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Abstract

Automatic ice charting can not be achieved using only SAR modalities. It is fundamental to combine information from
other remote sensors with different characteristics for more reliable sea ice characterization. In this paper, we employ
principal feature analysis (PFA) to select significant information from multimodal remote sensing data. PFA is a simple
yet very effective approach that can be applied to several types of data without loss of physical interpretability. Con-
sidering that different homogeneous regions require different types of information, we perform the selection patch-wise.
Accordingly, by exploiting the spatial information, we increase the robustness and accuracy of PFA.

1 Introduction

Recently, sea ice research has become a hot topic in Earth
observation disciplines, as it plays a vital role in the polar
ecosystem, and it is one of the main indicators of global
climate change. Indeed, it affects several anthropogenic
activities in the Arctic region, such as oil and gas industry,
fisheries, shipping, and tourism. It also affects the lifestyle
and welfare of indigenous population. All these factors
make sea ice monitoring of primary interest to protect
the Arctic and to ensure safe and effective commercial
activities and polar navigation [1].

Due to the remoteness and extreme weather conditions,
remote sensors (especially synthetic aperture radar (SAR))
are the primary source of information about the Arctic
region. At present, the automatic interpretation of remote
sensing data is challenging and relies on the expert’s
analysis. However, automatic sea ice analysis is required
to perform robust near real-time investigation on a global
scale [2].

Various remote sensing systems (modalities) grasp
different aspects of sea ice by using different physical
principles. Thus, integrating relevant information from
multiple modalities enables better characterization of
sea ice [3]. Nevertheless, although different modalities
provide complementary information, they can also be
redundant, corrupted, or irrelevant for a particular task.
Hence, combining all available information may deterio-
rate the analysis. Moreover, it increases the algorithm’s
complexity. Therefore, the selection of relevant infor-
mation is an essential step of multimodal data fusion for
reliable and efficient performance [4].

Relevant information retrieval can be achieved by dimen-
sionality reduction methods, such as feature selection and

feature extraction. Feature extraction methods transform
the original set of data into a lower dimensional space.
On the other hand, feature selection methods identify the
most relevant elements of the dataset according to a given
criterion, such as maximum variance, minimum depen-
dency, or maximum correlation. As opposed to feature
extraction methods, feature selection approaches preserve
the physical interpretability of the results. The aforesaid
methods can be classified as supervised, if they require
training data, or unsupervised. The supervised methods,
can be accurate if the training data are rich and reliable.
However, when considering sea ice characterization,
scarce training sets (either in terms of quality or size) are
typically available. Therefore, supervised methods can be
hardly employed to obtain accurate and reliable results.

Principle component analysis (PCA) is one of the most
used information extraction techniques being efficient
and easy to implement. PCA is unsupervised and applies
an orthogonal transformation to convert a set of obser-
vations of potentially correlated variables into a smaller
set of linearly uncorrelated variables, called principal
components [5]. In [6], Lu et al. proposed a variation
of PCA for feature selection. Principal feature analysis
(PFA) exploits the same tools as PCA to generate a new
representation of the data. This new representation, as
opposed to PCA, can be mapped back to the original
domain and hence preserves the physical interpretation of
the dataset (essential for sea ice analysis).

In this paper, we use PFA for multimodal information
selection for remote sensing of sea-ice. In contrast to the
classic PFA, we perform the selection in a patch-wise
manner. In this fashion, we fully exploit the potential of
each modality, since only the deficient or irrelevant parts
of an image are discarded. Moreover, we take into account
the particularity of each object in the observed scene,



since our approach only chooses the relevant attributes
to its characterization. Experimental tests carried out on
several instances of multivariate remote sensing datasets,
acquired over the Arctic region, show that the proposed
approach increases the efficiency and accuracy of sea ice
multimodal analysis.

The remainder of this paper is organized as follows: Sec-
tion 2 recall the principles of PFA approach. Section 3 in-
troduces the superpixel PFA. Section 4 delivers the experi-
mental results of our method on different datasets. Finally,
the conclusions are presented in Section 5.

2 Principal feature analysis

Let M the number of all attributes retrieved from remotely
sensed images, e.g., polarization intensities, spectral chan-
nels, and textural features, etc. The images acquired by
different sensors may have different physical units, differ-
ent resolutions, and different coordinate systems. The first
step of our analysis consist of making the data comparable,
by means of normalization, subsampling, and alignment
on the same coordinate system. We denote by xi 2 RM

the set of M attributes associated to the i-th pixel, and by
X = [x1, . . . ,xN ] 2 RM⇥N the matrix of observations,
where N is the number of pixels.
In order to increase the separability of attributes and unveil
their hidden structure, PFA generates a new representation
using the eigenvectors of their covariance matrix. The sam-
ple covariance matrix of the attributes can be written as
follows:

⌃ ⇡ 1

N � 1

NX

i=1

(xi �µµµ) (xi �µµµ)T , (1)

where µµµ = 1
N

PN
i=1 xi, and .T denote the transpose oper-

ator. Using singular value decomposition [7], we obtain:

⌃ = V⇤VT , (2)

where V 2 RM⇥M is a unitary matrix, whose columns
are the eigenvectors of ⌃. ⇤ = diag{�1, . . . ,�M} is a
diagonal matrix, whose elements are the eigenvalues of ⌃,
such that �1 � �2 � · · · � �M .

⌃ depicts the second-order statistical relationships be-
tween the attributes. Moreover, the eigenvectors of ⌃ can
be geometrically interpreted as the axes that best fit the data
[8]. Their corresponding eigenvalues reflect the variability
of the attributes along the axes. Accordingly, eigenvectors
with large eigenvalues reveal most of the information about
data and are hence more illustrative of its variance [8].
PCA uses the K first principal eigenvectors, correspond-
ing to the largest eigenvalues, as the basis of a lower-
dimensional space onto which the dataset is projected. As
opposed to PCA, PFA uses the rows of the principal eigen-
vectors as the new representations of the attributes. This
new representation accounts only for the largest eigen-
values and exploits the linear dependency of attributes.

Hence, it presents a strong discrimination power compared
to the original set of attributes.
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K Principal eigenvectors
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(3)
Using this new representation, and by means of clustering
algorithms such as k-means, the attributes are arranged in
different groups according to their similarity. Accordingly,
constituents of one cluster depict similar information,
while members of different clusters represent different
information. Therefore, the attributes corresponding to
the centroids of the clusters are chosen to preserve the
information content of the original set.

In fact, PFA is a graph clustering approach using eigenvec-
tors of the similarity matrix, where the attributes constitute
the vertices of the graph, and the similarity matrix is de-
fined using covariance.

3 Superpixel PFA

The homogeneous parts of a region of interest have differ-
ent properties. Accordingly, they require distinct types of
attributes to be characterised. In order to reflect the particu-
larity of each homogeneous part, we perform the selection
at a superpixel level. Specifically, we partition the images
into L homogeneous patches, i.e., superpixels, using Wa-
tershed [9] segmentation, however other methods such as
Simple linear Iterative Clustering (SLIC) [10] can be also
applied. To each superpixel, we apply PFA to select the rel-
evant attributes to its characterization. The different steps
of superpixel PFA are shown in Algorithm 1.

Algorithm 1 Attributes selection at the l-th superpixel
Input: Attributes of l-th patch - Xl, Number of selected
features - K < M .
Output: Subset of K Attributes

1. Compute the covariance matrix of Xl, ⌃l,

2. Compute the first K largest eigenvectors of ⌃l,
vl1, . . . ,vlK .

3. Form Ul = [vl1, . . . ,vlK ] 2 RM⇥K .

4. Cluster the rows of Ul using k-means.

5. Assign the i-th attribute to the same cluster as the i-th
row of Ul

6. Return the centroids of the clusters.



4 Experiment

The following section reports the performance analysis of
superpixel PFA, as well as comparison results with other
existing dimensionality reduction methods using several
multimodal sea ice datasets.

Dimensionality reduction methods can be used as a
preprocessing step of various remote sensing applications.
In this work, we use it to improve sea ice classification
accuracy. To validate the performance of superpixel PFA
method, we use one of the widely applied supervised
classifiers in remote sensing, support vector machine
(SVM).

SVM is a classification method that determines a set of
hyperplanes that separate the dataset into different classes
[11]. To perform a non-linear classification, we choose as
a kernel the radial basis function (RBF).

In all the experiments, we randomly choose 20% of the
samples from each label as the training set. The remaining
80% of samples are used as a test set. To quantitatively es-
timate the classification result, we use the overall accuracy
(OA) index and Cohen’s kappa statistic (Kappa).

4.1 Datasets

To evaluate the performance of superpixel PFA for
multimodal remote sensing, we used two multisensor
and multiband datasets obtained from various satellite
platforms.

Both datasets were acquired in April 2018 on the North-
East from Svalbard. They consist of SAR and optical
data obtained from Sentinel-1 and Sentinel-2 for the first
dataset and Radarsat 2 and Landsat 8 for the second.
Datasets were downsampled to the same resolution by
the nearest neighbor resampling method and projected
onto the same WGS 84 / Arctic Polar Stereographic -
EPSG:3995 coordinate system. Both datasets were labeled
by sea ice experts and include several sea ice types along
with open water. Figure 1 shows the region of interest for
two datasets. In the remaining of this section, we refer to
the datasets as S1/S2 and R2/L8.

Along with the optical bands and SAR polarizations,
we expand the dataset by extracting Gray-Level Co-
Occurrence Matrix (GLCM) textural features [12, 13].
Textural features were extracted for each original attribute,
i.e., optical band and SAR polarization. Table 1 illustrates
the extracted features as well as their mathematical
definitions. Specifically, gi,j denotes the element of the
GLCM matrix G. Q is the number of gray levels used, and
µ =

PQ�1
i=0

PQ�1
j=0 igi,j and �2 =

PQ�1
i=0

PQ�1
j=0 (i�µ)g2i,j

are, respectively, the GLCM mean and variance. ASM
refers to angular second momentum. Finally, S1/S2
dataset includes 84 attributes (14 SAR and 70 optical)
and R2/L8 consist of 91 attributes (14 SAR and 77 optical).

Figure 1 Region of interest maps for both multimodal
datasets. Top: S1/S2. Bottom: R2/L8.

Figure 2 Overlapping area of S1/S2. Left: Natural color
composite from Sentinel-2. Right: HH polarisation from
Sentinel-1.

4.2 Parameter Sensitivity Analysis

The number of selected attributes and the size of super-
pixels are two parameters that may affect the performance
of the superpixel PFA method.

Figure 4 shows the overall accuracy as a function of
the number of selected attributes for both datasets. It is
possible to appreciate that the use of all available attributes
does not surely lead to the best classification accuracy
since OA becomes stable or even slightly decreasing after
a particular point. Additionally, for R2/L8 dataset, maxi-
mum classification accuracy was achieved with less than
the third of the original feature set. This shows the ability
of superpixel PFA for relevant information selection. For



Figure 3 Overlapping area of R2/L8. Top: Natural color
composite from Landsat 8. Bottom: HH polarisation
from Radarsat 2.

Table 1 GLCM Features.

Features Definition

Contrast
PQ�1

i,j=0 gi,j (i� j)

Dissimilarity
PQ�1

i,j=0 gi,j |i� j|

Homogeneity
PQ�1

i,j=0
gi,j

1+(i�j)2

ASM
PQ�1

i,j=0 g
2
i,j

Energy
p
ASM

Correlation
PQ�1

i,j=0 gi,j
h
(i�µi)(j�µj)

�i�j

i

both datasets the optimal number of attributes is equal to
30.

Figure 4 Overall accuracies of superpixel PFA over a
different number of selected attributes for two datasets.

A superpixel based approach is affected by the size of the
homogeneous areas. Small superpixels hold consistent in-
formation, while large sizes, including more data, are more
accurate. Figure 5 illustrates overall accuracy with respect
to the number of superpixels for both datasets. A large
number of superpixels implies superpixels of small size.
It is evident from the curves that the number of superpix-
els does not affect the classification accuracy significantly.
Although accuracy does not vary much for both datasets,
the slightly more accurate result was achieved using 1000
superpixels, thus we use this value for subsequent analysis.

Figure 5 Overall accuracies of superpixel PFA over a dif-
ferent number of superpixels for both multimodal datasets
using SVM classifier. Note that the vertical scale is Small.

4.3 Analysis of Selected Attributes

Figure 6 shows the number of attribute occurrences for
S1/S2 dataset, i.e., the number of times an attribute was
selected in all superpixels. SAR and optical attributes are
shown in red and green color, respectively. The histogram
shows a clear predominance of optical attributes, which is
due to their large number compared to SAR (14 SAR at-
tributes and 70 optical). It is evident from the histogram
that the proposed method mainly selects data attributes
(polarization intensities when considering SAR and re-
flectances when considering optical). The histogram shows
the relevance of multimodal data since both SAR/optical
attributes are selected by the superpixel PFA method with-
out clear priority. It means that both datasets contain valu-
able, unique, and complementary information that can im-
prove further applications.

Figure 6 Number of occurrences for SAR and optical
attributes of S1/S2 multimodal dataset.

4.4 PFA versus superpixel PFA

On Figure 7 we show the overall accuracy with respect
to the number of selected attributes for PFA and super-
pixel PFA. We remark that superpixel PFA outperforms
the classic PFA in accuracy. Moreover, while superpixel
PFA shows a stable behaviour, PFA is extremely affected
by the number of selected attribtues. That is because the
superpixel analysis improve the separability of data which
makes it less affected by the high variance induced by in-
creasing the number of attributes.

Figure 8 and Figure 9 shows the classified maps for both
datasets using optimal number of attributes selected by pro-
posed method. Sea ice labels used in this work differ from
WMO Sea Ice Nomenclature [14], since we use multisen-



Figure 7 Overall accuracies of PFA and superpixel PFA
over a different number of attributes for R2/L8 dataset.

sor data (SAR and optical) that can provide different infor-
mation about the same region. Therefore it is complicated
to determine exactly the same labels that will correspond
both to WMO and radar classes simultaneously. Thus the
sea ice types that are thicker than Nilas are labeled as 1-
Thin and 2-Thick, which corresponds to 1-different young
ice types and 2-various first-year ice types, respectively.

Figure 8 Classified map for S1/S2 dataset with optimal
number of attributes selected by means of the proposed
method.

Figure 9 Classified map for R2/L8 dataset with optimal
number of attributes selected by means of the proposed
method.

4.5 Comparison with other Methods

Now, we compare the achieved results with other six
dimensionality reduction algorithms, namely three feature
extraction methods: principal component analysis (PCA),
decision boundary feature extraction (DBFE), Fisher
information feature extraction (FIS) and three feature
selection methods: forward feature selection (FS), branch
and bound (OBB) and genetic algorithm (GA). FIS uses
Fisher information for data transformation [15]. DBFE is
a supervised method that extracts information and exploits
the geometrical properties of decision boundaries [16]. FS

starts with a minimum number of features and with each
new step it adds one feature that improves classification
the most in terms of accuracy [17]. OBB is a backtracking
feature selection algorithm that is based on the assumption
that the adopted criterion function fulfills the monotonicity
condition at which a straightforward application of this
property many feature subset evaluations may be omitted
[18]. GA is an adaptive algorithm that finds the global
optimum solution for an optimization problem, based on
the mechanics of natural genetics and biological evolution
[19].

Table 2 demonstrates the OA and Kappa of R2/L8 among
different dimensionality reduction methods. It is evident
that superpixel PFA outperforms the other methods in
terms of classification accuracy. This is due to the inability
of some approaches to process multimodal dataset, in ad-
dition to the effectiveness of a superpixel PFA to select the
best descriptive features for each homogeneous patch.

Table 2 Performance comparison among different dimension-
ality reduction methods for R2/L8 dataset. The number of at-
tributes are automatically chosen by each method. N refers to
the number of selected attributes.

Method N
SVM

OA Kappa

PCA 16 86.2 86.1
DBFE 15 85.4 85.0

FIS 17 84.7 84.4
FS 16 83.4 82.9

OBB 15 90.3 89.5
GA 14 89.3 88.7
PFA 20 95.1 92.9

Superpixel PFA 10 95.2 93.9

Superpixel PFA 30 99.3 98.7

5 Conclusions

In this paper, we employed PFA, being flexible and
efficient, for multimodal remote sensing information
selection. PFA combines the accuracy of feature extraction
and the interpretability of feature selection. We improved
the robustness of PFA by proposing a superpixel based
approach. Hence, selecting the best descriptive features
for each superpixel.

The superpixel selection can be used not only to select the
relevant information but also to understand the informa-
tion pertinent to characterize different objects or regions of
interest in the polar areas. This will improve accordingly
several sea ice applications, such as sea ice types classifi-
cation, sea ice deformation, sea ice drift, and iceberg de-
tection, which in turn can be useful for ice charting and
modeling services.
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