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Abstract—Electricity load modeling plays a critical role to con-
duct load forecasting or other applications such as non-intrusive
load monitoring. For such a reason, this paper investigates
a comparison study of two common artificial neural network
methods (Multilayer perceptron (MLP) and radial basis function
neural network (RBF-NN) for home load modeling application.
The accuracy of load modeling using neural network methods
highly depends on chosen variables as the input data set for
the networks. For this purpose, data including weather, time,
and consumer behavior are considered as the input dataset to
train the networks. The results of this study show that the RBF-
NN model has higher accuracy in training data. On the other
side, the MLP model outperforms in test data. To sum up, the
results prove that the load model obtained by MLP has a better
performance in terms of mean square and root mean square
error indices.

Index Terms—Advanced metering system (AMS), Load mod-
eling, residential load sector, neural network, multilayer percep-
tron, radial basis function neural network.

I. INTRODUCTION

Smart meters have been installed in many countries such as
Australia, Japan, the United States, Canada, Italy, and Norway
during the past decade. Only in 2017, 665 million smart
meters were installed globally [1]. Buildings equipped with
smart meters can generate significant real-time or near real-
time data information on occupancy and energy consumption.
In Norway, an advanced metering system (AMS) and smart
meters have replaced old meters to measure the amount
of electricity usage in each Norwegian household. AMS is
equipped with an output terminal called a home area network
(HAN) port. The HAN port enables the local distribution
network and users to monitor several parameters related to
the household load characterization such as current, voltage,
active and reactive power, etc. Therefore, the meters are not
only used for measuring energy bills, but also enable the user
to have access to high-resolution AMS data. Historical energy
consumption combined with weather forecast data is given
an opportunity to improve building load demand modeling
because of high interdependency between the weather data
and load consumption in a power system.
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Residential home load modeling plays a key role in
designating real-time building energy management systems
and demand response programs. A comprehensive survey of
different load modeling methods and their applications is
provided by [2]. Home load modeling is divided into two
categories, physical-based modeling and measurement-based
modeling (data-driven modeling method) in the literature. In
the physical-based method, the models are according to the
knowledge of physical characteristics of loads and mathe-
matical relations that reflect the real-world situation. How-
ever, it is not always possible to quantify all the physical
parameters of a system because of limited understanding of
a phenomena. Moreover, modeling all the physics of a nature
most often leads to a complex model that is not efficient
for real-time applications. These drawbacks motivate research
on measurement-based modeling methods that use aggregated
data to model the load characteristics [3]-[5]. The main
capability of this method is that it can model all the physics of
the load; however, the obtained model cannot be generalized
and most often can only be used for the location in which
data are collected. In [6], a measurement-based load modeling
using transfer functions for dynamic simulations is proposed. It
provides a method that begins with obtaining the currents and
voltages from power quality monitoring systems and highlights
the issues related to selecting, processing, and resampling of
data to estimate the power deviations as a function of the
voltage. A measurement-based dynamic load model using the
vector fitting technique is presented in [7]. In this research,
based on the measurement data, an aggregated load model
is presented for dynamic solutions of large power systems.
Artificial Neural Network (ANN) methods are some of the
strong tools related to the data-driven modeling methods [8]-
[10]. They do not represent the physical aspect of the load and
require a large amount of measured data to estimate the model.
On the other hand, they are highly adaptive and strong tool
for modeling complex non-linear systems. An ANN is trained
using a collection of input and output datasets. It has been
widely used in the context of load modeling, especially for
building applications. For example, a dynamic load modeling
of an Egyptian primary distribution system using three ANN-
based load models is presented in [11], in which the results
verify the accurate emulating of load dynamics via ANN
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Fig. 1. Electricity load of a single-family home in Narvik, Norway from April 2019 to March 2020.

models. Keyhani et al. [12] propose a method to develop an
ANN-based composite model to analyze the power system
stability. A mathematical model representing the total charging
load at an electric vehicle charging station is presented in [13];
the load model developed using a queuing model followed
by a neural network (NN). As mentioned, there are different
type of ANN architecture techniques which are employed for
modeling the household load demand application. However,
the differences between, as well as the strength of these tech-
niques are still unclear in the home load modeling application.
Therefore, there is still a need for a comparison study to
analyze the strength of each technique for different home load
modeling applications such as load forecasting and monitoring.

This main contribution of this article is presenting a com-
parison study to analyze the advantage and disadvantages of
two widely used ANN techniques in the home load modeling
application. In this paper, the multilayer perceptron architec-
ture performance is compared with radial basis function neural
network architecture in terms of their mean squared error
(MSE) and root-mean-square error (RMSE) of the obtained
load models. First, electricity usage is analyzed in terms of
average electricity consumption with different time intervals
basis (hourly, daily, monthly, and annual) for a whole year.
Then the effect of occupant behavior on electricity usage is
studied by sorting data into weekdays (user is not available
at home during working hours) and weekends. Afterward, the
data inputs including weather data, time variables, and user
behavior are used to train neural networks in order to improve
the accuracy of the model. Last but not least, the advantages
and disadvantages of each mentioned methods are discussed
and shown in the simulation results and also the impact of
different inputs on home load modeling is investigated by
considering and comparing four different input datasets for
NN.

The remaining parts of the paper are organized as follows.
In section II, the methodology is explained, including analysis

of the historical data and load modeling techniques (MLP and
RBF-NN). Simulation results and discussion of the different
methods are illustrated in section III. Finally, conclusions are
presented in section IV.

II. DATA ANALYSIS AND MODELING

In this section, the methodology of the paper is presented in
two parts. In the first part, the data analysis of the electricity
load for one year is performed. In the second part, the MLP
and RBF-NN structures are explained.

A. Data Analysis

In this paper, a case study is presented on a residential
building located in the arctic climate of Narvik, Northern
Norway. The data are from a single-family home (detached
house) to investigate correlations between load consumption
and some factors, including time of day, days of a week,
months of a year, outside temperature, wind speed and holiday.
The following main devices are included in the building
model:

e Plug-in hybrid electric vehicle (Mitsubishi Outlander
PHEV 2014) with a 12 kWh T-shaped lithium-ion battery
pack and 3.6 kW one-directional charger station.

o Air-to-air inverter controlled heat pump.

o Electric hot water tank (200-liter tank with a 2 kW
resistive heating element).

o One portable electric radiator (Thermostat controlled 1.5
kW).

o Four electric floor heating cables.

o Kitchen and laundry appliances (Dishwasher, washing
machine, oven, stove, el-kettle, etc.).

The collected data are hourly load consumption from 01-
04-2019 to 31-03-2020. The hourly, daily, monthly and annual
averages of energy consumption are shown in Fig. 1. The daily
average of the load is plotted in yellow to have a better view
of the load consumption of each day. In this plot, the increase



and decrease in electricity consumption are more distinct than
the hourly load plot (Blue).

The Norwegian energy system is largely based on elec-
tricity, including heating and hot water. Hence, the energy
consumption during cold months is higher than other months.
According to Fig. 1, the average of the monthly load varies
between 0.93 KW and 3.69 KW. As can be seen, the average
monthly load starts to increase from September as the weather
is getting cold and it peaks in January, February, and March
that have the lowest temperatures in the year. The average
annual amount of electricity usage is 2.5 KW, which is plotted
in dashed cyan. From April to September the annual load is
higher than the monthly load and from October to March it is
lower than the monthly load.

In Fig. 2, the difference between electricity consumption
of each day at the time ¢ (F;(t)) and the average electricity
consumption of that particular day (Fgq.g,;) is plotted. The
reasons behind it are to cancel the baseload and distinguishing
the peak load periods. It is calculated according to (1) and
denoted by Fd;(t).

1=1:365

t=1:24 M

{ Edi(t) = Ez(t) - Eavg,i )

In Fig. 2 the load data is split into two parts, weekdays
and weekends. The daily consumer pattern from Monday to
Friday is quite similar; hence all the weekdays are put in one
category. Saturday and Sunday are put in one category because
of a similar consumer pattern. As can be seen from Fig. 2 (a),
there are two peak load periods during weekdays. The first
one occurs in the morning from 7:00 to 9:00, as the occupant
is getting ready to leave home, it is normally around 8:00.
The other peak load period occurs from 17:00 to 2:00. At this
period, the occupant comes back home and the reason for high
electricity consumption during midnight is the charging of an
electric vehicle.

On weekends, the electricity consumption pattern changes.
The pattern of weekends is clearly different from the pattern of
weekdays. There is one peak load period which is from 16:00
to 2:00 which is broader than the weekdays load period.

B. Modeling

The first step to designing a proper energy system is finding
reliable models for each component of the energy system.
This section is aimed towards obtaining reliable models for
the electricity load demand in a residential building. The
developed model can be used for further studies related to
different applications such as monitoring, fault detection and
energy management systems.

In this paper, two different Neural Network architectures
(MLP and RBF-NN) are used to model the electricity load of
a building. In the following, the structures of these methods
are explained.
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Fig. 2. Electricity load consumption of the sampled data; a) From Monday
to Friday; b) Saturday and Sunday

1) MLP: The Multi-Layer Perceptron model is the most
common neural network architecture. It is a strong tool for
modeling and function approximation applications like load
modeling [14], [15]. The MLP structure, including input,
hidden and output layers is shown in Fig. 3. Evidently, it has
a feedforward architecture so that the output of one layer is
the input of the next layer. In the MLP structure, the output
of the neural network is calculated as follows [16]

y=Yzf(Q wuwi+b)) )
j=1 i=1

where z and w are weight matrices, n and m are the number
of neurons and inputs, respectively; b is a bias term and x is
the input of NN. In (2), f is an activation function which is
an S-shaped curved sigmoid function as expressed below

1

f(x)zm

There is not a straightforward method to calculate the
number of neurons in the hidden layer of MLP. Therefore,
it can be obtained empirically by trial and error. The MLP
structure that is used in this paper has six inputs, one
hidden layer with 500 neurons, and one output. Inputs are
variables that have an impact on the electric consumption

3)
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Fig. 3. Multilayer perceptron neural network structure.

in a residential home including, time of day, weekday,
month, outdoor temperature, wind speed and holiday time.
The network parameters including bias and weight values
are estimated according to minimizing a loss function
(usually a quadratic function) during the training process.
The Levenberg-Marquardt optimization is a steepest-descent
backpropagation algorithm, which is employed based on the
gradient of the loss function with respect to the network
parameters.

2) RBF-NN: Another widely used ANN architecture for
load modeling is the radial basis function neural network
technique, because it can capture the nonlinearities and un-
certainties of a system. It consists of three parts, input space,
feature space, and output. In RBF-NN, data are transferred to a
feature space using nonlinear functions. This mapping is done
by ¢(x), which is a nonlinear mapping of z. The output of
RBF-NN is a combination of weighted kernels which is given
as follows [17]

m

Yy = Z wipi(x)

where w; is the weight value of i-th neuron in the RBF-NN.
Moreover, the following Gaussian function is defined for the
activation function
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where ¢; and o; are vectors of the center and radius of the
activation function of the RBF-NN, respectively.

Likewise, the MLP, the RBF-NN model used in this study
has six inputs, and one output. The trained RBF-NN is
obtained with maximum 1200 neurons of the feature space.

eXp{i(mici)T(l‘*Ci)/QU?}
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III. RESULT

In this section, the simulation results of obtained home
load models using MLP and RBF-NN are presented. The case
study is a single-family detached house located in the arctic
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Fig. 4. Radial-basis neural network structure.

climate in Northern Norway. The main devices that exist in
the building are listed in section II, part A.

All the simulations are done in MATLAB R2020a, Neural
Network Toolbox.

A. Comparison results of different methods

In this part, the same input dataset including outdoor
temperature, wind speed, user pattern, time of day, weekday,
and month is inputted into the networks to compare their
performance on the modeling of the electrical load of the
home. In both methods, the arrangement of data is changed
to allocate data to each category (training, validation and test
data) randomly. In MLP algorithm, data is divided into three
parts; 70% for training, 15% for validation and 15% for test.
In RBF-NN technique, 70% is allocated for training and 30%
for test.

The home load modeling performance of the different
proposed methods is assessed by three widely used metrics
including MSE, RMSE and regression (R) that is correlation
between ANN outputs and actual values.

N 2
> (T — Y)
MSE = ‘“:1# (6)
RMSE =VMSE (7)

where T}, is the actual value, Y}, is the output of the model,
and N is size of data.

Fig. 5 shows one week of the test data. As shown in Fig. 5
(a), the black line is the output of the MLP network, and the
red line is the actual value of electricity consumption.The blue
line in Fig. 5 (b) is the error between output and target. As it
is evident in Fig. 5 (a) and (b), the model obtained by MLP
is successfully tracking the actual values.

Furthermore, Fig. 6 demonstrates the real load and modeled
load by the RBF-NN method on a random range equivalent
to a one-week measured of test data. Likewise, the MLP,
the developed model by RBF-NN is able to follow targets
trajectory.
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Fig. 5. One week of the test data; a) Target and output of the MLP with one
hidden layer; b) Error

TABLE I
ERROR AND REGRESSION FOR DIFFERENT METHODS
Train data Test data
MSE | RMSE R MSE | RMSE R
MLP 0.52 0.72 0.85 | 0.76 0.87 0.79
RBF-NN | 0.32 0.56 091 | 1.02 1.01 0.70

For better understanding, the results related to MLP and
RBF-NN performance are summarized in Table I. As shown
in Table I, RBF-NN has higher accuracy in training data.

In contrast to training data, when comparing the MSE,
RMSE and R values of the test data, the MLP method has a
better modeling performance with lower error values than the
other method according to Table I.

B. Impact of different input datasets on modeling

In this section, four different input datasets are considered
to investigate the impact of each of them on the modeling of
electric load consumption.
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Fig. 6. One week of the test data; a) Target and output of the RBF-NN; b)
Error

In the first dataset, all the inputs including temperature, wind
and holiday are applied to the system. In the second dataset,
wind is not considered as an input in order to check its impact
on the modeling of load consumption. In the third dataset,
holiday is not one of the inputs to check how much impact it
has if the occupant behavior is removed and the last dataset
is without considering temperature as an input.

All these datasets are applied to both MLP and RBF-NN
networks, and the performance of systems with different input
datasets are shown in Table II and Table III.

When comparing different results in Table II and Table III,
it is obvious that wind speed has the lowest impact on the
load modeling, because there is no significant difference
between metrics of Case 1 and Case 2. Consequently wind
speed as one of the inputs of ANN does not have a significant
impact on the accuracy of load modeling. This result might
differ from building to building, depending on how airtight
the building is. On the other side, temperature and holiday
inputs have the highest impact on the load modeling, since
when they are not considered as inputs, there are considerable
difference between the metrics of them for Case 1. That
means for better performance in home load modeling using
ANN methods, temperature and user behavior are two
important factors that should be considered as NN inputs. The



TABLE II
ERROR AND REGRESSION FOR DIFFERENT DATASETS INPUT IN MLP
METHOD (T: TEMPERATURE; W: WIND; H: HOLIDAY)

Train data Test data
MLP
MSE | RMSE R MSE | RMSE R
Case 1 | T, W, H | 0.52 0.72 0.85 | 0.76 0.87 0.79
Case 2 H T 0.53 0.72 0.85 | 0.79 0.89 0.77
Case 3 T, W 0.59 0.77 0.83 | 0.99 0.99 0.71
Case 4 H, W 0.62 0.78 0.82 | 0.95 0.97 0.75
TABLE III

ERROR AND REGRESSION FOR DIFFERENT DATASETS INPUT IN RBF-NN
METHOD (T: TEMPERATURE; W: WIND; H: HOLIDAY)

Train data Test data
RBF-NN
MSE | RMSE R MSE | RMSE R
Case 1 | T, W, H | 0.32 0.56 0.91 1.02 1.01 0.70
Case 2 H T 0.38 0.62 0.89 1.10 1.04 0.70
Case 3 T, W 0.39 0.62 0.89 1.26 1.12 0.63
Case 4 H, W 0.57 0.75 0.84 1.20 1.10 0.65

effects of temperature and user behavior on the electricity
consumption are also seen in Fig. 1. During the months when
the temperature is low, the monthly average load is higher
than annual average load, and when the occupant is on a
vacation, the power consumption is much lower than normal
situations.

IV. CONCLUSION

In this paper, a comparison between MLP and RBF-NN
networks for home load modeling has been presented.
Detailed analysis of the simulation results illustrated that
both ANN methods have acceptable performance in the case
of home load modeling application, but in comparison to
each other MLP excels because of its higher accuracy in
test data. The comparative analysis results for different input
datasets showed that wind speed has the lowest impact on
the accuracy of load modeling and temperature and occupant
behavior have the highest effect on the efficiency of the
model. The results were presented for a single-family home
in Arctic climate condition, and more measurements are
needed to verify if the same result can be expected on the
majority of buildings.
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