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Finite elements are allowed to be of a shape suitable for the specific problem. This choice defines thereafter 
the accuracy of the approximated solution. Moreover, flexible element shapes allow for the construction of an 
arbitrary domain topology. Polygon meshes are a common representation of the domain that cover any choice 
of the finite element shape.

Being an alternative tool for modeling and analysis, blending spline surfaces support representation on polygon 
grids. The blending splines have a hierarchical structure, which is obtained by generating local surfaces that 
cover each node support and then blended with a special type of basis functions. This type of splines in their 
tensor product form is suitable for application to isogeometric analysis problems. A more general representation 
constructed on polygonal elements can be used on a wider range of domain topology in comparison with tensor 
product surfaces.

In this paper we introduce a novel approach to constructing curvilinear polygon meshes in the blending spline 
representation in application to the isogeometric analysis context. The focus is on generating a novel special type 
of basis functions on a connected collection of polygons, with triangles and quadrilaterals as particular cases. 
The purpose of the proposed paper is to show applications of this construction to various numerical problems, 
as well as to generalize the approach to evaluating these basis functions on arbitrary planar domains.
1. Introduction

It is common to utilize triangular and quadrilateral elements in a fi-

nite element analysis (FEA) context. In terms of isogeometric analysis 
(IGA) [19] these two finite element shapes require different compu-

tational approach, since quadrilateral finite elements in many cases 
are naturally supported by tensor product surfaces [3], while triangu-

lar meshes require more complex representation [20], especially for 
smooth constrictions. Hence, the generalization of the different type fi-

nite element representations, namely, polygon meshes, is a significant 
topic within the isogeometric analysis context. A general approach for 
representing smooth polygon meshes is intended to combine computa-

tional approaches for both triangular and quadrilateral meshes.

The main goal of the usage of isogeometric approach is to avoid 
re-meshing while changing the geometry, or even to avoid re-meshing 
during the refinement process [8]. Conceptually, the isogeometric ap-

proach repeats the finite element method, i.e., the domain is initially 
subdivided into elements, on which a set of linearly independent ba-

sis functions is established. A linear combination of basis functions and 
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corresponding coefficients approximates the solution of a differential 
equation. The main difference between these approaches is that the 
coefficients are not associated with nodes and, consequently, do not 
interpolate the solution, but approximate it. The control points, that 
represent the analysis suitable geometry, do not interpolate this geom-

etry either. The analysis process is as follows: a parametric domain is 
initially subdivided into elements, then the simulation geometry, or, in 
other words, the computational domain, is approximated by the smooth 
spline construction, and after that the solution of the analysis prob-

lem can be found on the domain by using the same basis functions 
that describe the geometry. Fig. 1 illustrates a comparison between 
the standard FEA approach and the proposed interpretation of the IGA 
approach. Note that the parametric domain is a collection of convex 
polygons, where the set of basis functions is defined, while the compu-

tational domain consists, in general, of the isoparametric elements, in 
other words, curvilinear elements.

In FEA the mesh generation process impacts the solution. For ex-

ample, the symmetry of the solution can be distorted due to the non-
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Fig. 1. FEA vs IGA.
symmetric discretization of the domain. Using the continuous represen-

tation, that the isogeometric analysis provides, we significantly reduce 
the discretization impact. The utilization of a smooth basis proves to 
be effective in various fields, including structural analysis [9,30,31], 
phase-field models [18], turbulence [1] and fluid-structure interaction 
[2,4]. The most common tool for the isogeometric analysis are non-

uniform rational B-splines (NURBS) and their modifications. Continuous 
smooth splines provide a more accurate modeling of complex geome-

tries and enable precise computations at the coarsest level of discretiza-

tion. Additionally, they enhance computational efficiency by increasing 
the smoothness of elements through 𝑘-refinement.

Blending type spline construction is a tool for geometric model-

ing and isogeometric analysis, first introduced in [12]. The support of 
blending spline basis functions does not depend on their degree, which 
means that the basis is strictly local on the entire domain. A concept of 
blending splines is founded on blending basis functions, in particular, 
expo-rational basis functions (ERBS) and their generalizations (GERBS) 
[11,14]. Some related work regarding the utilization of ERBS in finite 
element context can be found in [13,43].

Blending spline surface is constructed by blending local geometries 
using a locally defined underlying basis function to form global surface 
patches. This process provides a hierarchical structure of the result-

ing surface. A smooth global surface is formed due to the overlapping 
of local surfaces. Local surfaces interpolate the global surface patches 
and contain information about surface derivatives at the grid knots. In 
addition, local surfaces can be manipulated independently, providing 
flexible modeling options.

An alternative approach for constructing blending spline surfaces 
is to combine underlying basis functions and basis functions that form 
local surfaces separately from the control points. This type of basis is 
called the combined expo-rational basis, it was introduced in [23], and 
applied to the isogeometric analysis context on tensor product meshes 
in [27,25].

Besides tensor product surfaces, the blending splines allow for more 
general surface constructions, such as triangulated surfaces [10,15,44]

and polygonal surfaces [24,26]. In the existing representation, the 
blending triangulated surface consists of a set of connected blending tri-
angles, where each local triangle has support on one triangle patch. That 
gives, in general, 𝐶0-smoothness over the edges of the global surface. 
Higher continuity of the global surface can be achieved by manipulating 
the underlying basis functions through a conformal mapping [44] or by 
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adjusting directional derivatives [10]. 𝐶0-smooth triangular blending 
splines were applied to FEA in [22].

A brief review of existing polygonal finite element methods can be 
found in [34]. Polygonal finite elements [37] extend the triangular and 
quadrilateral finite element methods to meshes with 𝑛-sided elements 
(𝑛 ≥ 3). Rational basis functions on finite element polygon construction 
were introduced for convex and nonconvex planar polygons by [17], 
where mean value coordinates are used to construct a polygonal spline 
space which is used in finite element modeling and analysis. An alter-

native implementation of a family of polygonal finite elements with 
conformal mapping can be found in [6]. An adaptive scheme for polyg-

onal mesh structure is developed in [32]. A polytopal composite finite 
element scheme with application to solid mechanics problems is pre-

sented in [33]. Another applications of the polygonal finite element 
method are plane isotropic elastic problems [42] or crack propaga-

tion [21].

The proposed polygonal surface structure is obtained by overlapping 
of local polygonal surfaces, each of which is defined on the entire node 
support, i.e. neighboring elements that have one common vertex. The 
blending polygonal surface structure extends triangulated and tensor 
product blending surface constructions through the polygonal structure 
of the patches. The blending polygonal surface has a simple representa-

tion, without any additional structures, such as knot net [20], or extra 
patches [35]. The hierarchical structure of the blending surface follows 
directly from the local rational basis functions and their node support. 
Underlying expo-rational basis functions guarantee linear independence 
of the global basis and partition of unity at any point.

This paper examines a novel polygonal blending spline construction 
with application to the isogeometric analysis context. Some preliminary 
definitions related to this paper are given in Section 2. In Section 3 we 
define a blending spline construction over polygon mesh. Section 4 de-

scribes the isogeometric analysis algorithm including the construction 
of the computational domain. Section 5 focuses on numerical problems 
solved by the proposed scheme. Finally, we summarize this work and 
identify research questions for future development in Section 6.

2. Preliminaries

Before constructing a blending spline surface on a polygonal mesh, 
let us consider preliminary definitions that are used in the sequel of this 
paper.
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Fig. 2. Notation for mean value coordinates.

First of all, we define how to interpret the solution of a partial dif-

ferential equation solved using the isogeometric analysis approach with 
the blending spline construction.

A parametric function that maps the domain Ω ⊂ ℝ2 onto ℝ𝑛 is 
constructed by the linear product of basis functions 𝜑𝑖 ∶ Ω → ℝ and 
corresponding coefficients 𝜁𝑖 ∈ℝ𝑛, 𝑖 = 1, ...𝑁 . In matrix form this can be 
written as

𝑆 = 𝜁T 𝜑, (1)

where 𝑆 is a continuous mapping 𝑆 ∶ Ω ⊂ ℝ2 → ℝ𝑛. Here, 𝜑 is a row 
vector of the ordered basis functions, 𝜁 is a column vector of the corre-

sponding coefficients.

The combined expo-rational basis functions, defined in [23], were 
developed on a foundation of the theory of the expo-rational B-splines 
(ERBS), first introduced in 2006 by L.T. Dechevsky et al. [12]. The con-

cept of blending spline surfaces can be briefly described as blending 
of local surfaces by underlying expo-rational basis functions. Thus, the 
resulting surface possesses a hierarchical structure. However, this con-

struction can be interpreted by formula (1), so that the functions 𝜑𝑖, 
𝑖 = 1, ..., 𝑁 , are built using a combination of the underlying and local 
basis functions.

In Section 3 we consider the evaluation of the combined expo-

rational basis functions on a polygon mesh. The evaluation process 
consists of two steps: (i) polygon mesh generation and structuring, (ii) 
defining of a set of the combined expo-rational basis functions on the 
generated mesh, which involves the use of the local barycentric coordi-

nate system on both elements and nodes.

2.1. General barycentric coordinates

Let P ⊂ ℝ2 be a polygon with vertices 𝐯1, 𝐯2, ..., 𝐯𝑛, 𝑛 ≥ 3. Accord-

ing to [16], any functions 𝑢𝑖 ∶ P → ℝ, 𝑖 = 1, ..., 𝑛, are called generalized 
barycentric coordinates if, for all 𝐱 ∈ P, 𝑢𝑖(𝐱) ≥ 0, 𝑖 = 1, ..., 𝑛, and

𝑛∑
𝑖=1

𝑢𝑖(𝐱) = 1,
𝑛∑
𝑖=1

𝑢𝑖(𝐱)𝐯𝑖 = 𝐱. (2)

For our purposes we use a type of generalized barycentric coordi-

nates suitable for arbitrary polygons, called mean value coordinates 
[16], which are defined as

𝑢𝑖(𝐱) =
𝑤𝑖(𝐱)
𝑛∑

𝑗=1
𝑤𝑗 (𝐱)

and

𝑤𝑖(𝐱) =
tan(𝛼𝑖−1∕2) + tan(𝛼𝑖∕2)||𝐯𝑖 − 𝐱|| , (3)

where the angles 𝛼𝑖 = 𝛼𝑖(𝐱), 0 < 𝛼𝑖 < 𝜋, are shown in Fig. 2.
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These coordinates are used for mapping between local polygon coor-

dinates and global coordinates on the parametric domain. The mapping 
between parametric domain and the Cartesian coordinate system is 
achieved by a linear combination of basis functions defined on the para-

metric domain and control points that belong to the Euclidean space.

2.2. Polygon mesh

A polygon mesh is the collection  of 𝑀 convex polygons, or, in 
other words, elements 𝐄𝑗 , 𝑗 = 1, .., 𝑀 . Let Θ =⋃

P∈ P be the parametric 
domain consisting of these polygons. We assume that the interior of 
any two polygons in  do not intersect and the intersection of any 
two polygons is either their common edge or common vertex if the 
intersection is not empty. Let also any sub-collection of the polygons 
having one common vertex 𝐯𝑖, 𝑖 = 1, ..., 𝑚, be called a node support.

The mesh generation algorithm, called PolyMesher and developed 
in [38], is based on the Lloyd’s method [29], which allows us to estab-

lish an optimal distribution of elements and thus to construct a uniform 
mesh. The concept of Voronoi diagrams plays a central role in the mesh-

ing algorithm. A discretization of the domain is constructed from a Cen-

troidal Voronoi Tesselation (CVT) which includes an approximation to 
the domain boundary. The approximation of the boundary is obtained 
by the reflection of the centroids [5]. As the result, the method offers a 
simple way to discretize two-dimensional geometries with convex poly-

gons. The isoparametric formulation for polygonal finite elements is an 
extension of the triangular elements to convex polygons [36].

Besides the array of vertices and the connectivity matrix that de-

scribes elements, we also introduce a structure that identifies indices of 
vertices constituting the node supports. These “node polygons” are the 
supports for the basis functions that form the polygonal blending spline 
surface. Fig. 3 demonstrates an example of the polygon mesh and two 
node supports on it.

3. Blending polygonal spline space

Since blending splines by the definition blend together local sur-

faces, we need to define a set of local polygonal surfaces, in our case, 
Bézier polygons formed by polygonal Bernstein polynomials. Despite 
the convention that the polygon mesh consists of convex polygons, 
construction of Bézier polygons over non-convex polygons should be 
involved, because the local surfaces cover each node support consisting 
of several polygons. For example, Fig. 4(a) shows a polygonal support 
of the node 𝐯𝑖.

In order to generate a basis for polygonal blending spline construc-

tion, we introduce a combined expo-rational basis, which combines 
Bézier polygonal basis and expo-rational basis functions.

A first component of the combined polygonal expo-rational basis is a 
set of Bézier basis functions 𝛽𝑑,𝐚, also denoted as 𝛽𝜄, of degree 𝑑 defined 
on a polygon P𝑛 with 𝑛 ≥ 3 sides, which is given, in accordance with 
[17], as

𝛽𝜄 = 𝛽𝑑,𝐚(𝐱) =
𝑑!

𝑎1!𝑎2!...𝑎𝑛!
𝑢
𝑎1
1 (𝐱)𝑢𝑎22 (𝐱)...𝑢𝑎𝑛𝑛 (𝐱), 𝐱 ∈ P𝑛, (4)

where 𝑢1, 𝑢2, ..., 𝑢𝑛 is a set of generalized barycentric coordinates for the 
given polygon, 𝐚 = (𝑎1, 𝑎2, ..., 𝑎𝑛), 𝑎1 + 𝑎2 + ... + 𝑎𝑛 = 𝑑, is a multi-index. 
Fig. 4(c) shows a set of polygonal Bézier basis functions of degree 2
defined on a polygonal support of the node 𝐯𝑖.

A second component of the combined polygonal expo-rational basis 
is a locally defined expo-rational basis function.

A univariate expo-rational basis function 𝐵(𝑢), introduced in [28], 
defined along a parameter 𝑢 ∈ (0, 1] is expressed as

𝐵(𝑢) =

⎧⎪⎪⎨⎪⎪
𝛾

𝑢

∫
0

𝜙(𝑠)𝑑𝑠, if 0 < 𝑢 ≤ 1,

0, otherwise,

(5)
⎩
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Fig. 3. Nodes 𝐯1 , 𝐯11 shown on the example of polygon mesh. In the blending spline surface representation each node is covered by the local polygon surface.

Fig. 4. Illustration of the components of one set of the combined expo-rational basis functions (a) having their support on the node 𝐯𝑖 . (b) The “bell”-shaped 
expo-rational basis function 𝜓𝑖 and (c) the corresponding polygonal Bernstein polynomials 𝛽𝜄 of the second degree.
where

𝜙(𝑢) = exp

(
−
(𝑢− 1∕2)2

𝑢(1 − 𝑢)

)
,

and the scaling factor

𝛾 =
⎛⎜⎜⎝

1

∫
0

𝜙(𝑢)𝑑𝑢
⎞⎟⎟⎠
−1

.

A set of expo-rational basis functions forms a “bell”-shaped basis 
function defined on a polygonal node support. The expo-rational basis 
function (𝑢𝑘(𝐱)) in generalized barycentric coordinates 𝑢𝑘, 𝑘 = 1, 2, ..., 𝑛, 
is defined for any 𝐱 ∈ P𝑛 by

(𝑢𝑘(𝐱)) = 𝐵(𝑢𝑘)
𝐵(𝑢1) +𝐵(𝑢2) + ...+𝐵(𝑢𝑛)

for 𝑘 = 1,2, ..., 𝑛, (6)

where 𝐵(𝑢𝑘) is defined by formula (5). Thus, each (𝑢𝑘) is defined for 
each vertex of the polygonal element such that (𝑢𝑘(𝐱)) = 1 if 𝐱 = 𝐯𝑘
and (𝑢𝑘(𝐱)) = 0 along edges that do not contain 𝐯𝑘. One underlying 
expo-rational basis function 𝜓𝑖, which is formed as a “bell” shape, has 
its support on the neighbor polygons having a common vertex, and it 
is formed as the functions (𝑢𝑘(𝐱)) such that they are equal to 1 at the 
vertex 𝐯𝑖, and equal to zero along all edges of its support (except the 
domain boundary). This property of the underlying expo-rational ba-

sis functions provides strict locality of the basis, which is especially 
promising for the polygonal grids in comparison with other smooth 
spline representations. Fig. 4(b) shows the underlying basis function 
𝜓𝑖 on its support.

By analogy we generate locally defined basis functions (both expo-

rational and Bernstein polynomials) for each node 𝐯𝑖, 𝑖 = 1, ..., 𝑚.
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By multiplying the underlying expo-rational basis functions 𝜓𝑖 with 
the corresponding Bézier basis functions 𝛽𝜄 over each set of the polygons 
having a common vertex v𝑖, we obtain the combined expo-rational basis 
𝜑. Fig. 5 illustrates some examples of these basis functions, defined on 
the polygon node support shown in Fig. 4(a).

The total number of combined expo-rational basis functions on each 
node is equal to the number of Bernstein polynomials on the corre-

sponding local surface.

An ordered set of basis functions for each node forms a linearly in-

dependent combined expo-rational basis on the polygon mesh that can 
be directly utilized in the isogeometric analysis context, i.e. both geom-

etry and physical characteristics of the system model can be derived in 
terms of this basis.

4. Isogeometric analysis

The basic idea of the isogeometric analysis is to construct spaces 
of piecewise continuous functions on the parametric domain that are 
easy to manipulate, and then to show that one can both approximate 
a computational geometry and perform analysis on this geometry by 
these generated functions. The initial parametric domain is partitioned 
into simplex, such as triangles, or, in general, polygons.

In order to illustrate the main idea of this paper, we consider a para-

metric domain that belongs to ℝ2.

Let Θ ⊂ ℝ2 be a continuous parametric domain having two local 
coordinates 𝜉, 𝜂 ∈ [0, 1]. Domain boundary is denoted as ΓΘ.

Introduce a polygon mesh  that is described by a set of 𝑚 ver-

tices, or, in other words, nodes, 𝐯𝑖, 𝑖 = 1, ..., 𝑚, and a connectivity matrix 
that defines 𝑀 polygonal elements 𝐄𝑗 , 𝑗 = 1, ..., 𝑀 . Each set of elements 
having one common vertex defines a polygonal node support.
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Fig. 5. Some examples of the combined expo-rational basis functions 𝜑 defined on the node support 𝐯𝑖 shown in Fig. 4(a) as the result of the multiplication of the 
functions 𝜓𝑖 (Fig. 4(b)) and 𝛽𝜄 (Fig. 4(c)).
On the mesh we construct a combined expo-rational basis 𝜑, where 
each basis function has local support. Any function 𝜗(Θ) ∈ ℝ𝑛 can be 
uniquely approximated by the linear combination of the basis functions 
𝜑 and the coefficients 𝜁 ∈ℝ𝑛 such that

𝜗ℎ = 𝜁𝜑.

Let Ω ⊂ ℝ2 be a computational domain, i.e. the domain on which 
we solve the analysis problem. The computational domain boundary is 
denoted as ΓΩ. The main idea of utilizing the isogeometric analysis ap-

proach here is that we approximate a computational domain boundary 
ΓΩ, which is in general curvilinear, by using the same basis functions 
that we use for analysis. The analysis is performed on the parametric do-

main Θ, which allows for relatively simple computations and provides 
a flexible domain boundary that does not require remeshing. Thus, we 
denote 𝜐ℎ to be an approximated computational domain. The compu-

tational domain is defined by the mapping 𝜐ℎ ∶ Θ ⊂ℝ2 → Ω ⊂ ℝ2. Note 
that the domain boundary is preserved as ΓΘ → ΓΩ.

While the computational domain is approximated, one can solve the 
analysis problem by using the basis 𝜑 and coordinate transformation 
between the parametric domain Θ and the computational domain Ω. 
The solution is defined by the mapping 𝜗ℎ ∶ 𝜐ℎ ⊂ℝ2 →ℝ𝑛.

4.1. Domain construction

One of the main differences between the standard finite element 
method and the isogeometric analysis in accordance with the interpre-

tation presented in this paper is the additional stage between mesh 
generation and analysis. This stage can be identified as an approxi-

mation of the computational domain. Let Θ be a parametric domain, 
subdivided into polygons. An intermediate stage in analysis is to find a 
mapping between the parametric domain Θ and a continuous computa-

tional domain Ω, which is in general curvilinear.

In order to find a suitable approximation of the computational do-

main Ω, we solve the Laplace equation on the parametric domain Θ
with the given Dirichlet boundary conditions, which is formulated as 
follows

Δ𝜐 = 0, in Θ, (7)

𝜐 = ΓΩ, on ΓΘ. (8)
88
Here, ΓΘ and ΓΩ are the boundaries of the parametric and computa-

tional domains, respectively.

The finite element method for this problem is

(Θ + 𝜅Θ)𝑃 = 𝜅𝑟Θ,

where

Θ = ∫
Θ

∇𝜑T∇𝜑𝑑Θ,

Θ = ∫
ΓΘ

𝜑T𝜑𝑑ΓΘ, 𝑟Θ = ∫
ΓΘ

ΓΩ 𝜑T 𝑑ΓΘ.

A large valued constant 𝜅 on ΓΘ penalizes any deviation of the so-

lution from the given boundary condition, control points 𝑃 multiplied 
by the basis functions 𝜑 approximate the computational domain. Thus, 
a mapping 𝜐ℎ ∶ Θ ⊂ℝ2 →Ω ⊂ℝ2 is expressed as

𝜐ℎ = 𝜑𝑃 . (9)

4.2. Derivation of a linear system of equations

Let Ω ⊂ ℝ2 be a computational domain with boundary ΓΩ approxi-

mated by a planar blending tensor product surface. As an example we 
consider the Poisson’s equation

−Δ𝜗 = 𝑓, in Ω, (10)

with Robin boundary conditions,

∇𝜗 ⋅ �̄� = 𝜅(𝜗− 𝑔𝐷) − 𝑔𝑁 , on ΓΩ, (11)

where 𝑔𝐷 and 𝑔𝑁 are given functions, 𝜅 is a penalty constant. A large 𝜅
specifies the Dirichlet type boundary conditions, 𝜅 = 0 yields the Neu-

mann type boundary conditions.

We also introduce the trial and test spaces

𝑔 = {𝜗 ∶ 𝜗 ∈𝐻1(Ω), 𝜗|ΓΩ = 𝑔𝐷}, (12)

 = {𝑣 ∶ 𝑣 ∈𝐻1(Ω), 𝑣|ΓΩ = 0}.

Multiplying (10) with a test function 𝑣 ∈  and integrating by 
Green’s formula, we obtain the following variation formulation: find 
𝜗 ∈ 𝑔 such that 𝑣 ∈  and
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∫
Ω

∇𝜗 ⋅∇𝑣𝑑Ω+ 𝜅 ∫
ΓΩ

𝜗𝑣𝑑ΓΩ = ∫
Ω

𝑓𝑣𝑑Ω+ ∫
ΓΩ

(𝜅𝑔𝐷 + 𝑔𝑁 )𝑣𝑑ΓΩ. (13)

The combined expo-rational basis functions form a set of finite-

dimensional approximations of the test and trial spaces. The compu-

tational domain is defined as a mapping 𝜐ℎ ∶ Θ → Ω consisted of 𝑀
curvilinear (in general) elements. To compute the finite element ap-

proximation of the desired function 𝜗ℎ let 𝜑 = {𝜑𝑖(𝜉, 𝜂)}𝑁𝑖=1 be a basis 
defined on the parametric domain Θ with 𝑁 combined expo-rational 
basis functions of local degree 𝑑 defined as described in Section 3. We 
represent a discrete solution 𝜗ℎ in the blending spline representation, 
that is,

𝜗ℎ =
𝑁∑
𝑖=1

𝜑𝑖(𝜉, 𝜂)𝜁𝑖 = 𝜑𝜁, (14)

where 𝜁𝑖, 𝑖 = 1, ..., 𝑁 , are unknown coefficients.

The test functions 𝑣ℎ are defined as

𝑣ℎ = 𝜑𝑗 (𝜉, 𝜂), 𝑗 = 1, ...,𝑁. (15)

Substituting (14) and (15) into the variational formulation (13) we 
define a system of 𝑁 PDEs for 𝑁 coefficients 𝜁𝑖, 𝑖 = 1, ..., 𝑁 . In matrix 
form we write this as

(+)𝜁 = 𝑏+ 𝑟, (16)

where the entries of the 𝑁 ×𝑁 stiffness matrix  and the 𝑁 × 1 force 
(load) vector 𝑏 are defined as

 = ∫
Θ

(
𝐽−1

[
𝜕𝜑

𝜕𝜉
𝜕𝜑

𝜕𝜂

])T (
𝐽−1

[
𝜕𝜑

𝜕𝜉
𝜕𝜑

𝜕𝜂

]) |𝐽 |𝑑𝜉𝑑𝜂, (17)

𝑏 = ∫
Θ

𝑓 (𝜐ℎ)𝜑T |𝐽 |𝑑𝜉𝑑𝜂, (18)

where 𝜐ℎ is a mapping between the parametric and the computational 
domains, 𝐽 is the Jacobi matrix

𝐽 =

[
𝜕𝜑

𝜕𝜉
𝜕𝜑

𝜕𝜂

]
𝑃 . (19)

The generalization of the boundary conditions (11) leads to the 
sparse boundary matrix  and boundary vector 𝑟

 = ∫
ΓΘ

𝜅 𝜑T𝜑 ||Γ′Ω||𝑑ΓΘ, (20)

𝑟 = ∫
ΓΘ

(𝜅 𝑔𝐷(𝜐ℎ) + 𝑔𝑁 (𝜐ℎ))𝜑T ||Γ′Ω||𝑑ΓΘ, (21)

where ||Γ′Ω|| = √
(Γ′Θ𝑃𝑥)

2 + (Γ′Θ𝑃𝑦)
2, Γ′Θ is a derivative of the basis on 

the parametric boundary along the corresponding parameter 𝜉 or 𝜂, and 
𝑃𝑥, 𝑃𝑦 are the spatial coordinates of the computational domain control 
points.

Substituting (17), (18), (20) and (21) into (16) and solving this ma-

trix equation, we finally obtain a solution of the Poisson’s equation in 
the following form

𝜗ℎ = 𝜑𝜁.

5. Numerical examples

All the numerical examples are performed utilizing the combined 
expo-rational basis functions constructed on 𝑛-sided polygon meshes, 
where 𝑛 ≥ 3. The combined expo-rational functions are used both for 
the domain geometry construction and for subsequent analysis.

The purpose of these numerical examples is to demonstrate the abil-

ity of the blending type spline construction to handle various planar 
domains, including non-convex, curvilinear and cusp geometries.
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In the numerical examples, we compare solutions for PDE prob-

lems across varied mesh grids, provide a comparison of the proposed 
approach with the standard finite element approach, and numerically 
study the convergence of the presented method.

5.1. L-shape problem

In order to compare the performance of different element shapes: 
triangular, quadrilateral and polygonal, we consider the Poisson’s equa-

tion on an L-shape domain Ω depicted in Fig. 6(a). The boundary Γ of 
Ω consists of two disjoint parts Γ𝑁 and Γ𝐷 , representing the Neumann 
and Dirichlet boundary conditions, respectively. The considered prob-

lem reads

−Δ𝜗 = 0, in Ω,

∇𝜗 ⋅ �̄� = 𝑔, on Γ𝑁, (22)

𝜗 = 0, on Γ𝐷,

where 𝑔 is expressed in terms of the polar coordinates 𝜌, 𝜙 as

𝑔 = 2
3
𝜌
− 4

3

[
𝑥 sin 2

3 (𝜙+ 𝜋) − 𝑦 cos 2
3 (𝜙+ 𝜋)

𝑦 sin 2
3 (𝜙+ 𝜋) + 𝑥 cos 2

3 (𝜙+ 𝜋)

]
⋅ �̄�. (23)

This problem has an analytical solution 𝜗 = 𝜌
2
3 sin 2

3 (𝜙 + 𝜋).
The algorithm used for solving the problem (22) by applying the 

isogeometric analysis approach and the polygonal blending spline con-

struction, is shortly described as follows. After constructing a mesh 
grid with the desired shape of elements (triangular, quadrilateral, or 
polygonal), we generate a set of combined polygonal expo-rational 
basis functions as described in Section 3. Then we approximate the 
domain with a planar blending spline surface by projecting the com-

putational domain Ω onto the blending polygonal spline space, and by 
doing this we find the control points 𝑃 that define the geometry of 
the computational domain. Finally, we apply the algorithm described 
in Section 4.2 and solve the matrix equation (16) with given boundary 
conditions (23).

Figs. 6(b)-(d) show the approximated solution 𝜗ℎ on different uni-

form meshes: (b) triangular mesh, (c) polygon mesh, (d) quadrilateral 
mesh. Fig. 7 compares the errors ||𝜗ℎ−𝜗||𝐿2

on the different mesh grids. 
Here the both mesh refinement and local degree refinement are demon-

strated. One can see how the number of degrees of freedom changes 
with both refinement strategies on different mesh grids. Note that the 
next refinement step for polygon mesh and the third degree spline, 
shown as a gray diamond marker in Fig. 7, gives 9206 degrees of free-

dom, so it is not displayed due to scaling.

One can conclude that the blending type spline construction builded 
on the polygon mesh does not show better performance than its tri-
angular or quadrilateral version. Moreover, the number of degrees of 
freedom in the polygonal case rapidly increases, especially when the lo-

cal spline degree is increasing. However, the objective of this work is to 
develop a general approach to constructing the combined expo-rational 
basis functions on the non-tensor-product meshes, where the triangular 
and quadrilateral meshes are the particular cases of the polygon mesh, 
as depicted in this example.

5.2. Eigenvalue problem on a circular membrane

In this example we compare the standard FEM approach and the 
blending-spline-based IGA approach applied to the eigenvalue problem 
on a circular membrane. We select the same refinement scheme on a 
triangular mesh for both approaches, but compare the calculation error 
with respect to the number of degrees of freedom. In addition, this ex-

ample demonstrates a mapping between the square parametric domain 
and the circular computational domain.

Let us consider a circular membrane Ω having a radius 𝜌 and a fixed 
outer boundary ΓΩ.
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Fig. 6. (a) L-shape domain Ω with boundary parts Γ𝑁 and Γ𝐷 . (b) Solution of the problem (22) on a triangular mesh. (c) Solution on a polygon mesh. (d) Solution 
on a quadrilateral mesh.

Fig. 7. Comparison of different mesh constructions. 𝐿2 error versus a number of degrees of freedom. Three different local degrees are compared. The mesh is refined 
uniformly for each case.
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Fig. 8. A mapping between the parametric domain Θ and the curvilinear computational domain Ω approximated by the planar blending spline surface defined on a 
triangular mesh.
The eigenvalue problem reads as follows

−Δ𝜗 = 𝜔2

𝑐2
𝜗 in Ω,

𝜗 = 0 on ΓΩ,

where 𝑐 is a material constant and 𝜔 is a circular frequency.

An analytical solution of the eigenvalue problem on a circular mem-

brane with Dirichlet boundary conditions is represented by two inde-

pendent orthogonal eigenfunctions, referred to as the cosine and sine 
modes, respectively,

𝜗
(m,n)
𝐶

= m

(
𝜔(m,n)

𝜌

𝑐

)
cos(m𝜙) and 𝜗

(m,n)
𝑆

= m

(
𝜔(m,n)

𝜌

𝑐

)
sin(m𝜙),

where m is a Bessel function.

In order to solve the eigenvalue problem on a circular computa-

tional domain by using the IGA approach and the blending type splines, 
first we introduce the parametric domain Θ = [0, 1]2 with two param-

eters (𝜉, 𝜂), and then need to approximate the computational domain 
Ω. Fig. 8 shows a mapping between the parametric domain Θ and the 
circular domain Ω obtained by solving the Laplace equation (7) with 
the boundary conditions (8), where the boundary ΓΘ transforms to the 
corresponding circular arc of the boundary ΓΩ. Thus, a set of points 𝑃
holds the control points of 𝜐ℎ ∶ Θ →Ω.

A goal of the considered problem is to find both the function 𝜗 as an 
eigenfunction and 𝜔

2

𝑐2
= 𝜆 as an eigenvalue. The finite element method 

for this problem is formulated as: find 𝜗ℎ ∈ 𝑔 , where 𝑔 is defined as 
(12), and 𝜆 ∈ℝ such that

(+)𝜁 = 𝜆𝜁, (24)

where 𝜁 is a vector holding the coefficients of 𝜗ℎ, and

 = ∫
Θ

(
𝐽−1

[
𝜕𝜑

𝜕𝜉
𝜕𝜑

𝜕𝜂

])T (
𝐽−1

[
𝜕𝜑

𝜕𝜉
𝜕𝜑

𝜕𝜂

]) |𝐽 |𝑑𝜉𝑑𝜂,
 = ∫

Θ

𝜑T𝜑 |𝐽 |𝑑𝜉𝑑𝜂,
where 𝐽 is the Jacobi matrix

𝐽 =

[
𝜕𝜑

𝜕𝜉
𝜕𝜑

𝜕𝜂

]
𝑃 ,

the boundary matrix  representing the Dirichlet boundary conditions 
is expressed as

 = ∫
Γ

𝜅𝜑T𝜑 ||Γ′Ω||𝑑ΓΘ.

Θ
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Solving equation (24) with respect to 𝜁 we find the coefficients, 
which, as a linear combination with the basis functions 𝜑, give eigen-

functions of the eigenproblem on a circular membrane. Several solu-

tions are shown in Fig. 9(a)-(d). In Fig. 10 we compare 𝐿2 errors of 
these eigenfunctions for both FEM and IGA approaches. The errors are 
computed over the entire domain, not only at the nodal points. As one 
can see, both approaches provide similar performance with respect to 
the number of degrees of freedom. Note that the number of coeffi-

cients for the blending spline construction drastically increases with 
refinement. However, comparing the number of elements, the maxi-

mum number of elements for the FEM case, shown in Fig. 10, is 660
and the corresponding number of nodes is 361, while the blending spline 
construction gives 28 elements and 340 degrees of freedom/coefficients, 
respectively.

5.3. Linear elasticity problem

In order to numerically demonstrate the convergence of the pro-

posed method, we consider an example of the linear elasticity problem. 
Let a cantilever beam of the length 𝐿 = 8 and height 𝐻 = 2 having a nar-

row rectangular cross-section be loaded at the free end 𝑥 = 0, as shown 
in Fig. 11. The given characteristics are as follows: Young’s elastic mod-

ulus 𝐸 = 105, Poisson’s ratio 𝜈 = 0.25, and the load 𝑃 = 200. According 
to [41], the analytical solution for the displacement field 𝜗 = (𝜗1, 𝜗2) is 
the following

𝜗1 = −𝑃𝑥2𝑦

2𝐸𝐼
− 𝜈𝑃𝑦2

6𝐸𝐼
+ 𝑃𝑦3

6𝐼𝐺
+
(
𝑃𝐿2

2𝐸𝐼
− 𝑃𝑐2

2𝐼𝐺

)
𝑦,

𝜗2 =
𝜈𝑃𝑥𝑦2

2𝐸𝐼
+ 𝑃𝑥3

6𝐸𝐼
− 𝑃𝐿2𝑥

2𝐸𝐼
+ 𝑃𝐿3

3𝐸𝐼
,

where 𝑐 =𝐻∕2, 𝐸 is replaced as 𝐸

(1 − 𝜈)2
, 𝜈 is replaced as 𝜈

1 − 𝜈
, 𝐺 =

𝐸

2(1 + 𝜈)
, 𝐼 = 2

3
𝑐3 is the moment of inertia of the cross section of the 

beam. The stress components are

𝜎11 = −𝑃𝑥𝑦

𝐼
, 𝜎22 = 0, 𝜎12 = − 𝑃

2𝐼
(
𝑐2 − 𝑦2

)
.

The basic problem of linear elastostatics is to find the stress tensor 
𝜎 and the displacement vector 𝜗 such that

−∇ ⋅ 𝜎(𝜗) = 0, in Ω, (25a)

𝜎(𝜗) ⋅ �̄� = 𝑔𝑁 , on Γ𝑁, (25b)

𝜗 = 𝑔𝐷, on Γ𝐷. (25c)

The Robin boundary conditions that mix both Neumann (25b) and 
Dirichlet (25c) boundary conditions have the following expression
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Fig. 9. Eigenfunctions of the circular membrane. Solutions are obtained by the blending spline construction of local degree 2 on a triangular mesh shown in Fig. 8.

Fig. 10. Comparison of errors for a standard FEM approach with the linear basis and IGA approach on blending splines of local degree 2 constructed on a triangular 
mesh.
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Fig. 11. Geometry of the cantilever beam.

−𝜎(𝜗) ⋅ �̄� = 𝜅(𝜗− 𝑔𝐷) − 𝑔𝑁 , on Γ = Γ𝐷 ∪ Γ𝑁, (26)

where 𝜅 is a penalty constant.

Having the parametric domain Θ subdivided into elements, we eval-

uate the combined expo-rational basis functions 𝜑 on this domain. The 
mapping 𝜐ℎ = 𝜑 𝑄 defines the computational domain Ω, where 𝑄 is the 
set of control points, identified by projecting the space of basis functions 
onto the computational domain. An approximation of the displacement 
field 𝜗ℎ can be represented as

𝜗ℎ =
[
(𝜗ℎ)1
(𝜗ℎ)2

]
=
[
𝜑1 0 𝜑2 0 ... 𝜑𝑁 0
0 𝜑1 0 𝜑2 ... 0 𝜑𝑁

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜁11
𝜁21
𝜁12
𝜁22
⋮
𝜁1𝑁
𝜁2𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= �̄� 𝜁 . (27)

The strain and stress relation takes the following matrix form

𝜀(𝜗ℎ) =
⎡⎢⎢⎣
𝜀11(𝜗ℎ)
𝜀22(𝜗ℎ)
2𝜀12(𝜗ℎ)

⎤⎥⎥⎦ =𝜁, (28)

𝜎(𝜗ℎ) =
⎡⎢⎢⎣
𝜎11(𝜗ℎ)
𝜎22(𝜗ℎ)
𝜎12(𝜗ℎ)

⎤⎥⎥⎦ =𝜁, (29)

where the strain matrix  is given as

 =

⎡⎢⎢⎢⎢⎣
𝜕𝜑1∕𝜕𝜉 0 𝜕𝜑2∕𝜕𝜉 0 ... 𝜕𝜑𝑁∕𝜕𝜉 0

0 𝜕𝜑1∕𝜕𝜉 0 𝜕𝜑2∕𝜕𝜉 ... 0 𝜕𝜑𝑁∕𝜕𝜉
𝜕𝜑1∕𝜕𝜂 0 𝜕𝜑2∕𝜕𝜂 0 ... 𝜕𝜑𝑁∕𝜕𝜂 0

0 𝜕𝜑1∕𝜕𝜂 0 𝜕𝜑2∕𝜕𝜂 ... 0 𝜕𝜑𝑁∕𝜕𝜂

⎤⎥⎥⎥⎥⎦
and

 =
⎡⎢⎢⎣
𝜆+ 2𝜇 𝜆 0

𝜆 𝜆+ 2𝜇 0
0 0 𝜇

⎤⎥⎥⎦ ,
where 𝜇 and 𝜆 are the Lamé parameters.

Using expressions (28) and (29) we derive the following finite ele-

ment method formulation for the problem (25a) with boundary condi-

tions (26)

⎛⎜⎜⎝∫Θ T  |𝐽 |𝑑𝜉𝑑𝜂 + 𝜅 ∫
Γ

�̄�T�̄� 𝑑Γ
⎞⎟⎟⎠ 𝜁 = ∫

Γ

(𝜅𝑔𝐷 + 𝑔𝑁 ) �̄�T 𝑑Γ. (30)

where �̄� is a set of the combined expo-rational basis functions written in 
the special form as shown in formula (27). The transformation between 
the parametric and computational domains is achieved using the Jaco-

bian |𝐽 |. Solving the system (30) with respect to the coefficients 𝜁 , we 
get the deflection of the cantilever beam approximated by the blending 
type splines evaluated on the polygon mesh.
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The solutions on the refined polygon and triangular meshes are 
demonstrated in Fig. 12. The combined expo-rational basis functions 
are evaluated on both types of meshes. The corresponding number of 
degrees of freedom versus the 𝐿2 error of the displacement magnitude 
is shown in Fig. 13. One can see that polygons do not exhibit superior 
efficiency compared to triangular elements, particularly concerning the 
rate at which the number of degrees of freedom increases upon refine-

ment in the polygonal case. The main weakness is in the evaluation 
of integrals, which requires a large number of integration points and, 
consequently, substantial computational expenses. There are methods 
aiming at enhancing numerical integration, with the gradient correc-

tion approach [33,39] being a recent advancement in this direction.

5.4. Potential flow over a wing

In this example we consider an opportunity to modify the computa-

tional domain without remeshing. The simulation example is the flow 
of air over a wing profile. The idea is to change the angle of attack 
“interactively” to see how the flow modifies. A potential equation for 
the airflow around the wing follows from the assumption that the ve-

locity field 𝜗 is steady and irrotational, that is 𝜕𝑡𝜗 = 0 with 𝑡 time and 
∇ × 𝜗 = 0. Then there exists a scalar function 𝛾 such that 𝜗 = −∇𝛾 . This 
is called the flow potential and is given as the solution of the Laplace 
equation

−Δ𝛾 = 0. (31)

We impose the following boundary conditions

�̄� ⋅∇𝛾 = 1, on ΓΩin
,

𝛾 = 0, on ΓΩout
, (32)

�̄� ⋅∇𝛾 = 0, elsewhere.

The computational domain Ω has the boundary ΓΩ that consists of 
four outer parts: ΓΩin

, ΓΩout
, ΓΩtop

, ΓΩbottom
, and one inner part, which 

is an airfoil boundary ΓΩairfoil
. The outer boundary of the domain Ω

is a rectangle having length 60 and width 30. An illustration of the 
computational domain is shown in Fig. 14(a).

The wing profile is located in the center of the domain and is gener-

ated as a pair of parametric equations [45]

ΓΩairfoil
=
⎡⎢⎢⎣

0.5 + 0.5 | cos(𝜙)|𝐵
cos𝜙

𝑇

2
| sin(𝜙)|𝐵
sin𝜙 (1 − 𝑥𝑃 ) +𝐶 sin(𝑥𝐸𝜋) +𝑅 sin(2𝜋𝑥)

⎤⎥⎥⎦ , (33)

where 𝜙 = [0, 2𝜋) and the following parameters 𝐵 = 2, 𝑇 = 0.1, 𝐶 = 0.05, 
𝑃 = 1, 𝐸 = 1, 𝑅 = 0. In addition, we implement the angle of attack us-

ing the multiplication of the parametric equations of the airfoil by the 
rotation matrix.

The parametric domain Θ has two parameters (𝜉, 𝜂) ∈ [0, 1]2 and the 
following boundaries: ΓΘin

, ΓΘout
, ΓΘtop

, ΓΘbottom
, and ΓΘairfoil

, as shown 
in Fig. 14(b). The wing profile in the parametric domain is represented 
as a slit with zero thickness. Due to this configuration we can compute 
the partial derivatives along the boundary ΓΘairfoil

as 𝜕

𝜕𝜉
.

The initial polygon mesh is generated by using the PolyMesher

algorithm, as described in Section 2.2. Then we generate a set of com-

bined polygonal expo-rational functions 𝜑 on the mesh, as described 
in Section 3. For example, in Fig. 14(b) one can see a mesh having 80
polygonal elements, and the number of basis functions of local degree 
2 generated on this mesh is 8184. To obtain the slit in the mesh we split 
the local surfaces that cover the nodes that should be divided, into two 
separate local surfaces by doubling the corresponding vertices.

After generating the set of basis functions, we are ready to approx-

imate the computational domain by solving the Laplace equation (7)

with the following boundary conditions
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Fig. 12. Polygonal and triangular mesh refinements shown on the deflection of the cantilever beam.
𝜐 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΓΩairfoil
, on ΓΘairfoil

,

ΓΩin
, on ΓΘin

,

ΓΩout
, on ΓΘout

,

ΓΩtop
, on ΓΘtop

,

ΓΩbottom
, on ΓΘbottom

.

(34)

Thus, we find the control points 𝑃 such that by multiplying them 
with the basis functions 𝜑 the computational domain is approximated. 
The mapping 𝜐ℎ ∶ Θ →Ω is illustrated in Fig. 14(c) and is expressed by 
formula (9). One can modify the computational domain by changing 
the boundary conditions (34). For example, we change the angle of at-

tack of the wing by multiplying ΓΩairfoil
by the rotation matrix. Then we 

find new control points 𝑃 and, consequently, modify the computational 
domain geometry without remeshing, as shown in Fig. 15(a).

Deriving the variational formulation of the problem (31)-(32), we 
arrive at the following matrix equation

(+)𝜁 = 𝑟, (35)

where ,  and 𝑟 are defined by formulas (17), (20) and (21), respec-

tively. Then, solving (35) with respect to the coefficients 𝜁 , we obtain 
the velocity potential 𝛾ℎ = 𝜑 𝜁 . The illustration of isocontours of the 
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computed velocity potential 𝛾ℎ is shown in Fig. 15(b). In order to re-

compute the solution for the modified domain, it suffices to replace the 
new control points to the Jacobi matrix (19) and then solve the system 
(35) again. The initially generated basis functions 𝜑 remain the same.

In addition, one can compute and visualize the velocity field 𝜗ℎ, 
which is expressed by 𝜗ℎ = −∇𝛾ℎ. In our terminology, we interpret the 
gradient of the velocity potential as

∇𝛾ℎ =
⎡⎢⎢⎢⎣
𝜕𝛾ℎ

𝜕𝑥
𝜕𝛾ℎ

𝜕𝑦

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝜕𝜑

𝜕𝑥
𝜕𝜑

𝜕𝑦

⎤⎥⎥⎥⎦ 𝜁 = 𝐽−1

⎡⎢⎢⎢⎣
𝜕𝜑

𝜕𝜉

𝜕𝜑

𝜕𝜂

⎤⎥⎥⎥⎦ 𝜁.
The result is shown in Fig. 16(a). Note that the illustrated vector 

field is continuous due to its spline representation, i.e. it can be evalu-

ated at any point. Finally, pressure around the wing can be defined by 
𝑝 = −||∇𝛾ℎ||2. Fig. 16(b) shows this pressure.

6. Conclusion

In this paper, as an alternative to tensor product spline construc-

tions, a new polygonal blending spline construction is developed for ap-

plication to the isogeometric analysis. The combined expo-rational basis 
generation scheme covers any convex mesh partitions: standard De-
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Fig. 13. Displacement error norm for the cantilever beam problem solved by using the blending-spline-based IGA approach. Two shapes of elements are considered: 
polygonal and triangular. The refinement scheme is shown in Fig. 12. The combined expo-rational basis functions have a second local degree.

Fig. 14. A process of the domain generation. (a) Original computational domain Ω. (b) Parametric domain Θ subdivided into polygons. (c) Computational domain 
𝜐ℎ ∶ Θ →Ω approximated by using polygonal blending spline basis.
launay triangulation, quadrilateral elements, Voronoi tessellation tech-

nique. The basis that constructs the polygonal blending spline surface 
possesses properties that are essential for IGA purposes: linear inde-

pendence, partition of unity, differentiability. In addition, the basis is 
strictly local, i.e. each basis function has its support only on neighboring 
elements that share one vertex.
95
The polygonal blending spline construction has a hierarchical struc-

ture. Bernstein polynomials form local surfaces that are blended by 
using “bell”-shaped expo-rational basis functions. The local surfaces 
interpolate the solution and its derivatives at the nodes. The finite el-

ements can be manipulated independently of each other, but they are 
smoothly connected.
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Fig. 15. Changing of the angle of attack (a) illustrated on the meshed computational domain, and (b) illustrated on the solution 𝛾ℎ.
Due to the flexible polygonal configuration, one can generate free-

form domains. Curvilinear domains, holes in the domain are naturally 
supported. Refinement can be obtained by adding new polygons, pre-

serving all the properties of the basis.

In the presented representation, the number of degrees of freedom 
is affected not only by the number of sides in the mesh element, but 
mainly by the local degree of basis functions, which drastically increases 
the number of degrees of freedom.

Thus, for the proposed construction, triangular elements are prefer-

able, because they maintain a balance between accuracy of approxima-

tion and the number of degrees of freedom. In special cases, a combi-

nation of triangular and quadrilateral elements can be used. To obtain 
this, the considered basis functions of a special type were presented on 
a generalized polygonal grid.

Furthermore, the incorporation of curvilinear smooth elements is 
primarily aimed at minimizing the element count within the domain. 
As a result, one can improve precision for various objectives, including 
managing domain complexity or solution accuracy. This can involve 
not only altering the element size but also adjusting factors such as the 
number of sides of an element or the local degree of the basis functions 
defined on that specific element.

The numerical examples considered in this paper reveal the main 
properties of the proposed method. In the examples we describe how to 
build curvilinear computational domains, solve several PDE problems, 
provide numerical error analysis for various meshing schemes, and 
compare the performance of the IGA approach on polygonal blending 
splines with the classical FEM approach. Nonetheless, further investi-

gations are essential, such as a patch test [40] and stability analysis. 
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The patch test should include an examination of varied blending-spline-

based constructions, including curvilinear elements, diverse 𝑛-gons, and 
distinct local degrees of basis functions. Concerning elasticity prob-

lems, it is crucial to show the stability of the method in incompress-

ibility limit by using the inf-sup condition test [7]. To address these 
concerns, improvements in the computational process need to be per-

formed.

Further research on this topic will be devoted to the optimization 
and parallelization of the proposed method, since the main weakness 
of the method is its computational cost. In order to achieve better 
accuracy, an explicit formulation of directional derivatives and pre-

evaluation of the integrals are required. Another strategy aimed at 
enhancing the accuracy of calculations may lie in the field of numerical 
evaluation of integrals. Adaptation of the gradient correction method 
can lead to better calculations involving fewer integration points.

One potential area where the isogeometric analysis constructed on 
the polygonal blending splines can be utilized is adaptive design. The 
objective of the adaptive design is to build a geometry that satisfies 
given physical conditions. The isogeometric analysis allows for adap-

tive geometry reconstruction without re-meshing, one can manipulate 
the geometry completely within the analysis framework. The poly-

gon mesh is flexible for modifications, while the local spline repre-

sentation provides the ability to approximate both smooth and sharp 
edges.

Data availability

No data was used for the research described in the article.
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Fig. 16. Modifications of the solution of the problem (31)-(32). (a) Velocity field 𝜗ℎ , which is represented as a continuous vector field. (b) Pressure 𝑝, which is 
calculated as −||∇𝛾ℎ||2.
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