
maximal.ranef.sorted <- full_join(maximal.ranef.sorted, maximal.ranef.DRG, by = "DRG")  
 
 
 
################# 
### Residuals ### 
################# 
 
### Linearity, see Fox 2008 
 
plot(df$lnAdm,resid(maximal.noCor2)) # Maybe a pattern 
plot(abs(df$lnAdmresid(maximal.noCor2, df$lnAdm))) # maybe because of the lower bounds of 
residuals when close to 0 
linearity <- ggplot(df, aes(resid(maximal.noCor2), lnAdm)) + # No known pattern 
  geom_point(alpha = 0.3) + 
  xlab("Residuals") + 
  ylab("ln(Adm)") +  
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  labs(title = "Residual plot for assumption of linearity") 
 
# Multicollinearity 
car::vif(maximal.noCor2) # all ~1, looks good 
 
# Homogeneity of variance (test for heteroscedasticity) 
Resid.subject <- lm(abs(resid(maximal.noCor2))^2 ~ subject, data=df) # Subject is equivalent of 
HF:DRG because they are each unique 
anova(Resid.subject) #  
# No homogeneity for any group variance 
 
# Residual homoscedasticity 
plot_redres(maximal.noCor2, type = "raw_cond") 
 
plot(fitted(maximal.noCor2), resid(maximal.noCor2), xlab = "Fitted values", ylab = "Residuals") # 
Residuals are heteroscedastic 
plot(resid(maximal.noCor2)) 
heteroscedasticity <- ggplot(df, aes(fitted(maximal.noCor2), resid(maximal.noCor2))) + # No known 
pattern 
  geom_point(alpha = 0.3) + 
  xlab("Fitted values") + 
  ylab("Residuals") + 
  labs(title = "Residual plot for heteroscedasticity") 
# Normality 
qq <- qqnorm(resid(maximal.noCor2)) 
qqline(resid(maximal.noCor2), distribution = qnorm)  
histo <- hist((resid(maximal.noCor2) - mean(resid(maximal.noCor2))) / sd(resid(maximal.noCor2)), 
freq = FALSE, breaks = 50, xlab = "Standardized residuals"); curve(dnorm, add = TRUE); 
skewness((resid(maximal.noCor2)-mean(resid(maximal.noCor2)))/sd(resid(maximal.noCor2))) #  
kurtosis((resid(maximal.noCor2)-mean(resid(maximal.noCor2)))/sd(resid(maximal.noCor2))) #  
jarque.test(resid(maximal.noCor2)) # Not normal 
kurtosis(resid(maximal.noCor2)) 
 
############################### 
### Elasticities and graphs ### 
############################### 
 
# HF elasticity 
levels(df$HF) 
elast.data <- data.frame(seq(from = (-1), to = 1, by = 0.1)) 
average <- df %>% group_by(HF) %>% summarise(DRGP=mean(DRGP)) 
average$HF <- 
as.factor(c("01","10","11","12","13","14","15","16","17","18","02","03","04","05","06","07","08","09
")) 
average <- average %>% arrange(HF) 
names(elast.data)[1] <- "DRGP" 
elast.data <- elast.data %>% mutate( 
                                    population=DRGP*0.0321, 
                                    HF01=DRGP*(0.0321+0.009), HF02=DRGP*(0.0321-0.023), 
                                    HF03=DRGP*(0.0321-0.017), HF04=DRGP*(0.0321+0.019), 
                                    HF05=DRGP*(0.0321-0.019), HF06=DRGP*(0.0321+0.028), 
                                    HF07=DRGP*(0.0321+0.001), HF08=DRGP*(0.0321-0.007),  
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                                    HF09=DRGP*(0.0321+0.014), HF10=DRGP*(0.0321-0.005), 
                                    HF11=DRGP*(0.0321+0.004), HF12=DRGP*(0.0321-0.019), 
                                    HF13=DRGP*(0.0321+0.002), HF14=DRGP*(0.0321+0.008), 
                                    HF15=DRGP*(0.0321-0.025), HF16=DRGP*(0.0321-0.007), 
                                    HF17=DRGP*(0.0321+0.002), HF18=DRGP*(0.0321+0.033) 
                                    ) 
average$coef <- c(average$DRGP[01]*(0.0321+0.009),average$DRGP[02]*(0.0321-
0.023),average$DRGP[03]*(0.0321-0.017), 
                  average$DRGP[04]*(0.0321+0.019),average$DRGP[05]*(0.0321-
0.019),average$DRGP[06]*(0.0321+0.028), 
                  average$DRGP[07]*(0.0321+0.001),average$DRGP[08]*(0.0321-
0.007),average$DRGP[09]*(0.0321+0.014), 
                  average$DRGP[10]*(0.0321-
0.005),average$DRGP[11]*(0.0321+0.004),average$DRGP[12]*(0.0321-0.019), 
                  
average$DRGP[13]*(0.0321+0.002),average$DRGP[14]*(0.0321+0.008),average$DRGP[15]*(0.0321-
0.025), 
                  average$DRGP[16]*(0.0321-
0.007),average$DRGP[17]*(0.0321+0.002),average$DRGP[18]*(0.0321+0.033)) 
 
elast.data %>% ggplot(aes(DRGP, population)) + 
  geom_line(linewidth = 1.5, color = "blue") +  
  geom_line(aes(y=HF01), alpha = 0.8) + geom_line(aes(y=HF02), alpha = 0.8) + 
geom_line(aes(y=HF03), alpha = 0.8) +  
  geom_line(aes(y=HF04), alpha = 0.8) + geom_line(aes(y=HF05), alpha = 0.8) + 
geom_line(aes(y=HF06), alpha = 0.8) +  
  geom_line(aes(y=HF07), alpha = 0.8) + geom_line(aes(y=HF08), alpha = 0.8) + 
geom_line(aes(y=HF09), alpha = 0.8) +  
  geom_line(aes(y=HF10), alpha = 0.8) + geom_line(aes(y=HF11), alpha = 0.8) + 
geom_line(aes(y=HF12), alpha = 0.8) +  
  geom_line(aes(y=HF13), alpha = 0.8) + geom_line(aes(y=HF14), alpha = 0.8) + 
geom_line(aes(y=HF15), alpha = 0.8) +  
  geom_line(aes(y=HF16), alpha = 0.8) + geom_line(aes(y=HF17), alpha = 0.8) + 
geom_line(aes(y=HF18), alpha = 0.8) +  
  geom_vline(xintercept = mean(df$DRGP), color = "red") + 
  geom_point(data = average, aes(DRGP, coef), color = "red", size = 1.4) + 
  labs(title = "Hospital averages of DRG elasticity to profit", y = "Elasticity", x = "DRGP") + 
  theme_bw() 
 

 

 



 

Page 73 of 73 

# Testing covariate interaction with time 

anova <- aov(lnAdm ~ DRGW*Year, data = df) # No significant interaction 

summary(anova) 

anova2 <- aov(lnAdm ~ DRGP*Year, data = df) # Significant interaction 

summary(anova2) 

 

plot(df$DRGW, resid(maximal.noCor2), xlab = "Fitted values", ylab = "Residuals") # Residuals are 

heteroscedastic 

plot(df$DRGP, resid(maximal.noCor2), xlab = "Fitted values", ylab = "Residuals") # Residuals are 

heteroscedastic 

Model.F <- lm(resid(maximal.noCor2) ~ DRGW, data=df) 

summary(Model.F) 

anova(Model.F) 

Model.F2 <- lm(resid(maximal.noCor2) ~ DRGP, data=df) 

summary(Model.F2) 

anova(Model.F2) 

Model.F3 <- lm(resid(maximal.noCor2) ~ lnAdm, data=df) # Residuals dependent on the dependent 

variable 

summary(Model.F3) 

anova(Model.F3) 

 

# > anova(Model.F) 

# Analysis of Variance Table 

# Response: resid(maximal.noCor2) 

# Df Sum Sq  Mean Sq F value Pr(>F) 

# DRGW          1    0.0 0.000000       0      1 

# Residuals 35354 1568.1 0.044354                

# > anova(Model.F2) 

# Analysis of Variance Table 

# Response: resid(maximal.noCor2) 

# Df Sum Sq  Mean Sq F value Pr(>F) 

# DRGP          1    0.0 0.000000       0      1 

# Residuals 35354 1568.1 0.044354                

# > anova(Model.F3) 

# Analysis of Variance Table 

# Response: resid(maximal.noCor2) 

# Df  Sum Sq Mean Sq F value    Pr(>F)     

# lnAdm         1   38.18  38.185  882.39 < 2.2e-16 *** 

#   Residuals 35354 1529.92   0.043                       

# --- 

#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 



 

 

 


