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Abstract 

We commonly adjust for confounding factors in analytical observational epidemiology to reduce biases that 

distort the results. Stratification and matching are standard methods for reducing confounder bias. Coarsened 

exact matching (CEM) is a recent method using stratification to coarsen variables into categorical variables to 

enable exact matching of exposed and nonexposed subjects. CEM’s standard approach to stratifying variables is 

histogram binning. However, histogram binning creates strata of uniform widths and does not distinguish 

between exposed and nonexposed. We present Autostrata, a novel algorithmic approach to stratification 

producing improved results in CEM and providing more control to the researcher. 
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1 INTRODUCTION 

Epidemiologists conduct analytical observational studies 

[1] to investigate associations between exposures and

outcomes. Instead of assigning a treatment or exposure to

the participants of a randomized experiment [2], we rely on

observations of the subjects in their usual environment with

minimal interference. There are many established ways of

designing observational studies, from cross-sectional,

cohort, and case-control studies to more complex

prospective cohorts with several nested case-control and

cross-sectional designs [3, 4, 5]. A common theme for

these is awareness of biases. Confounding factors [6, 7, 8]

are a common source of bias that can, if measured, be

adjusted for in the analysis [9, p. 1020]. Stratification [10],

for example, can control for confounding by dividing study

subjects into groups based on observed confounders. Iacus

et al. [11] present the coarsened exact matching (CEM)

method that adjusts for bias by turning confounder

covariates into categorical variables through stratification,

which we can then use to match comparable subjects

exactly. Blackwell et al. [12] introduce a Stata

(https://www.stata.com) implementation of CEM, and

Iacus et al. [13] provide an implementation for R

(https://www.r-project.org). In addition, a web page with

an overview of implementations for other programming

languages and platforms is available

(https://gking.harvard.edu/cem). The same webpage also

informs that CEM is officially qualified for scientific use

by the U.S. Food and Drug Administration. The CEM

implementations let users create strata manually or use

automatic stratification. The built-in automatic

stratification creates uniform width bins by applying

general rules of thumb for constructing histograms. The

three binning algorithms included in both Stata and R are

Sturges’ rule [14], Scott’s rule [15], and Freedman-

Diaconis’ rule [16]. Additionally, Stata includes an

implementation of Shimazaki-Shinomoto’s rule [17].

Blackwell et al. [12, p. 534] demonstrate that manually 

defining strata based on domain knowledge can sometimes 

give better results than the current automatic approach. In 

their example, the manually defined strata are less 

imbalanced while giving a higher number of matched units. 

However, according to King et al. [18, p. 439], researcher 

biases are highly likely to affect qualitative choices even 

when researchers attempt to avoid them. ‘The literature 

makes clear that the way to avoid these biases is to remove 

researcher discretion as much as possible,’ following King. 

On the other hand, the general histogram binning rules do 

not support the specific challenges of stratifying 

confounders: 

 The histogram binning algorithms do not

distinguish between different groups of units and

include no concept of matching.

 They do not take into account multivariate

imbalance between groups.

 The strata have uniform widths, i.e., all strata for

a covariate have the same width.

 The researcher cannot in advance give parameters

to influence the stratification process.

Against this background, we researched and developed a 

novel algorithmic approach to the stratification problem 

that addresses the shortcomings above. We implemented 

the algorithm and experimentally compared it to CEM’s 

built-in histogram binning with good results. 

We conclude the introduction with a brief example of 

Autostrata’s applicability to health-related studies. For 

instance, say we want to study if coffee consumption is 

associated with a beneficial effect on the risk of liver 

cancer. In the respective observational study, we must be 

cautious of possible systematic differences between the 

compared groups, such as smoking habits. Failing to adjust 

for these differences can challenge the validity of the 

results. Autostrata improves such adjustments when using 
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CEM. The method creates more precise results and keeps 

more study participants included in the analysis. 

After the introduction, the structure of the paper is as 

follows: First, we provide essential background for 

understanding the problem. Next, we describe our 

approach and algorithm. We then present the experiments 

and results, followed by a discussion. Last, we briefly 

touch upon related work before concluding. 

1.1 A note on terminology 

The paper primarily uses the terms treated and 

controls instead of exposed and nonexposed due to their 

use in CEM and the general causal inference literature. In 

addition, although case-control studies are different from 

cohort studies that focus on exposed and unexposed, they 

are interchangeable in this paper because we concentrate 

on the stratification of confounder covariates in isolation 

from these differences. Further, we use the general 

statistical term units instead of subjects, individuals, or 

study participants often seen in epidemiology. 

2 BACKGROUND 

Before presenting our approach, we provide the 

background necessary to understand the challenges of the 

stratification problem. 

2.1 Confounding 

We often assess whether the risk of a health event 

(outcome) is increased or decreased among an exposed or 

treated group compared to a control group. To quantify the 

relationship between an exposure or treatment and the 

outcome, we calculate risk ratios, odds ratios, or other 

measures. However, other factors not directly under 

investigation can skew the results or even lead us to the 

opposite conclusion of what is correct. Figure 1 illustrates 

how confounding factors influence both the exposure and 

the outcome. Note that the confounder is not in the direct 

causal pathway between the two. Also, a relevant property 

of confounders is that the compared groups have 

differently distributed values for the confounder covariate. 

If the confounders are measured and included in the 

dataset, we can adjust for confounders during analysis, 

which is the purpose of the stratification discussed in this 

paper. It is worth noting that according to Wacholder et al. 

[9, p. 1020], the use of stratification or matching can, in 

effect, adjust for unknown or unmeasured confounders 

through reduced variability because this variability is 

measured conditionally on the levels of other studied 

variables. 

Figure 1 shows an exposure that is associated with a risk 

of an outcome. The confounding factor is associated with 

both the exposure and the outcome without being in the 

direct causal pathway of the two. 

2.2 Counterfactuals and imbalance 

The Neyman-Rubin causal model (RCM) [19] is one of the 

notable influences on the understanding of causal inference 

in observational studies. According to the model, to 

estimate the effect of a treatment on an outcome, we should 

ideally compare the treated subjects with the same subjects 

without treatment. Except for the treatment, all other 

conditions must be the same, including the time. The latter 

is a counterfactual and is impossible to observe. We instead 

compare to relatively similar, untreated controls. However, 

the treated and controls in our sample are often 

systematically different or imbalanced for the confounding 

factors, which leads to bias. Lowering this imbalance 

between treated and controls to make them more similar is 

thus a strategy to reduce the bias. 

2.3 Coarsened exact matching 

As earlier explained, the confounder covariates are 

distributed differently for the compared groups. Thus, we 

can view the bias as stemming from an imbalance in the 

data. Coarsened exact matching (CEM) [11] is a method 

for adjusting confounder bias as a preprocessing step 

before analysis. It belongs to a class of monotonic 

imbalance bounding (MIB) methods, enabling the 

researcher to set a maximum imbalance between treated 

and controls for the confounder covariates or reduce the 

maximum imbalance for a covariate independently of 

others. The theoretical foundation of CEM is outside the 

scope of this paper, but its use is relatively straightforward. 

We partition the confounder covariates into subintervals. 

Each subinterval then represents a single value of a 

categorical variable. For example, a covariate for years of 

education can be partitioned into subintervals representing 

the highest level of education instead. In CEM, this is 

called coarsening and opens for simple, exact matching of 

similar treated and control units. It additionally helps 

balance the sample by pruning treated and control units 

without suitable matches. The coarsening is temporary and 

not passed to subsequent analysis steps. 

The described coarsening corresponds to stratification. We 

stratify each covariate, and each treated and control unit 

will then belong to a multi-dimensional stratum. Although 

the current CEM software packages use uniform width 

histogram binning for automatic stratification, CEM as a 

method is not restricted to strata of uniform widths. For 

example, manual stratification and non-uniform widths are 

supported. Autostrata is an alternative approach to 

automatically stratifying covariates, which constructs 

strata of non-uniform widths. 

2.4 Imbalance and unmatched trade-off 

The most commonly described imbalance measure for 

CEM involves the relative difference between the number 

of treated and control units per stratum. However, the 

software packages use an imbalance measure based on a 

per stratum difference in means between the covariate 

values for the two groups as default. This is similar to what 

Appendix B of [11, p. 34] describes. We thus base our 

approach on the latter. 

As shown in Figure 2, two strata with the same number of 

treated and control units can have a different internal 

imbalance because the covariate means are different for the 

groups. Nevertheless, the maximum imbalance is bounded 

by the stratum widths because the differences cannot be 

greater than the widths. Therefore, the narrower the stratum 

is, the lower its maximum imbalance. The lowest 

maximum imbalance is when each stratum only has a 

single unit or equal-valued units. A stratum with only one 

type of unit contributes zero to the imbalance, while 

multiple equal-valued units have an imbalance of zero. The 

challenge is that there is a trade-off.  
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CEM prunes unmatched units from the sample. If all units 

in a stratum are from the same group, these units are 

unmatched and discarded. Recall that the confounder 

covariates for treated and control units have different 

distributions. Hence, various degrees of overlap and 

densities will be found along the covariate axes, restricting 

how narrow a stratum containing both types of units can 

be. As we decrease the maximum imbalance, the number 

of unmatched units generally increases, and vice versa. 

Autostrata aims to lower this trade-off. 

Figure 2 illustrates two strata for covariates x1 and x2. 

Both strata have two treated and two controls, but the left 

stratum has a higher mean difference. Also, the maximum 

difference is bounded by the width between the stratum 

edges. 

2.5 Stratification problem properties 

Before concluding the background section, we describe a 

few properties of the stratification problem relevant to 

solving it algorithmically. 

First, the number of relevant stratum edges is finite. The 

reason is that a stratum edge for a covariate can be placed 

anywhere between two adjacent observations without 

changing stratum memberships. If an observation 

coincides with an edge, it belongs to the higher stratum. 

The exact position of an edge does not matter, only that it 

separates two adjacent observations for the given covariate. 

Neither do multiple stratum edges between two 

neighboring observations change any memberships. 

Further, if two or more observations have equal values for 

a covariate, they cannot be separated by adding stratum 

edges for the given covariate. Conclusively, the maximum 

number of relevant stratum edges equals the number of 

distinct values per covariate. 

Second, the number of possible combinations of the 

stratum edges, from including no edge to including all 

edges, grows exponentially with the number of distinct 

covariate values, i.e., the problem space is non-polynomial. 

Figure 3 shows all possible combinations of stratum edges 

for four distinct values, organized as a tree of nodes. The 

number of new stratifications that can be made by adding 

one stratum edge to a given stratification is illustrated in 

Figure 4. 

We can deduce the number of different stratifications 

possible for a covariate. Let 𝑆 be the set of possible 

stratifications for a covariate with 𝑛 distinct values. Then 

the cardinality, |𝑆|, is: 

|𝑆| = 1 + (𝑛 − 1) + ∑ 2𝑖−2(𝑛 − 𝑖) = 2𝑛−1

𝑛−1

𝑖=2

Given 𝑚 covariates, the total number of combinations, 

|𝑆𝑡𝑜𝑡|,  becomes:

|𝑆𝑡𝑜𝑡| =  ∏|𝑆𝑖| = ∏ 2𝑛𝑖−1

𝑚

𝑖=1

𝑚

𝑖=1

For cases where all 𝑛𝑖 = 𝑛 are equal:

|𝑆𝑡𝑜𝑡| =  |𝑆|𝑚 = 2𝑚(𝑛−1)

Thus, the state space of the problem grows exponentially 

with increasing numbers of distinct values and covariates. 

Furthermore, considering that each stratification can 

contain relatively many multi-dimensional strata and that 

we must compute imbalance measures and the number of 

unmatched units for each stratification, it quickly becomes 

computationally infeasible to perform a brute-force search 

through all combinations to find an optimal solution with 

the resources typically available to researchers. 

Figure 3. All possible stratifications of a covariate with 

four distinct observed values. The four values are 

illustrated as black dots within the tree nodes, and the 

stratum edges as vertical lines between the dots. 

Figure 4. This tree illustrates a pattern in the number of 

different stratifications that can be made as we move from 

a given parent to a child node by adding a new stratum 

edge, as in Figure 3. In this case, the number of distinct 

values is n=6. 

3 AUTOSTRATA 

We now present Autostrata, a novel algorithmic approach 

for improved stratification of confounder covariates for 

CEM. Improving CEM’s standard stratification method–

histogram binning–is not trivial. However, analysis results 

need to be as free of bias as possible to avoid them from 

being invalid. Often, the imbalance is higher than we 

wanted, the number of unmatched units is high, or both. 

Autostrata aims to lower the trade-off between the 

imbalance and the number of unmatched units. Figure 5 

shows a comparison of histogram binning and Autostrata. 
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Figure 5 shows two stratifications for the same two-

covariate dataset. The left plot is from histogram binning, 

and the right is from Autostrata. Each grid cell is a two-

dimensional stratum. On the left, the strata have uniform 

widths. On the right, the strata widths are non-uniform. 

3.1 Overall approach 

This section gives an overall description of the Autostrata 

approach and explains its reasoning. 

The generic histogram binning rules used in CEM work 

surprisingly well for stratification in our context. 

Therefore, understanding the underlying reasons is 

invaluable to improving the results: Any stratum 

containing both treated and controls is valid. Also, the 

sample’s total maximum imbalance will be lower if the 

strata are narrower. To construct strata spanning over a 

mixture of treated and control units, regions of common 

support must be present for the sample, i.e., there must be 

some overlap in the distributions for treated and controls. 

The treated and controls in regions with sparse or no 

overlap are further apart and more dissimilar than units in 

denser and more overlapping regions. Because we usually 

have a reasonable common support level, the uniform 

width strata will readily contain both treated and control 

units. Further, units in the sparser and less overlapping 

regions are more likely to be pruned, as they should. These 

factors contribute to why histogram binning works well. 

Conclusively, knowing these factors makes it reasonable to 

assume that much of the potential for improvement is in the 

regions where the distributions for treated and controls 

overlap most.  

Autostrata’s strategy is to construct narrow strata while 

keeping the number of unmatched units low. The strata can 

be of varying widths. Having narrower strata on average is 

equivalent to more strata. We thus start with an initial 

stratification state where all possible stratum edges for all 

covariates are included (see section 2.5). This state 

represents the narrowest stratification that is relevant. All 

units will be in a stratum containing only a single unit or 

same-valued units. From there, we iteratively remove one 

edge at a time. This edge can belong to any of the covariate 

dimensions. 

In its simplest form, the algorithm does not consider widths 

but removes edges one by one until the number of 

unmatched units is as low as requested by an input 

parameter. The main selection criterion for removing an 

edge, per iteration step, is the edge that gives the most 

significant reduction in unmatched units when removed. 

Removing a stratum edge for one dimension (covariate) 

merges one or more strata divided by stratum edges for 

other dimensions. Merging strata for a given covariate 

results in strata that are wider, so the increase in the average 

width of the strata for a covariate is strictly monotonic. 

The crux of the algorithm is: For each stratum edge that we 

remove from the initial state, the average maximum 

imbalance increases. If the algorithm reaches the requested 

maximum number of unmatched in fewer steps, i.e., by 

removing fewer edges, the average maximum imbalance 

will be lower than if more steps are spent. Thus, to reduce 

the number of iterations needed to reach the goal number 

of unmatched, for each it|eration, we remove the edge that 

gives the greatest reduction in the number of unmatched, 

after assessing all currently remaining edges in any 

dimension. If several equally good options are found, the 

one giving the narrowest width is chosen. In Section 3.2, 

we describe how the widths for different covariates are 

scaled to be comparable. 

Autostrata also provides the researcher with input 

parameters for more control over the resulting 

stratification: 

 The maximum wanted numbers of unmatched

treated and controls

 The maximum allowed widths between stratum

edges per covariate

The researcher can specify maximum numbers of 

unmatched treated and controls as two separate input 

parameters. The stratification process will continue until 

reaching both numbers or until the point when there is no 

closer solution. For example, suppose the stratification 

algorithm reaches one of the requested maximum numbers 

of unmatched for either treated or controls. It will then 

continue until reaching the requested number of unmatched 

for the other group. It continues iterating, and the numbers 

can continue to improve for both treated and controls. 

Section 3.2 describes how Autostrata incorporates weights 

to account for the difference in the requested maximum 

numbers of unmatched treated and controls while iterating. 

Further, Autostrata has a parameter for the maximum 

allowed stratum width per covariate, and it will not create 

strata wider than the given widths. If widths are not of 

importance, a large or infinite value can be given as input 

instead. The background for the maximum width parameter 

is that researchers may want to set a maximum difference, 

caliper, between treated and controls for the covariates—

for example, max five years age difference or five points 

difference for a given performance score. In addition, 

setting a maximum width restricts the maximum 

imbalance. Another reason to set widths, which concerns 

the algorithm, is to prevent a single or a few strata from 

expanding too much while leaving others unchanged. 

Broader strata have a higher potential imbalance. It is 

possible to imagine that, on average, a large stratum 

combined with many narrow ones may somewhat cancel 

each other out imbalance-wise, but it is probably not what 

we want. A large stratum will still have a greater risk of 

being imbalanced. Lastly, we can use the widths produced 

by CEM’s histogram binning as input to Autostrata. 

Histogram binning only supports uniform width strata, but 

Autostrata can use these widths as the maximum allowed 

when defining strata of non-uniform widths. 

3.2 Heuristics 

In section 3.1, we gave an introduction to the overall 

approach. Autostrata is an algorithmic approach to 

stratifying covariates that starts with an initial state where 

all stratum edges are present and iteratively removes one 

edge at a time until the end criterion is met or no further 

improvements are found. Here, we describe the heuristics 

in more detail. 

When we remove a stratum edge along the direction of one 

dimension (covariate), two and two strata become merged 
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to form new, wider strata. Removal of an edge usually 

results in more than two strata being merged because there 

are also edges along the other dimensions separating the 

covariate values into distinct strata. If two neighboring 

strata contain only treated and only controls, respectively, 

merging the two strata results in a stratum with a mix of 

both types. These units are no longer unmatched and, thus, 

not pruned from the sample. 

Autostrata has two criteria for choosing which stratum 

edge to remove for each iteration. The first criterion has the 

highest priority, and the second criterion applies only to 

alternatives with equally good values for the first. The two 

criteria are: 

1. Choose the greatest relative increase in matched

treated and controls if the stratum edge is removed

2. Choose the stratum with the narrowest width

Instead of using the increase in matched units directly, 

Autostrata uses a weighted measure for increase. Let ∆𝑡

and ∆𝑐 be the increase in the number of matched treated

and control units, respectively, when we remove a given 

stratum edge. The relative increase, ∆𝑟𝑒𝑙, is then:

∆𝑟𝑒𝑙= 𝑤𝑡 ∆𝑡 + 𝑤𝑐∆𝑐

, where 𝑤𝑡 and 𝑤𝑐 are weights. The weight for the treated

group, 𝑤𝑡 = 𝑤(𝑡), and control group, 𝑤𝑐 = 𝑤(𝑐), is

found as follows: 

𝑤(𝑔) = {

𝑚𝑔
𝑐𝑢𝑟 −  𝑚𝑔

𝑚𝑎𝑥

𝑛𝑔  −  𝑚𝑔
𝑚𝑎𝑥

, 𝑚𝑔
𝑐𝑢𝑟 − 𝑚𝑔

𝑚𝑎𝑥 ≥ 0

0, 𝑚𝑔
𝑐𝑢𝑟 − 𝑚𝑔

𝑚𝑎𝑥 < 0

, where 𝑔 is the group, 𝑚𝑔
𝑐𝑢𝑟  is the number of currently

unmatched units for the group, 𝑚𝑔
𝑚𝑎𝑥  is the requested

maximum number of unmatched for the group, and 𝑛𝑔 is

the total number of units from the group in the sample. 

Here, we also assume that 𝑛𝑔 > 𝑚𝑔
𝑚𝑎𝑥 .

The purpose of the weights is threefold: 

1. If one group is represented less than the other,

each new matched unit from the group should

weigh more.

2. The researcher can set parameters for how many

unmatched (pruned) treated and controls are

acceptable. The difference 𝑛𝑔 − 𝑚𝑔
𝑚𝑎𝑥 takes into

account that the gap between available and

discardable units can differ between groups.

3. If Autostrata has reached the goal for the number

of unmatched units for one group, an increase in

the other groups should weigh more when

choosing an edge to remove. As one group comes

closer to the goal, reducing the number of

unmatched for the other group is prioritized

higher. The difference 𝑚𝑔
𝑐𝑢𝑟 − 𝑚𝑔

𝑚𝑎𝑥 is the

remaining units to match for the given group.

Width is the second selection criterion for edge removal. 

The widths must be scaled because Autostrata compares 

stratum edges from all covariates per iteration. We 

compute a scale factor by removing outliers and taking the 

min-max difference. Observations having a standard score, 

|𝑧| ≥ 3, are outliers. The data can be scaled once as an 

initial step. In that case, the maximum widths must be 

scaled as well. Also, we must restore the resulting stratum 

edges to the original scale. For clarity, the pseudocode in 

Listing 1 does not scale the data until needed. 

3.3 Algorithm 

Here we present the algorithm in pseudocode form. The 

pseudocode is at an abstraction level sufficient to 

implement the algorithm. However, we omit 

implementation details and performance enhancements 

that do not contribute to the understanding. Listing 1 

presents the algorithm in pseudocode form, and Table 1 

describes the variables used in the listing. 

Variable Meaning 

tr and ct The covariate values for the treated 

and the control units 

∆𝑏𝑒𝑠𝑡 The best relative increase in matched 

units for the current iteration 

∆𝑐𝑢𝑟 The relative increase in matched units 

for currently assessed edge 

∆𝑡 and ∆𝑐 The increase in the number of 

matched treated and controls for 

assessed edge 

𝑚𝑡
𝑐𝑢𝑟and

𝑚𝑐
𝑐𝑢𝑟

The current number of unmatched 

treated and controls  

𝑚𝑡
𝑚𝑎𝑥  and

𝑚𝑐
𝑚𝑎𝑥

The requested maximum number of 

unmatched treated and controls 

covariates The covariates (dimensions) 

cov The current covariate 

edges The current set of edges, including the 

outer left- and rightmost edge per 

covariate 

nedg The number of edges in the current set 

of edges 

edgescov The current set of edges for the current 

covariate, excluding the outer left and 

right edges 

ecur The currently assessed edge 

esel The currently best edge for the 

iteration and candidate for selection 

el and eh ecur’s lower and higher adjacent edges 

widthcur The scaled widths of merged strata if 

we remove the currently assessed edge 

widthsel The scaled widths of strata if 

removing the iteration’s current 

candidate for best edge 

widthsmax and 

widthmax

The set of maximum allowed stratum 

widths, and the maximum width for 

the current covariate 

Table 1. The pseudocode variables and their meaning 

Autostrata Algorithm 

1 Input: tr, ct, widthsmax, 𝑚𝑡
𝑚𝑎𝑥, 𝑚𝑐

𝑚𝑎𝑥

2 Output: edges 

3 Initialization of variables: 

4 edgescov ← one edge per distinct covariate value 

5 𝑚𝑡
𝑐𝑢𝑟 , 𝑚𝑐

𝑐𝑢𝑟← calculate the initial number of

unmatched treated and controls 

6 Stratification: 
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7 while (𝑚𝑡
𝑐𝑢𝑟 > 𝑚𝑡

𝑚𝑎𝑥  or 𝑚𝑐
𝑐𝑢𝑟 > 𝑚𝑐

𝑚𝑎𝑥)

and (nedg > 0) do 

8 ∆𝑏𝑒𝑠𝑡 ← -1

9 widthsel ← ∞ 

10 esel ← nil 

11 for cov in covariates do 

12 for ecur in edgescov do 

13 get el and eh 

14 widthunscaled ← | eh - el | 

15 if widthunscaled > widthmax then 

16 continue // stratum too wide 

17 widthcur ← scaled_width(el, eh) 

18 ∆𝑡, ∆𝑐← the difference in numbers of

unmatched (for the multi-dimensional 

strata) between el and eh before and 

after removing ecur 

19 ∆𝑐𝑢𝑟← relative_increase(∆𝑡, ∆𝑐)

20 if (∆𝑐𝑢𝑟 > ∆𝑏𝑒𝑠𝑡) or (∆𝑐𝑢𝑟== ∆𝑏𝑒𝑠𝑡

and widthcur < widthsel) then 

21 ∆𝑏𝑒𝑠𝑡 ← ∆𝑐𝑢𝑟

22 widthsel ← widthcur 

23 esel ← ecur 

24  end // if 

25 end // for ecur 

26  end // for cov 

27 if esel == nil then 

28  break // no more improvements found 

29 else 

30 remove esel from edges 

31 update 𝑚𝑡
𝑐𝑢𝑟and 𝑚𝑐

𝑐𝑢𝑟

32 end 

33 if  𝑚𝑡
𝑐𝑢𝑟  ≤ 𝑚𝑡

𝑚𝑎𝑥  and 𝑚𝑐
𝑐𝑢𝑟≤ 𝑚𝑐

𝑚𝑎𝑥then

34 break // goal reached 

35 end // while 

36 return edges 

Listing 1. Pseudocode for the algorithm 

3.4 Implementation 

A version of the algorithm corresponding to Listing 1 was 

implemented in Python 3.9 (https://python.org), with some 

added performance enhancements. For example, we utilize 

Numba (https://numba.pydata.org) for counting 

unmatched units in strata, yielding a speedup [20, p. 125] 

of 2.25 for the algorithm as a whole when stratifying for 

Dataset 3 in Table 2 on an Intel i7-8850H CPU with 12 

logical cores. A far more significant performance 

enhancement is achieved by caching already computed 

results for each stratum. The same strata are visited 

repeatedly during the iterations, and the algorithm finishes 

17.67 times faster for Dataset 1 in Table 2 when reusing 

already computed results. Further, strata not affected by 

removing a given edge are not visited unnecessarily. 

Lastly, only relevant units are included in computations 

regarding subsets of strata. 

Still, there is plenty of room to enhance performance. 

Many of the algorithm’s computational tasks can be 

performed independently, e.g., the difference in unmatched 

units if a given edge is removed. Such independent 

computations that are well suited for parallelization are 

often termed embarrassingly parallel [21, p. 79-98]. A 

systematic approach to parallelizing algorithms is found in 

Foster’s methodology [22]. In addition to parallelization, 

we can enhance the performance by designing data 

structures for efficient access to frequently used data and 

extensively reusing previously computed results in the 

algorithm’s iterations. For clarity, we concentrate on the 

basic algorithm in this paper, leaving the suggested 

performance enhancements to future work. 

The accompanying source code for the paper is available 

on GitHub (https://github.com/jo-inge-arnes/autostrata). 

4 EXPERIMENTS AND RESULTS 

4.1 Datasets 

A generator for synthetic data was implemented that lets us 

draw random samples from a composition of distributions 

for treated and controls. Figure 6–Figure 8 show the 

datasets as violin and swarm plots, and Table 2 shows the 

number of units and the mixed distributions for the 

datasets. 

Figure 6 shows the swarm and violin plots of Dataset 1 

with two uniformly distributed covariates. 

Figure 7 shows the swarm and violin plots of Dataset 2 

with a mixture of Gaussians. 

Figure 8. Dataset 3 has a mixture of Gaussians for 

Covariate 1 and uniform distribution for Covariate 2. 
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Treated Controls 

Dataset 1 50 units 150 units 

Cov. 1 U(0, 10) U(0, 10) 

Cov. 2 U(1, 2) U(1, 2) 

Dataset 2 100 units 200 units 

Cov. 1 N(1, 
1

3.5
) N(2.5, 

2.5

3.5
) 

N(2, 
1

3.5
) N(6, 

1

3.5
) 

N(5.5, 
1.5

3.5
) – 

Cov. 2 N(0.95, 
1

3.5
) N(1.0, 

1

3.5
) 

Dataset 3 250 units 250 units 

Cov. 1 N(1, 
1

3.5
) N(1.5, 

1

3.5
) 

N(2, 
1

3.5
) N(2.5, 

1

3.5
) 

N(3, 
1

3.5
) N(3.5, 

1

3.5
) 

Cov. 2 U(0,1) U(0, 1) 

Table 2 shows the number of units and the mixed 

distributions for the datasets. U(min, max) stands for 

uniform and N(µ, σ) for normal distribution. 

4.2 Experiments 

To automate the experiments, we wrote Python and R 

scripts. The role of the R scripts is to call the CEM library. 

A reference manual for the CEM library is available online 

(https://CRAN.R-project.org/package=cem). In the code 

for the experiments, rpy2 (https://rpy2.github.io) is used to 

bridge between Python and R. 

The experiments are as follows: 

1. We call CEM to get pre-stratification scores and

statistics for the given dataset.

2. Next, CEM is used to stratify the covariates by

applying Scott’s rule for histogram binning. It

also computes the number of unmatched units,

imbalance scores, and other statistics.

3. We then pass CEM’s outputted number of

unmatched units and stratum widths to Autostrata.

4. Autostrata stratifies the covariates.

5. Autostrata’s outputted stratum edges are given as

input to CEM, which uses them to stratify and

compute statistics equivalent to step 2.

Two experiments are conducted per dataset. They differ 

only in how the results are passed to Autostrata in Step 3: 

Input type Input parameters 

P1 The numbers of unmatched treated and 

controls from histogram binning are 

passed as 𝑚𝑡
𝑚𝑎𝑥 and 𝑚𝑐

𝑚𝑎𝑥  and the bin

widths are passed as widthsmax. 

P2 The 𝑚𝑡
𝑚𝑎𝑥 and 𝑚𝑐

𝑚𝑎𝑥  values are as in P1,

but widthsmax values are set to infinity. 

Table 3. Input parameters. See Table 1 for variables 

4.3 Results 

Table 4 shows the experiment results. 

DS1, DS2, and DS3 are headers for the results of the three 

datasets. The top column headers stand for ‘results before 

stratification’ (Before), ‘stratification with histogram 

binning’ (Hist.), and the input types P1 and P2 from Table 

3. ‘Res.’ is an abbreviation for results, and ‘Imp.’ is the

percent improvement compared to histogram binning.

The row labels denote multivariate imbalance measure 

(MIM), total unmatched (UMTOT), unmatched treated 

(UMTR), and unmatched controls (UMCT).  

TOI is the percent improvement in the trade-off, which is 

the sum of the improvements for UMTOT and MIM. 

Before Hist. P1 P2 

Res. Res. Res. Imp. Res. Imp. 

DS1 

MIM 0.240 0.199 0.167 16% 0.187 6% 

UMTOT 0 65 80 -23% 54 17% 

UMTR 0 4 5 -25% 3 25% 

UMCT 0 61 75 -23% 51 16% 

TOI – – – -7% – 23% 

DS2 

MIM 0.465 0.273 0.266 3% 0.335 -

23% 

UMTOT 0 88 84 5% 72 18% 

UMTR 0 16 24 -50% 16 0% 

UMCT 0 72 60 17% 56 22% 

TOI – – – 7% – -5%

DS3 

MIM 0.348 0.290 0.174 40% 0.280 3% 

UMTOT 0 53 92 -74% 39 26% 

UMTR 0 21 53 -

152% 

21 0% 

UMCT 0 32 39 -22% 18 44% 

TOI – – – -34% – 30% 

Table 4. Results from experiments. Best TOI results per 

dataset are in bold and thicker cell borders. 

5 DISCUSSION 

Table 4 shows that both imbalance and the total number of 

unmatched units are lower for Autostrata for all three 

datasets. The input parameter type P2 gave the best results 

for DS1 and DS3, while P1 gave the best for DS2. The 

difference is that P2 sets the maximum allowed stratum 

widths to infinity, which effectively disables the parameter. 

By visually comparing the swarm plots in Figure 6–Figure 

8, we see the difference between DS2 and the other two: 

DS2 has several regions with minimal overlap between 

treated and controls. As Section 3.1 explains, finding 

narrow strata with mixed types of units is easier in regions 

with high overlap. Therefore, restricting the widths is 

usually not necessary in such regions. Autostrata also 

works well for sparser overlap, but as illustrated by the 

experiment for DS2, setting maximum widths is more 

important. 

Autostrata competed with CEM’s best effort in the 

experiments, and we passed parameters not necessarily 

ideal for non-uniform widths. It is possible to adjust these 

parameters manually or programmatically, but for 

objectivity, we use the unchanged output from CEM as 

input to Autostrata. 

Lastly, Autostrata can be used stand-alone. A researcher 

can decide the acceptable differences between treated and 

controls based on domain knowledge. The researcher can 

also request a maximum number of unmatched units. 

Autostrata thus provides researchers with more up-front 

control. After stratification, the researcher can input the 

stratum edges to the CEM software as manual cutpoints. A 
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combination is even possible, where Autostrata stratifies a 

subset of the covariates given to CEM. 

6 RELATED WORK 

Aikens, R.C. et al. [23] present Stratamatch, a method for 

stratification of covariates for CEM. Only datasets from a 

minimum of 5 000 up to millions of observations are 

recommended. The method divides the dataset into training 

(pilot) and analysis sets, and the resulting strata are close 

to equal-sized. The size must be manually decided. 

Jackson, B. et al. [24] present an algorithm for optimal data 

partitioning on an interval that Scargle, J.D. et al. [25] 

apply for astronomical time series. The algorithm supports 

custom fitness functions, and we tried defining a function. 

However, a common issue is the unwanted case of one 

subinterval per value; thus, the researcher must choose an 

expected number of subintervals. Also, while theoretically 

possible to extend for multivariate data, the algorithm is 

primarily univariate. 

7 CONCLUSION 

We have presented Autostrata, an algorithmic approach to 

stratifying confounder covariates. Autostrata shows 

improved results compared to the standard CEM 

stratification. In addition, it provides the researcher with 

parameters for controlling the stratification. Autostrata can 

be used stand-alone. 
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