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ABSTRACT
The vast amount of spectral information provided by hy-

perspectral images can be useful for different applications.
However, the presence of redundant bands will negatively af-
fect application performance. Therefore, it is crucial to select
a relevant subset that preserves the information of the original
set. In this paper, we present an automatic and accurate band
selection method based on Graph Laplacians. Unlike existing
band selection methods, this method exploits two similarity
measures simultaneously. Furthermore, it is performed on a
superpixel level, so it allows us to preserve not only global
but contemporaneously local particularities of original data.
Experiments show the importance of measuring the relevance
of the bands at local and global scales and the ability of the
method to minimize intercorrelation among selected bands,
hence improving the selection of the most informative spec-
tral channels.

Index Terms— information theory, hyperspectral images,
band selection

1. INTRODUCTION

Hyperspectral imagery provides large number of closely
spaced narrow spectral bands in the visible and near-infrared
portion of the electromagnetic spectrum with a high reso-
lution, thus providing an enormous amount of information
about the region of interest (ROI) [1]. However, not all the
spectral bands are of actual importance, since some of the
information can be redundant, corrupted, or unnecessary for
a particular task [1, 2]. Besides, one of the main problems for
the classification of hyperspectral images is the “curse of di-
mensionality” or “Hughes effect” [3] that makes the analysis
challenging from the computational point of view. Therefore,
dimensionality reduction methods, such as feature selection
and extraction, are crucial steps in order to select relevant
information [1].
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Among the various dimensionality reduction methods,
graph-based clustering methods play a key role [4, 2]. These
methods represent hyperspectral data as a graph, where the
spectral bands constitute the set of nodes and their connecting
edges reflect their similarities. The connections among the
nodes can be summarized by means of a graph Laplacian
matrix, where each element identifies the degree of similarity
(usually computed in terms of Euclidean distance) the nodes
share [4, 2]. The dimensionality reduction is performed by
determining similar nodes and selecting a representative at-
tribute from each group using spectral clustering [2]. The
clustering is fulfilled on a new representation of data gener-
ated using the eigenvectors of Laplacian.

In this paper, we introduce a band selection method, that
relies on information theory metrics and on a representation
based on graph Laplacians. Unlike existing graph-based clus-
tering methods that are only using kernels as similarity mea-
sures, we are also considering the information content of the
original data. Therefore, the similarity is quantified using two
metrics simultaneously, which allows us to capture relevant
information at different scales that improves the precision of
the selection. The mutual information is performed globally
and preserves the bands shared information [5]. The Gaus-
sian kernel is applied locally and preserves the structure of
the original data [4]. The superpixels refer to homogeneous
regions of the image that share similar pixel information.

The remaining of this paper is organized as follows. The
state-of-the-art is demonstrated in section 2. The method de-
scription is shown in section 3. The experimental results on
hyperspectral datasets is illustrated in section 4. Finally, sec-
tion 5 concludes the paper. For notational convenience, ran-
dom scalars are denoted by lower case letters, e.g., z. Random
vectors are designated by bold lower case letters, e.g., z. Bold
upper case letters refer to matrices, e.g., A.

2. EXISTING WORK

It is worth recalling that band selection represents a task in
remote sensing data analysis that has been widely studied and



investigated in technical literature [1, 2]. Indeed, band selec-
tion methods can be categorized into five groups: ranking-
based: measure the significance of each band by sorting
them in terms of relevance using different metrics [1, 6].
Here we can highlight the covariance-based selection method
(COVSEL) [7] and and the orthogonal subspace projection
(OSP) [8, 1]; searching-based: convert band selection into
an optimization problem of a given criterion function to form
an optimal solution [1]. Among the methods in this family,
we can mention ones based on linear projection (LP) used
together with OSP [9], particle swarm optimization (PSO)
that search for a band subset that optimizes the criterion
function, typically in terms of minimum estimation abun-
dance covariance (MEAC) or Jeffries–Matusita (JM) distance
among different classes [10], minimum noise band selec-
tion (MNBS) [11]; clustering-based: grouping the bands
into clusters and select representative ones from each clus-
ter. Among this family, we can highlight discriminative
kernel alignment (DKA) [12] and multigraph determinantal
point process (MDPP) [13]; sparsity-based: emphasizing
underlying structures within hyperspectral data by solving
an optimization problem with sparsity constraints [1]. Here
we can mention two methods, one with sparse non-negative
matrix factorization (SNMF) that uses additional constraints,
such as the thresholded Earth’s mover distance (TEMD) [14],
and sparse representation-based band selection (Spa-BS) [15]
that does not require non-negative matrix factorization; hy-
brid scheme-based: integrate multiple operations mentioned
above to obtain hyperspectral band selection. Here we can
highlight a method where the ranking and eliminating search-
ing schemes were combined to rank the bands according
to minimum redundancy and maximum relevance (mRMR)
along with sequential backward elimination to chose relevant
bands [16].

3. METHOD

To preserve the particularity of every element in the observed
scene, we implement the band selection on superpixels, i.e.,
regions showing homogeneous characteristics throughout the
considered dataset. An image can be split into superpixels us-
ing different segmentation methods. In our work, we employ
the Watershed segmentation algorithm [17].

We denote by X = (xlk) 2 RL⇥K the matrix of spectral
bands of the remotely sensed image M, where K is the total
number of bands, and L is the number of superpixels. We
denote the k-th column of X, that corresponds to the k-th
band by x⇤k, so we can write X = [x⇤1, . . . ,x⇤K ].

The main goal of band selection methods is to find, for a
given superpixel l, the smallest subset of bands, {xl1, . . . , xlK},
that preserves the structure and information content of the
original set. To this aim, we build a fully connected graph
Gl(Vl,EGK

l ,EMI), where Vl denote the set of bands Vl =
{xl1, . . . , xlK}, EGK

l and EMI are two set of edges that con-

nect the nodes. The weight of the first edge is given by the
Gaussian kernel (GK), while the weight of the second edge
is quantified by the mutual information (MI). The Gaussian
kernel between the i-th and k-th vertex is defined as follows
[18],

wGK
lij = exp
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where � controls the width of the neighborhood in the graph,
i.e., the number of connected vertices. The width of the neigh-
borhood increases with �. In this work, we set � to 1. Gaus-
sian kernel is applied at the local level selection, hence, the
weights values are particular to each superpixel, i.e., wGK

pij 6=
wGK

qij for p 6= q.
The mutual information between the i-th and k-th vertex

can be written as follows [19]:

wMI
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where P (xi,xj) is the joint density function of xi and xj ,
and P (xi) and P (xj) are the marginals. Mutual information
quantifies the shared information between two random vari-
ables [19]. It is applied image-wise, therefore, the weights
wMI

k1,k2
are equal for all superpixels. It is worth emphasiz-

ing that both similarity measures that are used as metrics are
of equal importance since they maintain different information
about the original dataset, GK preserves the local structure,
while MI keeps the global information content. We refer to
our method as GKMI.

To select the relevant subset of bands based on both mea-
sures, we partition the graph Gl into subgraphs, such that two
vertices of the same subgraph have strong connections via
both links. Two vertices from different subgraphs show at
least one weak connection, either GK or MI. To this aim, we
perform graph clustering by means of graph Laplacians [4].
We associate two graph Laplacians to the graph Gl, one based
on Gaussian kernel metric, LGK

l , while the other one is based
on mutual information, LMI .

LGK
l = I�DGK

�1/2

l WGK
l DGK

�1/2

l , (3)

LMI = I�DMI
�1/2

WMIDMI
�1/2

(4)

where I is the identity matrix. WGK
l = (wGK

lij ) and WMI =
(wMI

ij ) are the adjacency matrices of the graph Gl, and DGK
l =

diag(
P

i 6=j w
GK
lij ), and DMI = diag(

P
i 6=j w

MI
ij ) are their cor-

responding degree matrices, respectively.
We embed the original set of bands into a lower-dimensional

manifold using the joint null eigenvectors of LGK
l and LMI ,

that are defined such as,

LGK
l = Vl⇤

GK
l VT

l , (5)

LMI = Vl⇤
MI
l VT

l , (6)
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Fig. 1: False-color composite representation for both datsets:
Trento RGB (a), Houston RGB (b).

where ⇤GK
l = diag(�GK

l1 , ...,�GK
lK), ⇤MI

l = diag(�MI
l1 , ...,�

MI
lK)

are diagonal matrices of the corresponding eignevalues, and
Vl is the matrix of eigenvectors. Vl can be determined using
joint diagonalization (JD) algorithms, which minimize a cri-
teria of diagonality of VT

l L
GK
l Vl and VT

l L
MIVl. Different

diagonalization constraints and distances can be used leading
to a multitude of algorithms. In this work, we perform the
joint diagonalization using the Quasi-Newton algorithm [20].

We stack the first N common eigenvectors of LGK
l and

LMI , uli (i = 1, . . . , N), into one matrix Ul = [ul1, . . . ,ulN ],
where N is the number of bands to be selected. After the orig-
inal set of attributes is embedded into a lower-dimensional
manifold using the joint null eigenvectors of the Laplacian
matrices [4], the partition of the embedding can be done using
a clustering method: in this work, we chose a k-means [5]
clustering algorithm. As a final step, we select the closest
band to each cluster centroid as a representative one and form
the set of relevant spectral bands that can be used for further
analysis.

4. EXPERIMENTS AND RESULTS

The following section demonstrates the datasets description
as well as experimental analysis and results, namely intercor-
relation comparison with existing band selection algorithms.

Datasets: The first dataset was acquired from an agricul-
tural area in the south part of the city of Trento, Italy, by the
AISA Eagle sensor with 1 m spatial resolution and includes
63 bands ranging from 0.40 to 0.99 µm, where the spectral
resolution is 9.2 nm.

The second dataset was acquired over the University of
Houston campus and the neighboring urban area by the Com-
pact Airborne Spectrographic Imager (CASI) with 2.5 m spa-
tial resolution and was distributed for the 2013 IEEE GRSS
Data Fusion Contest [21]. The hyperspectral dataset includes
144 spectral bands ranging from 0.38 to 1.05 µm.

Figure 1(a) and 1(b) illustrates the false-color composite
representations of Trento and Houston hyperspectral datasets.

Intercorrelation Analysis: There are various criteria that
can be defined to evaluate the relevance of selected bands,
such as classification accuracy, error rate, precision, recall,
F-measure, clustering accuracy [22]. However, the above-
mentioned criteria are used for specific applications, for in-
stance, classification, target detection, unmixing whilst band
selection is applied as a preprocessing step. Nevertheless, the
general aim of the band selection is to remove spectral redun-
dancy and reduce computational costs, while preserving rele-
vant information about the ROI, independently from the task
under exam. Therefore, we decided to employ the Pearson in-
tercorrelation factor over the selected bands as a common cri-
terion independent of the subsequent application that could
be used, so to directly evaluate the performance of the dif-
ferent band selection methods [3, 19]. Accordingly, in order
to investigate the performance of the proposed scheme when
dealing with different hyperspectral datasets, we focused our
attention on exploring the ability of our method to extract for
each sample a subset of spectral bands that would minimize
the intercorrelation among bands, i.e., reduce the redundancy
in the spectral channels and minimize their linear dependency.
This step is a required operation for most of the hyperspectral
remote sensing processing and analysis, as it leverages the
problem of ”curse of dimensionality”, and helps in improving
the efficiency of the investigation of hyperspectral records [1].

We report in Table 1 the Pearson intercorrelation factor
obtained on the subset of bands selected by each scheme in-
troduced in Section 2 [3, 19]. This factor measures the linear
relationship between the variables, which makes it suitable
for estimation of the relevance of selected bands. To evalu-
ate intercorrelation we are extracting mean, µ, and variance,
�2 from a cross-correlation matrix of selected bands. 100
experiments have been conducted for each method over both
datasets. Various methods presented for comparison use an
automatic selection of N , except GKMI where this parame-
ter is fixed. However, N does not vary considerably among
different methods, which does not make it a significant fac-
tor in our case. It is worth noting that some of the methods
presented for comparison are relying on classic spectral clus-
tering, based on k-means [23] and affinity propagation [12],
and graph theory-based methods [13].

It is indeed worth recalling that a low value of intercorre-
lation is associated with a reduction of the redundancy and
linear dependency between bands, hence signifying higher
relevance of the considered bands. Thus, it is possible to ap-
preciate that the method we use in this work, GKMI, is ac-
tually outperforming the other algorithms for hyperspectral
band selection, as it is apparently able to maximize the sig-
nificance of the selected spectral contributions with respect to
the other schemes. It is also worth noting that the methods
among the traditional schemes for hyperspectral band selec-
tion showing intercorrelation performances closer to GKMI
are DKA and MDPP, which are intrinsically weighting the
separability of the bands by means of a global coherence con-



Table 1: Performance comparison for band selection. Mean, µ, and
variance, �2, of the intercorrelation between the selected bands of
Trento and Houston hyperspectral datasets. N refers to the number
of selected bands for which the intercorrelation is obtained.

Trento Houston

Method N µ �2 N µ �2

Original 63 0.36 0.33 144 0.78 0.04
COVSEL [7] 25 0.29 0.02 24 0.72 0.03
OSP [8] 21 0.32 0.01 23 0.74 0.01
LP [9] 22 0.31 0.01 22 0.74 0.02
PSO-MEAC [10] 22 0.27 0.01 22 0.70 0.03
MNBS [11] 24 0.29 0.03 23 0.71 0.02
K-means [23] 26 0.33 0.01 27 0.72 0.02
DKA [12] 25 0.23 0.01 25 0.62 0.01
MDPP [13] 24 0.24 0.02 24 0.61 0.01
SNMF-TEMD [14] 23 0.30 0.02 23 0.73 0.04
Spa-BS [15] 22 0.26 0.02 25 0.70 0.04
mRMR [16] 23 0.28 0.03 23 0.68 0.02
GKMI 20 0.10 0.08 20 0.55 0.01

straint (DKA), and implementing a spectral clustering to dis-
cover the subgraph structures in the high-dimensional band
space (MDPP) [1, 12, 13]. These properties further empha-
size the importance of measuring the relevance of the bands
at local and global scales. Moreover, it highlights that con-
ducting the investigation by considering Gaussian kernel and
mutual information metrics simultaneously - one of the main
contributions of this work - represents a key factor in identi-
fying the most significant bands associated with each pixel in
the given dataset.

5. CONCLUSIONS

In this paper, we employed an unsupervised GKMI band se-
lection method that applies two different similarity measures
and performed on a superpixel level.

The experimental results obtained when analyzing the
considered hyperspectral datasets show the ability of GKMI
to minimize the intercorrelation between the selected bands
and therefore remove the redundant information, which is
crucial for band selection methods. Moreover, the GKMI
method shows the advantage of applying two similarity mea-
sures simultaneously, which is not used in classical graph-
based clustering methods. It is especially important that the
use of two metrics allows preserving more information about
the original data, therefore selecting the most relevant bands
subset.

Future works will be focused on the use of GKMI as a pre-
processing step for hyperspectral image unmixing and classi-
fication, so to enhance the information extraction in hyper-
spectral data analysis. In this respect, the proposed method
will be enhanced in order to take into account variability and
sparsity of the data, hence improving the adaptivity of the
analysis for various test cases.
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