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Summary 

Background: Despite the advances made in cancer research and treatment, the global burden 

of cancer continues to rise. It is important to acknowledge exogenous and endogenous risk 

factors and increase knowledge of relevant molecular signatures in studies of cancer biomarkers 

or molecular mechanisms. Linking blood gene expression and common cancer risk factors 

represents an intriguing approach for gaining valuable insights into the biological functions of 

genes reflecting processes related to the exposures or the development and progression of 

cancer and other diseases.  

Smoking and obesity are the two most important modifiable cancer risk factors. Menopause is 

another important risk factor, and although the impact of menopause and hormonal factors on 

cancer risk is limited, their collective effect at the population level can be substantial as the 

population of postmenopausal women is growing. These risk factors affect the major 

physiological and biological processes in one’s body. Still, there is limited or no research 

evaluating the associations of blood gene expression profiles with these risk factors –smoking, 

body mass index (BMI), and menopause. Moreover, studies utilizing large and extensive 

population-based samples to assess such relationships are rare.  

Aim: This thesis aimed to evaluate differentially expressed genes (DEGs) among different 

levels of selected risk factors, specifically: smoking status and smoking metrics (Paper I), BMI 

and weight changes (Paper II), and menopausal status and hormone therapy (HT) use (Paper 

III); and to gain insights into their gene ontologies and pathways. 

Methods: This thesis is based on studies using cross-sectional analyses nested within the 

prospective longitudinal NOWAC study and microarray-based gene expression profiles 

obtained from bio-banked whole-blood samples of women (N=1,716). Relevant information 

was obtained from up to three main questionnaires before and one at the blood collection time 

point. We used gene-wise linear regression models to identify DEGs, and functional enrichment 

analyses to determine their biological functions. 

Results: We observed 911 and 1,082 DEGs when comparing current-vs-never and current-vs-

former smokers, respectively. Few or no DEGs were observed when focusing on former 

smokers, passive smokers, or selected smoking metrics. We observed LRRN3-driven 

discrimination in all smoking exposures, suggesting that LRRN3 could supplant self-reported 
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smoking data in future studies. We observed 2,394, 769, and 768 DEGs when comparing 

obesity-vs-normal-weight, obesity-vs-overweight, and overweight-vs-normal-weight, 

respectively. Only up to 169 DEGs were observed in past weight change analyses in interaction 

with BMI categories. There were 1,460 and 348 DEGs in relation to menopause and HT use, 

respectively, showing clear associations; yet when adjusted for the estimated white blood cell 

(WBC) proportions, the number reduced to 26 and 7, respectively. The biological functions of 

smoking-, BMI-, and menopausal-associated DEGs mainly revealed enriched terms like 

metabolic, immune, erythrocytes/reticulocytes related processes/functions. 

Conclusion: The findings of this thesis conclude that there are overall associations of blood 

gene expression with cancer risk factors investigated among women in the NOWAC 

postgenome cohort. Among all the risk factors investigated, smoking had the strongest 

associations (in terms of effect sizes of the top-ranked DEGs), obesity had the most associations 

(in terms of number of DEGs), and the associations with menopause was largely driven by the 

relative presence of estimated WBCs. Further, the enriched gene ontologies and pathways of 

DEGs coincide with the physiological effects known for each risk factors and reflect their 

systemic impacts. In summary, current exposures were reflected in blood gene expression more 

than past exposures (former smoking status, past weight changes) and the influence of cell 

compositions on blood gene expression was important for interpretation of the results. The 

knowledge gained in this thesis is important for knowledge of molecular signals of the risk 

factors investigated.  
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1 Introduction 

The Human Genome Project is one of the landmarks in the human history. It was a highly 

collaborative international effort, carried out in the years 1990-2003, to generate the first 

complete sequence of the human genome. It is one of the most important biomedical research 

projects that gave opportunity to explore novel areas of the biological world [1]. The period 

after the completion of this project is called the postgenome era, where the focus shifted from 

sequencing the human genome to analysing and interpreting the vast amount of genomic data 

generated. The birth of the Norwegian Women and Cancer Study (NOWAC) postgenome 

cohort (2003-2006) also occurred in this era.  

Gene expression profiling/analyses give the opportunity to compare the expression levels for 

multiple genes simultaneously. Differentially expressed genes (DEGs), as observed through 

gene expression analysis, can lead to identification of potential molecular signals or biomarkers 

associated with exposure variables, disease progression, and/or specific diseases. Such analyses 

provide valuable insights into the involvement of DEGs in biological processes and pathways. 

Gene expression studies can be valuable resources, which have been widely utilized by 

biomedical research aiming to uncover the mechanisms underlying various diseases and 

contributing to the expression of the cells’ phenotype. Indeed, one of the key features of cancer 

are deviated gene function and altered gene expression patterns [2]. Changes in gene expression 

can disrupt the normal function of cells, which can contribute to the development and 

progression of cancer [3]. Additionally, there are different risk factors of cancer that influence 

gene expression patterns, and investigating these could help in identifying DEGs in relation to 

cancer disease and provide knowledge on molecular signals related to different levels of these 

risk factors or exposure variables. Still, much research is yet to be conducted. 

This thesis takes advantage of the availability large number of bio-banked whole-blood (or 

interchangeably referred to as ‘blood’ in this thesis) samples ready for gene expression 

analyses, that incorporates detailed and reliable lifestyle exposure information in a prospective 

design [4]. The cancer risk factors investigated in this thesis –mainly smoking, body mass index 

(BMI), and menopause – and their importance and associations with blood gene expression are 

introduced in Chapter 1.1. Gene expression technologies will be further introduced in Chapter 

1.2. 



 

2 

 

1.1 Cancer risk factors 

Any factor (internal and external) that can raise the likelihood of a person developing cancer is 

known as a cancer risk factor [5]. The key risk factors causing cancer are tobacco use, excess 

body weight, unhealthy diet, physical inactivity, infectious agents, and alcohol consumption; 

and many of these risk factors can be prevented [5,6], thus known as modifiable risk factors 

(exogenous factors or external factors). There are other risk factors such as age, personal 

or family history of cancer [5,6], which are unavoidable, and thus known as non-modifiable 

risk factors (endogenous factors or internal factors). An illustration of different cancer risk 

factors is given below (Figure 1).  

 

Figure 1: An illustration of risk factors of cancer. 

Template adaption from “Risk factors of Dementia”, by BioRender.com (Nordestgaard, L., 2022). Retrieved 

from: https://app.biorender.com/biorender-templates/t-633de94d30ad4edb2a8ea4aa-risk-factors-of-dementia 

The global burden of cancer  

Cancer is the second leading cause of death globally accounting for 19 million cancer cases and 

10 million deaths in 2020 [3,6,7]. The exposure to risk factors plays key role in the biology and 

burden of several cancer types [7]. The cancer types with most new cases in 2020 were breast, 

https://app.biorender.com/biorender-templates/t-633de94d30ad4edb2a8ea4aa-risk-factors-of-dementia
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lung, colon and rectum cancers, while those with most cancer deaths were lung, colon and 

rectum, liver, stomach, and breast cancers [6]. It has been estimated that 1/3rd of cancer deaths 

was due to tobacco use, high BMI, alcohol consumption, low fruit and vegetable intake, and 

lack of physical activity [6]. Epidemiological and laboratory studies conducted in high-income 

countries over the past 70 years provided evidence that around 40% of cancer burden can be 

attributed to identified risk factors –the two most important being smoking and obesity –

highlighting that there are additional factors driving the remaining cancer burden [3].  

There is extensive evidence suggesting that lifestyle factors play a crucial role in cancer risk 

and mortality, and making favorable, widespread lifestyle modifications can substantially 

diminish the cancer burden worldwide. Nevertheless, extensive modifications are required to 

achieve a substantial reduction in cancer incidence. By avoiding risk factors and implementing 

established prevention strategies, approximately 30-50% of cancers can currently be prevented 

[6]. Despite the advances made in cancer research and treatment, the global burden of cancer 

continues to rise. This highlights the need for innovative strategies in cancer prevention and 

control. It is important to acknowledge exogenous and endogenous risk factors and increase 

knowledge of relevant molecular signatures in studies of cancer biomarkers or molecular 

mechanisms that can lead to cancer prevention.   

Choice of risk factors (exposure variables) in this thesis 

Smoking has been and still is the foremost modifiable cancer risk factors, while obesity is the 

second on the list [3]. The associations of menopause and hormonal factors on cancer risk are 

relatively small at individual levels, but their collective effect at the population level can be 

substantial because all women experience these [8], and more importantly the population of 

postmenopausal women is growing globally [9]. The increase in lifetime number of monthly 

menstrual cycles has been linked to higher risk of breast, endometrial, and ovarian cancers. 

While the exact mechanisms remain unclear, one potential explanation for these relationships 

could be higher exposure to endogenous estrogen and progesterone levels [8]. Further, all these 

risk factors (both exogenous and endogenous in nature) affect the major biological processes in 

one’s body and known for alteration in gene expression. Based on the relevance for studies on 

cancer and knowledge gaps based on previous studies on these risk factors and gene expression, 

smoking, obesity, menopause were the main exposure variables investigated in the papers 
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(Paper I-III) included in this thesis. Below we describe in more detail each of these risk factors 

and our rationale for their focus in relation to gene expression in blood in this thesis. 

1.1.1 Smoking status and smoking metrics 

1.1.1.1 Background 

There are different forms of tobacco use and different products are available such as waterpipe 

tobacco, smokeless tobacco, cigars, cigarillos, roll-your-own tobacco, pipe tobacco, bidis, and 

kreteks; while cigarette smoking is the most common type of tobacco use globally [10]. 

Cigarette is a tube-shaped tobacco product, made of finely cut, cured tobacco leaves wrapped 

in thin paper [11]. A lit cigarette is typically smoked, and the smoke is usually inhaled into the 

lungs. Cigarettes contain nicotine and numerous cancer-causing chemicals, posing risks to both 

individuals who smoke and those who do not [11]. Common quantitative measures of smoking 

exposure (referred to as ‘smoking metrics’) are smoking intensity, smoking duration, time since 

smoking cessation (TSC), pack-years, and comprehensive smoking index (CSI) scores [12]. 

Passive smoking (or also called second-hand smoking) refers to inhaling the smoke exhaled by 

a smoker [13]. 

The history of tobacco smoking is long, dating back to 6,000 BC, when native Americans first 

started cultivating the tobacco plant. Around 1 BC, indigenous American tribes used tobacco 

for medicinal and religious purposes [14]. At early 16th century, approximately 50 years after 

Christopher Columbus’s first voyage to America, tobacco was introduced to Europe at the 

Portuguese court situated in Lisbon [15]. Towards the end of 19th century, due to mechanization 

and mass marketing, cigarette smoking was popularized [16], however the popularity reached 

their peak during the First and the Second World Wars in the 20th century, when tobacco 

companies dispatched countless packs of cigarettes to soldiers fighting on the front lines, 

creating hundreds of thousands of loyal and addicted consumers [14]. In the 20th century, health 

concerns related to cigarette smoking also began to rise with the studies linking smoking to 

lung cancer and other health problems [16].  

Tobacco in all its forms is detrimental to health, and there is no level of exposure that can be 

deemed safe [10]. There have been comprehensive public health campaigns focusing on the 

dangers of smoking since early 20th century; and today, in many countries around the world, 

cigarette smoking is heavily regulated, with high pricing and taxes, bans on advertisements, 
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and support to smoking cessation [10]. However, prevention of smoking-related health injuries 

remains important for public health initiatives [17].  

1.1.1.2 Prevalences and time trends 

The tobacco epidemic is one of the largest public health threats humankinds has ever confronted 

[10]. The World Health Organization (WHO) recently estimated more than 8 million deaths 

every year due to tobacco use, including around 1.2 million deaths from passive smoking alone 

[10]. The burden of tobacco-related illness and death is the heaviest in low- and middle-income 

countries, where over 80% of the 1.3 billion tobacco users reside. This not only impacts health 

but also contributes to heavy economic drainage [10]. 

In 2020, it was estimated globally that 36.7% males and 7.8% females used some forms of 

tobacco. Among these, current smoking prevalence was 28.9% (with 26.4% cigarette smoking 

prevalence) and 5.2% (with 4.6% cigarette smoking prevalence), for males and females, 

respectively. These make 91% male and 88% female cigarette smokers [18]. The age-

standardized rates of tobacco smoking prevalence have shown a consistent decline at a global 

level since at least the year 2000. In 2000, 27% of adults (aged 15 and older) were current 

tobacco smokers, while by 2020, this rate had decreased to 17%. This downward trend is 

anticipated to persist until at least year 2025, when the rate expected to reach 15% [18]. This 

decline in trend (2000-2025) is expected in all WHO regions. However, South-East Asia Region 

is anticipated to make the greatest progress in reducing the rates of smoking (29% in 2000 to 

19% in 2010 and 13% in 2020), whereas Western Pacific Region (28% in 2000 to 25% in 2010, 

and 23% in 2020) and the Eastern Mediterranean Region (20% in 2000 to 17% in 2010 and 

15% in 2020) are with the slowest progress. In Norway, in the early 1910s, nearly 30% 

Norwegian men smoked, while only a few women smoked [17]. Starting in the mid-1950s, 

significant decrease in smoking rates among men was observed, while the trend of increase 

continued among women, rendering equal proportions of men and women smokers by the end 

of the 1990s [17]. Today, daily smoking is equally common for men and women in Norway 

[17], with 7% men and 8% women who smoke daily in 2022 [19].  

Further, smoking prevalence is not solely reliant on the proportions of smokers in a population 

but also on the intensity of smoking, which is measured by the average number of cigarettes 

smoked by individuals. Across Asia, Eastern Europe, North America, and Oceania, the average 
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number of cigarettes consumed per day by smokers is between 20-25, however, rates in Latin 

America, Africa, and Western Europe tend to be slightly lower [20].  

1.1.1.3 Physiological and health effects 

Cigarette contains more than 7,000 chemicals, including nicotine, tar, and carbon monoxide 

[21], which contribute to several detrimental health effects on the physiology of the body. These 

effects might appear not long after smoking initiation or up to several decades after exposure 

[22,23]. When comparing individuals who smoke with those who never smoked, subclinical 

outcomes have been observed in smokers, such as increased oxidative stress, reduced 

antioxidant defences, increased inflammation, impaired immune status, and altered lipid 

profiles [22]. It also slows the wound healing process [24]. Additionally, smoking can dampen 

the immune system and alter a variety of immunological functions [25], making the body more 

susceptible to infections and reduce the ability to fight diseases. 

Smoking mainly damages the respiratory system, including the lungs and airways. Smoking 

causes inflammation and irritation of the airways, increased mucus production, and narrowing 

of the air passages, making it harder to breathe [26]. Notably, respiratory symptoms caused by 

exposure to tobacco smoke have been observed more in women than men [27,28]. Further, 

chemicals inhaled during smoking can damage the heart and blood vessels, increase blood 

pressure (hypertension), and lead to atherosclerosis (build-up plaque in the arteries causing it 

to harden) [21]. Smoking can also have negative impact on the reproductive system [26], 

digestive systems [29], oral health [30], and accelerate the aging process and contribute to 

premature wrinkling and skin damage [31]. 

Smoking is the leading cause of lung cancer, but also increases the risk and mortality of other 

cancers, cardiovascular diseases, and chronic obstructive pulmonary disease, and lower 

respiratory tract infections [17,21,26]. 

Quitting smoking has significant health benefits and can help in reducing the risk of developing 

smoking-related diseases. The sooner an individual quits smoking, the greater the potential for 

improved health outcomes [26]. 

1.1.1.4 Associations with gene expression and research gap 

Multiple studies have reported that current exposure to tobacco smoke can lead to changes in 

the expression of various genes in blood, such as LRRN3, CLDND1, GPR15, ATF4, SOD2, and 
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CDKN1C [32-39]. Furthermore, altered gene expression in blood has been associated with 

smoking-related diseases [40]. However, most studies used smoking status as the smoking 

exposure measure and no study had conducted a more thorough investigation of the variability 

in gene expression profiles in whole-blood in relation to several quantitative measures of 

smoking exposure. 

1.1.2 Body mass index and weight change 

1.1.2.1 Background 

The terms overweight and obesity refer to the atypical or surplus accumulation of body fat, 

which can have negative impacts on health [41]. BMI, previously called as the Quetelet index, 

is a widely used measure of body fat based on an individual’s weight and height.  

The BMI measure was developed by Adolphe Quetelet during the 19th century, became a 

popular measure of body composition because of its simplicity in measurement and calculation. 

It is widely used to determine the correlation between body weight –in proportion to height– 

and the risk of health problems at the population level. In the 1970s, it was found to be reliable 

proxy for adiposity and overweight-related problems [42]. It is the most useful population-level 

measure of overweight and obesity due to its similarity across both sexes and for all age groups 

of adults [41]. Nevertheless, like any other measure, it is not a perfect index. It has its limitations 

since it solely relies on height and weight and doesn’t account for muscle mass, varying degrees 

of age-related adiposity, physical activity levels, or gender [42]. Further, weight gain during 

adulthood is primarily due to accumulation of fat, rather than lean tissue. Therefore, any change 

in weight could be a more accurate indication of adult adiposity as opposed to adult attained 

weight per se. Indicators such as adult weight gain, waist circumference, hip circumference, 

and waist-hip ratio provide insights into the distribution of adipose tissue [43]. Weight change 

guidelines depends on an individual’s starting BMI and health status. People with overweight 

and obesity, who have cardiovascular risk factors, are recommended to change lifestyles to 

obtain modest, sustained weight loss; and only about 3-5% weight loss among them can bring 

meaningful health benefits [44]. It is also important to follow a proper diet plan to achieve 

weight loss and weight loss maintenance among people with obesity [44]. 

1.1.2.2 Prevalences and time trends 

Almost every country in the world is affected by the obesity epidemic today. According to 

the Global Burden of Disease study, in 2017, 4.7 million people died prematurely because of 



 

8 

 

obesity [45]. In 2016, globally, the number of overweight adults (aged 18 years and above) 

exceeded 1.9 billion, and of these over 650 million adults were with obesity [41]. In 2016, the 

prevalence of overweight was 39% among adults aged 18 years and above (39% of men and 

40% of women), and in the same age group, the prevalence of obesity was 13% (11% of men 

and 15% of women). It is noteworthy that the prevalence of obesity worldwide almost tripled 

between 1975 and 2016 [41]. Except for certain regions in sub-Saharan Africa and Asia, the 

number of people with obesity surpasses those who are underweight [41]. In Norway, around 

1-in-4 (25%) middle-aged men and 1-in-5 (20%) women are classified as having obesity [46]. 

In the last 40-50 years, the proportion of adults with overweight or obesity has increased in 

Norway, with variation by region and education level [46]. 

1.1.2.3 Physiological and health effects 

Obesity and excess body weight are associated with physiological changes in body affecting 

various systems and organs, and ultimately resulting in numerous medical conditions [47]. 

Obesity is closely linked to metabolic and endocrine disorders. It causes insulin resistance and 

impairs the body's ability to regulate blood sugar levels. It also disrupts the levels of hormones 

involved in appetite regulation such as leptin and ghrelin [48]. Impaired insulin resistance and 

oxidative stress are known to be caused by hyperglycemia (high blood sugar levels) in obesity 

[49]. Further, excess body weight can have negative impact on the heart and blood vessels, 

putting strain on the cardiovascular system [50]. Excess weight can lead to reduced lung 

capacity/volume and impaired respiratory function [51]. Obesity is recognized to impair the 

immune function and cell-mediated immune responses. Moreover, chronic inflammatory 

response stems from the connections between adipose tissue and the immune system [52]. 

Obesity adds additional stress on the bones, joints, and muscles due to excess body weight, 

affecting mobility of a person and causing challenge to his/her physical activity [53]. Further, 

obesity can cause hormonal imbalance and menstrual irregularity in women. It adversely affects 

reproductive function through alterations in the hypothalamic-pituitary-ovarian axis, oocyte 

quality, and endometrial receptivity [54].  

Weight, weight gain, and obesity accounts for various cancer types, including postmenopausal 

breast and endometrium cancer in women [43,55,56], increase the risk of type 2 diabetes [48], 

and can lead to hypertension and other cardiovascular disease [50]. Further, obesity increases 

the risk of various respiratory [51], musculoskeletal [53], reproductive [54], and gastrointestinal 

[57] conditions and disorders. Obesity is an independent risk factor for liver damage, which can 
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contribute to liver fibrosis [58]. Further, obesity can lower one’s self-esteem and body image 

issues affecting psychological well-beings, especially of children and adolescents. This can lead 

to depression, anxiety, and impact social interactions [59].  

Managing obesity through a combination of healthy eating, regular physical activity, and, if 

necessary, medical interventions, can help mitigate these physiological effects and reduce the 

associated health risk. 

1.1.2.4 Associations with gene expression and research gap 

The understanding of the molecular mechanisms of multi-factorial conditions like obesity can 

be improved with gene expression studies [60]. Studies have reported associations between 

increased BMI and altered gene expression in blood [61-63] and adipose tissue [64], indicating 

changes in biological functions. Furthermore, previous studies have indicated that weight loss 

in individuals with obesity, following diet interventions, was linked to gene expression profiles 

in adipose tissue both before and after the diet interventions [65-71]. But no study had evaluated 

differences in blood gene expression related to past weight changes; and not many had 

investigated associations of BMI and blood gene expression in a large population-based sample. 

1.1.3 Menopausal status and hormone therapy use 

1.1.3.1 Background 

Menopause is a natural process of biological ageing that most women experience between 45-

55 years of age. Menopause represents a crucial milestone in a women’s life cycle, signifying 

the end of her reproductive years. After menopause, conception is no longer possible for a 

woman, unless specialized fertility treatments are employed in rare cases [9]. A confirmed 

diagnosis of menopause requires the absence of menstruation for a consecutive period of 12 

months [72]. The menstrual transitional period, referred to as ‘perimenopause’, leads to various 

menopausal symptoms, which can last for 4-12 years [9,72].  

Hormone replacement therapy, also called hormone therapy (HT), is a treatment used to relief 

menopausal symptoms in women. The therapy usually contains estrogen (referred to as 

‘oestrogen’ in the British English) hormone, but for women who still have their uterus, 

progestogen hormone is also added to protect the endometrial (lining of uterus). The estrogen 

hormone can be administered orally, intravaginally, or through transdermal means, while the 



 

10 

 

progestogen hormone can be taken orally, through transdermal means, or delivered via an 

intrauterine device [73]. 

The historical references and understanding of menopause have indeed evolved over time, and 

the earliest known references to menopause date back to Aristotle, who referred to age at 

menopause being 40 years. The term "menopause" was coined by a French physician in 1821. 

This marked a significant step in acknowledging and identifying the phenomenon. In the 1930s, 

menopause was described by some as a deficiency disease, resulting in advocacy of various 

replenishment therapies like testicular juice, crushed ovaries of animals. In the mid-19th 

century, medical interests in menopause began to increase considerably. In the 1970s, 

menopausal symptoms were attributed to estrogen deficiency, and HT was widely promoted to 

alleviate symptoms and improve the quality of life for middle-aged women [74].  

In 1938, the development of synthetic estrogen marked a significant milestone. It opened the 

door for the medical industry, particularly pharmaceutical companies, to play a major role in 

addressing menopause-related concerns [74]. Nonetheless, HT use has very controversial 

history. It started in the 1960s and gained popularity during the 1990s. However, the release of 

the initial results of the Women's Health Initiative report in 2002 revealed that HT had more 

negative than positive effects. This received extensive media attention and changed the view 

on these drugs, causing a significant decline in HT use. In following years, the WHI trial was 

reanalysed, and new research emerged showing that the use of HT in younger women or those 

in the early postmenopausal stage had positive effects on the cardiovascular system, reducing 

the risk of coronary disease, and all-cause mortality [75]. Despite this, the public perception of 

HT remained rather negative, resulting in detrimental consequences for women's health and 

quality [75]. Still, it is recommended to consult one’s doctor to assess individual HT-related 

risks and benefits before use [73].  

1.1.3.2 Prevalences and time trends 

The global population of postmenopausal women is increasing. In 2021, women aged ≥50 years 

accounted for 26% of the total female population, marking an increase from 22% a decade ago 

[9]. Moreover, women are experiencing longer lifespans, as in a global context, a woman aged 

60 years in 2019 could anticipate an average additional lifespan of 21 years [9]. With life 

expectancy for women on the rise globally, most of them will also undergo the menopausal 

transition and spend considerable years of their lives in the menopausal phase [76]. 
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More than 80% of women are affected by symptoms associated with menopausal transition, 

and around 1/3rd of these women might experience severe symptoms [77]. Vasomotor 

symptoms (i.e., common symptoms experienced during menopausal transition) usually last for 

1-6 years but might persist for 15 years or even more for 10-15% of women [76]. Prevalence 

rates of menopausal symptoms vary across different geographical regions: Europe (74%), North 

America (36-50%), Latin America (45-69%), and Asia (22-63%) [78]. The median age at 

menopause also varies across different geographical regions: Europe (50.1-52.8 years), North 

America (50.5-51.4 years), Latin America (43.8-53 years), and Asia (42.1-49.5 years) [78]. 

Further, according to a survey [79], the most common menopausal symptoms reported were 

feeling tired or worn out (Europe/US 74%, Japan 75%), aching in muscles and joints (Europe 

69%, US 68%, Japan 61%), difficulty sleeping (Europe 69%, US 66%, Japan 60%), and hot 

flashes (Europe 67%, US 68%, Japan 62%). Around 50% of menopausal women experience 

the impact of vaginal estrogen deficiency [80] and 40% of women experience sleep 

difficulties/disorders [81]. 

There was high prevalence of menopausal HT use at its initial phase of development. However, 

studies showed sharp decline (with some variability) on its use after 2002 [82,83], likely due to 

the concerns for detrimental health effects of HT use demonstrated by a Women's Health 

Initiative report [83]. In 2002, the prevalence of menopausal HT use among women aged 45-

69 in European countries exhibited variation across countries, with rates ranging from less than 

5% to over 25% [82]. However, a substantial decline (50-77%) in menopausal HT use was 

observed in all European countries between 2002 and 2010. By the end of 2010, the estimated 

proportion of women aged 45-69 years using menopausal HT use had dropped to below 10% 

in all 17 European countries studied (including Norway), except for Finland [82]. 

1.1.3.3 Physiological and health effects 

Physiologically, the start of menopause is intricately linked to the cessation of ovarian function, 

resulting in a decrease in estrogen production by the follicles [84]. The hormonal fluctuations 

around menopause can trigger a range of symptoms affecting women’s physical, emotional, 

mental, and social well-being, and overall quality of life [9]. Importantly, the immune system 

is affected by physiological changes that occur during menopause. These changes include a 

decrease in immune cells, which is not only attributed to the natural aging process but also to 

the deprivation of estrogen [85]. This is supported by studies that indicate an elevation in 

chronic systemic inflammation following menopause [86]. 
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The absence of sex hormones can cause alterations in thermoregulation within the central 

nervous system. This gives rise to the most common symptoms women experience during 

menopausal transition –vasomotor symptoms (including hot flushes and night sweats) [76]. 

These symptoms can lead to sleep disturbances, tiredness, irritability, and low mood, impacting 

the overall quality of life of women. Severe and prolonged vasomotor symptoms are linked 

with an increased risk of future cardiovascular disease, likely attributed to the loss of protective 

effects provided by estrogen [76]. Further, menopause is also characterized by symptoms such 

as urogenital atrophy (including vaginal dryness, burning, irritation, tissue shrinkage, and 

painful intercourse), bladder symptoms (such as urgency and frequency), and pelvic organ 

prolapse. All of these if left untreated, increases the risk of urinary tract infections [87]. 

Reduced levels of estrogen hormone in the body can cause thinning of the vaginal mucosa, 

reduction in superficial cells, decreased glycogen and lactobacilli, and an increase in the pH of 

vaginal secretions (pH>5). Vaginal smooth muscle also changes due to reduction in collagen 

and elastin content [76]. Further, sexual dysfunction, including dyspareunia (discomfort/pain 

experienced during sexual intercourse), decreased libido (sex drive), difficulties with arousal, 

and problems achieving orgasm, can be attributed to the decrease in sex steroids associated with 

aging and the transition into menopause [88]. Low estrogen levels has been linked to sleep 

disturbances, hot flushes, anxiety, depressive symptoms, leading to depressive symptoms and 

depressive disorders [77,81]. Some also experience decline in cognitive function (referred to as 

"brain fog") [87]. Also, decreasing levels of estrogen can negatively impact connective tissue, 

joints, bone matrix, and skin [80], and muscle aging and loss of muscle mass [76].  

Menopause and cancer risk is debatable. Menopause itself does not appear to directly cause 

cancer, but the likelihood of developing cancer rises with increasing age for women. A study 

reported that the risk factors for breast cancer were similar between pre-menopausal and post-

menopausal women; however, slightly higher incidence of breast cancer in postmenopausal 

women was observed who had late menopause, potentially because of the longer duration of 

hormonal exposure [89]. 

HT treatment options are available that utilizes exogenous hormones (estrogen and/or 

progesterone) to alleviate these menopausal symptoms [73,80]. Among the available 

interventions, HT is considered the most effective treatment for managing troublesome 

vasomotor symptoms [73,76]. However, research on the risks and benefits of HT use suggests 

that various factors such as age at start of HT use, duration of use, type of hormone used [73,80]. 
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Further, history of cancer related to systemic HT use is considered contradictory. HT (estrogen 

alone) is associated with little or no change in the risk of breast cancer while combined HT can 

be linked to an increased risk of endometrial cancer, and slightly increase the risk of developing 

ovarian cancer [80]. Further, HT is recommended as the primary treatment for preventing and 

treating osteoporosis in women with premature ovarian insufficiency and menopausal women 

under 60, particularly those experiencing menopausal symptoms [80]. Reports indicate that 

starting HT use before the age of 60 or within 10 years of menopause reduces atherosclerosis 

progression, coronary heart disease, cardiovascular mortality, and all-cause mortality [75]. 

1.1.3.4 Associations with gene expression and research gaps 

Investigating molecular effects of menopausal status and HT use in the female body can provide 

valuable knowledge of this process. One study investigating gene expression profiles in 

peripheral blood monocytes among healthy pre- and postmenopausal women with a small 

sample size showed that the functional state of circulating monocytes can be influenced by 

menopause resulting in changes in gene expression profiles [84]. Still, no study has examined 

the relation between menopause and gene expression in whole-blood with a large sample size. 

Transcriptional differences were observed in women receiving low-dose compared to higher 

conventional-dose of HT (17β-estradiol/norethisterone acetate) [90]. Other studies 

investigating the correlation between blood sex hormones and gene expression [91] and gene 

expression related to breast cancer in HT users-vs-non-users [92] have also identified several 

genes associated with different types of HT use. A study with small sample size (N=100) on 

HT use and blood gene expression found no significant difference between HT users-vs-non-

users [93]. Yet, a population-based study with large sample size investigating HT use and blood 

gene expression had not been investigated. 

1.2 Gene expression profiling 

1.2.1 Background: From DNA to proteins 

DNA (deoxyribonucleic acid) is a long, winding molecule that contains the biological 

instructions, which make each species unique [94]. Specifically, genes, the functional units of 

DNA, are considered as the fundamental hereditary units that are passed from parents to their 

offspring during reproduction, carrying the genetic information required to determine physical 

and biological characteristics [94,95]. In human, the complete DNA set, called ‘genome’, 

contains approximately 20,000-25,000 genes [94] 
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Gene expression refers to the process through which the encoded information within a gene is 

transformed into a functional outcome (i.e., proteins) [96]. It is based on directional flow of 

information from DNA → RNA → protein, called ‘the central dogma’ of molecular biology 

(Figure 2) [97]. Gene expression can be conceptualized as an "on/off switch" that governs when 

and where RNA (ribonucleic acid) molecules and proteins are made and as a "volume control" 

to regulate the quantity of these products [96]. Further, the full range of mRNA (messenger 

RNA) molecules expressed by an organism or in other words the collection of all the gene 

readouts present in a cell, is known as transcriptome [98].  

In contrast with the genome, which is rather stable, the transcriptome is very dynamic, and 

continuously responds to various factors such as developmental stage, physiological, and 

environmental conditions [99]. Gene expression analyses or gene expression profiling 

represent measurements of the change in expression of thousands of genes at once, which 

provide a comprehensive picture of biological and cellular functions. Such profiles give the 

opportunity to answer various important research questions –from identifying phenotype-

genotype relationships in genetic disorders to human molecular epidemiology. Further, such 

profiles have the potential to offer meaningful crucial insights into cellular biology, such as 

developmental state of cells, disease status, or response to environmental stimuli. 
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1.2.2 Measurement techniques 

Over the years, measurement techniques for gene expression analysis have undergone 

significant advancements. When gene expression analysis was at its infancy, the measurement 

techniques were also basic. Around 20 years ago, its measurement techniques started to undergo 

significant improvements, enabling higher throughput (the number of transcript samples 

measured per unit time), and more comprehensive analysis, allowing measurement of multiple 

genes simultaneously. Currently, due to rapid technological progress, these techniques offer 

The Central Dogma 

The expression of gene that encodes a protein is carried out in two major steps: 

1. Transcription: In this step, a gene’s DNA sequence is replicated to produce an 

RNA molecule. This stage is named transcription since it involves copying or 

transcribing the DNA sequence into an RNA ‘alphabet’. Eukaryotes require the 

RNA molecule to undergo processing to mature into mRNA. 

 

2. Translation: In this step, the mRNA sequence is decoded to determine the proteins 

(or more precisely, polypeptides, a chain of amino acids). This stage is named 

translation as it involves the conversion of the mRNA’s nucleotide sequence to 

amino acids that can build protein. 

 

 

Figure 2: The steps involved in the central dogma in a eukaryote. 

(Created with BioRender.com) 

The directional flow of information from DNA → RNA → protein in a eukaryote explains 

the fundamental principle and is called the central dogma of molecular biology. This 

describes the basic process of how gene expression works.  

https://biorender.com/
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higher sensitivity, throughput, and enables the study gene expression at the single-cell level. 

Here, we provide a short overview of some of these techniques.  

Northern Blotting: Northern blotting is hybridization-based assay technique used to determine 

the size and quantity of specific RNA molecules in a sample. It involved the separation of RNA 

molecules using gel electrophoresis, followed by their transfer onto nitrocellulose membrane, 

and then using labeled probes to hybridize with the target RNA. It is simple and inexpensive, 

but it is time-consuming, low throughput, and there is risk of RNA degradation during 

electrophoresis [100]. 

Quantitative polymerase chain reaction (qPCR): qPCR is a method to quantify gene expression 

in real time, using a spectrophotometer. It is a PCR quantification-based assay technique. The 

initial RNA processing step includes reverse transcription of mRNA to complementary DNA 

(cDNA). It is easy to use and less time-consuming. However, it is not an exploratory method 

and is only used for quantification of known genes [100]. 

Microarray: Microarray technique has revolutionized gene expression analyses by enabling the 

simultaneous measurement of thousands of genes. It has been used to measure gene expression 

profiles for over 20 years now [100]. There are two types of microarrays: oligonucleotide 

microarrays and cDNA microarrays [101]. Microarray utilizes the principle of nucleic acid 

hybridization of cDNA strands to measure gene expression profiles [100]. Microarray 

experiment is a multistep process. First, RNA is extracted from tissue and converted to cDNA. 

The cDNA is then labeled and transferred to a microarray chip (a glass slide) for hybridization 

with immobilized probes. After hybridization step, the chips are washed in salt buffer, and the 

hybridized, tagged, fluorescent-labeled nucleic acid sequences remain on the chip. The intensity 

of the fluorescent signals is detected by scanning the hybridized microarray chip, that is 

reflected in the amount of transcribed RNA. The relative amount of RNA undergoes quality 

control steps and is usually preprocessed before it is ready for statistical analyses [100]. This 

technique became a preferred technology for analysing transcriptomes, due to its affordability, 

user-friendliness, and optimized framework of quality control [102]. Other advantages are that 

it can be used for exploratory and high throughput analyses. It is beneficial for genome-wide 

association studies, and prior knowledge of complete sequences is not required, still the probes 

need to be known. The limitations are that it can be time-consuming and may increase the 
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variability of output data. Also, it is dependent on specialized software for RNA quantification 

through image processing [100,103]. 

RNA sequencing (RNA-seq): RNA-seq has become a widely used technique and has today 

supplanted microarrays as the technology of choice for transcriptome-wide analyses. The initial 

RNA procession step includes reverse transcription of mRNA to cDNA or labelling of miRNA, 

tRNA, and rRNA, and subsequently sequencing it using high-throughput methods. RNA-seq 

provides accurate quantitative measurements of gene expression, enables the detection of 

alternative splicing events, and allows the identification of novel transcripts and non-coding 

RNAs. Like for the microarray technique, these can be high throughput analyses and useful for 

genome-wide association studies; but RNA-seq generally has less background noise and better 

detection than microarrays. In comparison to microarrays, RNA-seq has the capability to 

identify 30% higher number of DEGs. The limitations of this technique are that it is expensive 

and time-consuming. It also results in a high computational and data-storage burden [100]. 

Recent technologies 

The focus of current technologies is on single-cell and spatial transcriptomics; however, the 

technologies developed for single-cell and spatial analyses each rely on one or several of these 

basic measurement technologies, e.g., RNA-seq for drop-seq (including 10x’s Chromium 

technology) and microarray-like slides for location barcoding combined with RNA-seq for 

spatial transcriptomics (10x’s Visium technology) [104]. 

Single-cell RNA Sequencing (scRNA-seq): While traditional bulk sequencing has contributed 

significantly to our understanding of biology by analysing an average population of cells, the 

development of single-cell sequencing has revolutionized the field [105]. Single-cell 

transcriptomics, or scRNA-seq has emerged as the cutting-edge technology that enables the 

examination of cellular functions at a fine-grained level, unravelling the heterogeneity and 

complexity of RNA transcripts within individual cells. It also enables the identification of rare 

cell types and investigation of dynamic changes in gene expression within individual cells 

[106]. However, single-cell sequencing separates cells from their original tissue, losing the 

spatial context [105]. In situ hybridization is the most relevant method for validating cell-type-

specific gene expression in solid tissue.  
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Spatial analysis: Spatial analysis encompasses two primary methods. The first method involves 

fluorescence in situ hybridization -FISH method, where transcripts are directly labeled within 

tissue sections to visualize the locations of single-cells [105]. The other method is spatially 

resolved transcriptomics, recognized as the Method of the Year by Nature in 2020 [107]. 

Expanding upon scRNA-seq, spatial transcriptomics employs oligonucleotide microarrays to 

capture RNA transcripts throughout a tissue section, which are subsequently sequenced using 

next-generation sequencing. This facilitates the generation of high-resolution tissue maps 

coupled with associated transcriptomic data [105]. Further, multiplexed in situ hybridization is 

an essential technology for some of the new technologies for spatial transcriptomics, such as 

MOSAICA [108] and 10x’s Xenium platform [104].  

NanoString Technology: NanoStrings are pioneers within the field of spatial biology, offering 

solutions, workflows and products for spatial transcriptomics, spatial proteomics, and single-

cell spatial multi-omics [104]. It is multiplex nucleic acid hybridization technology that enables 

reliable and reproducible assessment of the expression of several genes in a single assay [109]. 

1.2.3 Target tissue for measurements  

Gene expression studies can be performed in various human tissue samples, such as whole-

blood, peripheral blood leukocytes, breast biopsies, gut microbiomes. It is crucial to determine 

which tissue, for example, muscle biopsy or blood or which component of blood, is most 

suitable to address the research question. Further, the selection of tissue should have careful 

considerations with respect to tissue availability, sampling protocol, storage management, etc. 

[100]. The use of circulating blood (whole-blood or peripheral blood mononuclear cells 

(PBMCs)) as a tissue for gene expression analyses is widespread, as blood samples have 

relatively simple collection processes and could be stored for long-term use [100,110]. It has 

been claimed that blood could be regarded as an alternative to tissue samples for molecular 

profiling of human disease and disease risk [110]. Still, other studies have demonstrated 

differences between blood and organs affected by the disease [111]. 

Blood is a circulating "connective" tissue comprised of plasma (55%) and formed elements 

(i.e., cellular components) (45%) [110]. The cells found in blood comes from bone marrow: 

they begin as stem cells and mature into three main types of blood cells –red blood cells (RBCs 

or erythrocytes) (96%), white blood cells (WBCs or leukocytes) (1%), and platelets 

(thrombocytes) (3%) [110]. RBCs are the predominant cells found in whole-blood responsible 
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for oxygen transport. When RBCs matures, they lose their nucleus and organelles and therefore, 

it is generally believed that there is no RNA contribution to the overall blood RNA pool from 

these cells. Still, there is evidence that RBCs contribute a small fraction of the total RNA 

molecules in whole-blood [112,113]. Consequently, even though only a small fraction is 

contributed, the high proportion of RBCs in whole-blood combined with RBCs’ high levels of 

globin RNAs, contribute to globin RNAs found highly expressed in bulk whole-blood 

transcriptomic profiles [114]. Further, the immature RBCs (reticulocytes) may contain residual 

nucleic acids, contributing to the total blood RNA pool. Platelets have vital function in the 

process of blood clotting. Similar to RBCs, mature platelets lack nucleus and organelles. 

However, there are immature platelets (reticulated platelets), which retain some RNA, that can 

contribute to total blood RNA [113]. WBCs are nucleated blood cells that are responsible for 

carrying out the immune functions within the body. WBCs are divided into mainly three types 

– monocytes, lymphocytes (B cells, T cells, and natural killer cells), and granulocytes 

(neutrophils, basophils, and eosinophils). WBCs are the most transcriptionally active cells in 

blood, making them the primary focus of gene expression studies involving blood [115]. 

Whole-blood consists of RBCs, WBCs, and platelets suspended in plasma, while PBMCs 

incorporate only mononucleated cells in blood i.e., monocytes and lymphocytes (e.g., T cells 

and B cells), which can be isolated from whole-blood. 

One of the major obstacles linked with blood transcriptomes are their heterogenous cell 

populations, as the proportions of distinct cell types differ among different individuals. This 

heterogeneity results to be a source of variation in blood gene expression profiles [100,102], 

and this could also influence the average signal in blood. But technology such as scRNA-seq 

can solve the heterogeneity and complexity of blood transcriptome as it offers specific-cell-

types analyses. However, they are expensive, laborious, and time-consuming.  

1.2.4 Dynamics of gene expression profiles 

One of the key aspects of gene expression profiles is their dynamic features. Gene expression 

is characterized by its remarkable dynamism, undergoing fluctuations influenced by a multitude 

of internal and external stimuli [99]. Further, researchers have observed variations in gene 

expression in various tissues, including whole-blood, over a 24-hr period and across different 

seasons [100,116]. Gene expression levels in whole-blood exhibit This issue can be considered 

in part technical, but it might as well be biological, as these variations during a day or different 

seasons might be due to the differences in 24-hour light-dark exposures and temperature cycles 
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and the difference in length of the day in different seasons, which are the circadian rhythm 

(“circadian” meaning “about a day”) [117]. Many physiological processes in our body exhibit 

daily fluctuations. These daily patterns in both behavior and bodily processes are not just acute 

responses to timing cues but are governed by an internal circadian timing system [117]. For 

instance, transcriptional response to hypoxia (low oxygen levels) and the specific time of day 

in humans has been observed [118]. Thus, it could be recommended that smaller studies should 

collect samples for gene expression analyses at the same time of the day or same season. Yet if 

not possible, the time and date should be recorded for the control of this potential source of 

variability [100].   

These dynamics of gene expression can provide valuable insights into the regulation of 

biological processes, development, disease progression, and responses to external factors; and 

by their analyses, researchers can better understand the complex interactions and networks 

within cells and organisms. But it is also a challenge considering the technicalities. Expression 

studies measured at one time point represents a snapshot of gene expression in a set of samples. 

Thus, snapshot gene expression could not be expected to capture associations with past changes 

in exposure variables, if there are larger differences in time of the exposure variables and the 

gene expression profiles [119,120].  

In recent years, significant progress has been made in understanding dynamic transcriptional 

responses. With increasing knowledge of functional genomics there has been a transition from 

a static view of transcription to a comprehensive understanding of its dynamic nature, both at 

the cellular and single-cell levels. Any transcriptional regulation cannot be fully understood 

based on the fixed snapshots of the process. Technological advancements, such as continuous 

monitoring of gene expression by fluorescent and luminescent reporters single-cell tracing, 

have greatly improved our ability to examine dynamic aspects of gene activation [99]. 
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2 Aims of the thesis 

Linking gene expression in blood and common cancer risk factors or lifestyle factors is an 

intriguing approach for gaining valuable insights into the physiological and molecular 

processes of genes influenced by selected risk factors (exposure variables). Understanding these 

processes might ultimately help understand gene expression in the development and 

progression of cancer and other diseases. Especially, the main risk factors covered in this thesis 

– smoking, obesity, and menopause – are of particular interest due to limited or no research 

with these risk factors within blood gene expression. Moreover, studies utilizing large and 

extensive population-based samples to assess such relationships are rare.  

To address these research gaps, this thesis aimed to unravel the associations of gene expression 

in blood with important cancer risk factors among women, who had never been diagnosed with 

cancer, in the NOWAC postgenome cohort; and to further explore in more detail the gene 

ontologies (GO) and pathways of genes that were differentially expressed between different 

levels of exposure variables. 

Specific objectives are listed below: 

 

To evaluate (1) the DEGs in blood of women and (2) their biological functions according to 

following risk factors: 

i. Smoking status and smoking metrics (Paper I) 

ii. BMI and weight changes (Paper II) 

iii. Menopausal status and HT use (Paper III) 
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3 Methods and materials 

3.1 Study population 

3.1.1 The Norwegian women and cancer study (NOWAC) 

The NOWAC study (in Norwegian: Kvinne og Kreft studien) is a nation-wide, population-

based prospective cohort study, initiated in 1991. Its baseline purpose was to explore the 

original hypothesis of the use of oral contraceptives being a risk factor for breast cancer, as well 

as to explore other risk factors for breast cancer, but later it has expanded to target a wider range 

of scope by including biological material for the whole-genome expression profiling using 

microarray technique [4]. NOWAC study is based on questionnaires mailed to women aged 30-

70 years, collecting detailed data related to lifestyle and health such as smoking exposure, 

height, weight, reproductive history, HT use, alcohol consumption, family history of breast 

cancer, dietary patterns, use of medication, and others. The participants were randomly selected 

from the National Population Register (in Norwegian: Folkeregisteret) of Norway. From 1991 

up to June 2007, it incorporated approximately 172,000 women [121]. After the first invitation, 

each woman had answered between one and three follow-up questionnaires (main 

questionnaires) (Figure 3). The NOWAC study database is annually updated with information 

from the Cancer Registry of Norway (in Norwegian: Kreftregisteret), as well as the Norwegian 

Cause of Death Registry (in Norwegian: Dødsårsaksregisteret). Extensive descriptions about 

the NOWAC study are available in Lund et al. [4]. 
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Figure 3: Timeline for the Norwegian Women and Cancer Study (NOWAC). 

Number of women recruited during first (red boxes), second (green boxes) and third (yellow boxes) questionnaire mailings, and collection of 

blood samples (red blood drops) within the NOWAC study according to year of enrolment, age, and number of participants. 
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3.1.2 The NOWAC postgenome cohort 

The NOWAC postgenome cohort is a sub-cohort of the NOWAC study, that has collected 

biological materials, mainly peripheral blood but also some normal and malignant breast tissue, 

for the whole-genome expression profiling using microarray technique [4]. It consists of 

approximately 50,000 women, who between 2003 and 2006, had blood samples drawn using 

the blood collection kit, which were suitable for later mRNA (or transcriptomics or gene 

expression) analyses due to RNA stabilizing buffers [93,122]. The blood samples were drawn 

at the women's local general physician's offices. Of these, several have been selected for 

Illumina full-genome mRNA microarray analyses related to case-control studies within 

NOWAC. For RNA collection, PreAnalytiX (PAXgene™) Blood RNA tube was used, which 

is a BD Vacutainer™, containing a proprietary reagent that immediately stabilizes intracellular 

RNA. The samples were sent overnight to the Department of Community Medicine at UiT The 

Arctic University of Norway. The women were asked not to have their blood samples drawn 

on Thursdays and Fridays, to avoid weekend mail delays. The NOWAC biobank staff received 

the blood samples in most cases within 1-2 days (92%). PAXgene™ Blood RNA tubes were 

frozen at -20°C and then transferred to -70°C without being pre-processed within a week [121]. 

Additionally, the participants had answered a less extensive questionnaire about their lifestyle 

at the blood collection time point. Consequently, there are large number of samples from 

disease-free women that have been compiled, quality-assured, and pre-processed.  

In this thesis, we included microarray-based expression profiles in bio-banked whole-blood 

samples from women in the NOWAC postgenome cohort. We obtained relevant questionnaire 

and registry information from NOWAC databases. There were several case-control studies (i.e., 

breast, lung, ovarian, and endometrial cancers, and diabetes) that had investigated gene 

expression profiles in the NOWAC postgenome cohort. The eligible participants were those 

women who were originally included as controls in these case-control studies, so that the study 

sample only included women who had never been diagnosed with cancer. Therefore, we 

excluded: (i) all cases from these case-control studies, (ii) those who were present in more than 

one sub-study, i.e., present in both the prospective and the post-diagnostic sample, (iii) who got 

cancer after being selected as a control until 2017, and (iv) those with missing information. 

Details about study participants with inclusion and exclusion criteria are presented in Figure 4 

below. The final dataset considered for the all papers (Paper I-III) were based on 1,716 eligible 

women.  
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Figure 4: A flow chart of the study populations. 

(Created with BioRender.com) 

3.1.3 The study design 

We compared gene expression profiles in whole-blood samples from women, who had never 

been diagnosed with cancer, according to the different levels of selected cancer risk factors. 

There were up to four time points for collection of questionnaire information, including up to 

three before blood collection (main questionnaires) and one at blood collection time point 

(blood questionnaires). Thus, this represents repeated measurements of exposure variables. 

However, the focus of this work was analyses of gene expression data, therefore, we had 

considered the blood collection time point as the main study time point or the reference point. 

Since, there was only a single time point for blood collection that were eligible for the 

transcriptomic analyses, capturing a snapshot of gene expression data. Therefore, the study 

design in all papers (Paper I-III) included in this thesis was a cross-sectional analysis nested 

within the prospective longitudinal NOWAC study.  

3.2 The gene expression data 

3.2.1 Laboratory analyses 

The PAXgene™ Blood RNA kit protocol was followed for extraction and purification of total 

RNA from PAXgene™ Blood RNA tube samples. This was performed at the Genomics Core 

https://biorender.com/
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Facility, Norwegian University of Science and Technology, Trondheim. RNA purity was 

evaluated using a NanoDrop ND 8000 spectrophotometer (ThermoFisher Scientific, 

Wilmington, DE, USA), and RNA integrity was evaluated using bio-analyser capillary 

electrophoresis (Agilent Technologies, Palo Alto, CA, USA). The Illumina TotalPrepT-96 

RNA amplification kit was utilized to create the cDNA and then the cDNA was hybridized to 

Illumina Human WG-3 or HT-12 expression bead chip microarrays. Then, raw microarray 

images were processed using Illumina Genome Studio. The lab analyses were performed 

between January 2011 and January 2015. 

3.2.2 Pre-processing of dataset 

The gene expression dataset was pre-processed prior to the main statistical analyses and the 

pre-processing included several steps as described here. First, technical outliers (identified by 

the laboratory quality measures) and any outliers that were detected from a standard operating 

procedure with nowaclean [123] were removed. This was performed for each case-control study 

sample set separately using principal component analysis (PCA) and density plots. Then, 

background correction, removal of bad quality probes, and filtering of probes detected in less 

than 20% of samples were performed, also for each case-control study sample set separately. 

Further, the sub-sets of data were merged and all women with cancer diagnoses until the end of 

follow up in 2017 were removed. The merged dataset was then processed further using log2 

transformation, quantile normalisation; and inspection of batch effects using PCA plots was 

performed. We then performed gene annotation using the Bioconductor packages ‘lumi’, 

‘lumiHumanIDMapping’, and ‘illuminaHumanv4.db’ [124-126]. As we had stringent filtering 

criteria for detection, it rendered in 9,095 probes. In case of more than one probe annotated to 

each gene, the probe with the largest inter-quartile range was kept. The final dataset contained 

7,713 unique genes to be analysed as an outcome.  

Our study sample did not have information on counts of reticulocytes, RBCs, or WBCs. 

However, during pre-processing, for the eligible women, we estimated the proportions of 22 

populations of WBCs in the samples using an in-silico gene expression deconvolution software 

CIBERSORT and the LM22 signature matrix [127]. 

3.3 Selected exposure variables -formation and definition 

We obtained relevant questionnaire information from the NOWAC databases for the eligible 

women. The different exposure variables that were analysed in all the papers (Paper I-III) of 
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this thesis were based on information from all three main questionnaires and the questionnaire 

that were filled at the blood collection time point. Details about these exposure variables in each 

paper are given below: 

3.3.1 Smoking status and smoking metrics (Paper I) 

We had access to detailed information regarding past and current smoking exposures, including 

ages at smoking initiation and cessation, average number of cigarettes smoked per day across 

age intervals, and details about passive smoking. Smoking status and smoking metrics (i.e., 

smoking intensity, smoking duration, time since smoking cessation (TSC), pack-years, and 

comprehensive smoking index (CSI) scores) were created based on this information.  

Smoking status was divided into three categories: current, former, and never smokers. Current 

smokers were defined as those who were currently smoking at the blood collection time point, 

former smokers were those who reported smoking cessation prior to the blood collection time 

point, and never smokers were those who reported they had never smoked either prior to or at 

the blood collection time point. Further, current smokers and former smokers combined 

represented ever smokers, and we defined passive smokers as those who were passively 

exposed to smoking at their homes as adults.  

Smoking intensity was defined as the average number of cigarettes smoked per day during years 

of active smoking. Smoking duration was defined as the duration of active smoking in years. 

TSC was defined as the time since quitting smoking in years. Pack-years quantify individual, 

long-term exposure to tobacco smoking [128] and was calculated by the formula: Number of 

pack-years = (smoking intensity/20) × smoking duration. We considered 20 cigarettes in 1 

pack, which is standard in the Norwegian context. CSI score is a cumulative measure of 

smoking exposure that incorporates smoking intensity (int), smoking duration (dur), and TSC 

(tsc). It was calculated using the formula [12]:  

CSI = (1 − 0.5dur∗/τ)(0.5tsc∗/τ) ln(int + 1), where τ is an estimated half-life parameter, and δ is an 

estimated lag time parameter describing TSC and total duration as follows:  

tsc*= max(tsc − δ, 0) and dur*= max(dur + tsc − δ) – tsc*. 

3.3.2 Body mass index and weight change (Paper II) 

We calculated BMI by dividing weight in kg by the square of height in meters, and the BMI 

values were then categorised according to the WHO standard (underweight: <18.5 kg/m², 
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normal-weight: 18.5-24.9 kg/m², overweight: 25.0-29.9 kg/m², obesity: ≥30.0 kg/m²) [42]. For 

ease, in Paper II, we had represented the three questionnaires as: Q1 (baseline), Q2 (follow-up), 

and Q3 (blood collection). We calculated weight changes between Q1 and Q3 (WCQ3-Q1, mean 

interval 7 years), and between Q2 and Q3 (WCQ3-Q2, mean interval 1 year). We also defined 

weight change categories based on patterns of weight change between Q1-Q2 and Q2-Q3: 

consistent stable weight (women with stable weight (-2 to +2 kg) at Q1-Q2 and Q2-Q3); 

consistent weight gain (women with weight gain (above +2 kg) at Q1-Q2 and Q2-Q3); 

consistent weight loss (women with weight loss (below -2 kg) at Q1-Q2 and Q2-Q3); former 

weight gain (women with weight gain at Q1-Q2 and stable weight at Q2-Q3); former weight 

loss (women with weight loss at Q1-Q2 and stable weight at Q2-Q3); recent weight gain 

(women with stable weight at Q1-Q2 and weight gain at Q2-Q3); and recent weight loss 

(women with stable weight at Q1-Q2 and weight loss at Q2-Q3). 

3.3.3 Menopausal status and hormonal therapy use (Paper III) 

Menopausal status was determined using data from all main questionnaires and the one filled 

at blood collection time point. Participants were classified into three categories: (i) 

premenopausal women, i.e., women who had regular menstrual cycles, (ii) perimenopausal 

women, i.e., women who had irregular menstrual cycles and possibly vasomotor symptoms, 

and (iii) postmenopausal women, i.e., women who had experienced 12 consecutive months 

without a menstrual cycle. 

Self-reported HT use was further categorized as systemic HT use (oral or trans-dermal) and 

local HT use (vaginal cream or suppository).  

3.4 Statistical analyses 

We performed all statistical analyses using the open-source software R [129], 3.2.1 and 3.6.2 

versions for Paper I, 3.6.2 and 4.0.5 versions for Paper II, and 4.0.5 version for Paper III. We 

used the open-source Bioconductor package ‘limma’ (linear models for microarray and RNA-

seq data) [130] for gene-wise linear models testing for DEGs in all papers (Paper I-III). Due to 

the high number of statistical tests, we considered using Benjamini-Hochberg correction to 

correct for false discovery rates (FDR), with a significance threshold of FDR≤0.05 [131].  
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3.4.1 The selected exposure variables 

3.4.1.1 Smoking status and smoking metrics (Paper I) 

Three comparisons of smoking status were used to determine the presence of DEGs: current-

vs-never smokers, current-vs-former smokers, former-vs-never smokers. Further, we examined 

smoking metrics within current smokers and former smokers separately, as well as for adult 

passive smokers within never smokers. Eight women had missing information on smoking 

status, resulting in an analytical sample of 1,708 women for these analyses. We also used linear 

regression to examine the relationships between WBC proportions and smoking metrics. 

Sensitivity analyses: Data on DNA methylation at the CpG site AHRR gene, cg05575921, was 

also available in a subset of participants (N=324) [132]. Thus, we used receiver operating 

characteristic (ROC) curves to compare the ability of the top-ranked gene in our analyses and 

a CpG site in the AHRR gene (cg05575921). The t-test and Wilcoxon rank sum tests were used 

to compare differences in average expression and log2fold-change (logFC) between DEG 

groups, respectively.  

3.4.1.2 Body mass index and weight change analyses (Paper II) 

BMI analyses 

For categorical BMI analyses, we evaluated the relationship between blood gene expression 

and BMI at blood collection time point (BMIQ3) categories in three different comparisons: 

obesity-vs-normal-weight, obesity-vs-overweight, and overweight-vs-normal-weight. For 

continuous BMI analyses, we modelled BMIQ3 as a continuous standardised metric and scaled 

it using the R function 'scale'. The final analytical sample for these analyses were 1,653 women 

(missing information for BMI: N=41). 

Weight change analyses 

For categorical weight change analyses, we evaluated the relationship between blood gene 

expression and past weight changes in six comparisons: (i) consistent weight gain vs consistent 

stable weight, (ii) consistent weight loss vs consistent stable weight, (iii) former weight gain vs 

consistent stable weight, (iv) former weight loss vs consistent stable weight, (v) recent weight 

gain vs consistent stable weight, (vi) recent weight loss vs consistent stable weight. Here, we 

excluded weight-cyclers (N=160), i.e., women who reported decreased weight at Q1-Q2 and 

increased weight at Q2-Q3 and vice versa, and women with missing values (N=499). The final 
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analytical sample for these analyses were 1,035 women. Sensitivity analyses: we also conducted 

analyses restricted to women with <1 year between Q2 and Q3. 

We modelled weight change as a continuous metric in two interaction models with BMI 

categories (WC-BMI interaction analyses) to assess trends across these categories. To address 

the differences in the intervals of WCQ3-Q1 and WCQ3-Q2, we divided the absolute values of 

weight change (kg) by the number of years between Q3 and Q1 or Q2 (kg/year) before scaling 

it (R function ‘scale’). The first interaction model included BMIQ1 or BMIQ2 and subsequent 

weight changes (i.e., BMIQ1*WCQ3-Q1 or BMIQ2*WCQ3-Q2), while the second interaction model 

included BMIQ3 and prior weight changes (i.e., BMIQ3*WCQ3-Q1 or BMIQ3*WCQ3-Q2). Thus, the 

two interaction models allowed for different approaches to the weight changes in terms of 

starting from the prior point or from the blood sampling point. We excluded 464 and 82 women 

with missing values for WCQ3-Q1 and WCQ3-Q2, respectively, resulting in analytical samples of 

1,230 and 1,612 women, respectively. Sensitivity analyses: To evaluate the influence of extreme 

weight change values, we conducted analyses in which we assigned weight change values that 

were below the 5th percentile and above the 95th percentile to the values of the 5th and 95th 

percentiles, respectively. Additionally, to evaluate the importance of the unit of weight changes, 

we conducted weight change analyses using the unit of BMI/year rather than kg/year.   

3.4.1.3 Menopausal status and hormonal therapy use (Paper III) 

We compared DEGs based on menopausal status in three comparisons: (i) post-vs-pre, (ii) post-

vs-peri, and (iii) pre-vs-perimenopausal status. In the analyses of differences according to 

menopausal status, we excluded postmenopausal women who were HT users (N=265), as they 

could resemble premenopausal women in sex hormone status [121]. This resulted in an 

analytical sample of 1,163 women for these analyses. 

We compared DEGs according to HT users-vs-non-users among the postmenopausal women 

only. The analytical sample for this analysis were 1,197 women. Sensitivity analysis: To avoid 

the potential influence of local HT users, we compared DEGs according to HT users-vs-non-

users among postmenopausal women who reported using only systemic HT (N=1,170), where 

we excluded 20 local HT users and seven with missing information. 
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3.4.2 White blood cell proportions 

Gene expression profiles can be influenced by the composition of different types of blood cells 

[133]. Therefore, we used the estimated the proportions of 22 types of WBCs [127] in different 

models of adjustments, to identify differences in cell type composition related to our exposure 

variables. 

We evaluated WBC proportions that were significantly associated with smoking status (Paper 

I), BMI (Paper II), and menopausal status (Paper III) according to the Kruskal-Wallis test, and 

with overall gene expression data according to the Bioconductor package ‘global test’ [134]. 

We then used these selected WBCs as covariates in limma analyses in different adjustment 

models. 

3.4.3 Covariates and adjustment models 

We evaluated covariates that were significantly associated with smoking status (Paper I), BMI 

(Paper II), and menopausal status (Paper III) according to the Chi-square test (for categorical 

variables) or Kruskal-Wallis test (for continuous variables), and with overall gene expression 

data according to the Bioconductor package ‘global test’ [134].  

We considered laboratory plates (also called as: laboratory batch) and sample storage time as 

technical covariates. Further, we examined the distribution of following covariates across 

different exposure variables in different papers: age (years), smoking status 

(current/former/never smokers), BMI (normal-weight/overweight/obesity), and HT use at 

blood collection time point; alcohol consumption (units per week), parity (number of children), 

and use of oral contraception at baseline questionnaire. In addition, selected WBCs (as 

previously described) were included as covariates. 

Possible confounders were addressed by adjusting for above mentioned covariates in the limma 

analyses in different models of adjustments. These models are demonstrated in Figure 5 below. 
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Figure 5: Different adjustment models across Paper I-III. 

(Created with BioRender.com) 

3.4.4 Functional enrichment analyses 

To investigate the biological functions of DEGs associated with different exposure variables, 

we performed functional enrichment analyses, specifically over-representation analysis (ORA). 

We used the open-source Bioconductor packages ‘clusterProfiler’ [135,136] and 

‘ReactomePA’ [137]. For these analyses, in Paper I and II, we assessed DEGs from the fully-

adjusted models, whereas in Paper III we assessed DEGs from both semi- (Model-2) and fully-

adjusted models (Model-3). We conducted separate analyses for over-expressed (FDR≤0.05 

and log2fold-change (logFC)>0), i.e., genes that are up-regulated (higher mean expression 

levels) in the reference group, and under-expressed genes (FDR≤0.05 and logFC<0), i.e., genes 

that are down-regulated (lower mean expression levels) in the reference group using the 

following databases: GO biological processes, GO molecular functions, GO cellular 

components, Kyoto encyclopaedia of genes and genomes (KEGG), and REACTOME 

pathways.  

https://biorender.com/
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3.4.5 Quantitative replication 

For quantitative replication (the external validation), whenever possible, we compared our list 

of DEGs, fold-change values, and their directions associated with our exposure variables to the 

results from analyses of independent transcriptomic datasets from whole-blood and other 

relevant tissue types. This could help us to determine whether our results were consistent with 

previous research or represented as novel findings. 

3.5 Ethical considerations 

The Regional Ethical Committee of North Norway (REK) has approved the collection and 

storage of data and human biological material in the NOWAC cohort and biobank (NOWAC 

postgenome cohort) (Reference numbers: 2010/2075/REK Nord and 2014/1605/REK Nord, 

respectively).  

The invited participants were asked to sign if they did not want to give a blood sample, and thus 

avoid a reminder. The consent was given as a tick in the questionnaire to confirm that they had 

read the information and consented to participate. According to the assessment of the 

Norwegian centre of research data (in Norwegian: Norsk Senter for Forskningsdata or NSD) 

regarding the legal basis under the requirements in the Personal Data Protection Regulation 

today, it is appropriate that the basis for processing was public interest.  

3.5.1 Data management  

The PhD candidate was given the access to the pre-processed data for analyses and was solely 

responsible for performing all the statistical gene expression analyses.  

The NOWAC linkage to registries was performed using the personal identification number 

which is only stored at the Statistics Norway (in Norwegian: Statistisk sentralbyrå or SSB) and 

only they have access to it. All the participants had a unique LABNR in the databases, which 

served as the link between questionnaire data to gene expression data in this thesis. The data 

was stored and analysed in a safe environment (i.e., HUNT Cloud) which requires multi-factor 

authentication for access. HUNT Cloud (link: https://www.ntnu.edu/mh/huntcloud) is a data 

storage and computation facility offered by the Norwegian University of Science and 

Technology, Trondheim. Thus, the data were never transferred to personal computers or shared 

to other people or countries; and was only used to perform statistical analyses and make figures 

and tables. 

https://www.ntnu.edu/mh/huntcloud
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3.5.2 Data availability  

Data could not be shared publicly because of local and national ethical and security policies. 

Data access for researchers will be conditional on adherence to both the data access procedures 

of the NOWAC study and the UiT The Arctic University of Norway (contact info: Tonje 

Braaten <tonje.braaten@uit.no>) in addition to an approval from the local ethical committee. 

However, the project research findings were shared with the participants via NOWAC websites 

and in published articles. 

mailto:tonje.braaten@uit.no
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4 Results – Summary of papers 

4.1 Paper I  

Gene expression in whole-blood reflects smoking exposure among cancer-free women in the 

Norwegian Women and Cancer (NOWAC) Post-genome cohort [119]. 

This study investigated associations of gene expression in blood with smoking status and 

smoking metrics among 1,708 cancer-free women (i.e., women who had never been diagnosed 

with cancer) from the NOWAC postgenome cohort. We performed gene-wise linear regression 

models to identify DEGs, and functional enrichment analyses to identify their biological 

functions. 

Results showed that when compared to individuals who never smoked or formerly smoked, 

current smokers had 911 and 1,082 DEGs, respectively. The gene LRRN3 showed the strongest 

association with current smoking status (logFC=1.01, FDR-adjusted p-value=1.52E-80). In the 

comparison between never smokers and all former smokers, there were no observed DEGs, but 

LRRN3 was found to be differentially expressed when never smokers were compared to those 

former smokers who had quit smoking ≤10 years ago. Among current smokers, LRRN3 was 

positively associated with smoking intensity, pack-years, and CSI scores, while among former 

smokers, it was negatively associated with TSC. The biological functions of the DEGs 

identified were linked to circulatory functions, translation, and immune responses. 

In conclusion, many DEGs were observed associated with current smoking exposure, but few 

or no DEGs were observed in relation to former smoking exposures and/or smoking metrics. 

However, we observed that LRRN3-driven discrimination in all these comparisons; and thus, 

LRRN3 expression in whole-blood could serve as a molecular signal of smoking exposure that 

could supplant self-reported smoking data in future studies focusing on blood-based markers 

related to the health effects of smoking. The biological functions of the identified DEGs 

explored in this study could indicate systemic impacts of obesity, as these functions coincide 

with its known physiological effects.  
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4.2 Paper II  

Associations of gene expression in blood with BMI and weight changes among women in the 

NOWAC postgenome cohort. 

This study investigated associations of gene expression in blood with BMI and weight changes 

among 1,694 women, who had never been diagnosed with cancer, from the NOWAC 

postgenome cohort. We used information gathered from three questionnaires (Q1: baseline, Q2: 

follow-up, and Q3: blood collection), and performed gene-wise linear regression models to 

identify DEGs, and functional enrichment analyses to identify their biological functions. 

This study identified, 2,394, 769, and 768 DEGs according to the comparisons of obesity-vs-

normal-weight, obesity-vs-overweight, and overweight-vs-normal-weight women, 

respectively. However, when investigating WCQ3-Q1 (mean interval=7 years, range=5.5-14 

years), and WCQ3-Q2 (mean interval=1 year, range= <1 month-9 years) in interaction with BMI 

categories, only up to 169 DEGs were identified. Of these, between 1 and 169 genes were 

associated with the main effects of weight changes, and between 0 and 9 genes were associated 

with the interaction effects of BMI and weight changes. The biological functions of BMI-

associated DEGs were linked to general metabolism, erythrocyte functions, oxidative stress, 

and immune processes, while weight change associated DEGs were linked to signal 

transduction. 

In conclusion, many BMI-associated DEGs, but few weight change associated DEGs were 

identified in blood of women in Norway. The biological functions of the identified DEGs 

explored in this study could indicate systemic impacts of obesity, especially blood reticulocyte-

erythrocyte ratio shifts; and these functions coincide with its known physiological effects.  
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4.3 Paper III 

Associations of gene expression in blood with menopausal status and hormone therapy use 

among women in the Norwegian Women and Cancer (NOWAC) postgenome cohort. 

This study investigated associations of gene expression in blood with menopausal status and 

HT use among 1,428 women, who never have been diagnosed with cancer, from the NOWAC 

postgenome cohort. We performed gene-wise linear regression models to identify DEGs, and 

functional enrichment analyses to identify their biological functions.  

The study discovered 1,460 DEGs in blood samples when comparing postmenopausal with 

premenopausal women, showing a clear association of blood gene expression and menopausal 

status. Further, HT use among the postmenopausal women also revealed 348 DEGs. The 

biological functions of menopausal-associated DEGs were mostly linked to immune responses, 

cell-cell adhesion, cognition, muscle system process, and reproduction. HT-associated DEGs 

were linked to estrogen-dependent gene expression and RHO GTPases signalling. Nonetheless, 

when adjusted for the estimated WBC proportions, number of DEGs substantially reduced to 

26 and 7, for the comparisons for menopause status and HT use, respectively. As a result, the 

enriched terms associated with immune processes in biological functions were no longer 

evident. 

We concluded that many menopausal- and HT-associated DEGs were identified in blood of 

women, but when considering WBC proportions, most of these associations did not remain. 

Hence, the observed associations of menopausal status and HT use with blood gene expression 

seemed to be primarily influenced by the relative presence of blood cells. Further, we observed 

systemic impacts of menopause, as these functions correspond with their physiological effects.  
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5 Discussion 

This thesis is comprised of three papers, which aimed to assess the association of cancer risk 

factors (in brief: smoking status and smoking metrics in Paper I, BMI and weight changes in 

Paper II, and menopausal status and HT use in Paper III) as exposure variables (or 

interchangeably referred to as ‘exposure(s)’ in the Discussion section) and gene expression 

profiles in blood as an outcome variable (or interchangeably referred to as ‘outcome’ in the 

Discussion section). 

5.1 Main results 

5.1.1 Smoking status and smoking metrics 

5.1.1.1 Differentially expressed genes 

We observed 911 and 1,082 DEGs when comparing current-vs-never smokers and current-vs-

former smokers, respectively. Around 40% of these DEGs were over-expressed (genes with 

logFC>0) in both comparisons. LRRN3 was the top-ranked gene (the gene with the lowest FDR-

p-value) in both comparisons. These results were in line with similar previous studies [32-

34,37,39,138]. Higher proportions of over-expressed genes have been observed most frequently 

[32-34,138], but some [37,39] reported a higher proportion of under-expressed genes. Further, 

when comparing the DEGs from the current-vs-never smoker comparisons, with genes (1,270 

DEGs) identified in corresponding tests in a large meta-analysis containing 10,233 participants 

(51% women) [34], we observed 285 overlapping DEGs with 282 genes (98.94%) in same 

effect direction in both studies. This implies that the direction of the association to smoking 

was consistent for hundreds of genes between our study and the study by Huan et al. [34], 

demonstrating the comprehensive effects of current smoking exposures on gene expression in 

blood.  

Among current smokers, only few significant genes were positively associated with increasing 

smoking exposure represented by CSI scores, smoking intensity, and pack-years, among which 

LRRN3 was the top-ranked over-expressed gene. Among the former smokers, LRRN3 was the 

only significant gene that was negatively associated with TSC. Nevertheless, we did not observe 

any DEG when comparing never smokers with all former smokers. This might probably be 

because TSC among the former smokers ranged from 1 year to over 40 years. However, when 

we limit the TSC for former smokers to ≤10 years ago, we observed one gene (LRRN3) was 
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differentially expressed between never smokers and former smokers. This highlights the need 

to consider TSC when analysing smoking effects in former smokers. Besides, among never 

smokers, no genes were observed to be associated with self-reported passive smoking when 

compared to those without passive smoking exposure. This might suggest that gene expression 

may be more influenced by active smoking in women themselves but could also indicate 

limitations in statistical power or imprecise exposure measurement. 

These findings indicated the continued over-expression of LRRN3 in relation to smoking 

exposures in our study. LRRN3 has been consistently indicated to be over-expressed in the 

whole-blood of current smoker or former smokers in previous studies [32-

34,36,37,39,139,140]. LRRN3 was also the top-ranked gene in the overlap between our DEGs 

and the DEGs from Huan et al. [34], and we observed larger fold-change for LRRN3 in our 

study (logFC=1.01) compared to them. Additionally, there are two new studies that are not 

covered in Paper I, one published during our submission process [141] and one published after 

Paper I was published [142]. Both these studies [141,142] show LRRN3-driven discrimination 

of smoking status. Further, our results showed that the LRRN3 expression increases with 

ongoing smoking exposure but also in years after smoking cessation, it eventually (however 

takes around 20-30 years) reverts to levels like those of never smokers.  

Further, the investigation of DNA methylation at specific CpG sites have shown promising 

abilities as markers of smoking status, that are capable of reflecting smoking exposure even 

long after smoking cessation [143,144]. Studies show that methylation at CpG sites in the 

AHRR gene is the top-ranked smoking marker [145,146]. Within a subset of our dataset, LRRN3 

exhibited a comparable ability to discriminate current smokers and former smokers (with ≤10 

years TSC) from never smokers, as compared to methylation at CpG sites in the AHRR gene.  

Nevertheless, several other genes like PID1, RGL1, STAB1, NMRAL1 were also observed 

among the top-ranked genes associated with smoking status and smoking metrics in our study. 

The large overlap of DEGs of our study with study by Huan et al. [34], indicate that there are 

other genes consistently reported associated with smoking exposures but less clear than for 

LRRN3. It is crucial to explore the abilities of LRRN3 expression as a quantitative marker for 

discrimination of smoking status in other population samples than those covered by research 

studies today and with the comparison to other markers, but investigating other genes in relation 

to smoking exposure should also be considered. 
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5.1.1.2 Functional enrichment analyses 

Between current-vs-never and current-vs-former smokers comparison groups, we observed a 

large overlap on enriched categories of the over-expressed genes and under-expressed genes. 

However, there were more overrepresentation of ontologies and pathways when current 

smokers were compared to never smokers than when they were compared to former smokers. 

This could be because of the influence of smoking remained or was gradually decreasing in 

former smokers, which was also observed in our DEG findings of LRRN3 expression. 

Additionally, the overall lack of overlap for enriched terms of the over-expressed and under-

expressed genes likely demonstrated that these distinct gene groups are associated with separate 

pathways.  

Over-expressed genes were mostly enriched for terms related to peptide metabolic and 

biosynthetic processes, protein formation and translation, humoral immune response, structural 

constituent of ribosome and molecule activity, ribosomal subunits, and adherence junction. On 

the other hand, under-expressed genes were enriched for terms related to response to wounding, 

regulation of blood vessels and tube size and diameter, neuron projection development, drug 

and hydrogen peroxide catabolic processes, heme binding, cell body, and hemoglobin complex. 

All these terms indicated that the smoking-associated genes were enriched for functions related 

to the well-known physiological effects of smoking on the human body; particularly linked to 

the circulatory and cardiovascular systems, as DEGs measured in blood could be directly 

influenced by such altered functions. Further, the top-ranked gene, LRRN3, is reported to be 

expressed in cardiomyocytes, which is the cell responsible for contraction of the heart muscle 

[147] and clearly indicates the link between smoking exposure and potential relevance of gene 

expression for heart disease as a health endpoint. 

Carbon monoxide from smoking binds to haemoglobin in RBCs, thereby reducing the blood’s 

oxygen-carrying capacity [148]. Accordingly, our results indicated that under-expressed genes 

related to smoking are involved in the haemoglobin complex, thereby potentially exacerbating 

smoking’s negative effects on oxygen transport. Moreover, terms like heme binding, 

hemoglobin complex are RBCs-related processes/functions, reflecting the relative presence of 

RBCs; but we did not have the RBC estimates to adjust in the models. Further, smoking causes 

several negative vascular effects, including decreased coronary blood flow and myocardial 

oxygen delivery, as well as adverse effects on lipids, blood pressure, and insulin resistance 

[149]. In agreement with such processes, the under-expressed genes were enriched for blood 
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vessel size and diameter, and vascular processes in the circulatory system. We identified that 

oxidoreductase activity was under-expressed, which are in line with observations indicating 

that smokers experience observable and immediate oxidative damage, resulting in oxidative 

stress [22]. Additionally, we observed under-expressed genes overrepresented in wound healing 

and haemostasis processes, which is consistent with observations indicating a diminished 

ability to heal wounds among individuals who smoke [22,24]. Lastly, we could observe that 

terms related to immune responses were overrepresented among over-expressed genes. Several 

studies analysing gene expression associated with smoking also have revealed impacts on the 

regulation of processes within the immune system [32-34,36-39]. All these point towards a 

relation of smoking with the circulating immune system, which is also a well-known effect of 

smoking [22]. 

The enriched terms overrepresented by the DEGs in our study were largely consistent with 

those reported in the study by Huan et al., which primarily revealed enrichment in the activation 

of platelets and lymphocytes, immune response, and apoptosis [34]. Additionally, the 

expression of our top-ranked gene, LRRN3, has been associated with methylation of a CpG site 

on the AHRR gene [132], within a subset of our dataset (depicted by the ROC curve); and AHRR 

is connected to AHR and CYP proteins involved in detoxification mechanisms in the liver, as 

these genes might thus reflect features of a plausible physiological influence of smoking 

exposures.  

Overall, smoking might influence a large spectrum of blood gene expressions and the enriched 

terms for the smoking-associated DEGs in our study indicate broad physiological effect of 

smoking exposures, mainly current smoking exposures. Still, considering the diverse molecules 

present in tobacco smoking, it can potentially influence multiple pathways, which was indeed 

observed in the GO categories indicated by our study.  

5.1.1.3 Blood cell compositions 

Among the estimated proportions of 22 types of WBCs, we observed that CD8 T cells, naive 

CD4 T cells, resting NK cells, M0 macrophages, resting mast cells, and neutrophils were 

significantly associated with both smoking status and overall gene expression. We observed 

modest difference in number of DEGs in the model with WBC adjustments (fully-adjusted) and 

without WBCs adjustment (minimally-adjusted) and the logFC of the top-ranked genes did not 

change much. Further, our top-ranked gene, LRRN3, is reported to be expressed in T cells (naive 
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CD4 and CD8 T cells) [147]. We observed that WBC proportions and smoking metrics, 

especially resting NK cells but also CD8 T cells, resting mast cells, and neutrophils, were 

negatively associated with increasing smoking exposure. Naive CD4 T cells were positively 

associated with several smoking metrics. While resting NK cells were positively associated 

with TSC, indicating that if one quits smoking, the NK cells tend to increase, which increases 

the immune responses/regulations in the body [150].   

However, we could observe that terms related to immune responses were overrepresented 

among current smokers. These results are in line with observations [32-34,36-39] that smoking 

may have adverse effects on the immune capacity of the body. In fact, smoking has been 

identified as a significant and reversible cause of elevated WBC counts in healthy adults [151]. 

Smoking can compromise the immune system and immune homeostasis as a whole [22]. It is a 

limitation that we could not adjust for RBCs or reticulocytes estimates/counts as we observed 

ontology categories related to RBC processes such as heme binding, hemoglobin complex was 

overrepresented among current smokers. Moreover, these results of blood cells compositions 

and smoking exposures are in line with research [152] revealing that continuous cigarette 

smoking has detrimental impacts on hematological parameters, such as hemoglobin, WBC 

counts, RBC counts, etc. These changes in hematological parameters may be linked to an 

increased susceptibility to conditions such as atherosclerosis, chronic obstructive pulmonary 

disease and/or cardiovascular diseases [152]. 

5.1.2 BMI and weight change 

5.1.2.1 Differentially expressed genes 

We observed 2,394, 769, and 768 DEGs for the obesity-vs-normal-weight, obesity-vs-

overweight, and overweight-vs-normal-weight comparisons, respectively, and 3,106 DEGs in 

continuous BMI analyses. Thus, many associations of blood gene expression with BMI were 

observed. Across the models testing associations with BMI, 525 DEGs overlapped, and these 

can be considered as consistent genes associated with BMI. FAM46C was the top-ranked gene 

in all BMI analyses, except in the overweight-vs-normal-weight comparison, where the top-

ranked gene was SLC45A3. FAM46C was positively associated with increasing BMI and 

SLC45A3 was negatively associated. The BMI-associated DEGs (both 525 DEGs across all 

BMI-models with 3,106 DEGs from continuous BMI analyses) were largely consistent in terms 

of direction of effect with findings of previous studies in whole-blood [61,62], PBMCs [63], 
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and adipose tissue [64], although our top-ranked genes FAM46C and SLC45A3 were only 

identified a study by Homuth et al. [62]. The overlap with the study in adipose tissue [64] was 

lower, and this was the only tissue that was negatively correlated with our estimation, as we 

observed positive correlation in whole-blood [61,62] and PBMCs [63]. This indicated that 

systemic patterns in expression in blood related to BMI differ from those in adipose tissues. 

Our results suggest that DEGs in whole-blood related to BMI in women could be applicable to 

both sexes and other blood samples, but gene expression profiles may be differently regulated 

in adipose tissue.  

The categorical weight change analyses did not reveal any DEGs. In the weight change analyses 

as a continuous metric, we regarded two measurements in terms of intervals – a farther one or 

long-term (WCQ3-Q1), with an average time interval of 7 years (range=5.5-14 years), and a closer 

one or short-term  (WCQ3-Q2), with an average time interval of 1 year (range=<1 month-9 years). 

When focusing on these weight changes after accounting for interactions with BMI categories 

(WC-BMI interaction analyses), a few associations with current gene expression were revealed. 

Between 1 and 169 genes were associated to the main effect of past weight changes and between 

0 and 9 genes were associated with the interaction effect of past weight changes and current 

BMI (represented as BMIQ3, i.e., at blood collection in Paper II). Here as well, the effect of 

obesity was prominent, as the few DEGs (9 and 1) in the weight change interaction effects were 

significant only among women with obesity. Further, we introduced two interaction models 

assuming that current BMI was a stronger predictor of current gene expression than past weight 

changes or past BMI, thus the second interaction model (BMIQ3*WC) could be expected to 

reveal more DEGs than the first (BMIQ1orQ2*WC). In accordance with these predictions, our 

findings demonstrated that the interaction effect of weight change and BMI was not significant 

in the first interaction model (where we had regarded past BMIs), whereas up to 9 genes were 

significant in the second interaction model (where we had regarded current BMIs). The 

expression of the top-ranked genes from the WC-BMI interaction analyses may suggest a 

positive correlation between WCQ3-Q1 and CECR6, and a negative correlation between WCQ3-

Q2 and STT3A among women with obesity, though the observed trend was not very robust. Also, 

we observed that 21 DEGs among the weight change models (N=169) were overlapping with 

525 DEGs across all BMI-models indicating that past weight changes to some extents were 

represented in current BMI models.  
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We could not attempt to replicate the results for past weight changes, as until now, no study 

had investigated the association between gene expression in blood and past weight changes. 

But there were some earlier studies in adipose tissue, which revealed that alterations in gene 

expression patterns within adipose tissue were linked to weight reduction in individuals with 

obesity following dietary interventions [65-71]. However, the follow-up time in these studies 

(4 weeks to 9 months) was shorter than the time intervals in our study (range=<1 month-14 

years). The weight changes we observed could be too far in the past to have a major influence 

on blood gene expression. Still, sensitivity analyses restricted to women with <1 year between 

Q2 and Q3 did not show any significant DEGs. Future studies focusing on systemic signatures 

related to weight changes should likely include blood samples taken within months of the 

weight change occurring for transcriptomic signals to be detectable.  

Overall, our results indicated that current BMI and past weight changes have, respectively, vast 

(>3,000 DEGs) and restricted overall influence (up to169 DEGs) on blood gene expression in 

terms of number of DEGs.  

5.1.2.2 Functional enrichment analyses 

Functional enrichment analyses of BMI-associated DEGs revealed a wide range of functions in 

enriched ontologies and pathways and included general processes related to metabolic and 

blood homeostasis. In women with obesity, over-expressed genes were enriched for various 

catabolic (e.g., cofactor catabolic processes) and metabolic processes (e.g., hydrogen peroxide, 

tetrapyrrole metabolic processes), as well as erythrocyte homeostasis, haemoglobin binding, 

and ribosome structures. These align with previous studies that have analysed obesity and gene 

expression in whole-blood [61,62] or PBMCs [63].  

The enriched terms erythrocyte differentiation, myeloid cell homeostasis, erythrocyte 

homeostasis, heme biosynthetic/metabolic processes suggest the overexpression of genes in 

erythrocytes or their precursors (reticulocytes) [153]. Of note, FAM46C, the top-ranked gene 

associated to BMI, and several other top-ranked genes (HBD, GYPB, and ALAS2) are primarily 

expressed in bone marrow, blood, and early erythroid cells [153,154]. Erythrocyte indices have 

been observed to be positively linked with obesity [155,156], possibly due to increased 

reticulocytes proliferation in the bone marrow [157,158] induced by the hormone leptin. 

However, people with obesity may experience a shorter half-life of erythrocytes in circulation 

due to impaired insulin resistance and oxidative stress caused by hyperglycemia [49]. This shift 
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in the reticulocyte-erythrocyte ratio is expected to be reflected in the whole-blood transcriptome 

because reticulocytes are also transcriptionally active [62]. Also, the top-ranked genes among 

525 genes across BMI-models, were enriched for erythrocytes functions. Thus, these results 

indicate that BMI-associated DEGs identified in this study likely reflect a shift in the 

reticulocyte-erythrocyte ratio. Validation of changes in the reticulocyte/erythrocyte proportions 

in relation to BMI appeared outside the scope of our work based on transcriptomic profiles. 

However, the influence of this shift on blood gene expression by RBCs was indicated in a 

published study [62], which we have compared with as quantitative replication, and observed 

large consistency in terms of effect direction. 

Other enriched terms among the over-expressed genes were peptide chain elongation and 

eukaryotic translation termination/elongation which appeared related to protein synthesis [159]. 

Another study conducted in whole-blood [61] observed ribosome and protein synthesis 

pathways as top-ranked among women with obesity. These terms are in line with the 

physiological changes previously observed in people with obesity such as higher levels of 

oxidative stress [49,160], haemoglobin [161,162], and disrupted protein synthesis [163,164].  

The under-expressed genes were enriched for terms like antigen binding, processing and 

presentation, peptide binding, and TNF signalling pathways, which suggest there could be 

altered blood immune processes in women with obesity. Similar processes have been observed 

among people with obesity in other transcriptomic studies [61,64,165]. Moreover, we observed 

overrepresentation of terms like influenza, asthma, antigen binding. Such altered immune-

related terms in women with obesity could explain previously observed link between obesity 

and increased risk of co-morbidities and infectious diseases, like influenza and COVID-19, and 

increased viral shedding and transmission [166-168]. Overall, the enriched terms for the BMI-

associated DEGs in our study indicate broad physiological effect of obesity/overweight. The 

assessment of past weight changes and blood gene expression was novel, yet revealed only a 

small number of DEGs, which could not strongly indicate specific biological functions. 

Nonetheless, some over-expressed genes (RBP1/FZD2/OPRL1/CD14) indicated relations 

between past weight changes and genes involved in signal transduction. 

5.1.2.3 Blood cell compositions 

Literature shows that BMI and body weight have been positively correlated with WBC counts 

in apparently healthy young adults, and especially higher in women [169]. Among the estimated 
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WBC proportions, we observed naive B cells, memory B cells, naive CD4 T cells, and memory-

activated CD4 T cells were significantly associated with both BMI and overall gene expression. 

After adjustments of WBCs in the model, we observed slight increase in the number of BMI-

associated DEGs and the logFC of the top-ranked genes did not change much. The enrichment 

analyses showed some immune related terms, but we observed the erythrocyte terms were 

mostly overrepresented. Even the top overlapped DEGs across all BMI models were related to 

erythrocyte functions. This clearly indicated the limitation of not having counts or estimates of 

their presence to investigate in this study. 

5.1.3 Menopausal status and HT use 

5.1.3.1 Differentially expressed genes 

We observed 1,460 DEGs for the post-vs-premenopausal status comparison showing clear 

associations of menopausal status with gene expression in blood. However, after adjusting for 

the estimated proportions of WBCs in the blood samples (Model-3), only 26 DEGs remained, 

indicating the relevance of including WBCs as covariates when investigating these associations.  

Further, the comparisons of gene expression profiles for post-vs-perimenopausal women 

showed no DEGs, while one DEG was identified in the pre-vs-perimenopausal women 

comparison, in models adjusted (Model-3) and not adjusted (Model-2) for WBC proportions. 

The limited number of DEGs in the perimenopausal group could be due to the wide range of 

physiological changes occurring in this group, which may have resulted large inter-individual 

variation in gene expression in this group. Another possible explanation could be the self-

reported menopausal status, which may have resulted in misclassification. 

As this study is one of the first studies to investigate gene expression profiles in blood in relation 

to menopause, it was not possible to compare the DEGs in our study with those of similar 

studies to ensure consistency of results. Additionally, it was not feasible to investigate the study 

findings by comparing them with the only study investigating menopausal association with 

gene expression in circulating monocytes [84] due to unavailability of that study data. 

In the comparison of HT-users-vs-non-users, we observed 348 DEGs, indicating that HT use 

can influence gene expression in years after menopause, at least for users of systemic HT. Still, 

these DEGs were reduced to 7 DEGs after adjusted for the estimated WBCs proportions 

(Model-3). As HT-users could be assumed to resemble premenopausal women in terms of sex 
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hormone status [121], confirming this assumption with sex hormone levels in these women 

would assure this, but this information was not available in our dataset. Still, we compared HT-

associated DEGs with post-vs-premenopausal status associated DEGs. Among the 348 HT-

associated DEGs identified in Model-2, 231 (66.38%) overlapped with post-vs-premenopausal 

associated DEGs (1,460 DEGs; Model-2). But none of the seven HT-associated DEGs 

identified in Model-3 were among the 26 DEGs associated with post-vs-premenopausal status 

in Model-3, although five of them were observed among DEGs associated with post-vs-

premenopausal status in Model-2. Our hypothesis about the sex hormone status of HT-users 

and the resemblance to premenopausal women was confirmed by observing that all overlapping 

DEGs between HT-users and post-vs-premenopausal status exhibited opposite effect directions 

(i.e., higher expression in HT users and premenopausal women).  

The study conducted by Waaseth et al. [91] investigating the relationship between sex hormone 

status and gene expression in blood, observed a total of nine DEGs, with sex hormone 

concentrations. Four genes had an FDR below 0.28 and five had an FDR below 0.25. Similarly, 

Dumeaux et al. [170], investigating the use of HT and its impact on gene expression in blood, 

identified 12 DEGs among HT users compared to non-users, with a global FDR of 26.6%. 

When we compared their [91,170] DEGs with the HT-associated DEGs in our study, no 

overlapping genes were observed. This lack of overlap could be attributed to the relatively small 

sample sizes in these studies and the absence of adjustments for WBC proportions, which might 

have influenced the model estimates. 

Overall, these findings revealed association of blood gene expression with menopause and HT 

use, but associations were likely driven by the relative proportion of WBCs in the samples.  

5.1.3.2 Functional enrichment analyses 

Functional enrichment analyses of menopausal-associated DEGs revealed a diverse array of 

functions in enriched ontologies and pathways. Under-expressed genes in post- compared to 

premenopausal comparisons in models, where adjustment for WBCs was not included (Model-

2), were enriched for terms such as neutrophil activation and degranulation, myeloid leukocyte 

activation, leukocyte activation. This appeared to be primarily linked to leukocytes and immune 

responses; and in line with WBCs associated with menopausal status in our study. This 

indicated a general downregulation of immune system processes in postmenopausal compared 

to premenopausal women. These terms could be in agreement with the influence of WBCs 
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associated with menopause. Indeed, these enriched terms were no longer significant after 

adjustment for WBCs (Model-3), and the remaining enriched terms were cell-cell adhesion and 

regulation of body fluid levels. These terms could reflect general physiological changes during 

menopause independent of immune cell changes.  

Among the over-expressed genes in post-vs-premenopausal comparisons in Model-2, the few 

enriched terms were related to function of catalytic activity and protein binding. Further, 

enriched terms for the over-expressed genes in the same comparisons in Model-3 were linked 

to cell-cell adhesion, cognition or nervous system, response to stress, muscle system process, 

cell development and reproduction, and regulation of body fluid levels. These terms agree with 

terms indicated as influenced by menopause status in circulating monocytes previously [84]. 

Additionally, the top-ranked gene in the post-vs-premenopausal comparison (Model-2), 

ADCY3, were mainly associated with e.g., biosynthetic and metabolic process, cognition, renal 

system process, regulation of catalytic activity [153]. The top-ranked gene in post-vs-

premenopausal comparison (Model-3), CTTN, were related to e.g., cell adhesion and cell 

junction organization, muscle system process [153]. These ontologies and pathways are general 

in nature but could also point towards chronic systemic inflammation. Studies have reported 

that increased visceral fat mass and decline in estrogen levels during menopause could lead to 

chronic systemic inflammation [86]. Such terms are contributing factors to metabolic diseases 

like insulin resistance, type 2 diabetes, and cardiovascular disease – the diseases that tend to 

become more prevalent after menopause [86]. Thus, overall, we observed changes in the 

systemic immune and inflammatory status.  

The DEGs related to HT use in the model with WBC proportions adjustment (Model-3) did not 

indicate any enriched ontologies/pathways. When WBCs were not adjusted for (Model-2), the 

DEGs related to HT-use were enriched only for a few terms in REACTOME pathways, mainly 

related to estrogen-dependent gene expression and RHO GTPases Effectors. Further, the gene 

HIST1H3D (also named as H3C4) was over-expressed among HT-users and has known 

functions in regulation of metabolic processes, immune system, cellular developmental process, 

and cellular response to stimulus [153]. The top-ranked gene in the HT-users-vs-non-users 

comparison (Model-2), ARHGEF7, was under-expressed among HT-users and has known 

functions in signalling by epidermal growth factor receptor -EGFR, ephrin, and cell death [153].  
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The enriched terms and top-ranked genes contribute to the overall understanding of how 

menopause and postmenopausal HT-use influence systemic gene expression, with immune cell 

changes likely playing a significant role in mediating these associations. 

5.1.3.3 Blood cell compositions 

Among the estimated proportions of 22 types of WBCs, we observed CD8 T cells, naive CD4 

T cells, regulatory T cells, activated NK cells, monocytes, M1 macrophages, activated mast 

cells, eosinophils, and neutrophils were significantly associated with both menopausal status 

and overall gene expression. Accordingly, the functional enrichment analyses of the DEGs 

observed in models without adjustment of WBCs revealed ontology terms associated with 

immune-related pathways. This suggests that the variances in the relative proportions of these 

WBCs according to menopausal status might be reflected in the bulk gene expression profiles. 

Among the different groups, postmenopausal women exhibited slightly higher mean 

proportions of CD8 T cells and activated NK cells. Perimenopausal women, on the other hand, 

had slightly higher mean proportions of naive CD4 T cells, regulatory T cells, monocytes, and 

M1 macrophages. Lastly, premenopausal women showed slightly higher mean proportions of 

eosinophils and neutrophils. In our observations, we noted that while there were minimal 

differences in the proportions of other significant WBC populations, the median levels of 

activated mast cells were twice as high in premenopausal women compared to postmenopausal 

women. These findings align with previous research [171] indicating that mast cells can be 

activated by female sex hormones. We observed lower proportions of the estimated neutrophils 

and monocytes in postmenopausal compared to premenopausal women whereas higher 

proportions of the estimated CD8 T cells and CD4 T cells in postmenopausal women. Studies 

[86,172] analysing blood samples have reported a correlation between menopause and changes 

in the proportions of WBC. Chen et al. [172] reported similar results to our observations, noting 

a decrease in neutrophil percentages and an increase in lymphocyte percentages in women 

around the age of 50, which is typically the age of menopause. Additionally, a study [86] 

investigating the altered distribution of T-cell subsets in postmenopausal women and observed 

higher counts of T-cell subtypes like in our study and elevated levels of circulating 

inflammatory markers such as TNF-α, IL-1β, and IL-6 in postmenopausal women compared to 

premenopausal women. Still, they observed higher monocytes counts among postmenopausal 

women [86], whereas we observed the highest mean monocytes count among the 
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perimenopausal women. This likely agrees with that the systemic immune status during the 

years of menopausal transition is subject to physiological changes. Consequently, when 

analysing blood molecular markers that are influenced by the underlying compositions of 

immune cells in samples, it is crucial to incorporate adjustments and considerations for these 

aspects in the study design and analyses.  

5.1.4 Across the risk factors investigated –the broader picture 

5.1.4.1 The associations of risk factors with blood gene expression 

This thesis investigated associations of blood gene expression with different cancer risk factors 

with different importance and different physiological effects. Two of them –smoking and 

obesity –were the two most important modifiable cancer risk factors globally, while the third 

one –menopause –is another important risk factor. The impact of menopause and hormonal 

factors on cancer risk may seem minor for individual cases, but when considered collectively 

within a population, they can have a significant effect; particularly relevant due to the universal 

experience of these factors among all women [8]. Additionally, there is a global trend of an 

increasing postmenopausal female population due to the aging of many populations [9]. 

Moreover, HT use, the medication used to control different menopausal symptoms, might be 

an independent risk factor to cancer. Furthermore, the risk factors investigated (mainly: 

smoking, obesity, and menopause/HT use) range from exogenous to endogenous factors. Active 

smoking is an external factor and it a choice people make whether to consume or not, which 

makes it an exogenous risk factor of cancer. HT used to increase estrogen levels in women 

[121] is also an exogenous risk factor and its use could to some extent be a choice. On contrary, 

the menopausal transition arises naturally in a women’s life due to the reduction in endogenous 

estrogen levels. A menopause is not a choice women make; it is a natural process of 

physiological changes, which makes it an endogenous risk factor of cancer. Lastly, obesity is 

multifactorial condition, and it can be the result of life choices one makes such as excess dietary 

intake and inadequate physical activity but also with contribution from other factors like 

endocrine disruptions [173,174]. Obesity/overweight could thus, be both an exogenous and/or 

endogenous risk factor [175]. Obesity could be the result of sustained energy imbalance with a 

combination of other factors involved in its development such as genetic, behavioral, cultural, 

environmental, and economic factors, while obesity could also, on other hand, in some cases 

be regarded as a risk factor and a disease in itself [175]. All these risk factors affect the major 

physiological and biological processes in one’s body and despite the differences in importance 
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and physiological impact of these risk factors, this thesis observed overall association with 

blood gene expression for all, yet the number and strength of associations were different for the 

different risk factors investigated. 

This thesis revealed large associations of blood gene expression and current exposure variables: 

current smoking status (Paper I) and current BMI (Paper II). Indeed, among the risk factors 

investigated in Paper I-III, the strongest association in terms effect sizes was observed for 

smoking, with the highest logFC (1.01) and lowest FDR adjusted p-value (1.52E-80) of the top-

ranked gene (LRRN3). These estimates indicated that the mean expression of LRRN3 in current 

smokers was double compared to that in never smokers. The absolute logFC of all the other 

top-ranked genes in different comparisons in Paper II and III were modest ranging from 0.14 

(weight changes) to 0.86 (BMI categories) in Paper II, and 0.07 (HT use) to 0.18 (menopause) 

in Paper III. Further, among the risk factors investigated, the most associations in terms of 

largest number of DEGs were observed for obesity with 2,394 DEGs when women with obesity 

were compared to women with normal-weight. The maximum number of DEGs in Paper I was 

1,082 for current-vs-former smokers and was 1,460 for post-vs-premenopausal women in Paper 

III (when not adjusted for WBC proportions); demonstrating that the number of DEGs was still 

large in all papers (Paper I-III). We observed few or no DEGs in relation to past exposures: 

former smoking status (Paper I) and past weight changes (Paper II). This could be expected, as 

blood gene expression represents a snapshot, and past exposures such as weight changes are 

generally not strongly reflected [119,120]. Still, to our knowledge, this thesis concludes the first 

time that current BMI is reflected in blood gene expression more than past weight changes in 

terms of number of DEGs. 

In Paper I, we observed LRRN3-driven discrimination in all analyses, be it with current smoking 

exposures or former smoking exposures or smoking metrics. Additionally, we demonstrated 

that LRRN3 has similar capability as methylation status of CpG sites in the AHRR gene, the 

gene that is known for reflecting smoking exposures [143,144]. Thus, LRRN3 expression in 

blood is a molecular signal of smoking exposure that could supplant self-reported smoking data 

in further research targeting blood-based markers related to the health effects of smoking. We 

did not observe signals of similar strength for the BMI (Paper II) and menopausal status (Paper 

III).  
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Paper III showed clear associations of blood gene expression with menopausal status and HT 

use in models without WBC adjustments (Model-2). The associations were more prominent 

with menopausal status with a greater number of DEGs and higher fold-changes than HT use. 

But when considering the estimated WBC proportions in the adjusted models, the number was 

notably reduced. Thus, the relative influence of WBCs appeared the strongest in menopausal 

status in Paper III, but we also acknowledge that RBCs could be important for the results 

observed in both Paper I and II although we could not adjust for them. 

The associations observed for menopausal status could be regarded robust as the model 

included adjustments for smoking and BMI, both of which, with our knowledge from Paper I 

and II, had strong associations with blood gene expression. Figure 6 below shows intersects of 

DEGs among all three main risk factors in this thesis (smoking, BMI, menopause) from Model-

2 (A) and Model-3 (B) of Paper III. This figure depicts the associations of blood gene 

expression with all three risk factors investigated in this thesis in a single model. It appears that 

there are numerous genes for which the modulated expression was specific to each factor, with 

only a small overlap in the middle. This suggests that there were only a few genes that are 

associated with both two risk factors e.g., smoking and BMI, simultaneously.  

Overall, this thesis reflects the broad influence of smoking, BMI, and menopausal status on 

gene expression in the blood of women. Our studies were conducted with a large sample size 

which was further strengthened with the reliable and repeated measurements of questionnaire 

information. Therefore, the results of this thesis could represent robust knowledge about the 

molecular signals of the risk factors investigated. 
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Figure 6: Venn diagrams showing intersects for DEGs among smoking, BMI, menopause in Model-2 and 

Model-3 (Paper III). 

5.1.4.2 Biological insights  

In this thesis, the DEGs revealed various ontologies and pathways. Paper I demonstrated that 

terms like metabolic process, immune responses, wound healing, oxidative stress, heme 

binding, haemoglobin complex enriched among smoking-associated DEGs. The presence of 

terms such as heme binding and hemoglobin complex in these findings may indicate processes 
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related with RBCs. Similarly, Paper II showed that terms like general metabolism, erythrocyte 

functions, oxidative stress, and immune processes were enriched among BMI-associated DEGs. 

But we could observe the dominance of processes related to RBCs, specifically the reticulocyte- 

erythrocyte ratio shift in blood. Even the top-ranked genes among the overlapping 525 genes 

across different BMI models in Paper II were enriched for terms describing RBC processes. 

The few weight change associated DEGs showed were linked to signal transduction. Likewise, 

Paper III showed that menopausal-associated DEGs were mostly linked to immune responses, 

cell-cell adhesion, cognition, muscle system process, and reproduction. HT-associated DEGs 

were related to estrogen-dependent gene expression and RHO GTPases signalling. But when 

adjusted for WBCs compositions, the biological functions related to immune responses 

disappears in menopausal model; presumably demonstrating the influence of WBCs on the 

associations of blood gene expression and menopause.  

The smoking-, BMI-, and menopausal-associated DEGs all reflect the overrepresentation of 

immune responses/process and processes related to RBCs, in one or another form. Moreover, 

studies show increased oxidative stress caused by smoking [22] and obesity [49], which are 

related to RBC processes/functions. Furthermore, distortion of the immune system and change 

of many immunological functions and WBC counts, are one of the main physiological effects 

of smoking [25], obesity [52], and menopause [85]. These observations point towards the 

common effect of these risk factors to increase chronic systemic inflammation in body. Overall, 

the enriched terms coincide with the known physiological effects of these risk factors, and sheds 

light on the systemic impact of smoking, obesity, and menopausal status. 

5.1.4.3 Influence of blood cell compositions 

One of the main findings of this thesis is the influence of blood cell compositions on the 

associations of blood gene expression and measured risk factors.  

We were aware that literature has shown that gene expression profiles in whole-blood can be 

influenced by the underlying composition of WBCs in the respective samples [39]. Thus, 

keeping in mind that skewed proportions of WBC have the potential to act as confounding 

factors when identifying gene expression differences associated with exposures such as 

smoking, obesity, or menopausal status, we regarded these as possible confounders and 

adjusted these selected WBCs in one of the adjustment models in all three papers. We observed 

rather moderate differences, in terms of number of DEGs and fold-changes, in models adjusted 
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(fully-adjusted) and not adjusted (minimally-adjusted) for WBCs in Paper I and II. Still, the 

adjustment for WBC proportions in assessment of menopause status groups was clearly 

important. In Paper III, the number of WBC proportions associated in the initial test was higher 

(nine) related to menopausal status than smoking status (six) in Paper I and BMI categories 

(four) in Paper II. Further, unlike Paper I and Paper II, we noticed a drastic difference in the 

number of DEGs from models adjusted (Model-3) and not adjusted (Model-2) for WBCs in 

relation to menopause in Paper III. Still, the top-ranked DEGs from Model-2 were observed 

also in Model-3, showing that the most DEGs still remained, and the fold-change did not change 

much. Even the menopausal-associated DEGs, which were enriched for terms related to 

immune processes, remained no longer significant after WBC adjustments. Thus, associations 

of blood gene expression and menopause seem to be largely driven by cell type composition 

rather than menopausal status itself. 

WBCs play key role in inflammation and immunity. Neutrophils and monocytes are essential 

components of the innate immune system, while lymphocytes (B cells and T cells) play key 

roles in the adaptive immune system [176]. Furthermore, research indicate that smoking [25], 

obesity [52], and menopause [85] have been associated with immune system disruption and 

alteration of several immunological functions and WBC counts. Additionally, WBCs are the 

most transcriptionally active blood cell types [115]. Thus, our findings clearly show that these 

immune responses/processes are affected by smoking, obesity and menopause and are reflected 

in blood gene expression.  

Of note, we only had access to estimated WBC proportions in our dataset and did not have 

actual WBC counts. The estimated WBC proportions in this thesis deviated from the expected 

range [177,178], also observed in other studies [179,180] giving rise to bias [179,181] (see 

Chapter 5.2.6.2). However, we do not think that the bias is systematic for any of the risk factor 

groups in this thesis and thus would represent a problem only if the deviations are related to the 

risk factor groups. The absolute differences when adjusting for WBCs in the number of DEGs 

related to smoking status (Paper I) and BMI (Paper II) were modest, and the top-ranked genes 

and their fold-changes identified in the models with and without the WBCs were similar in all 

papers (Paper I-III). This possibly indicates that these genes were not substantially confounded 

by distributions of WBCs in Paper I and II. However, it would be interesting to know how the 

results would have been had we had actual WBC counts instead of estimated WBCs 

proportions. Further, RBCs/reticulocytes counts were not possible to estimate and therefore not 
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available in our dataset, and their adjustment was thus not possible. We anticipate that if we 

had the opportunity to include models with RBCs/reticulocytes adjustments, it could reveal 

their possible influence both in number of DEGs and GO and pathways, especially in Paper II 

(related to obesity) but might also in Paper I (related to smoking) and Paper III (related to 

menopausal status).  

Our holistic understanding considering the biological impacts of the risk factors investigated is 

that they are related to blood cell compositions, be in RBCs or WBCs. We observed strong 

influence of blood cell compositions (both WBC and RBCs/reticulocytes) on blood gene 

expression profiles. Future studies should consider adjustment of blood cell proportions in 

studies related to blood-based markers. Further, they should focus on cell-specific gene 

expression analyses, including RBCs/reticulocytes counts, so that they could assess whether it 

is the functional state, or it is the distribution of different cell types that would influence the 

association of exposure variables and gene expression profiles in blood.  

5.1.4.4 Dynamics of gene expression profiles  

In this thesis, we observed a large number of associations of blood gene expression with current 

exposure variables (i.e., current smoking status in Paper I, BMI in Paper II, and menopausal 

status and HT use in Paper III). Unlike exposure variables measured at the time of blood 

collection, we did not observe substantial associations of blood gene expression with past 

exposure variables (i.e., former smoking status in Paper I and past weight changes in Paper II). 

This could be expected because of the dynamics of gene expression profiles.  

In this thesis, blood collection for gene expression analyses was only performed at one time 

point, representing a snapshot of the expression. It was not surprising that past exposures such 

as in this thesis (former smoking status and past weight changes) were generally not strongly 

reflected, also shown in other studies [120]. Still, if the interval between the reporting of 

exposure variables and gene expression profiles could be as short as possible, then we could 

probably observe more associations. Nevertheless, we had an advantage of having quantitative, 

reliable, and repeated measurements of questionnaire information. We utilized them to generate 

past and recent smoking exposures to investigate trends even in former smokers who quit 

smoking recently in Paper I and we could investigate the associations of short-term weight 

changes (mean interval=1 year) and long-term weight change (mean interval= 7 years) in Paper 

II.  
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Studies have shown that intra-individual gene expression profiles measured by microarray 

remained relatively stable over time, as less than 2% of genes analysed exhibited intra-subject 

differences over periods exceeding one month [182]. Additionally, if we had the repeated 

measurements of gene expression profiles (i.e., for more than one time point), it would enable 

us to measure the change in gene expression over time within the same individual, minimizing 

the intra-individual variability due to other factors than the risk factors. A study [116] has 

reported that by analysing multiple sequential samples obtained from the same individuals, they 

were able to identify unique and individual-specific patterns of gene expression. These findings 

contribute to the understanding of human individuality and establish a valuable database for 

comparing gene expression patterns associated with diseases [116]. 

Lastly, literature overall show gene expression changes over different periods (within hours or 

days) and different seasons [100,118]. Thus, information about date and time of sampling were 

considered during the pre-processing (Chapter 5.2.6.4). It was examined in the pre-processing 

of the data for these studies and that it was not a major influence but also that the variables were 

likely not very complete or reliable. 

5.1.5 The novelties 

5.1.5.1 The novelty of the aims 

The novelty of this thesis lies in investigating associations of selected risk factors (or the 

exposure variables), which had never been assessed before, with gene expression in blood of 

women who had not had cancer. Overall, we had the opportunity to utilize large population-

based samples from the NOWAC postgenome cohort, along with repeated measurements of 

exposure variables, which was unique in this research area.  

Paper I assessed the association of gene expression in blood according to not only smoking 

status as had been done before but also different smoking metrics (duration, intensity, TSC, 

CSI scores) within ever smokers and former smokers. The novelty of Paper I lied in its 

utilization of quantitative, reliable, and repeated measurements of past and recent smoking 

exposures. Further, Paper II extensively investigated the association of blood gene expression 

with current BMI and past weight changes in a large sample of women. Exploring associations 

of past weight changes with gene expression in blood was novel. Lastly, Paper III broadly 

examined the association of blood gene expression with menopausal status and HT use among 
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postmenopausal women a large population-based sample of women. The investigation of 

association of menopausal status and gene expression in blood was also novel. 

5.1.5.2 The novelty of the results 

We discovered genes differentially expressed when assessing smoking metrics (Paper I), past 

weight changes (Paper II), and menopausal status (Paper III) that were novel. Further, to the 

best of our knowledge, Paper II is the first study to conclude that blood gene expression reflects 

current BMI more than past weight changes. Lastly, the importance of blood cell compositions, 

especially the blood erythrocytes-reticulocytes ratio shift associated with BMI in Paper II, and 

WBC proportions associated with menopausal status and HT use in Paper III were novel. These 

findings contributed to new knowledge on systemic responses of these risk factors. 

5.1.6 Knowledge contributions to future cancer studies 

Cancer is ever changing as it progresses through a series of histopathological stages, resulting 

in alterations in gene expression patterns [183]. Gene expression changes that take place from 

the early stages to advanced stages of cancer development can serve as indicators to monitor 

the progression of the disease [184]. Uncovering the specific genes and pathways involved in 

this process is crucial not only for advancing our understanding of the biology underlying 

cancer progression but also for identifying potential targets for early diagnosis and facilitating 

the development of effective treatments [183]. This could presumably aid to reduce the overall 

burden of cancer by prevention of occurring of new cases and by early detection [185].  

Genomic techniques have proven successful in detecting chromosomal alterations and 

identifying disrupted genes in cancer. Additionally, gene expression profiling has enabled the 

categorization of tumors into distinct subtypes. Eventually, a combination of genomic and 

expression analysis approaches would be vital to validate genes within regions of DNA 

alteration and shed light on the downstream effects of these alterations [183]. By integrating 

the revolutionary new tools of genomics – at all levels of genome, transcriptome, and proteome 

– key pathways and functions can be defined, which ultimately can lead to breakthroughs in 

identification of new causes of cancer as well as early detection, and then may result in 

implementing strategies that limit exposure [185]. The potential impact of these techniques is 

large; however, their success will rely on international collaboration and strategic planning 

[185]. 
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In this thesis, blood gene expression analyses were performed on samples of controls, i.e., we 

only included those women, who had never been diagnosed with cancer. Thus, we can presume 

that the molecular signals observed in the papers (Paper I-III) included in this thesis were solely 

due to the differences in levels of the exposure variables (smoking, obesity, or menopause) and 

not due cancer disease. In general, we assumed that women in these studies were healthy, 

because we only included cancer-free women. However, we cannot disregard the influence of 

other common chronic diseases the women might had have, which we were not aware of while 

collecting our data samples. Further, we investigated into GO and pathways during our analyses 

and did not focus on disease ontologies, especially because the study population were healthy. 

Still, knowing the genes that are differentially expressed related to the investigated cancer risk 

factors and pathways involved related to those genes could be useful in studies investigating 

DEGs in relation to cancers for which these exposures are risk factors. In case-control studies 

these factors are adjusted for and as little is known about the DEGs according to the risk factors, 

this study can add knowledge to those analyses. Especially when evaluating whether observed 

case-control differences in expression could be due to residual confounding by these risk 

factors.  

Any new knowledge relating to cancer and exposure risk factors aid in the etiological 

knowledge of cancer disease and development which again can ultimately aid in future disease 

prevention and/or early indication of different diseases. The top-ranked genes from all the 

papers (Paper I-III) like LRRN3, FAM46C, SLC45A3, ADCY3, CTTN, ARHGEF7, NCOA5 have 

been observed as related to different disorders and diseases including various cancer types in 

various publications [154]; for instance vascular skin diseases (LRRN3), blood protein 

disorders, plasma cell leukemia (FAM46C), cloacogenic carcinoma (SLC45A3), central corneal 

ulcer (ADCY3), larynx and breast cancer (CTTN), night blindness (NCOA5), or genetic diseases 

like Aarkskog-Scott Syndrome (ARHGEF7) [154]. These might be an indication that such 

genes may already be over- or under-expressed in relation to the exposure variables (risk 

factors) before the onset/development of diseases.  

Further, the biological insights obtained from the papers (Paper I-III) included in this thesis 

increases our understanding of the processes the risk factors we investigated are involved in. 

This knowledge can be utilized by future observational studies but also clinical trials that test 

new pharmacological entities based on gene expression assessments as a tool. A broader 
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understanding of biological functions of these known risk factors can shed light to yet 

underappreciated factors contributing to cancer development. Lastly, we observed the influence 

of the immune cells on blood gene expression profiles in this thesis and this knowledge can be 

important to acknowledge and include in future gene expression and cancer studies. 

5.2 Methodological considerations 

5.2.1 Study design 

In this thesis, the blood collection for the gene expression analyses (the outcome variable) was 

performed at a single time point: a snapshot representation of blood gene expression. Further, 

the questionnaire information was collected at multiple time points (women participating had 

answered up to three main questionnaires and one questionnaire at the time of blood collection), 

thus we regarded repeated measurements of the exposure variables. The information at blood 

collection time point was our focus in all papers for comparisons of gene expression profiles 

between those who were exposed and those who were not exposed to various risk factors, for 

instance, comparing current to never smokers (Paper I), obesity to normal-weight (Paper II), 

and postmenopausal to premenopausal (Paper III). But we also used information from the 

preceding questionnaires to investigate exposures prior to the blood collection, like TSC in 

Paper I and past weight changes in Paper II. Therefore, the study design of all of papers (Paper 

I-III) comprised in this thesis was cross-sectional analysis nested within the prospective 

longitudinal NOWAC study.  

This thesis used a study design that contained three levels of nested designs –a cohort, a nested 

case-control study, and a cross-sectional study including only controls (Figure 7). In this thesis, 

the 1st level nesting was the NOWAC postgenome cohort. Several case-control studies focusing 

on gene expression has been conducted within the NOWAC postgenome cohort (i.e., breast, 

lung, ovarian, and endometrial cancers, and diabetes), which was the 2nd level nesting. The 

participants of these studies have detailed information about various exposure variables such 

as smoking exposure, height, weight, HT use, etc. If we had included both cases and controls, 

distinguishing between the initial biological effects of cancer from the effects of exposure 

variables would have been challenging. But we could address our research question by 

identifying molecular signals or biomarkers for the selected exposure variables among the 

control groups. So, the 3rd level nesting was the cross-sectional study performed in this work, 

with only controls that were stratified based on the exposure variables (e.g., current smokers vs 
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never smokers) from the prospective questionnaires of the cohort study. Finally, to identify 

biological functions associated with these selected exposure variables, the gene expression 

profiles were analysed. A similar study design was also used by Barnung et al. 2018 [186] and 

the nesting of these designs was explained in a book by the initiator of the NOWAC cohort, 

Eiliv Lund [187]. 

 

Figure 7: An illustration of a three-level nested study design. 

(Created with BioRender.com) 

Adapted from Lund et al. 2020 under the Creative Commons CC BY 4.0 licence [187].  

 

Strengths and weaknesses of the study design 

The foremost strength of cross-sectional studies is that they are usually feasible to conduct 

compared to other study designs and can provide a large sample of the population of interest. 

Only one time point is used to collect data for all variables, and multiple outcomes and 

exposures can be studied at the same time [188]. In this thesis, the study design has enabled us 

to have information on a relatively large sample size for transcriptomic analyses (N=1,716). In 

addition to the information on multiple variables collected at one time point (at blood 

collection), we had reliable, and comprehensive information of up to three main questionnaires 

(before the blood collection time point), strengthening our exposure variables because of the 

repeated measurements. This enabled us to investigate not only smoking status in Paper I, which 

was commonly used in previous studies investigating associations between smoking status and 

gene expression [32-34,37,39,138], but also to create and investigate quantitative 

measurements of smoking exposure i.e., the smoking metrics in Paper I, such as intensity, 

https://biorender.com/
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duration, TSC, and CSI score. Likewise, in Paper II, we utilized the weight and height 

information of the participants from questionnaires at baseline, follow-up, and at the time of 

blood collection. These enabled us to calculate measures of past weight changes, including both 

long-term weight changes with seven years average mean interval and short-term weight 

changes with one-year average mean interval; and to create weight change categories (see 

Chapter 3.3.2). Further, this allowed us to calculate BMI at baseline, follow-up, and at the time 

of blood collection, that enabled us to introduce two interaction models including BMI and 

succeeding or preceding weight changes.  

Another limitation in cross-sectional studies is that since the exposures and outcomes are 

measured at a single time point, it is difficult to make a causal inference, and researchers are 

unable to explore the temporal relationship between outcomes and exposures. In addition, the 

interpretation of identified associations might be challenging [188]. This has been a major 

limitation of all the papers (Paper I-III) included in this thesis as well, as we could not establish 

causal inference. For example, in Paper II, we do not know that whether BMI caused the gene 

expression to change or if altered gene expression could be representing factors that cause the 

variation in BMI of an individual.  

As cross-sectional studies are observational studies, these are suitable for generating hypotheses 

and prevalence of outcomes and exposures [188]. This thesis can be considered exploratory 

research that can generate hypotheses for future studies. In cross-sectional studies, since study 

participants are not intentionally subjected to any exposure or treatment, there are not any 

ethical issues arising from intervention [188]. However, ethical issues related to the research 

questions or use of the information in later studies can cause ethical issues in this type of studies, 

therefore it is necessary to get approval from the concerned ethical committees. In this thesis, 

both NOWAC and NOWAC postgenome cohort are approved by the regional ethical 

committee- REK (see Chapter 3.5); and the participating women were informed beforehand 

that their blood samples could be used in gene expression/genetic studies later in future, and 

they had given consents for that purpose.  

There are different potential errors and bias that may occur based on the study designs [188]. 

These issues in the context of this thesis are mainly discussed in the next sections.  
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5.2.2 Bias  

Most studies based on samples taken from a population to estimate the present and future 

occurrence in the whole population are prone to errors [189]. Errors are broadly divided into 

Random errors and Systematic errors (also known as Bias); both of which lead to deviation of 

the estimate (over- or underestimate) from the true value or incorrect estimate of the true effect 

of an exposure on the outcome of interest [188-190]. Random errors are the portions of variation 

in a measurement that has no apparent connection to any other measurements or variables, and 

usually occurs due to chance [191]. Systematic errors (bias) are errors in the design, conduct, 

or analysis of the study [189,190] that is consistently deviating in a particular direction [191]. 

Potential biases and how to avoid them as much as possible should be carefully considered 

while planning a study, and the sources of bias and their impacts on the final results should be 

openly discussed to make valid conclusions [188,190,191]. In health research, bias can arise 

mainly due to (i) the approach/method used for selecting study participants, and (ii) the 

approach/method used for collecting or measuring data in the study [190]. There can be many 

systematic biases in a study, but for ease they can be further broadly divided into Selection bias 

and Information bias and these are discussed below [188-190]. 

5.2.2.1 Selection bias 

Selection bias occurs in epidemiological studies from the procedures used to select individuals 

into the study or the analysis [191]. In interventional studies, selection bias can be largely 

minimized through random allocation to treatment and control groups [189]. This is not 

possible in observational studies like in the papers (Paper I-III) in this thesis. However, this 

thesis included women randomly sampled from the National Population Register of Norway. 

Further, an external validity study [192] conducted on the NOWAC study showed that the 

distributions of different exposure variables like smoking, weight, oral contraceptive use, 

parity, etc. had no statistical differences between the original responders and the non-

responders. Thus, the proportions of exposure variables in each paper in this thesis are thought 

to represent those in the study population. 

It is a known fact that 100% participation is never achieved in cross-sectional studies. The 

decision of whether to participate in a study or not is non-random and influenced by several 

factors, such as gender, age, socioeconomic status, substance abuse issues, etc. If any of these 

factors are associated with the exposure or outcome of interest, the sample being studied may 

not be truly representative of the background population [189]. Thus, nonresponse bias is one 
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of the common types of selection bias, which occurs when the characteristics of responders 

differ from non-responders. It is mostly encountered in cross-sectional studies that use mailed 

questionnaires for surveys. A large sample can still have a low response rate [188]. To 

avoid/minimize this bias, high response rates should be aimed for [189]. The relevant 

information collected in the papers (Paper I-III) of this thesis was based on questionnaires 

mailed to the participants, therefore this expected to lead to nonresponse bias. The external 

validity study [192] showed that the crude response rate for the NOWAC study was 57.1%. 

Lack of time and concern about privacy were the most important reasons among the non-

responders for not returning the questionnaires [192]. This might have influenced the self-

reporting of various variables in this thesis as well, for instance, smoking status and number of 

cigarettes, duration of smoking in Paper I or body weight in Paper II, or menopausal status in 

Paper III. But that study [192] also revealed that there was no major source of selection bias in 

NOWAC, which could utterly invalidate population attributable risk estimate. Further, 

responders in epidemiological studies tend to be healthier than those who do not participate, 

leading to an underestimation of disease prevalence in most surveys [189]. This thesis is based 

on blood sampling for gene expression data. The women were required to actively participate 

by visiting to their general physician for blood sampling. This might have led to selection bias, 

as these participants might be healthier or have easier access to health care than the non-

responders. However, the overall response rate for NOWAC postgenome cohort, in which the 

blood sampling was performed, was approximately 74%, which is relatively high that might 

have minimized this bias [91]. Further, the gene expression data would likely not be influenced 

by selection bias or non-response bias. So, it is likely that our effect estimates have not been 

invalidated because of this bias in the exposure variables nor the gene expression profiles. 

5.2.2.2 Information bias 

Information bias occurs when exposure, covariate, or outcome variables in a study are 

inaccurately measured, collected, or interpreted [188,191]. It is one of the most common 

sources of bias that impacts the accuracy of health research [190]. Some of the major 

information biases that has been observed in the papers included in this thesis are discussed 

below. 



 

68 

 

5.2.2.2.1 Self-reporting bias and recall bias 

Self-reporting bias occurs when self-reporting of data is used, mostly in observational studies 

(e.g., cross-sectional, case-control, or cohort studies). Self-reporting includes questionnaires, 

surveys, or interviews and represent a common approach for collecting data in epidemiological 

studies, where participants respond to the questions without the interference of researchers. 

Compared to medical records or laboratory measurements, a self-reporting approach can be 

considered less reliable and more prone to self-reporting bias [190]. Study participants can 

provide incorrect responses depending upon their capacity to remember previous occurrences 

leading to recall bias [190,193]. However, one of the main strategies to access this bias could 

be internal or external validation of self-reporting instruments [190]. 

The issue of self-reporting bias, and to some extent recall bias, are one of the key limitations in 

the papers (Paper I-III) included in this thesis as these used self-reported/self-administered 

questionnaires for relevant information about the baseline and follow-up characteristics and 

exposure variables of interest. However, we included repeated measurements of exposures in a 

longitudinal study design, and by utilizing this, we were able to check for consistency across 

reported answers and thus strengthen our exposure variables internally, specifically: smoking 

status and smoking metrics (i.e., smoking intensity, smoking duration, TSC, pack-years, and 

CSI scores) in Paper I, and menopausal status in Paper III. Additionally, there are some 

reproducibility, reliability, and/or validation studies on self-reported smoking [194], BMI 

[195], menopausal status and HT use [121], which externally validated our exposure variables 

of interest.  

In Paper I, we utilized these detailed and repeated information on past and recent smoking 

history such as TSC, duration and intensity of cigarettes smoked, etc. of the study participants 

to create comprehensive smoking metrics and to verify their reported smoking status at the 

blood collection time point. Most other studies with a similar aim was also based on self-

reported smoking information from questionnaires [32,33,36-39]. But in addition to self-

reported smoking status, several studies had measured concentrations of the metabolite of 

nicotine and/or cotinine in blood, urine, or saliva [32,37-39]. This could have added value for 

current smokers, but due to its relatively short half-life (16-19 hours) [196], it would not have 

provided valuable information for former smokers. Further, reliability study on self-reported 

smoking history demonstrated that current smokers had higher inconsistent reporting compared 
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to former smokers, however, self-reported tobacco use among smokers appear highly reliable 

over short time periods [194]. 

In Paper II, we could not use the repeated measurements to check for consistency, as the 

changes in weight between the repeated measurements was part of the analyses. The reported 

weight change could be actual weight change but also lead to some misreporting in our 

analyses. There were participants who had reported decreased weight at baseline and increased 

weight at follow-up questionnaires and vice versa; we defined them as weight-cyclers (N=160) 

and they might be representing self-reporting bias. So, to minimize this bias, we excluded the 

weight-cyclers from the analyses in Paper II. A validation study [195] had concluded that for 

middle-aged women in Norway, self-reported height and weight can still provide an accurate 

ranking of BMI.  

In Paper III, we observed large variation in the self-reported menopausal status in the 

questionnaire before and at the blood collection time point. Again, the repeated measurements 

allowed for assessment of the inconsistency and create a new variable with menopausal status 

at the blood collection time point by merging information from both before and at the blood 

collection time point. Further, self-reported menopausal status and HT use defined by the 

different questionnaires in NOWAC study has been validated [121]. That study [121] showed 

that the questionnaire administered during the blood collection time point, exhibited a 

sensitivity of 92% (95% CI 89-96%) and a specificity of 73% (95% CI 64-82%) in determining 

menopausal status. On the other hand, the main questionnaires distributed at baseline and 

follow-up, yielded a sensitivity of 88% (95% CI 84-92%) and a specificity of 87% (95% CI 80-

94%). Similarly, current HT use demonstrated a specificity of 100%. 

5.2.2.2.2 Misclassification bias 

Misclassification bias can occur when there is presence of systematic error in the information 

about exposure and/or outcome of interest [197]. This bias could be a result of the definition of 

cases, but also influence the interpretation of exposure measures, laboratory results, or other 

diagnostic procedures. In most studies, 100% sensitivity and specificity are not attained, and 

some degree of misclassification is expected to occur which will influence the conclusion of 

the study [198]. In this thesis, among the several sub-studies (case-control) in the NOWAC 

postgenome cohort, the cases and controls were verified from the Cancer Registry of Norway. 

Therefore, it is likely that the women we included, i.e., those who were never diagnosed with 
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cancer, in the papers (Paper I-III) included in this thesis were classified correctly. Further, 

misclassification of exposure variables could have been an issue in our papers in general as we 

used self-reported questionnaires. Particularly, misclassification of menopausal status could 

have been an issue, as we observed larger variation in responses of participants before and at 

the blood collection time point. This might be linked to differing definitions of menopause 

based on age or menstrual cycle. According to a study [199], improved classification of 

menopausal status can lead to more reliable findings and enhance the statistical power of health-

related research. But this variation could also be because of variation in duration and symptoms 

from women-to-women. Nevertheless, the repeated measurements allowed us to assess the 

consistency of menopausal status of women in Paper III; and similarly, to create or identify 

smoking status, smoking metrics in Paper I. This has likely reduced the misclassification bias 

in this thesis. The NOWAC participants had a slight tendency to under-report weight and BMI, 

particularly among women with overweight/obesity [195], which means that there might be 

some women with higher BMI but misclassified in a lower BMI category, yet accurate ranking 

of BMI can be expected in NOWAC participants [195]. In our study, women with obesity were 

already the lowest in number (N=280) among the BMI categories (overweight: N= 622, normal-

weight: N=751), still showed large number of DEGs in the obesity-vs-normal-weight and 

obesity-vs-overweight comparison (2,394 and 769 DEGs, respectively). Thus, although there 

would be some degree of misclassification and some women were in a lower BMI category, the 

BMI category for women with obesity did reveal DEGs and the BMI evaluated as a continuous 

variable is expected to be ranked right so our estimates should not have been influenced 

considerably or be slightly lower than if we had weight and height measured.  

5.2.2.2.3 Measurement bias 

Measurement bias (also known as measurement error, instrumental error, measurement 

imprecision, or measurement error bias) arises from inaccurate measurements of subjects on 

study variable(s), resulting in misleading conclusions [190,191]. It mainly occurs due to device 

inaccuracy, environmental conditions in the laboratory, or self-reported measurements [190]. 

This thesis incorporates measurements of blood gene expression profiles; and different 

processes were involved such as collection of blood from participants, shipping of the blood 

samples, freezing, thawing, and handling of blood samples for gene expression analyses at the 

laboratory. This might give rise to some degree of measurement bias, which could have 

influenced our estimates in the papers included in this thesis. However, various techniques 
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and/or measurements had been followed to reduce this bias. A detailed discussion on this topic 

is presented in section 5.2.6 and 5.2.7 below. 

5.2.3 Confounding  

In cross-sectional studies, confounding can arise when a variable is linked with the exposure 

and influences the outcome, i.e., for a variable to be identified as a confounder, it must satisfy 

three criteria – (i) associated with the exposure of interest, (ii) associated with the outcome of 

interest, and (iii) must not be the causal pathway between exposure and outcome [188,191]. It 

is important to account for possible confounders (also called confounding variables), as their 

presence may lead to alteration or misrepresentation of the actual association between the 

exposure and the outcome [191].  

To identify the possible confounders, we assessed a priori selected covariates, if they were 

significantly associated –(i) with the different exposure(s) of interest (in brief: smoking status 

in Paper I, BMI in Paper II, and menopausal status in Paper III) according to Chi-square or 

Kruskal-Wallis tests, and (ii) with overall gene expression data according to the ‘Global test’ 

from Bioconductor package ‘global test’ [134]. Further, we considered information from the 

laboratory processing of the blood samples as technical covariates (i.e., laboratory 

plates/batches and sample storage time) and potential confounders.  

As blood gene expression is influenced by the circulating blood cells [39], we considered the 

estimated WBC proportions in our data to be possible confounders. We assessed whether the 

estimated WBC proportions were significantly associated –(i) with the above-mentioned 

exposure(s) of interest, and (ii) with overall gene expression profiles. To do this we also used 

the Kruskal-Wallis test and Global test, respectively. However, we cannot disregard that the 

relative presence of these cells and it could still act be confounding factors as we used WBC 

estimates and that the observed associations could be results of residual confounding. 

Additionally, our data lacked information on RBCs and reticulocytes; and these cell types were 

not part of the CIBERSORT LM22 deconvolution matrix, so it was not feasible to estimate 

their proportions as well. Thus, such adjustments were not possible to observe their effects. But 

based on the results of Paper 2, it is a limitation that RBCs/reticulocytes could not be considered 

in these kinds of studies.  
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These possible confounders were then included in the limma analyses in different models that 

included different adjustments (See Figure 5 in Chapter 3.4.3). In Paper I and Paper II, we 

introduced two adjustment models –(i) minimally-adjusted (ii) fully-adjusted. Minimally-

adjusted models included the technical covariates, while fully-adjusted models additionally 

included selected covariates and estimated WBCs as mentioned above. Considering 

consistency for all three papers, we initially defined the corresponding two adjustment models 

for Paper III as well. However, we noticed a considerable reduction in the number of DEGs, 

which prompted us to investigate covariates further and discovered that the WBC estimates 

were influencing the models more than in Paper I and II. Thus, we introduced three different 

adjustment models in Paper III –(i) Model-1 (ii) Model-2 (iii) Model-3. Model-1 was 

minimally-adjusted for the technical covariates, Model-2 was semi-adjusted that additionally 

included the selected covariates, while Model-3 was fully-adjusted including technical 

covariates, selected covariates, and estimated WBCs as mentioned above. These three layers of 

adjustment models helped us describe the influence of WBCs on the investigation of gene 

expression and menopausal status in Paper III. The relative meaning of WBCs was the strongest 

in Paper III, still it could be that RBCs could be important for both Paper I and II although we 

could not adjust for them. 

5.2.4 Interaction (effect modification) 

Interaction, also known as effect modification, occurs when the impact of one explanatory 

variable on the outcome depends on specific level or value of another explanatory variable. If 

an interaction effect is present between exposures, it means that these factors cannot be 

considered independent in causing a particular outcome [197]. In Paper II, where BMI and 

weight changes were exposure variables, we analysed association of gene expression and 

weight change within an interaction with BMI categories. If we had not defined an interaction 

model, we would have failed to observe that weight changes were associated with blood gene 

expression only among women with obesity, and not among women with overweight. It means 

that it was the women with the highest BMI driving the associations. Also, we introduced two 

different models for this interaction –(i) included BMI and succeeding weight changes, and (ii) 

included BMI and preceding weight changes. This enabled us to access that current BMI was 

stronger predictor than the past BMI.  
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5.2.5 Generalizability 

The NOWAC study is a national population-based cohort study, which has utilized Norway’s 

existing population registers for sampling. Women in the corresponding age-groups are 

randomly selected using the National Population Register [121]. Thus, it can be considered as 

representative of the entire female population of Norway in those age-groups [192]. However, 

it is important to consider that the generalizability of these findings to women in the same age-

groups today may not be entirely accurate, as women today may differ from the participants 

involved in this study conducted two decades ago. Additionally, since only ethnic Norwegians 

were invited to participate in the NOWAC study, the results from this thesis cannot be 

generalized to the entire population of Norway.  

When possible, we had performed quantitative replication in all the papers (Paper I-III), 

comparing our results to results from similar studies, and observed overall consistency. Thus, 

if the population under study shares similar variables of exposure as those investigated in this 

thesis, the findings could potentially be applicable to broader populations in general. 

5.2.6 Gene expression analyses 

We had analysed gene expression in whole-blood samples as an outcome variable associated 

with selected exposures in all papers (Paper I-III). Using gene expression profiles give rise to 

several challenges and limitations, especially related to its technology. Therefore, in this section 

we mainly discuss the considerations related to determination of gene expression profiles.  

5.2.6.1 ‘Blood’ as a tissue for gene expression studies 

In this thesis, whole-blood (also simply called ‘blood’) was the target tissue for gene expression 

analyses in all papers (Paper I-III). Blood is a desirable sample material for biomarker research 

because of its easy access, minimal invasiveness, and relatively lower cost for collection [200]. 

It can uncover important characteristics that are significant for investigating features relevant 

to human health. These make blood an attractive sample for diagnostic purposes [200]. 

Different studies have found altered gene expression in blood and shown that blood is a suitable 

tissue for measuring exposure variables that have been investigated in this thesis.  

The toxic components of tobacco smoke initially taken up by the lungs and subsequently enter 

the blood stream before being distributed throughout the body, which makes blood a suitable 

biological material to study the systemic influences of exposure to tobacco smoke [138]. 
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Further, many studies have shown that current exposure to tobacco smoke is associated with 

altered gene expression in blood of several genes (LRRN3, CLDND1, GPR15, ATF4, SOD2, 

CDKN1C) [32-39]. Our study also showed strong associations of blood gene expression and 

smoking exposures, indicating that blood samples indeed reflect the systemic influence of 

smoking exposure.  

In Paper II, adipose tissue would be biologically most relevant to investigate obesity [61] 

probably due to mechanisms related to obesity. Several studies also show that gene expression 

profiles in adipose tissue have been associated with obesity and weight loss [64-71,201]. 

However, there are studies that have examined gene expression related to obesity either in 

whole-blood [61,62] or PBMCs [63], and found associations between them. Further, our study 

observed large associations of blood gene expression and BMI, indicating that blood samples 

indeed reflect the systemic influence of obesity.  

There is one study that investigated gene expression profiles in peripheral blood monocytes 

among healthy pre- and postmenopausal women that revealed that the functional state of 

circulating monocytes is influences by menopause [84]. Related to HT use, there have been few 

transcriptomic studies in blood [90-92,170], showing small associations. However, our study 

(Paper III) demonstrated clear associations of blood gene expression with HT use and 

specifically with menopause, indicating that blood samples indeed reflect the systemic 

influence of menopause.  

Thus, ‘blood’ can be regarded as an appropriate tissue in transcriptomic analyses for 

investigating systemic influence of various exposures like those investigated in the papers 

included this thesis (in brief: for smoking status and smoking metrics in Paper I, obesity and 

weight change in Paper II, and menopause and HT use in Paper III).  

5.2.6.2 Blood cell compositions in blood 

Gene expression studies based on blood samples are challenged by its complicated biological 

system that consists of diverse cell types in various developmental stages [202]. Blood cell 

populations are heterogenous, varying in terms of absolute and relative presence in the blood 

and differ across individuals. Their presence heavily influences the gene expression profiles in 

blood and is generally recognized as major source of bias and variability [203]. It can lead to 

unexpected variation in gene expression levels between different samples [100].  
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In this thesis, the blood samples of participants were drawn at the offices of their local general 

physician into a tube provided to the participants by mail. These tubes, with the blood samples, 

were then returned to UiT The Arctic University of Norway by mail. Thus, flow cytometer 

counts were not planned as part of the establishment of this sample collection. Thus, our data 

lacked information on counts of WBC, RBCs, and reticulocytes. We estimated the WBCs 

proportions that were derived from the sample gene expression data using an in-silico gene 

expression deconvolution method CIBERSORT, and the LM22 signature matrix [127]. We 

then considered the estimated WBC proportions as possible confounders and have included 

them as adjustments in our models in all papers (Paper I-III) included in this thesis (See Figure 

5 in Chapter 3.4.3). Still RBCs and reticulocytes were not part of the CIBERSORT LM22 

deconvolution matrix and it was not possible to estimate their proportions. Thus, such 

adjustments were not possible to see their effects. 

One potential shortcoming of using the CIBERSORT estimates is that these are based on the 

same data that we were later statistically analysing to identify DEGs. Ideally, the cell type 

estimates should have come from an independent measurement [127]. Further, the estimated 

proportions of WBCs in the papers (Paper I-III) deviated from the expected range [177,178]. 

However, other recent studies based on the NOWAC postgenome cohort [179,180] have also 

observed this variation. This could be due to a potential bias attributed to the deconvolution 

method or data pre-processing [179,181]. Still, absolute differences in estimated WBCs across 

the exposures we used in the papers (Paper I-III) were modest. Further, the identified top-ranked 

genes in different adjustment models in Paper I remained largely consistent, indicating that 

these genes were not substantially influenced by distributions of WBCs. In Paper II and III, we 

noticed that these cell populations have been reflected in the biological functions of DEGs; and 

especially, in Paper III, adjustment of WBC proportions influenced the models in terms of 

number of DEGs drastically. This is discussed in more detail in Chapter 5.1. Thus, this thesis 

demonstrates that blood cell compositions (WBCs, RBCs/reticulocytes), should be considered 

in the models while using blood as a tissue for gene expression analyses. 

5.2.6.3 Sample collection technique  

Before conducting gene expression analyses on blood samples in studies with larger samples, 

it is crucial to set up a reliable and reproducible method, however it can be challenging due to 

specific features of the samples and their collection methods [204]. There are two major 
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commercially available blood collection tube systems for isolation of high-quality RNA from 

blood –(i) the PAXgene™ blood RNA system (PreAnalytiX QIAGEN/BD, Hombrechtikon, 

Switzerland) and (ii) the Tempus™ blood RNA system (Applied Biosystems, Foster City, CA, 

USA) [200]. PAXgene™ collection tubes contain a proprietary blend solution that preserves 

the RNA molecules from degradation by immediately stabilizing them after collection using 

RNases enzymes and further prevents alteration of gene expression that can occur during 

sample handling and storage [204]. On the other hand, Tempus™ tubes incorporate a 

proprietary stabilizing solution that aids in preserving RNA and stability during the process of 

storage and transportation. These tubes are specifically designed to be compatible with various 

downstream analysis techniques, such as next-generation sequencing. By utilizing Tempus™ 

tubes, researchers can enhance the quality and sensitivity of RNA expression signatures 

acquired from the sample. Both have unique properties and features that can influence the 

quality and stability of the RNA in the sample, and thus when selecting between PAXgene™ 

and Tempus™ blood tubes for RNA expression analysis, the study's requirements and 

downstream analysis should be considered. Factors like storage time, sample purpose, and 

analysis type influence the tube choice. Additionally, validating results with controls and 

quality measures for accurate and reliable RNA expression signatures is crucial [200,205]. 

In this thesis, we used the PAXgene™ collection tubes to collect the blood samples for mRNA 

analyses in all the papers (Paper I-III). The blood samples in this thesis were collected, and the 

samples were mailed to UiT The Arctic University of Norway with a maximum of four days 

mail time to Tromsø that was registered. Then, the samples have been stored in freezer for a 

long time before analyses. PAXgene™ are specifically ideal for long-term storage or transport 

over long distances. The RNA preservation in PAXgene™ tubes is also relatively consistent, 

making the RNA expression signatures reproducible across various samples and conditions 

[205]Further, a study [204] observed strong variations in gene expression when different 

sampling methods and extraction kits were combined. We had employed PAXgene™ collection 

tubes and followed the PAXgene™ RNA blood kit protocol for RNA extraction; and following 

such protocol is considered to yield good quality and quantity of RNA [204].  

5.2.6.4 Time and date of sampling and storage duration 

Researchers have observed variation in gene expression over a 24-hr period and across different 

seasons [100,118]. Thus, it is recommended to collect the samples at the same time of day in 
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all participants, or if not possible, at least record the date and time of the sample collection; this 

may prevent potential sources of variability in downstream analyses [100]. In this thesis, time 

and date of sampling were self-reported, as women participating on the NOWAC postgenome 

cohort went to their local general physician's offices to draw blood at their own timing. Still, 

the time of blood collection was narrowed to typically 8am-16pm and there was no large pattern 

related to this factor in the pre-processing of the data. Thus, we did not adjust for time and date 

of sampling. Still when it was examined in the pre-processing of the data for these studies, it 

did not render a major influence but also that the variables were likely not very complete or 

reliable. 

Additionally, as a technical covariate, we have adjusted for sample storage time as a proxy for 

duration of sample storage in freezers in our models, that might have possibly reduced the 

influence of sample storage time. 

5.2.6.5 Microarray as measurement technique 

There are several techniques for measurement of gene expression analyses; and each technique 

can introduce technical variability that can affect the accuracy and reproducibility of gene 

expression measurements [100]. Over time, there have been notable advancements in the 

measurement techniques used for gene expression analyses (Details in Chapter 1.2.2). At the 

initial phases, technologies were basic, but the rapid technological progress has enabled these 

techniques to offer higher sensitivity, throughput, and the ability to study gene expression at 

the single-cell level.  

In this thesis, a microarray technique was used for gene expression profiles for all the papers 

(Paper I-III). The microarray technique was probably the best available technique around 20 

years back when blood sample collection started for mRNA analyses in the NOWAC 

postgenome cohort (2003-2006), as microarrays were more economical option than RNA-seq 

and are also reliable for gene expression profiling [206]. But around 10 years ago, it was 

predicted that RNA-seq would be used more frequently [206]. Indeed RNA-seq has become a 

widely used technique today and replaced microarrays as the technology of choice for 

transcriptome-wide analyses. Current technologies focus on single-cell and spatial 

transcriptomics but future advancements in measurement techniques are expected and can 

expand research questions in the field.  
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Although the microarray results in this thesis are still reliable and overall comparable to RNA-

seq results, non-coding RNAs and splice variants cannot be detected by microarrays. Another 

challenge when using the microarray technique was the probe-to-gene annotation, but this 

challenge might also be present when using other techniques such as sequencing-based 

techniques. We used the Bioconductor packages ‘lumi’, ‘lumiHumanIDMapping’, and 

‘illuminaHumanv4.db’ [124-126] for gene annotation, which resulted in 9,095 probes and 7,713 

unique genes. The number of probes reflects a choice of stringent filtering criteria, and we 

would not have expected to detect a greater number of DEGs in our studies if we had more 

probes, as the excluded probes likely contained more random variability than those analysed. 

Further, microarray data can achieve similar detection as compared to RNA sequencing 

technologies depending on sequencing depth. Generally, microarrays can be quite sensitive for 

low-expressed probes when compared to sequencing technology [207]. Further, future studies 

using cell-type-specific gene expression analyses techniques such as scRNA-seq would add 

value to our findings of importance of blood cell compositions in blood gene expression studies. 

5.2.7 Statistical analyses 

5.2.7.1 Pre-processing of data 

Technical outliers are observations that were altered in some way in the laboratory or during 

the sampling process. These observations, if not removed, may introduce bias and variance in 

later statistical analysis and distort the results [123]. There are challenges in removal of outliers, 

specifically, studies containing blood-based samples. Compared to tumor tissue-based studies, 

blood-based studies have greater biological variability in gene expression data and the blood-

derived signals are weak and variable. Thus, distinguishing between outliers versus non-

outliers, as well as signal versus noise, is more complex task in blood samples [123].  

Before performing the main statistical analyses in this thesis, the gene expression data were 

pre-processed. Technical outliers that are identified by the laboratory quality measures were 

first removed. Then any outliers that were detected from a standard operating procedure with 

nowaclean, which were designed for large samples like in the NOWAC postgenome cohort 

[123], were removed. Then, background correction was performed, bad-quality probes were 

removed, and probes detected in <20% of samples were filtered.  

Further, log2 transformation, quantile normalisation, and inspection of batch effects using PCA 

plots were performed before extracting the controls in the different case-control datasets and 
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merged to a larger dataset. The log2 transformation is the most common transformation 

technique for microarray data. It stabilizes the variance of high intensities while simultaneously 

increases the variance at low intensities [208]. Normalisation techniques are commonly used to 

re-distribute signal intensities across all samples to achieve a consistent distribution e.g., same 

mean and/or standard deviation, ultimately leading to removal/reduction of technical 

variabilities [209]. Many normalisation techniques exist, but quantile normalisation is 

particularly popular and exhibits very well-aligned distributions. It is widely used and is 

standard part of analysis pipelines for high-throughput analysis [209]. Several normalisation 

techniques (e.g., ComBat [210]) were evaluated in the pre-processing of the dataset in this 

thesis, and quantile normalisation was chosen because it exhibited the most well-aligned 

distributions. Batch effects refer to differences in gene expression measurements that are 

introduced when samples are processed on different days, in different groups, or different 

laboratory personnels. Batch effects are widely recognised as sources of latent (hidden or 

concealed) variation in genomic experiments [203]. These batch effects can confound the 

interpretation of gene expression data and reduce the ability to detect true biological 

differences. Thus, the goal of assessing batch effects was to evaluate whether there were strong 

effects resulting from microarray experiment variance rather than from biological variation 

among the samples. During the inspection of batch effects in our studies, no strong effects were 

indicated in PCA plots, still we included laboratory plates/batch in the adjustment models also 

as a proxy variable for case-control study origin.  

5.2.7.2 Gene-level analyses 

One of the objectives of conducting gene expression analysis is to identify differences in the 

levels of gene expression between different groups, typically on a gene-by-gene basis or for 

sets of genes. Some of the statistical analyses tools we used for this analysis are discussed 

below. 

Linear models 

The primary statistical method to select DEGs between two groups is to use a t-test, but it’s use 

has been criticized in literatures. The computation of a t-tests can encounter challenges due to 

the potential skewing of variance estimates caused by genes with very low variance. Another 

limitation arises from its application on small sample sizes resulting in reduced statistical 

power. As a result, the effectiveness of t-tests and the significance of variance modeling have 
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been strongly questioned. This has prompted the development of numerous innovative 

alternatives, aiming to improve variance estimation accuracy and power; and among the 

different approaches, limma shows significant improvement over the t-test [211].  

In this thesis, we used the limma package for the main analysis in all the papers (Paper I-III). 

Limma is a software package designed for analysing gene expression data obtained from 

microarray or RNA-seq technologies [212]. It is commonly used approach based on linear 

models that effectively incorporates various statistical principles for conducting large-scale 

expression studies [130]. One of the key strengths of limma is its capability to simultaneously 

analyse comparisons across numerous RNA targets. Moreover, it incorporates features that 

ensure stability in analyses, even when dealing with a small number of arrays, achieved through 

the borrowing of information across genes. Limma is specifically tailored to handle complex 

experiments encompassing various experimental conditions and predictors [212]. In this thesis, 

we have used its version for continuous variables (analyses of smoking metrics in Paper I and 

BMI in Paper II), categorical variables (smoking status in Paper I, BMI categories in Paper II, 

menopausal status in Paper III) and for interaction terms (weight change-BMI interaction 

models in Paper II). The analyses were based on a design matrix offered by limma, which made 

the definitions of tests very flexible. 

Multiple testing challenges 

Examining multiple hypotheses within a single study is quite common in gene expression 

analyses, which can lead to increased probability of Type I errors [213] (i.e., false positives or 

falsely rejected hypotheses). To overcome this, statistical tools for multiple testing corrections 

are required. The simplest method is the Bonferroni correction, and this method controls the 

family-wise error rate, which is the likelihood of encountering Type I error in at least one of 

the many hypothesis tests. It calculates the significant threshold by simply dividing the desired 

alpha by the number of tests, i.e., if alpha is 0.05 then the threshold is 0.05/number of tests 

[213]. In genetic studies involving several hundred thousand hypotheses, controlling for family-

wise error rate seems too conservative [213]. An alternative is to control the FDR, which is the 

expected proportion of false positives among the rejected hypotheses. The most common 

method for false discovery rate (FDR) control is the Benjamini-Hochberg correction [213]. This 

method first sorts the p-values obtained from the statistical tests in ascending order, and then 
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calculates the critical value (q-value) for each p-value using the formula: q-value = (p-value * 

N) / k, where N is the total number of genes and k is the rank of the p-value [131]. 

In this thesis, we controlled for FDR, using the Benjamini-Hochberg correction [131]. 

Benjamini-Hochberg correction is less conservative than Bonferroni correction. Taking this 

thesis as an example, we had 7,713 unique genes. The Bonferroni correction threshold would 

be 0.05/number of tests, i.e., 0.05/7713 = 6.48e-06. In Paper I, the top-ranked gene (LRRN3) 

from current-vs-never smokers had FDR adjusted-p-value=1.52E-80. If we had used the 

Bonferroni threshold, we would still have detected LRRN3 but would have missed to identify a 

lot of genes.  

Effect estimates in gene expression analyses  

Early microarray publications [214,215] evaluated differential expression solely based on fold-

change; where a cutoff of two-fold was  typically considered significant [216]. The average 

log-ratio between two groups is evaluated and a gene is considered differentially expressed that 

vary by more than an arbitrary cutoff. It does not take the variance of the samples into account 

and therefore lacks a robust statistical foundation [211]. Instead of relying solely on a fold-

change cutoff, one should prefer the use of statistical tests, as they incorporate variance when 

assessing differential expression [211]. Thus, we did not use the fold-change cutoffs but only 

used the FDR-adjusted p-value cutoffs to obtain the top-ranked genes between compared 

groups in all papers (Paper I-III) in this thesis. However, we still extracted fold-changes to 

represent effect estimates. A logFC value of one typically indicates a two-fold increase in gene 

expression compared to a reference group. The absolute value of the logFC indicates the 

magnitude of change in gene expression (or some other measured quantity), while the sign 

(positive or negative) indicates the direction of change, i.e., if logFC>0 (or positive sign), then 

the gene was over-expressed, while logFC<0 (or negative sign), then the gene was under-

expressed compared to a reference group. For example, in Paper I, the logFC of LRRN3 was 

1.01 among current-vs-never smokers, it implies that the expression of LRRN3 was 

approximately two times higher in current smokers compared to never smokers, and as it had 

positive sign, it represented over-expression of LRRN3 among current smokers. We observed 

that the fold-changes of the top-ranked genes between different groups of interest in all the 

papers (Paper I-III) included in this thesis were modest (ranging from 0.07 to 0.86 in Paper I-

III), expect for LRRN3 with 1.01 logFC. This might be because our study participants were a 
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large sample of healthy population. Other studies investigating blood gene expression and BMI 

also showed small effect estimates like logFC of up to 0.06 [62,63], but there are also studies 

that had large effect estimates (up to logFC=3.19) [61]. However, literature showed that most 

of the informative RNAs and differentially expressed transcripts can exhibit fold-changes less 

than two, and still reveal enrichment of biologically relevant functions [217]. Therefore, we 

believe that the modest fold-change differences we observed has not affected our enrichment 

analyses in all papers.  

5.2.7.3 Pathway-level analyses 

To gain insight into biological functions of genes that are differentially expressed researchers 

have performed pathway analysis since long, as these are relatively straight forward and provide 

greater exploratory power to the results [218]. Functional enrichment analysis is widely used 

for interpreting gene lists or genome-wide regions of interest that are derived from different 

high-throughput studies [136]. These approaches utilize pathway knowledge in public 

repositories such as GO or KEGG, and therefore can be called knowledge base– driven pathway 

analysis [218]. In this thesis, we used over-representation analysis (ORA) as the functional 

enrichment analysis in all the papers (Paper I-III). Furthermore, we considered gene ontologies 

(GO) of biological processes, molecular functions, and cellular components. In addition to that, 

we also examined KEGG and REACTOME databases to increase our knowledge about well-

driven pathways. Another functional enrichment analyses that could be used was gene set 

enrichment analysis (GSEA). GSEA uses the ranked list of genes and their effect estimates, 

while ORA simply compares the names of the gene sets with a background distribution of gene 

names. This can lead to more results indicated than from a GSEA, especially when analysing 

noisy or heterogenous datasets. We attempted both ORA and GSEA in Paper III, however, the 

indicated ontology terms were rather similar (results not shown).  
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6 Conclusions 

In general, the findings of this thesis concludes that there are large associations of blood gene 

expression with cancer risk factors investigated, mainly –smoking, BMI, menopause –among 

women in the NOWAC postgenome cohort. Further, the differentially expressed genes (DEGs) 

indicated various gene ontologies and pathways, providing biological insights into their 

physiological and molecular mechanisms. 

In more details, the specific conclusions are as following: 

➢ Among all the risk factors investigated, the strongest association in terms effect sizes 

was shown by smoking status (the highest logFC exhibited by the top-ranked gene, 

LRRN3, when current smokers were compared with never smokers).  

➢ Among all the risk factors investigated, the most associations in terms of largest 

numbers of DEGs were observed for investigations of obesity (2,394 DEGs when 

women with obesity were compared to women with normal-weight).  

➢ Among all the risk factors investigated, the associations with menopause, and also HT 

use, were largely driven by the relative presence of estimated WBCs. 

➢ Current exposures were clearly reflected in blood gene expression more than past 

exposures (past weight changes, former smoking). Thus, to the best of our knowledge, 

this thesis is the first to conclude that current BMI is reflected in blood gene expression 

more than past weight changes in terms of number of DEGs. 

➢ The biological functions of smoking-, BMI-, and menopausal-associated DEGs mainly 

revealed enriched terms like metabolic, immune, and RBC-related processes/functions. 

These terms coincide with the physiological effects known for each risk factor and 

reflect their systemic impacts.  

➢ The LRRN3 expression increases with ongoing smoking exposure and reverts to levels 

like those of never smokers in years after smoking cessation. Because of the LRRN3-

driven discrimination of smoking exposure, we concluded that LRRN3 could supplant 

self-reported smoking data in future studies.  

➢ This thesis provides knowledge on the influence of relative proportions of blood cells 

on the associations of blood gene expression with the risk factors investigated, reflecting 

its importance. Future studies should consider adjustment of blood cell proportions in 

studies related to blood-based markers.
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7 Future perspectives 

This thesis presents exploratory findings related to blood gene expression and important cancer 

risk factors. This work provides valuable insights in future investigations of how gene 

expression changes or responds to these factors and hypotheses regarding how exogenous and 

endogenous risk factors or a combination of these affect the overall health of women. 

This thesis is the first to investigate associations of gene expression in blood with smoking 

metrics (Paper I), past weight changes (Paper II), and menopausal status (Paper III) in a large 

population-based samples. Some novel signals are reported should be validated by future 

studies using alternative targeted technologies, for instance, qPCR or NanoString, or utilizing 

larger, independent cohort samples. 

Further, this thesis presented only a snapshot of gene expression, and thus could not capture the 

dynamics of gene expression. Temporal variation in associations could be addressed if future 

studies use repeated measurements for gene expression, along with questionnaire information, 

to assess changes in expression profiles. 

Most importantly, this thesis depicts the influence of blood cell compositions on the 

associations of blood gene expression and risk factors investigated in this thesis, particularly 

the influence of WBCs on menopause (Paper III), and the influence of RBCs on smoking and 

BMI (Paper I and II). This, in itself, is the main open question to be addressed in future studies. 

But this question is also related to gene expression changes within individual cell types. More 

specifically, the two key questions for future studies are: (i) to what extent do the three exposure 

variables (smoking, BMI, and menopause) affect whole-blood cell type composition? (ii) to 

what extent do these exposure variables affect gene expression within individual cell types in 

whole-blood? If these are addressed in future, we might unravel novel insights into the 

biological mechanisms for how these three exposure variables are cancer risk factors. 

We demonstrated that proper consideration and adjustments related to immune cell 

compositions are essential to incorporate in study design and data analyses when investigating 

blood molecular markers. Future investigations could design studies that can validate the 

findings related to differences in blood cell-type compositions. But we only considered the 

estimated proportions of WBCs and lacked information on other blood cell types, e.g., RBCs 

or reticulocytes. It would be of value to include measurements and not the estimates of the 
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blood cells in future studies. This could be done by analysing WBC compositions directly by 

using laboratory techniques like flow cytometry. Further, cell-type-specific gene expression 

analyses using methods such as scRNA-seq could be in future studies to investigate gene 

expression within individual blood cell types. This would help to access their individual 

influence, and to answer if it is functional state of cells (is the cell functioning differently?) or 

the distribution of cells (is there a difference in their absolute or relative presence?) that is 

driving the associations. But this would require completely new sample collection and large 

budget for the laboratory analyses.  
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Errata 

Paper I 

The labels in x-axis (Observed p-values) and y-axis (Expected p-values) should have been 

switched to x-axis (Expected p-values) and y-axis (Observed p-values) in the Supplementary 

Figure S4 (Q-Q plot).  

There should have been “Complementary DNA c(DNA)……” instead of “Complementary 

RNA c(RNA)……”  in the Method section under Laboratory analyses and pre‑processing of 

the gene expression data. 
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KVINNER OG KREFT
Du sendte våren 2002 et utfylt spørreskjema til Institutt for samfunnsmedisin som del av den 
landsdekkende undersøkelsen ”Kvinner og kreft”. Spørsmålene var særlig rettet mot kosthold. 
Vi ønsker å studere hvilken betydning våre matvaner har for kreftutvikling hos kvinner. I følgeskrivet
til spørreskjemaet informerte vi om at en del kvinner senere ville bli forespurt om de var villig til å
avgi blodprøve. Blodprøvene vil bli avidentifisert ved ankomst Institutt for samfunnsmedisin.

Formålet med blodprøven vil være:
• Måle nivå av vitaminer, mineraler og andre stoffer i blodet som kan settes 

i forbindelse med kostholdet.
• I fremtiden kunne studere de såkalte genetiske markører dvs. egenskaper i arvestoffet 

som kan disponere for kreft.
• Teste nye ideer eller hypoteser som oppstår i fremtiden.

Det er frivillig om du vil delta. Du kan trekke deg uten begrunnelse, og du kan be om at 
opplysninger du har gitt blir slettet, uten at dette vil få konsekvenser for deg. 
Blodprøven vil kun bli benyttet til forskning og ingen resultater vil bli utlevert til deg eller 
noen andre. Blodprøven vil bli lagret i 30 år.

Ansvarlig for undersøkelsen er professor Eiliv Lund. Undersøkelsen er tilrådd av Regional komité 
for medisinsk forskningsetikk, Nord-Norge (REK NORD), og Datatilsynet har gitt konsesjon for 
oppbevaring av opplysninger. 
Fremtidige forskningsprosjekter som vil benytte de lagrete blodprøvene vil forelegges Regional
komité for medisinsk forskningsetikk, Nord-Norge (REK NORD).

Du kan finne mer informasjon om ”Kvinner og kreft”og om forskningsresultatene på våre nettsider: www.ism.uit.no/kk/

Med vennlig hilsen

Eiliv Lund Bente A. Augdal
professor dr.med. prosjektmedarbeider

✂

Ønsker du ikke å delta og vil slippe påminning pr. brev ber vi deg fylle ut svar-slippen og returnere
denne sammen med utstyret tilbake til oss (forseglet utstyr må ikke åpnes).

Jeg ønsker ikke å delta i blodprøvetakingen.     ................................................................................
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Jeg har lest informasjonen om blodprøveundersøkelsen 

og samtykker i å delta i denne: Ja: 

KVINNER OG KREFT

Følgende opplysninger fylles ut i 
forbindelse med blodprøvetaking.

DETTE SKJEMA MÅ FØLGE 
BLODPRØVEN!

Skjemaet skal leses optisk. Vennligst 
bruk blå eller sort penn. Du kan ikke bruke
komma, bruk blokkbokstaver.

KONFIDENSIELT

ID-nr:

LAB-kobling.

2003

FUGE. BLOD UTSENDELSE 32.

PRØVETAKINGSDAGEN

Fyll inn tidspunkt når dag mnd

blodprøven er tatt: Dato:

Klokkeslett:

MENSTRUASJONSFORHOLD

Har du menstruasjon?

Ja ...................................................

Nei.................................................

Uregelmessig........................

Er gravid...................................

Hvis ja: 
Angi dato for første dag dag mnd
i siste menstruasjon:

MATINNTAK

Når spiste du siste måltid før dag mnd

blodprøven ble tatt: Dato:

Klokkeslett:

RØYKEVANER SISTE UKEN

Har du røkt i løpet av siste uke?

Ja ...................................................

Nei.................................................

Hvis ja: Hvor mange sigaretter røkte du?

Antall i går:

Antall i dag:

VEKT OG HØYDE

Hvor mye veier du i dag? kg

Hvor høy er du? cm

Er disse målene tatt 

på legekontoret i dag?

Ja ...................................................

Nei.................................................



MEDISINER I LØPET AV SISTE UKE

Har du brukt P-piller i løpet av siste uke?

Ja ...................................................

Nei .................................................

Hvis ja: 
Angi dato for siste tablett dag mnd 

Preparatnavn: ..........................................................................................................

(ikke skriv her)

Har du i løpet av siste uke brukt 

hormontabletter (østrogen, gestagen) 

for overgangsalderen?

Ja ...................................................

Nei .................................................

Hvis ja: 
Angi dato for siste tablett dag mnd 
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(ikke skriv her)

Preparatnavn: ..........................................................................................................

(ikke skriv her)
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(ikke skriv her)

Har du brukt andre medisiner 

i løpet av siste uke?

Ja ...................................................

Nei .................................................

Hvis ja: 
Angi dato for siste tablett dag mnd

Preparatnavn: ..........................................................................................................

(ikke skriv her)

Preparat navn: ........................................................................................................

(ikke skriv her)

Preparat navn: ........................................................................................................

(ikke skriv her)

Har du brukt tran (flytende) 

i løpet av siste uke?

Ja ...................................................

Nei.................................................

Hvis ja: 
Angi dato du sist tok tran dag mnd

Hvor mye tran tok du da?

1 ts 1/2 ss 1+ ss

Har du brukt trankapsler i løpet av siste uke?

Ja ...................................................

Nei.................................................

Hvis ja: 
Angi dato du sist tok trankapsel dag mnd

Hvor mange trankapsler tok du da?

1 2 3+

Navn på trankapselpreparatet du tok sist:

.............................................................................................................................................

(ikke skriv her)

Har du brukt andre kosttilskudd 

(vitaminer/mineraler) i løpet av siste uke?

Ja ...................................................

Nei.................................................

Hvis ja: 
Angi dato for siste tablett dag mnd

Preparatnavn: ..........................................................................................................

(ikke skriv her)

Preparatnavn: ..........................................................................................................

(ikke skriv her)
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(ikke skriv her)

STILLING NÅR BLODPRØVEN BLE TATT

Sittende ...................................

Liggende..................................

Takk for hjelpen!

BRUK AV KOSTTILSKUDD I LØPET AV SISTE UKE
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Gene expression in blood 
reflects smoking exposure 
among cancer‑free women 
in the Norwegian Women 
and Cancer (NOWAC) postgenome 
cohort
Nikita Baiju1*, Torkjel M. Sandanger1, Pål Sætrom2,3,4,5 & Therese H. Nøst1,5

Active smoking has been linked to modulated gene expression in blood. However, there is a need 
for a more thorough understanding of how quantitative measures of smoking exposure relate to 
differentially expressed genes (DEGs) in whole‑blood among ever smokers. This study analysed 
microarray‑based gene expression profiles from whole‑blood samples according to smoking 
status and quantitative measures of smoking exposure among cancer‑free women (n = 1708) in 
the Norwegian Women and Cancer postgenome cohort. When compared with never smokers and 
former smokers, current smokers had 911 and 1082 DEGs, respectively and their biological functions 
could indicate systemic impacts of smoking. LRRN3 was associated with smoking status with the 
lowest FDR‑adjusted p‑value. When never smokers and all former smokers were compared, no DEGs 
were observed, but LRRN3 was differentially expressed when never smokers were compared with 
former smokers who quit smoking ≤ 10 years ago. Further, LRRN3 was positively associated with 
smoking intensity, pack‑years, and comprehensive smoking index score among current smokers; 
and negatively associated with time since cessation among former smokers. Consequently, LRRN3 
expression in whole‑blood is a molecular signal of smoking exposure that could supplant self‑reported 
smoking data in further research targeting blood‑based markers related to the health effects of 
smoking.

Tobacco smoking is one of the major threats to public health, and it is currently responsible for more than 8 
million deaths worldwide each  year1. Exposure to tobacco smoke is a risk factor for many chronic diseases, 
such as cardiac and pulmonary diseases and several cancers. Further, smoking can suppress the immune system 
and modifies a range of immunological  functions2. Subclinical outcomes, such as increased oxidative stress, 
reduced antioxidant defences, increased inflammation, impaired immune status, and altered lipid profiles, have 
been observed in smokers when compared to their counterparts who never  smoked3. Notably, more respira-
tory symptoms caused by exposure to tobacco smoke have been observed in women than  men4,5. Thus, tobacco 
smoking has several detrimental health effects, which might appear not long after smoking initiation or up to 
several decades after  exposure3,6.

The toxic components of tobacco smoke are first absorbed in the lungs and then enter the blood stream 
before being distributed throughout the body, making blood an appropriate biological material to study the 
systemic influences of exposure to tobacco  smoke7. In addition, the collection of whole-blood (or simply, ‘blood 
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samples’) is easy and minimally invasive, and these samples can reveal features that are relevant for studies of 
human health  effects8. Current exposure to tobacco smoke has been linked with modulated expression of many 
genes in blood, for example LRRN3, CLDND1, GPR15, ATF4, SOD2, and CDKN1C9–16. Altered gene expression 
in blood has also been linked to diseases for which smoking is a risk  factor17. However, there is a need for a more 
thorough understanding of the variability in gene expression profiles in whole-blood in relation to quantitative 
measures of smoking exposure among ever smokers. Therefore, this cross-sectional analysis used data from 1708 
cancer-free women participating in the prospective, population-based Norwegian Women and Cancer (NOWAC) 
postgenome cohort. Microarray-based gene expression profiles from bio-banked whole-blood samples were 
assessed according to smoking status and quantitative measures of smoking exposure (hereafter referred to as 
‘smoking metrics’), such as smoking intensity, smoking duration, time since smoking cessation (TSC), pack-
years, and comprehensive smoking index (CSI)  scores18. Enriched pathways and gene ontology (GO) categories 
of significant genes associated with smoking were also assessed.

Results
General characteristics of the study population. The current study was based on microarray data 
from cancer-free women participating in the NOWAC postgenome cohort. The full cohort consists of approxi-
mately 50,000 women (mean age: 49.78 years; mean body mass index (BMI): 23.38 kg/m2), all of whom have 
given a blood sample. In total, 1708 of these women have been included as cancer-free controls in various stud-
ies and have gene expression profiles available for study, and only these women were included in the present 
analyses. All included women had completed up to three comprehensive questionnaires before blood collection 
(main questionnaires), and an additional questionnaire on lifestyle factors was completed at the time of blood 
collection. Thus, information was available for up to four time points in total. Smoking status and smoking met-
rics (smoking intensity, smoking duration, TSC, pack-years, and CSI scores) were based on information from 
all four questionnaires. Current smokers (CS) were defined as those who were currently smoking at the time of 
blood collection, former smokers (FS) were defined as those who reported smoking cessation prior to the time 
of blood collection, and never smokers (NS) were defined as those who reported they had never smoked either 
prior to or at the time of blood collection. CS and FS combined represented ever smokers. We defined passive 
smokers (PS) as those who were passively exposed to smoking at their homes as adults. Gene expression values 
were available for 7713 unique genes for all the women in this study.

We investigated associations between smoking status and potential covariates, such as age and BMI at blood 
collection, and white blood cell (WBC) proportions, using Chi-square or Kruskal–Wallis tests. We then per-
formed a ‘global test’ to indicate any association between these variables and the overall gene expression data. 
We considered variables that were significant in both of these tests as potential confounders and adjusted for 
these in further models (Supplementary Table S1).

There were 473, 613, and 622 CS, FS, and NS, respectively, among the 1708 women. The distributions of 
age and BMI at blood collection did not deviate markedly from normality, whereas the distribution of alcohol 
consumption was skewed (Fig. 1). Each of these distributions were similar across different categories of smoking 
status (Fig. 1A–C), but FS had the highest mean BMI and alcohol consumption, and NS had the highest mean 
age (Supplementary Table S1). Further, the smoking metrics—smoking intensity, smoking duration, pack-years, 
and CSI score had the highest means for CS as compared to FS (Fig. 1D–H). Finally, there were 192, 147, and 
100 PS among CS, FS, and NS, respectively.

Estimated white blood cell proportions. We estimated proportions of 22 types of WBCs using an 
in silico gene expression deconvolution method. CD8 T cells, naive CD4 T cells, resting NK cells, M0 mac-
rophages, resting mast cells, and neutrophils were significantly associated with both smoking status and overall 
gene expression (Supplementary Table S2 and Supplementary Fig. S1). Further, we used linear regression to 
assess the associations between WBC proportions and smoking metrics. We observed that CD8 T cells were 
negatively associated with pack-years and CSI score; naive CD4 T cells were positively associated with smoking 
intensity, smoking duration, pack-years, and CSI score; resting NK cells were negatively associated with smok-
ing intensity, smoking duration, pack-years, and CSI score but positively associated with TSC; resting mast cells 
were negatively associated with smoking duration; and neutrophils were negatively associated with TSC (Sup-
plementary Table S3).

Differentially expressed genes dependent on smoking status. We used two adjusted (minimally- 
and fully-adjusted) models to assess the relationships between smoking status and gene expression profiles, 
using the ‘limma’ package for gene-wise linear models. In minimally-adjusted models, we adjusted for technical 
variables such as laboratory batch (laboratory plates) and sample storage time, while in fully-adjusted models, 
in addition to the technical variables, we included the following variables that were associated with both the 
exposure and the outcome: selected WBC proportions, age, BMI, and use of hormone replacement therapy at the 
time of blood collection, as well as information on alcohol consumption and use of oral contraceptives, which 
was taken from the main questionnaires. The presence of differentially expressed genes (DEGs) was determined 
by three comparisons of smoking status groups: CS-vs-NS, CS-vs-FS, and FS-vs-NS. We considered Benjamini–
Hochberg false discovery rates (FDR) with the significance threshold FDR ≤ 0.05.

In minimally-adjusted models, there were 1009 DEGs in the CS-vs-NS comparison; 427 up-regulated and 582 
down-regulated genes. Correspondingly, in the CS-vs-FS comparison, there were 1371 DEGs (559 up-regulated, 
812 down-regulated). In fully-adjusted models, there were 911 DEGs in the CS-vs-NS comparison (355 up-
regulated, 556 down-regulated; Fig. 2A,D), and 1082 DEGs in the CS-vs-FS comparison (435 up-regulated, 647 
down-regulated; Fig. 2B,E). The two adjusted models had 670 overlapping DEGs in the CS-vs-NS comparison 
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(Supplementary Table S4) and 839 in the CS-vs-FS comparison (Supplementary Table S5). Similarly, the CS-
vs-NS and CS-vs-FS comparisons had 776 and 652 overlapping DEGs in the minimally- and fully-adjusted 
models, respectively. In the fully-adjusted models, there were 230 up-regulated and 422 down-regulated genes 
that overlapped between the CS-vs-NS and CS-vs-FS comparison and displayed the same direction of effects. 
The top-ranked gene (i.e., the gene with the lowest FDR adjusted p-values) in all comparisons was LRRN3 (Sup-
plementary Fig. S2). Receiver operating characteristics (ROC) curve analyses showed that expression levels 
of LRRN3, as measured by the Illumina arrays, could strongly distinguish CS from NS and moderately distin-
guish FS (with ≤ 10 years TSC) from NS (Supplementary Fig. S3). Moreover, in a subset of our dataset, LRRN3 
expression showed similar discriminative power as DNA methylation at the AHRR CpG site (cg05575921), 
which is a known marker for smoking  exposure19. There were no DEGs in the FS-vs-NS comparison in either 

Figure 1.  Descriptive statistics of study participants by smoking status for (A) age at blood collection, (B) body 
mass index (BMI) at blood collection, (C) alcohol consumption at baseline, (D) smoking intensity, (E) smoking 
duration, (F) time since smoking cessation (TSC), (G) pack-years, and (H) comprehensive smoking index 
(CSI) scores. Yellow, blue, and red coloured violin plots represent kernel density estimates for never, former, and 
current smokers, respectively. White boxes extend from the 25th to the 75th percentile, vertical bars inside the 
box represent the median, whiskers extend 1.5 times the length of the interquartile range right and left side of 
the 75th and 25th percentiles respectively, and outliers are represented as black dots. The green diamond shaped 
dot represents the respective mean.
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model (Fig. 2C). However, LRRN3 was the only DEG that remained significant when we included only FS with 
TSC ≤ 10 years and compared it with NS in the minimally-adjusted model (with  log2 fold-change (logFC) = 0.34 
and FDR = 3.63E−04). The p-values were uniformly distributed only in the FS-vs-NS comparison, but not in the 
other comparisons, as presented in quantile–quantile plots (Supplementary Fig. S4). Further, we used the ‘limma’ 
package to analyse the effects of passive smoking among NS, by contrasting all NS who were PS in adulthood 
with the other NS using the minimally-adjusted model. There were no DEGs when testing differences between 
PS (n = 100) and non-PS (n = 428).

Figure 2.  Volcano plots for the test statistics in fully-adjusted models from the tests of differentially expressed 
genes (DEGs) in comparisons of (A) current versus never smokers, (B) current versus former smokers, and 
(C) former versus never smokers; and forest plots for the 10 top-ranked DEGs in tests of DEGs in comparisons 
of (D) current versus never smokers and (E) current versus former smokers. In volcano plots (A–C), red 
dots display up-regulated genes, blue dots display down-regulated genes, while grey dots display genes with 
FDR > 0.05; the x-axis presents  log2 fold-changes and the y-axis presents − log10 of FDR adjusted p-values; and 
gene names displayed are the 20 top-ranked DEGs in the respective tests. In forest plots (D and E), dots in the 
x-axis represent  log2 fold-changes and the y-axis represents DEGS with the lowest FDR adjusted p-values ranked 
from the top; the horizontal line for each gene represents their confidence interval; and the vertical blue dotted 
line represents no difference.
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Analyses of smoking metrics within ever smokers. To identify genes associated with magnitude of 
smoking exposure, we used the ‘limma’ framework to identify genes for which the expression level correlated 
with the given smoking metrics among ever smokers. Specifically, we extended the minimally-adjusted model to 
include the given smoking metrics and analysed CS and FS separately.

In analyses of CS, the top-ranked gene, LRRN3 (logFC = 0.60, FDR = 4.70E−05), was positively associated with 
CSI score (Fig. 3). Further, there were five genes positively associated and two genes negatively associated with 
smoking intensity (Supplementary Table S6), where LRRN3 was the top-ranked gene, with a positive association 
(Supplementary Fig. S5). Likewise, there were three genes positively associated and two genes negatively associ-
ated with pack-years (Supplementary Table S7), where LRRN3 was the top-ranked gene, with a positive associa-
tion (Supplementary Fig. S6). There were no genes significantly associated with smoking duration among CS.

Figure 3.  Distributions of expression values for the top-ranked gene (LRRN3) (A) among never (yellow) and 
former (blue) smokers and (B) among current smokers according to comprehensive smoking index (CSI) 
scores. In figure (A), boxes extend from the 25th to the 75th percentile, horizontal bars represent the median, 
whiskers extend 1.5 times the length of the interquartile range above and below the 75th and 25th percentiles, 
respectively, and outliers are represented as points. In figure (B), the red line represents the linear regression fit 
and the shaded grey area its standard error.
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In analyses of FS, the top-ranked gene, LRRN3 (logFC =  − 0.014, FDR = 2.63E−03), was negatively associated 
with TSC (Fig. 4). Correspondingly, NMRAL1 (logFC =  − 0.008, FDR = 2.72E−02) was negatively associated with 
pack-years (Supplementary Fig. S7). No genes were significantly associated with smoking intensity, smoking 
duration, or CSI scores among FS.

Functional enrichment analyses. To investigate the potential common functions of the identified DEGs 
affected by smoking, we performed functional enrichment analyses to identify GO biological processes (BP), 
GO molecular functions (MF), GO cellular components (CC), Kyoto encyclopaedia of genes and genomes 
(KEGG) pathways, and REACTOME pathways enriched for DEGs in the CS-vs-NS and CS-vs-FS comparisons 
(Supplementary Tables S8–12, Fig. 5, and Supplementary Fig. S8). Analyses were performed for DEGs in fully-

Figure 4.  Distributions of expression values for the top-ranked gene (LRRN3) (A) among never (yellow) 
and current (red) smokers and (B) among former smokers according to time since smoking cessation (TSC). 
In figure (A), boxes extend from the 25th to the 75th percentile, horizontal bars represent the median, 
whiskers extend 1.5 times the length of the interquartile range above and below the 75th and 25th percentiles, 
respectively, and outliers are represented as points. In figure (B), the blue line represents the linear regression fit 
and the shaded grey area its standard error.
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Figure 5.  Summary of functional enrichment analyses for up- and down-regulated genes for the (A) GO(BP) 
and (B) REACTOME pathway databases. The colour of the dots indicates the adjusted p-value, where red dots 
represent the most enriched categories; the ‘GeneRatio’ indicates the proportion of genes overlapping between 
lists of differentially expressed genes (DEGs) and the genes in gene ontology categories. GO: gene ontology; BP: 
biological processes; CS-vs-NS: comparison of current smokers versus never smokers; CS-vs-FS: comparison of 
current smokers versus former smokers; U: Up-regulated genes; D: Down-regulated genes.
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adjusted models and separately for up-regulated and down-regulated genes. The numbers of enriched terms in 
the respective categories are presented in Table 1.

For both up-regulated and down-regulated genes, enriched categories overlapped considerably for genes that 
were significant according to the FDR in the CS-vs-NS and CS-vs-FS comparisons. However, there were more 
enriched categories among genes in the CS-vs-NS comparison, except for GO(MF), where there were significant 
categories only in the CS-vs-FS comparison. Considering the terms themselves, up-regulated genes were mostly 
enriched for terms related to translation, such as ribosome (KEGG and GO(CC)), protein localisation to endo-
plasmic reticulum (GO(BP)), and translation (REACTOME). Terms were also related to immune responses, 
such as humoral immune response, inflammatory response, and B cell activation (GO(BP)). In contrast, down-
regulated genes were enriched for many terms related to circulatory functions, including response to wounding 
and regulation of blood vessel size (GO(BP)), and extracellular signalling, such as G protein-coupled receptor 
ligand binding (REACTOME), and plasma membrane region (GO(CC)).

Discussion
This study presents DEGs across categories of smoking status, as well as genes associated with different smoking 
metrics within ever smokers in the whole-blood of cancer-free women from the NOWAC postgenome cohort. 
These assessments, which used quantitative and repetitive smoking metrics, bring novel knowledge about the 
systemic responses to smoking exposure within ever smokers.

The study participants had similar proportions of CS, FS, and NS. They had comparable mean age and BMI 
at the time of blood collection as that of the full cohort, and to that of participants in other studies targeting the 
relation between smoking exposure and gene  expression9–11. Among the 7713 genes assessed, 911 and 1082 genes 
were differentially expressed in CS-vs-NS and CS-vs-FS comparisons, respectively. When looking at the DEGs 
in the CS-vs-NS comparison and the significant genes indicated in corresponding tests in a large meta-analysis 
containing 10,233 participants (51% women), we found that among the 285 DEGs in our study that overlapped 
with the 1270 DEGs in that study, 282 genes had the same direction of  effects11. Moreover, the mean expres-
sion levels for the 285 DEGs between CS-vs-NS that overlapped with DEGs identified in corresponding tests in 
the meta-analysis were higher (7.56) than those DEGs that did not overlap (6.83; t = 5.23, p-value = 2.63E−07). 
Still, the average absolute logFC for the overlapped (0.12) and non-overlapped DEGs (0.09; W = 128,066, 
p-value = 1.29E−14) were similar. This implies that the relation to smoking was consistent for hundreds of genes 
between these studies and demonstrates the comprehensive effects of smoking on gene expression in blood.

Around 40% of the genes were over-expressed in CS as compared to both NS and FS (i.e., 60% were under-
expressed). Although higher proportions of up-regulated genes have been observed more frequently in other 
 studies7,9–11, higher proportions of down-regulated genes have also been  observed14,16. Interestingly, there could 
be sex differences in the directionality of observed DEGs, as one study comparing smokers and non-smokers 
observed that 29% of DEGs in men were down-regulated, compared to 62% in  women7. However, only about 
4% of the DEGs in our study were in X-chromosomes in both the CS-vs-NS and CS-vs-FS comparisons. Nota-
bly, differences in gene expression between adult men and women do not need to originate in genes on the 
X-chromosomes, but a meta-analysis of sex expression differences in blood found that 25% of DEGs do map to 
the sex  chromosomes20. Thus, it is unlikely that the higher proportion of down-regulated genes in our study was 
due to the inclusion of women only.

Among NS, there were no genes associated with self-reported passive smoking in their homes as adults when 
compared to individuals with no passive smoking exposure. This could indicate that gene expression was more 
influenced by tobacco smoking of the women themselves. However, this could also be due to lack of statistical 
power or an imprecise exposure measure (lack of detailed information on timing, duration, and intensity of 
exposure).

Among CS, there were one, five, and three significant genes that were positively associated with CSI scores, 
smoking intensity, and pack-years, respectively. Among these, the top-ranked gene, LRRN3, was up-regulated 
in CS, which demonstrated that even within CS, LRRN3 had a higher expression among those with a higher 
smoking exposure, as represented by increasing CSI scores, smoking intensity, and pack-years. Among FS, there 
was one significant gene that was negatively associated with TSC (LRRN3) and one that was negatively associ-
ated with pack-years (NMRAL1). This demonstrated that within FS, those who had quit smoking recently had a 
higher expression of LRRN3 than those who had quit long ago, and FS with more pack-years had a lower expres-
sion of NMRAL1 than those with fewer pack-years. Also, when restricting the FS-vs-NS comparison to recent 

Table 1.  Number of enriched terms in different categories of enrichment analyses in comparisons of current 
versus never smokers (CS-vs-NS) and current versus former smokers (CS-vs-FS).

Database

CS-vs-NS CS-vs-FS

Up-regulated genes 
(n = 355)

Down-regulated genes 
(n = 556)

Up-regulated genes 
(n = 435)

Down-regulated genes 
(n = 647)

GO(BP) 33 51 22 41

GO(MF) 4 0 6 5

GO(CC) 23 6 14 4

KEGG 1 7 1 0

REACTOME 31 9 34 1
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quitters (with TSC ≤ 10 years), LRRN3 remained significant in minimally-adjusted models. This indicates that 
there are differences in gene expression related to ongoing smoking exposure in women that persist for LRRN3 
in those who recently stopped smoking. Thus, LRRN3 expression increases during smoking exposure and years 
after smoking cessation, but it eventually reverts back to levels similar to those of NS. However, according to 
the results of our linear model (Fig. 4), it appeared to take approximately 20–30 years for LRRN3 expression in 
FS to reach the average expression among NS. The difference in results from the overall FS-vs-NS comparison 
and those restricted to FS with TSC up to 10 years emphasises that TSC needs to be taken into account when 
analysing smoking effects in FS.

LRRN3 was the top-ranked DEG in most comparisons, and its expression differences were large compared 
to the other DEGs identified. LRRN3 has been consistently indicated to be over-expressed in the whole-blood 
of CS or FS in previous  studies9–11,13,14,16,21,22. This gene is highly expressed in the adrenal glands, the brain, and 
the lungs, but also in 11 other  tissues23, and LRRN3 codes for a membrane protein. The GO database has little 
information on LRRN3′s potential functions, except that electronic annotations indicate that it is involved in 
the positive regulation of synapse  assembly23,24. Notably, LRRN3 has six known  SNPs25 but genetic variants in 
participants were not available in this study. Top-ranked DEGs other than LRRN3 in the CS-vs-NS and CS-vs-FS 
comparisons were PID1, RGL1, and STAB1, and in the analyses of ever smokers was NMRAL1. These genes are 
expressed in various tissues that differed across genes. The main functions of the aforementioned genes are to 
increase the proliferation of pre-adipocytes (PID1)26; to be involved in probable guanine nucleotide exchange 
factor (RGL1)27; and to act as a scavenger receptor for acetylated low-density lipoprotein, bind to both gram-
positive and gram-negative bacteria, and to play a role in the defence against bacterial infection (STAB1)28. 
However, the interpretation of the potential function of these genes in blood in relation to smoking is not clear.

We performed functional enrichment analyses for GO(BP), GO(MF), and GO(CC) categories; and for KEGG 
and REACTOME pathways. This gave insight into the underlying biology and provided knowledge of pathways 
for the identified  DEGs29. The overlap in the enriched categories of the up-regulated and down-regulated genes 
in the CS-vs-NS and CS-vs-FS comparisons indicated that similar GO categories and pathways were enriched 
when current smoking exposure was compared to both FS and NS. Still, the enrichment was clearer when CS were 
compared to NS than to FS. The latter might be because the effect of smoking was not completely absent or was 
being slowly reduced in FS. In addition, the overall lack of overlap for enriched categories of the up-regulated and 
down-regulated genes likely demonstrated that these separate groups of genes are involved in different pathways.

The GO enrichment analysis indicated categories such as peptide metabolic and biosynthetic processes, 
protein formation and translation, humoral immune response, structural constituent of ribosome and molecule 
activity, ribosomal subunits, and adherens junction were up-regulated in CS. In contrast, processes such as 
response to wounding, circulatory system, regulation of blood vessels and tube size and diameter, neuron projec-
tion development, drug and hydrogen peroxide catabolic processes, heme binding, cell body, and hemoglobin 
complex were down-regulated. Categories indicated in the KEGG and REACTOME enrichment analyses were 
largely in line with those in GO analysis. In summary, these categories indicate that the DEGs we identified were 
enriched for functions related to the physiological effects of smoking on the human body, which are well docu-
mented in the literatures. This is particularly relevant for the physiological functions linked to the cardiovascular 
system, as DEGs measured in blood could be directly influenced by such altered functions. For example, carbon 
monoxide binds to haemoglobin, thereby reducing the blood’s oxygen-carrying  capacity30. Accordingly, our 
results indicated that smoking could also down-regulate genes involved in the haemoglobin complex, thereby 
potentially exacerbating smoking’s negative effects on oxygen transport. Further, smoking causes several nega-
tive vascular effects, including decreased coronary blood flow and myocardial oxygen delivery, as well as adverse 
effects on lipids, blood pressure, and insulin  resistance31. Thus, the down-regulated processes for blood vessel size 
and diameter, and vascular processes in the circulatory system. The general circulatory system processes indicated 
in whole-blood in this study could be related to these known physiological effects of smoking. We identified 
that oxidoreductase activity was down-regulated, which is in line with smokers experiencing measurable and 
immediate oxidative damage, resulting in oxidative  stress3. We also observed down-regulated wound healing and 
haemostasis, which is in agreement with observations of a reduced capacity to heal wounds among  smokers3,30. 
Lastly, categories related to immune responses were up-regulated in CS. Smoking can compromise the immune 
system and immune homeostasis as a  whole3, and gene enrichment analyses of genes related to smoking in other 
studies have indicated effects on the regulation of immune system  processes9,10,13–16. GO analyses in a large meta-
analysis of genes related to smoking demonstrated enrichment mainly for activation of platelets and lymphocytes, 
immune response, and  apoptosis11. The enriched terms for the DEGs in our study only were largely the same as 
for those for DEGs that overlapped between the meta-analysis and our study (results not presented). Further, the 
expression of LRRN3 has been linked to the methylation of a CpG site on the AHRR  gene19 and AHRR is linked 
to AHR and CYP proteins, which represent detoxifying mechanisms in the liver. This can be a plausible physi-
ological influence of smoking exposures. Still, considering the great variety of molecules in tobacco smoking, it 
can potentially influence multiple pathways, which was observed in the GO categories indicated.

In general, gene expression profiles in whole-blood are affected by the underlying composition of WBCs in the 
respective samples. Thus, skewed WBC proportions could act as confounders when identifying gene expression 
differences related to exposures like smoking, which can disturb WBC  populations16. Neutrophils constituted 
a large fraction of estimated WBCs but was considerably lower as estimated from gene expression than what is 
typical in  blood32,33 as well as estimated from DNA methylation in a subset of the samples (n = 324)19. Still, we 
observed that WBC proportions and smoking metrics—especially resting NK cells but also CD8 T cells, resting 
mast cells, and neutrophils—were negatively associated with increasing smoking exposure. Further, naive CD4 
T cells were positively associated with several smoking metrics. These results are in line with observations that 
smoking may have detrimental effects on the immune capacity of the body. Indeed, smoking has been shown to 
be a significant and reversible cause of elevated WBC counts in healthy  adults34. These estimated cell proportions 
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were included in our fully-adjusted models when assessing DEGs. Still, the top-ranked genes identified in fully-
adjusted models were similar to those from the minimally-adjusted models, indicating that these genes were 
likely not substantially confounded by the distributions of WBC.

The main strength of this study was its use of smoking metrics based on detailed, repeated information on 
past and recent smoking history of the study participants when assessing DEGs in blood between smoking sta-
tus groups. Among the women we included in our study, 51%, 24%, and 25% had information available at four, 
three, and two time points, respectively. Still, this study was based on self-reported smoking information from 
questionnaires, as in most other  studies9,10,13–16. Many studies have measured concentrations of the metabolite 
of nicotine, cotinine, in blood, urine or saliva in addition to self-reported smoking  status9,14–16. However, due to 
its relatively short half-life (16–19 h)35, it would not have provided valuable information for FS. Further, DNA 
methylation at specific CpG sites have also showed promising abilities as markers of smoking status and could 
reflect smoking exposures even decades after  cessation36,37. In a subset of our data, LRRN3 demonstrated similar 
ability to discriminate CS and FS (with ≤ 10 years TSC) from NS as compared to methylation at the CpG cite 
in the AHRR gene. Therefore, the abilities of LRRN3 expression as a quantitative marker for discrimination of 
smoking status should be investigated in other population samples and with the comparison to other markers.

This study comprised a large number of women (n = 1708), whereas most studies targeting associations 
between smoking exposure and gene expression in blood have been conducted in rather small samples, ranging 
from 9 to 219  participants9,10,13–15. The two exceptions are one population-based cohort study in the Netherlands 
with 3319 participants (65% women)16 and a meta-analysis with 10,233 participants (51% women)11. As men-
tioned, our results are in line with those observed in these studies. The present study included only cancer-free 
women, although we cannot disregard influences of other common chronic diseases. Further, this study was based 
on whole-blood samples, which is a relevant tissue to investigate the effects of smoking, as it expresses a large 
proportion of the genes in the human  genome16. Still, the current cross-sectional study results represent snapshots 
of gene expression in  blood38. Lastly, although RNA-sequencing has become a routinely used technology, results 
from microarray technology, like those in this study, are still reliable and overall comparable to RNA-sequencing 
 results39. However, RNA-sequencing technology would be relevant for studying the effects of smoking exposure 
on other genes not captured by the Illumina microarray technology, such as most non-coding RNAs.

In conclusion, our results demonstrated associations between smoking exposure and gene expression profiles 
in whole-blood of cancer-free women in the NOWAC postgenome cohort. The use of quantitative, reliable, and 
repeated measurements of past and recent smoking exposures was the novelty of this study, as it contributes new 
knowledge on systemic responses of smoking exposure. Close to a thousand DEGs in comparisons between CS 
and NS or FS, LRRN3, was the top-ranked gene. LRRN3 was also associated with CSI score, smoking intensity, 
and pack-years among CS; and with TSC among FS. Consequently, LRRN3 expression in blood is a molecular 
signal of smoking exposure that could supplant self-reported smoking data in gene expression studies of the asso-
ciation between smoking exposure and specific phenotypes. The biological functionality of the DEGs identified 
were linked to circulatory functions, translation, and immune responses, and could indicate systemic impacts of 
smoking. Genes that are differentially expressed depending on smoking exposure could be of interest in studies 
that focus on the effects of smoking exposure on health. This study has provided knowledge on the relationship 
of genes and pathways with detailed information on smoking exposure among cancer-free women.

Methods
Study population. The NOWAC study is a nation-wide, population-based prospective cohort study initi-
ated in 1991. Currently, it includes approximately 172,000 Norwegian women aged 30–70 years. Women were 
randomly selected from the Norwegian National Population Register and sent an invitation letter along with a 
first questionnaire, which included a detailed set of questions related to smoking exposure, height, weight, repro-
ductive history, hormone replacement therapy, alcohol consumption, family history of breast cancer, dietary 
patterns, use of medication, and others. Since then, each woman has answered between one and three follow-up 
questionnaires (main questionnaires). The NOWAC study database takes information from the Cancer Registry 
of Norway, as well as national death and emigration registries. Details about the NOWAC study are available in 
Lund et al.40.

The current study was based on data from the NOWAC postgenome  cohort41,42, a sub-cohort of the NOWAC 
study. This consists of approximately 50,000 women who, between 2003 and 2006, had blood samples collected 
in PreAnalytiX (PAX) gene-tubes for gene expression analysis and, at the same time, answered a less extensive 
questionnaire about their lifestyle. The current study incorporated microarray-based expression profiles in bio-
banked whole-blood samples from cancer-free women in the NOWAC postgenome cohort, who were originally 
enrolled as controls in several studies on breast, lung, ovarian, and endometrial cancers, and diabetes. We 
obtained relevant questionnaire and registry information from NOWAC databases and excluded those women 
that did not respond to any questions on smoking exposure, those who participated in more than one study, and 
those who were diagnosed with cancer before 2017. This resulted in a final analytical sample of 1708 women.

Smoking status and smoking metrics. The main questionnaires included detailed questions regarding 
past and current smoking exposures, including ages at smoking initiation and cessation, average number of 
cigarettes smoked per day across age intervals, and details about passive smoking. Smoking status and smoking 
metrics (smoking intensity, smoking duration, TSC, pack-years, and CSI scores) were based on information 
from all main questionnaires and the questionnaire completed at the time of blood collection. Smoking intensity 
was defined as the average number of cigarettes smoked per day during years of active smoking, smoking dura-
tion was the duration of active smoking in years, and TSC was the time since smoking cessation in years. Pack-
years quantify individual, long-term exposure to tobacco  smoking43; this variable was calculated by the formula: 
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Number of pack-years = (smoking intensity/20) × smoking duration. We considered 20 cigarettes in 1 pack, which 
is standard in the Norwegian context. CSI score is a cumulative measure of smoking exposure that incorporates 
smoking intensity (int), smoking duration (dur), and TSC (tsc). CSI scores were calculated using the  formula18: 
CSI = (1 − 0.5dur*/τ)(0.5tsc*/τ) ln(int + 1), where τ is an estimated half-life parameter, and δ is an estimated lag time 
parameter describing TSC and total duration as follows:

Laboratory analyses and pre‑processing of the gene expression data. Total RNA was extracted 
and purified from PAX gene-tube samples according to the PAX gene blood RNA kit protocol at the Genomics 
Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim. A NanoDrop ND 8000 
spectrophotometer (ThermoFisher Scientific, Wilmington, DE, USA) was used to assess RNA purity, and bio-
analyser capillary electrophoresis (Agilent Technologies, Palo Alto, CA, USA) was used to assess RNA integ-
rity. Complementary RNA (cRNA) was prepared using the Illumina TotalPrepT-96 RNA amplification kit, and 
hybridised to Illumina human WG-3 or HT-12 expression bead chip microarrays. The raw microarray images 
were processed in Illumina genome studio. The laboratory analysis date varied from January 2011 to January 
2015.

For each study sample set separately, potential outliers were evaluated based on plots such as principal com-
ponent analysis (PCA) plots and boxplots of probe signals displaying variation along with the laboratory quality 
 measures44. We performed background correction, removed bad quality probes, and filtered probes detected 
in less than 20% of samples. Further, we performed  log2 transformation and quantile normalisation before all 
data were combined and inspected for batch effects using PCA plots. We performed gene annotation using the 
Bioconductor packages ‘lumi’, ‘lumiHumanIDMapping’, and ‘illuminaHumanv4.db’45–47. If there were more than 
one probe annotated to each gene, the probe with the largest inter-quartile range was kept, which resulted in 
7713 unique genes in the data analysed. Estimates for the proportions of 22 populations of WBCs in samples 
were obtained using the CIBERSORT  procedure48.

Statistical analyses. We considered covariates and WBC proportions as potential confounders if they 
were significantly associated with smoking status according to Chi-square or Kruskal–Wallis tests, and with 
overall gene expression data according to the ‘global test’ from the Bioconductor package ‘global test’49. We used 
two adjusted (minimally- and fully-adjusted) models to assess the relationship between smoking status and 
gene expression profiles. We also performed linear regression analysis between WBC proportions and smoking 
metrics to assess their associations.

We performed all the main analyses using R version 3.2.1 and 3.6.250. We used the Bioconductor package 
‘limma’51 for the gene-wise linear models. The presence of DEGs was determined by three comparisons of 
smoking status groups: CS-vs-NS, CS-vs-FS, and FS-vs-NS, using a significance threshold of FDR ≤ 0.0552. We 
performed analyses of smoking metrics within CS and FS separately, and for adult PS within NS. Further, data on 
DNA methylation at the CpG site AHRR gene, cg05575921, was available in a subset of participants (n = 324)19. 
Therefore, we compared the ability of the top-ranked gene in our analyses and CpG site in the AHRR gene 
(cg05575921) using ROC curves. Differences in average expression and  log2FC between groups of DEGs were 
tested using t-test and Wilcoxon rank sum test, respectively. To evaluate common biological functions of results 
of the gene-wises tests, we performed functional enrichment analyses of all significant up-regulated genes and 
all significant down-regulated genes. We used the bioconductor packages ‘clusterProfiler’53 and ‘ReactomePA’54 
to conduct functional enrichment analyses of GO(BP), GO(MF), and GO(CC) categories, and  KEGG55 and 
REACTOME pathways for DEGs from different smoking status groups.

Ethical statement. The Regional Ethical Committee of North Norway (REK) has approved the NOWAC 
study and the NOWAC postgenome cohort (Reference Numbers: 2010/2075/REK Nord and 2014/1605/REK 
Nord, respectively), and the collection and storage of human biological material, the individual case–control 
studies, and gene expression analyses that this project was constructed from. The women gave written informed 
consent for the blood collection and for gene expression  analyses42. All methods were carried out in accordance 
with relevant guidelines and regulations in the manuscript for human.

Data availability
Data cannot be shared publicly because of local and national ethical and security policy. Data access for research-
ers will be conditional on adherence to both the data access procedures of the Norwegian Women and Cancer 
Cohort and the UiT –The Arctic University of Norway (contact via Tonje Braaten <tonje.braaten@uit.no> and 
Arne Bastian Wiik <arne.b.wiik@uit.no>) in addition to an approval from the local ethical committee.
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Supplementary Figure S1. Boxplots for white blood cell (WBC) proportions that were 

different among current smokers (red), former smokers (blue), and never smokers 

(yellow). The X-axis displays the smoking status and the Y-axis displays the proportions of 

WBCs. Boxes extend from the 25th to the 75th percentile, horizontal bars represent the median, 

whiskers extend 1.5 times the length of the interquartile range above and below the 75th and 25th 

percentiles, respectively, and outliers are represented as small circles. (TIFF) 
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Supplementary Figure S2. Boxplots for expression values of the four top-ranked genes in 

comparisons of current vs never smokers, and current vs former smokers that were 

different among current smokers (red), former smokers (blue), and never smokers 

(yellow). The X-axis displays the smoking status and the Y-axis displays the gene expression 

values. Boxes extend from the 25th to the 75th percentile, horizontal bars represent the median, 

whiskers extend 1.5 times the length of the interquartile range above and below the 75th and 

25th percentiles, respectively, and outliers are represented as small circles. (TIFF) 
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Supplementary Figure S3. Receiver operating characteristics (ROC) curve for (A) 

presents the ability of LRRN3 to discriminate between current from never smokers (black 

line, n=1095) and former (with TSC≤10 years) smokers from never smokers (red line, 

n=810), (B) presents the ability of cg05575921, a CpG on the AHRR gene, for the same 

discrimination in a subset of samples n=126 and 74, respectively), and (C) presents the 

ability of LRRN3, for the subset of samples that had DNA methylation data available 

(n=126 and 74, respectively), for the same discrimination. The X-axis presents the 

specificity of the model and the Y-axis presents the sensitivity. 
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Supplementary Figure S4. Quantile-quantile plots for comparisons of (A) current vs never 

smokers, (B) current vs former smokers, and (C) former vs never smokers in unadjusted 

models (red), minimally-adjusted models (yellow), and fully-adjusted models (blue). The 

X-axis shows the ‘observed p-values’ and the Y-axis shows the ‘expected p-values’. (TIFF) 
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Supplementary Figure S5. Distributions of expression values for the top-ranked significant 

gene (LRRN3) (A) among never and former smokers and (B) among current smokers 

according to smoking intensity. In figure A: yellow colour represents never smokers and blue 

colour represents former smokers; boxes extend from the 25th to the 75th percentile, horizontal 

bars represent the median, whiskers extend 1.5 times the length of the interquartile range above 

and below the 75th and 25th percentiles, respectively, and outliers are represented as points. 

(TIFF) 
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Supplementary Figure S6. Distributions of expression values for the top-ranked significant 

gene (LRRN3) (A) among never and former smokers and (B) among current smokers 

according to pack-years. In figure A: yellow colour represents never smokers and blue colour 

represents former smokers; boxes extend from the 25th to the 75th percentile, horizontal bars 

represent the median, whiskers extend 1.5 times the length of the interquartile range above and 

below the 75th and 25th percentiles, respectively, and outliers are represented as points. In figure 

B: the red line represents the regression line with a shaded grey area representing the standard 

error. (TIFF) 



9 
 

 

Supplementary Figure S7. Distributions of expression values for the top-ranked significant 

gene (NMRAL1) (A) among never and current smokers and (B) among former smokers 

according to pack-years. In figure A: yellow colour represents never smokers and red colour 

represents current smokers; boxes extend from the 25th to the 75th percentile, horizontal bars 

represent the median, whiskers extend 1.5 times the length of the interquartile range above and 

below the 75th and 25th percentiles, respectively, and outliers are represented as points. In figure 

B: the blue line represents the regression line with a shaded grey area representing the standard 

error. (TIFF) 



10 
 

  

 



11 
 

Supplementary Figure S8. Summary of functional enrichment analyses for up- and down-

regulated genes for the (A) GO(MF), (B) GO(CC), and (C) KEGG pathway databases. The 

colour of the dots indicates the adjusted p-value, where red dots represent the most enriched 

categories; the ‘GeneRatio’ indicates the proportion of genes overlapping between lists of 

differentially expressed genes (DEGs) and the genes in gene ontology categories. GO: gene 

ontology; MF: molecular functions; CC: cellular components; KEGG: Kyoto Encyclopedia of 

Genes and Genomes; CS-vs-NS: comparison of current smokers vs never smokers; CS-vs-FS: 

comparison of current smokers vs former smokers; U: Up-regulated genes; D: Down-regulated 

genes. 
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Study Importance 

What is already known?  

 Obesity has been linked to altered gene expression in whole-blood, yet few studies have 

investigated the association between blood gene expression and BMI in a large sample 

of women. 

 No study has assessed the association between blood gene expression and past WCs. 

 

What are the new findings in this manuscript? 

 A large number of BMI-associated DEGs, but few WC-associated DEGs (i.e., >700 and 

<168 DEGs, respectively) were identified in blood of women in Norway.  

 The biological functions of BMI-associated DEGs were linked to general metabolism, 

erythrocyte functions, oxidative stress, and immune processes, whereas WC-associated 

DEGs were linked to signal transduction. 

 This is the first study to our knowledge to conclude that blood gene expression reflects 

current BMI more than past WCs. 

 

How might these results change the direction of research or the focus of clinical practice?  

The study results likely reflect systemic impacts of obesity, especially reticulocyte-erythrocyte 

ratio shifts in blood, as these functions coincide with its known physiological effects. This 

knowledge is relevant for further research related to the health effects of BMI and WC, 

especially those that focus on blood-based markers.  
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Abstract  

Objective: We aimed to evaluate associations between blood gene expression profiles and 1) 

current body mass index (BMI), and 2) past weight changes (WCs) among women, who had 

never been diagnosed with cancer, in the NOWAC postgenome cohort. 

Methods: This cross-sectional study (N=1,694) used gene expression profiles and information 

from three questionnaires: Q1 (baseline), Q2 (follow-up), and Q3 (blood collection). We 

performed gene-wise linear regression models to identify differentially expressed genes 

(DEGs), and functional enrichment analyses to identify their biological functions. 

Results: When assessing BMIQ3, we observed 2,394, 769, and 768 DEGs for the obesity-vs-

normal-weight, obesity-vs-overweight, and overweight-vs-normal-weight comparisons, 

respectively. Up to 169 DEGs were observed when investigating WCQ3-Q1 (mean=7 years, 

range=5.5-14 years), and WCQ3-Q2 (mean=1 year, range=<1 month-9 years) in interaction 

models with BMI categories, of which, 1-169 genes were associated with WCs, and 0-9 were 

associated with interaction effects of BMI and WCs. Biological functions of BMI-associated 

DEGs were linked to metabolism, erythrocytes, oxidative stress, and immune processes, 

whereas WC-associated DEGs were linked to signal transduction. 

Conclusions: Many BMI-associated, but few WC-associated DEGs were identified in blood of 

women in Norway. The biological functions of BMI-associated DEGs likely reflect systemic 

impacts of obesity, especially blood reticulocyte-erythrocyte ratio shifts. 
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Introduction 

Overweight and obesity are states of abnormal or excessive fat accumulation that cause risks to 

health1. These states are widespread, and global projections indicate more than 2.16 and 1.12 

billion individuals will have overweight and obesity by 2030, respectively2. Although the 

primary causes of obesity are considered to be excess dietary intake and inadequate physical 

activity, other factors (e.g., endocrine disruptions, smoking cessation) may also contribute3,4. 

Obesity and overweight are major risk factors for non-communicable diseases, such as diabetes, 

cardiovascular diseases, musculoskeletal disorders, and several cancers1,5. Additionally, 

independent of body composition, weight gain in adulthood is a risk factor for several cancers, 

including postmenopausal breast cancer5,6. 

Gene expression profiles can improve our understanding of the molecular mechanisms of multi-

factorial conditions like obesity7. In cross-sectional studies, increased body mass index (BMI) 

has been associated with differences in the expression of several genes8,9 that indicated 

alterations in biological functions related to the regulation of body mass, metabolism, and 

cellular function8,10. Insulin resistance, oxidative stress, and liver damage markers were over-

expressed in people with obesity compared to those without obesity11. Gene expression profiles 

in adipose tissue have been associated with obesity and weight loss in several studies9,12-19. This 

is expected as, biologically, adipose tissue is most relevant to obesity10. Few studies have 

examined gene expression related to obesity either in whole-blood10,20 or peripheral blood 

mononuclear cells (PBMCs)21, and found differences. However, no study has assessed this 

relationship in a large, population-based sample. Furthermore, no study has yet evaluated 

differences in blood gene expression related to weight changes (WCs). 

We aimed to assess the associations between gene expression profiles in whole-blood and 1) 

current BMI and 2) past WCs in a large, population-based sample of women, who never have 

been diagnosed with cancer, and to assess the biological functions of differentially expressed 

genes (DEGs). 

Materials and Methods 

Study design and sample 

We used a cross-sectional study design based on microarray data from women participating in 

the prospective, population-based Norwegian Women and Cancer (NOWAC) postgenome 
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cohort. This subcohort of the NOWAC study consists of approximately 50,000 women (mean 

age: 49.78 years; mean BMI: 23.38 kg/m2) who had blood samples collected during 2003-2006 

for gene expression analysis. Samples were collected in PreAnalytiX (PAX) gene-tubes, and 

details about the study sample and women selected for gene expression analyses are available 

in Baiju et al.22. Several case-control studies have investigated gene expression profiles in the 

NOWAC postgenome cohort; here, we only included the controls from these studies and further 

excluded women who had later been diagnosed with cancer, so that the study sample only 

included women who had never been diagnosed with cancer (N=1,694) (details about inclusion 

and exclusion criteria are presented in Figure 1A). All included women completed a baseline 

questionnaire (Q1), many completed a follow-up questionnaire (Q2), and all completed a third 

questionnaire at the time of blood collection (Q3). Mean interval between Q1 and Q2 (Q1-Q2) 

was approximately 6 years, between Q2 and Q3 (Q2-Q3) approximately 1 year, and between 

Q1 and Q3 (Q1-Q3) approximately 7 years (Figure 1B). We obtained relevant questionnaire 

and registry information from the NOWAC study databases. The Regional Ethical Committee 

of North Norway (REK) has approved the collection and storage of data and human biological 

material in the NOWAC cohort and biobank (NOWAC postgenome cohort) (Reference 

numbers: 2010/2075/REK Nord and 2014/1605/REK Nord, respectively).  

Laboratory analyses and pre-processing of gene expression data 

Laboratory analyses were performed between January 2011 and January 2015 at the Genomics 

Core Facility, NTNU, Trondheim. Total RNA was extracted and purified from PAX gene-tube 

samples following the PAX gene blood RNA kit protocol. RNA purity and RNA integrity were 

assessed using a NanoDrop ND 8000 spectrophotometer (ThermoFisher Scientific, 

Wilmington, DE, USA) and bio-analyser capillary electrophoresis (Agilent Technologies, Palo 

Alto, CA, USA), respectively. Complementary DNA was prepared using the Illumina 

TotalPrepT-96 RNA amplification kit and hybridised to Illumina Human WG-3 or HT-12 

expression bead chip microarrays. The raw microarray images were processed in Illumina 

Genome Studio.  

Details about the pre-processing of gene expression data are available in Baiju et al.22. Briefly, 

we performed background correction, removed bad-quality probes, and filtered probes detected 

in <20% of samples. Further, we performed log2 transformation and quantile normalisation 

before all data were combined and inspected for batch effects using principal component 

analysis plots. These stringent filtering criteria rendered 9,095 probes, and the probe with the 
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highest interquartile range was selected per gene, which resulted in 7,713 unique genes in our 

dataset.  

Body mass index and weight changes  

BMI at Q1 (BMIQ1), Q2 (BMIQ2), and Q3 (BMIQ3) was calculated by dividing weight in kg by 

the square of height in m, and then categorised according to the World Health Organisation 

standard (underweight: <18.5 kg/m², normal-weight: 18.5-24.9 kg/m², overweight: 25.0-29.9 

kg/m², obesity: ≥30.0 kg/m²).  

We calculated WCs between Q1 and Q3 (WCQ3-Q1, mean interval 7 years), and between Q2 and 

Q3 (WCQ3-Q2, mean interval 1 year). We also defined WC categories based on patterns of WC 

between Q1-Q2 and Q2-Q3 : consistent stable weight (CSW, women with stable weight (-2 to 

+2 kg) at Q1-Q2 and Q2-Q3; consistent weight gain (CWG, women with weight gain (above 

+2 kg) at Q1-Q2 and Q2-Q3); consistent weight loss (CWL, women with weight loss (below -

2 kg) at Q1-Q2 and Q2-Q3); former weight gain (FWG, women with weight gain at Q1-Q2 and 

stable weight at Q2-Q3); former weight loss (FWL, women with weight loss at Q1-Q2 and 

stable weight at Q2-Q3); recent weight gain (RWG, women with stable weight at Q1-Q2 and 

weight gain at Q2-Q3); and recent weight loss (RWL, women with stable weight at Q1-Q2 and 

weight loss at Q2-Q3).  

Statistical analyses  

We performed all analyses using R version 3.6.3. We used the Bioconductor package ‘limma’ 

for gene-wise linear models to identify DEGs and considered a significance threshold of false 

discovery rate (FDR) ≤0.05. 

Body mass index analyses 

We assessed the association between blood gene expression and BMIQ3 modelled as a 

categorical variable (categorical BMI analyses) in three comparisons: obesity-vs-normal-

weight, obesity-vs-overweight, and overweight-vs-normal-weight. To assess incremental 

associations, we also modelled BMIQ3 as a continuous standardised metric (continuous BMI 

analyses) and scaled it using the R function ‘scale’, which for each observation subtracts the 

mean and divides by the standard deviation. Forty-one women had missing information on 

BMIQ3, resulting in an analytical sample of 1,653 women for these analyses. 
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Weight change analyses  

We assessed the association between blood gene expression and past WC modelled as a 

categorical variable (categorical WC analyses) in six comparisons: CWG-vs-CSW, CWL-vs-

CSW, FWG-vs-CSW, FWL-vs-CSW, RWG-vs-CSW, and RWL-vs-CSW. We then conducted 

sensitivity analyses restricted to women with <1 year between Q2 and Q3. We excluded 160 

women who reported decreased weight at Q1-Q2 and increased weight at Q2-Q3 and vice versa, 

i.e., weight-cyclers, and 499 women with missing values, resulting in an analytical sample of 

1,035 women in these analyses.  

We also assessed the association between gene expression and past WC modelled as a 

continuous metric in two interaction models that included BMI category to assess trends across 

these categories (WC-BMI interaction analyses). To account for differences in the intervals of 

WCQ3-Q1 and WCQ3-Q2, we divided the absolute values of WC (kg) by the number of years 

between Q3 and Q1 or Q2 (kg/year) before scaling it (R function ‘scale’). The first interaction 

model included BMIQ1 or BMIQ2 and succeeding WCs (i.e., BMIQ1* WCQ3-Q1 or BMIQ2* WCQ3-

Q2); the second included current BMI (BMIQ3) and preceding WCs (i.e., BMIQ3* WCQ3-Q1 or 

BMIQ3* WCQ3-Q2). We excluded 464 and 82 women with missing values for WCQ3-Q1 and 

WCQ3-Q2, respectively, resulting in respective analytical samples of 1,230 and 1,612 women.  

To evaluate the influence of extreme WC values, we performed sensitivity analyses in which 

we assigned WC values that were under the 5th percentile and over the 95th percentile the values 

of the 5th and 95th percentiles, respectively. Additionally, we performed sensitivity analyses 

using the WC unit of BMI/year instead of kg/year.   

White blood cell proportions 

Blood cell type composition affects gene expression profiles23 and reticulocytes, erythrocytes, 

and white blood cells (WBCs) counts were not available for our study sample. However, we 

estimated the proportions of 22 populations of WBCs in the samples using an in-silico gene 

expression deconvolution method CIBERSORT, and the LM22 signature matrix24. To 

distinguish changes in gene expression related to WBC composition from those related to BMI, 

we adjusted for WBC proportions that were significantly associated with BMIQ3 according to 

the Kruskal-Wallis test, and with overall gene expression data according to the ‘global test’ 

from the Bioconductor package ‘global test’.  
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Covariates 

We assessed the distribution of the following self-reported covariates by BMIQ3 categories: age 

at Q3 (years), physical activity/day at either Q2 or Q1 (not available from Q3; stated on a scale 

of 1-10, where 1 represented ‘not active’ and 10 represented ‘extremely active’), total energy 

intake at either Q2 or Q1 (not available from Q3; kJ/day), and smoking status at Q3 

(current/former/never smokers). We considered laboratory batch (laboratory plates) and sample 

storage time as technical covariates. We employed two adjustment models (minimally-adjusted 

and fully-adjusted) for all analyses. Minimally-adjusted models included technical covariates 

only, while fully-adjusted models included technical covariates, selected WBC proportions 

(described above), age, and smoking status at Q3. In categorical WC analyses, we additionally 

adjusted for BMIQ1 in the fully-adjusted models. Further, sensitivity analyses related to BMI 

analyses were additionally adjusted for physical activity and total energy intake in the fully-

adjusted models.  

Functional enrichment analyses 

We investigated the biological functions of the BMI- and WC-associated DEGs identified in 

the fully-adjusted models by functional enrichment analyses. Analyses were conducted 

separately for over-expressed (log2 fold-change (logFC)>0) and under-expressed genes 

(logFC<0); using the Bioconductor packages ‘clusterProfiler’ and ‘ReactomePA’ of gene 

ontology (GO) biological processes (BP), GO molecular functions (MF), GO cellular 

components (CC), Kyoto encyclopaedia of genes and genomes (KEGG) pathways, and 

REACTOME pathways.  

Quantitative replication 

To access whether our results were in line with previous results or novel findings, we compared 

our BMI-associated DEG results to results of analyses in external/independent transcriptomic 

datasets in whole-blood and other relevant tissues. 

Results 

BMIQ3 distribution in our study sample was 751 (45%), 622 (38%), and 280 (17%) for normal-

weight, overweight, and obesity, respectively. There were no substantial differences in the 

distribution of most covariates across BMIQ3 categories, but women with obesity were older, 
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and normal-weight women reported the highest mean physical activity level and total energy 

intake (Figure 2, Table S1). WC category distribution was 263 (25%), 138 (13%), and 14 (1%) 

for CSW, CWG, and CWL; and 396 (38%), 91 (9%), 101 (10%), and 32 (3%) for FWG, FWL, 

RWG, and RWL, respectively.  

Estimated white blood cell proportions 

Among the estimated WBC proportions, naive B cells, memory B cells, naive CD4 T cells, and 

memory activated CD4 T cells were significantly associated with both BMIQ3 category and 

overall gene expression (Table S2). Women with obesity had slightly higher mean proportions 

of naive B cells and lower mean proportions of the three other cell types listed, compared to 

women with normal-weight (Figure S1).  

Body mass index-associated differentially expressed genes  

Table 1 presents the number of BMI-associated DEGs in the minimally- and fully-adjusted 

models. In the fully-adjusted model of categorical BMI analyses, the top-ranked gene (i.e., the 

gene with the lowest FDR-adjusted p-value) in the obesity-vs-normal-weight comparison 

(Figures 3A, 3D) and the obesity-vs-overweight comparison (Figures 3B, 3E) was FAM46C 

(renamed: TTENT5C) (logFC=0.86, FDR=6E-32). FAM46C (logFC=0.34, FDR=1E-45; Figure 

S2) was also the top-ranked gene in continuous BMI analyses. FAM46C expression was higher 

in women with higher BMI (Figure S3). In the overweight-vs-normal-weight comparison 

(Figures 3C, 3F), the top-ranked gene was SLC45A3 (logFC=-0.28, FDR=1E-14), and its 

expression was lower in women with higher BMI (Figure S3).  

The distributions of p-values varied across comparison groups, and the observed and expected 

distributions deviated the most for the obesity-vs-normal-weight comparison (Figure S4). Many 

DEGs overlapped in the minimally- and fully-adjusted models (2,080, 522, 580, and 2,705 

overlapping DEGs in the obesity-vs-normal-weight, obesity-vs-overweight, overweight-vs-

normal-weight comparisons, and continuous BMI analyses, respectively; Tables S3-S6). 

Further, results from sensitivity analyses, which were additionally adjusted for physical activity 

and total energy intake, did not alter the overall results (99%, 94%, 96%, and 99% of DEGs 

overlapped in the fully-adjusted models for the obesity-vs-normal-weight, obesity-vs-

overweight, overweight-vs-normal-weight comparisons, and continuous BMI analyses, 

respectively); and the logFC for the top-ranked FAM46C changed ≤2%, while it did not change 

for SLC45A3 (results not shown). Fully-adjusted categorical BMI analyses revealed a 
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cumulative total of 169 over-expressed and 72 under-expressed genes that overlapped in the 

different comparisons.  

Further, 525 DEGs overlapped across all models testing association with BMI (obesity-vs-

normal-weight, overweight-vs-normal-weight comparisons, and continuous BMI analyses; 

both adjustment models; Tables S3-S6). The overall gene expression of these 525 DEGs largely 

clustered according to BMI status (Figure S5). Among the 50 genes with the lowest p-values in 

the same models, 33 DEGs overlapped. 

Weight change-associated differentially expressed genes  

No WC-associated DEGs were identified in any of the categorical WC analyses, be it the 

minimally-adjusted model, the fully-adjusted model, or the sensitivity analyses restricted to 

women with <1 year between Q2 and Q3 (N=657). However, a few DEGs were identified in 

the WC-BMI interaction analyses (Table 1). In the first interaction model (BMIQ1orQ2*WC), the 

main effect of WCQ3-Q1 or WCQ3-Q2 had 3 and 168 overlapping DEGs between minimally- and 

fully-adjusted models, respectively (Table S7); in the second interaction model (BMIQ3*WC) 

they had 5 and 1 overlapping DEGs, respectively (Table S8). The interaction effect of BMI and 

WC was not significant in the first interaction model (Tables: 1, S7), but it was significant in 

the second, indicating DEGs for each 1-unit increase in WCQ3-Q1 or WCQ3-Q2, but only among 

women with obesity at Q3, (Tables: 1, S8). The top-ranked genes from the interaction effect of 

BMI and WC in the second interaction model were CECR6 (renamed: TMEM121B) 

(logFC=0.19, FDR=9.91E-03; Figure 4A) for WCQ3-Q1, and STT3A for WCQ3-Q2 (logFC=-0.09, 

FDR=1.35E-02; Figure 4B). All DEGs identified in the minimally-adjusted second interaction 

model overlapped with those in the fully-adjusted model (Table S8). Among the 169 DEGs 

from the main effect of WCQ3-Q2 in the first interaction model (fully-adjusted), 21 (12%) 

overlapped with the 525 DEGs across all BMI-models (Table S7). The overall gene expression 

of the 169 DEGs did not show apparent clustering in relation to WC (Figure S6), which could 

be because of the low logFC-values observed for these genes. Differing trends in expression of 

the top-ranked genes across BMIQ3 categories could indicate slightly increasing expression with 

increasing weight from Q1 to Q3 for CECR6 (Figures S7:A-C) and decreasing expression with 

increasing weight from Q2 to Q3 for STT3A (Figures S7:D-F) for women with obesity. The 

sensitivity analyses for WC-BMI interaction analyses, one that replaced extreme WC values 

with values of the 5th and 95th percentiles, and one that included WC as BMI/year, rendered the 

same results as the fully-adjusted models (results not shown). There were high correlations 
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(>0.93) between WC variables measured in kg/year and BMI/year. Further p-values were 

distributed uniformly in all comparisons of WC as a continuous metric (Figure S8). 

Functional enrichment analyses 

Over-expressed genes identified in the categorical BMI analyses were enriched for terms 

largely related to metabolic and catabolic processes, cellular response to toxic substances, 

erythrocyte homeostasis, and development (GO-BP); cellular oxidant detoxification and blood 

protein bindings (GO-MF, GO-CC, and KEGG); ribosome structure and haemoglobin 

complexes (GO-CC); and metabolism of amino acids and translation (REACTOME). Under-

expressed genes were enriched in fewer categories but included peptide and antigen bindings 

(GO-MF, KEGG); lysosome and vacuoles components (GO-CC); and asthma, tuberculosis, and 

influenza A (KEGG) (Figure 5, Table S9). The enriched terms for BMI-associated DEGs in 

continuous BMI analyses (Table S10, Figure S9) and for the 525 DEGs across all BMI models 

(Table S11, Figure S10) were largely like those indicated for the categorical BMI analyses. The 

enriched terms for the 33 DEGs overlapping across the 50 genes with lowest p-values in BMI-

models were related to erythrocytes functions (Table S12).  

There were few WC-associated DEGs in the WC-BMI interaction analyses. Still, the terms 

signalling receptor and molecular transducer activities (GO-MF) were overrepresented by 4/9 

over-expressed genes identified in the WCQ3-Q1 interaction model (Table S13). 

Quantitative replication 

When comparing the 525 DEGs across BMI-models with DEGs reported in similar published 

studies in whole-blood (3,76220 and 14410 DEGs), in PBMCs (1,864 DEGs21), and in adipose 

tissue (only males, 2,936 DEGs9), there were 396 (75.42%), 19 (3.6%), 77 (14.66%), and 93 

(17.71%) overlapping DEGs, respectively. The corresponding effect directions were 99.74%, 

100%, 85.71%, and 25.8% overlapping, respectively. Further, among the 3,106 DEGs in the 

continuous BMI analyses (fully-adjusted), 1,552 (49.96%), 42 (1.35%), 337 (10.84%), and 538 

(17.32%) DEGs overlapped with the above mentioned studies (of which 97.29%, 95.23%, 

73.59%, and 39.77% had corresponding effect directions), respectively (Table S14). Finally, 

the effect estimates for BMI association showed strong positive correlations with those from 

previous studies in whole-blood10,20 and PBMCs21, but negative correlation with those from 

adipose tissue9 (Figure S11).  
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Discussion 

This was the first study to extensively investigate the association between blood gene 

expression and 1) current BMI and 2) past WCs in a large sample of women. We showed that 

blood gene expression is a good reflection of current BMI (here represented by BMIQ3, i.e., at 

blood collection), but not of past WC. BMIQ3 was clearly associated with blood gene 

expression, as >2,000 DEGs were identified in the obesity-vs-normal-weight comparison. 

Further, >700 DEGs were identified in the obesity-vs-overweight and overweight-vs-normal-

weight comparisons. Across the models testing associations with BMI, 525 DEGs overlapped. 

FAM46C was the top-ranked gene in all BMI analyses, except in the overweight-vs-normal-

weight comparison, where the top-ranked gene was SLC45A3. Our results show that FAM46C 

was positively associated with increasing BMI, whereas SLC45A3 was negatively associated. 

In contrast, when focusing on WC within the preceding 7 years (range=5.5-14 years) or 1 year 

(range=<1 month-9 years) and accounting for interactions with BMI categories, we found 

limited associations with current gene expression, as between 1 and 169 genes were associated 

to the main effect of past WCs and between 0 and 9 genes were associated with the interaction 

effect of past WC and current BMI. 

Our categorical WC analyses did not reveal any DEGs, but after introducing an interaction with 

BMI categories (WC-BMI interaction analyses), up to 169 DEGs were identified. The 

assumption for the two interaction models was that current BMI was a stronger predictor of 

current gene expression than past WC/BMI, thus the second interaction model (BMIQ3*WC) 

would be more accurate than the first (BMIQ1orQ2*WC). Our results agreed with these 

predictions, as the interaction effect of WC and BMI was not significant in the first interaction 

model, whereas up to 9 genes were significant in the second interaction model. The expression 

of top-ranked genes from the WC-BMI interaction analyses could indicate a positive and 

negative association of WCQ3-Q1 and WCQ3-Q2 among women with obesity for CECR6 and 

STT3A, respectively; however, the trend was not very strong. The 21 DEGs among the WC-

models (N=169) that overlapped with 525 DEGs across all BMI-models indicate that past WC 

were represented in current BMI models to some extent, however, they were not among the 

top-ranked genes.  

Comparing the 525 DEGs across BMI-models and 3,106 DEGs from continuous BMI analyses 

(fully-adjusted) with similar previous studies conducted in whole-blood10,20 and PBMCs21 

showed that these and our results were largely consistent, although our top-ranked genes 
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FAM46C and SLC45A3 were only identified in Homuth et al.20. The overlap with the study in 

adipose tissue9 was less than expected by chance (p-value=4.1E-03; OR=0.58; Table S14). 

Further, the correlation between the estimates for associations being strongly positive with other 

studies in whole-blood10,20, and in PBMCs21, but negative in adipose tissue9 indicate that 

systemic signals in blood related to BMI differ from those in adipose tissues. Thus, DEGs in 

whole-blood related to BMI in women in this study could be generalizable to both sexes and 

other blood samples but gene expression profiles are differently regulated in adipose tissue. 

Functional enrichment analyses of BMI-associated DEGs indicated a broad range of functions 

in enriched pathways. For genes over-expressed in women with obesity, terms describing 

various catabolic (e.g., cofactor catabolic processes) and metabolic processes (e.g., hydrogen 

peroxide, heme, tetrapyrrole metabolic processes), as well as erythrocyte homeostasis, 

haemoglobin binding, and ribosome structures were enriched. These findings align with 

previous studies in whole-blood10,20 and PBMCs21. The enriched terms erythrocyte 

differentiation, myeloid cell homeostasis, erythrocyte homeostasis, heme 

biosynthetic/metabolic process indicate overexpression of genes in processes in erythrocytes or 

their precursors (reticulocytes)25. Notably, the BMI-associated top-ranked gene , FAM46C, and 

several other top-ranked genes (HBD, GYPB, and ALAS2) are primarily expressed in bone 

marrow, blood, and early erythroid cells25. Erythrocyte indices have been observed as positively 

associated with obesity26,27, and could be explained by proliferation reticulocytes in the bone 

marrow28,29 induced by the hormone leptin, released by bone marrow-resident adipocytes. In 

contrast, erythrocytes in people with obesity have a shorter half-life in circulation due to 

impaired insulin resistance and pronounced oxidative stress resulting from hyperglycemia30. 

This reticulocyte-erythrocyte ratio shift is expected to be reflected in the whole-blood 

transcriptome because reticulocytes are also transcriptionally active20. Therefore, DEGs 

identified in this study likely reflect a shift in the reticulocyte-erythrocyte ratio associated with 

higher BMI. However, as erythrocyte/reticulocyte cell counts were not available in NOWAC, 

such adjustments in the statistical analyses were not feasible.  

Enriched terms for over-expressed genes further included the terms peptide chain elongation 

and eukaryotic translation termination/elongation which appeared related to protein synthesis31. 

In line with these terms, another study investigating gene expression related to BMI in whole-

blood observed ribosome and protein synthesis pathways as top-ranked among women10. These 

enriched  terms indicated physiological changes previously observed for people with obesity, 

e.g., higher levels of oxidative stress30,32, haemoglobin33,34, and disrupted protein synthesis35.  
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Enriched terms among under-expressed genes included antigen binding, processing and 

presentation, peptide binding, and TNF signalling pathways, which suggest there could be 

altered blood immune responses in women with obesity, something that has been observed 

among participants with obesity in previous transcriptomic studies9-11. Furthermore, altered 

immune response/function (e.g., related to the terms influenza, asthma, antigen binding) in 

persons with obesity could explain previously observed associations between obesity and 

increased risk of co-morbidities and infectious diseases, like influenza and COVID-19, and 

increased viral shedding and transmission36,37. Overall, general metabolism and blood processes 

were enriched, which likely reflects the broad influence of BMI on systemic gene expression.  

The evaluation of past WCs and gene expression profiles in blood was novel but indicated few 

DEGs and thus related biological functions were not strongly indicated. Still, the over-

expressed genes RBP1/FZD2/OPRL1/CD14 indicated a relation between past WC and genes 

involved in signal transduction. 

In general, our results indicate that current BMI and past WC have, respectively, large and small 

effects on blood gene expression. This could be expected, as blood gene expression represents 

a snapshot, and past exposures such as WCs are generally not strongly reflected22,38. Still, until 

now, no study had investigated the association between blood gene expression and past WC. 

Previous studies reported that weight reduction in individuals with obesity after diet 

interventions was associated with gene expression profiles in adipose tissue before and after the 

interventions13-19. However, as follow-up time in these studies (4 weeks to 9 months) was 

shorter than the time intervals in our study (range=<1 month-14 years), the WCs we observed 

could be too far in the past to have a major influence on blood gene expression. Still, sensitivity 

analyses restricted to women with <1 year between Q2 and Q3 did not show any significant 

DEGs. Future studies focusing on systemic signatures related to WCs should likely include 

blood samples taken within months of the WC occurring for transcriptomic signals to be 

detectable. DEGs related to obesity/WC might be expected in adipose/muscle tissue, but a study 

has demonstrated that blood samples can be another informative, accessible tissue to explore 

circulating features of the state of obesity10. 

We observed an association between current BMI and naive B cells, memory B cells, naive 

CD4 T cells, and memory-activated CD4 T cells, possibly because BMI and body weight have 

been positively correlated with WBC counts in apparently healthy young adults (higher in 

women)39. As skewed WBC proportions due to differences in BMI could have influenced our 
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BMI analyses, we included these estimated cell proportions in our fully-adjusted models40. The 

estimated proportions of WBCs in our study deviated from the expected range, but this 

deviation has been observed also in other recent studies based on the NOWAC postgenome 

cohort41,42. This indicates a bias which could be explained by the deconvolution technique or 

data pre-processing41,43. Still, absolute differences in estimated WBCs across BMI categories 

were modest, and the top-ranked genes identified in our models were very similar, indicating 

that these genes were not substantially influenced by distributions of WBCs. Lastly, 

erythrocytes/reticulocytes counts were not available, and their adjustment was thus not possible.  

The main strength of this study was the large study sample (1,694 women). Indeed, previous 

studies on BMI and blood gene expression have been rather small (32-190 participants)8-11, with 

the exception of one large population-based cohort study (1,048 participants, 53% women)20. 

Another strength was that our study was based on repeated measurements, thus we were able 

to generate BMI and WC variables for all women at different time points. Still, individual 

intervals varied, and we standardised WC by dividing it by individual time differences. 

Additionally, this study was based on self-reported questionnaire information, which could be 

influenced by measurement and recall bias. A validation study of self-reported BMI among 

NOWAC study participants found a slight, but statistically significant, under-reporting of 

weight and self-reported BMI, especially among women with overweight and obesity, but they 

concluded that, for middle-aged Norwegian women, self-reported weight and height provide a 

valid ranking of BMI44. The present study included only women who had never been diagnosed 

with cancer, but we cannot disregard the influence of other common chronic diseases. 

Furthermore, the current cross-sectional study results only represent snapshots of blood gene 

expression and cannot indicate causality. Lastly, although RNA-sequencing has become a 

routinely used technology, results from microarray technology, like those in this study, are still 

reliable and overall comparable to RNA-sequencing results45, although non-coding RNAs and 

splice variants cannot be detected. Future studies could validate gene expression findings, 

especially related to WC, using alternative targeted technologies (e.g., qPCR or NanoString), 

or investigate cell-type specific gene expression using single cell RNA-sequencing, but that 

would require new sample collection. 

Conclusion 

Many BMI-associated DEGs, but few WC-associated DEGs were identified in blood of women 

in Norway. This is the first study to our knowledge to conclude that blood gene expression 
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reflects current BMI more than past WCs. The biological functions of BMI-associated DEGs 

were linked to metabolism, erythrocyte, oxidative stress, and immune processes. These likely 

reflect systemic impacts of obesity, especially reticulocyte-erythrocyte ratio shifts in blood, as 

these functions coincide with its known physiological effects. Further, the biological functions 

of WC-associated DEGs were linked to signal transduction. This knowledge is relevant for 

further research related to the health effects of BMI and WC, especially those that focus on 

blood-based markers.  
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Table 1. Number of DEGs identified in BMI and WC analyses.  

 

 

 

 

Minimally-adjusted models1 Fully-adjusted models2 

DEGs 

(FDR

≤0.05) 

Over-

expressed 

(logFC>0) 

Under-

expressed 

(logFC<0) 

DEGs 

(FDR≤

0.05) 

Over-

expressed 

(logFC>0) 

Under-

expressed 

(logFC<0) 

 

 

BMI 

models 
 

Obesity-vs-Normal-weight 2,294 1,011 1,283 2,394 1,057 1,337 

Obesity-vs-Overweight 553 370 183 769 475 294 

Overweight-vs-Normal-

weight 

629 285 344 768 315 453 

 

BMI3 2,970 1,257 1,713 3,106 1,293 1,813 

 

WC 

models 

 

First interaction model (BMIQ1orQ2*WC) 

  WC4, 5
Q3-Q1 43 34 9 3 1 2 

 BMIQ1-Overweight: WC4, 6
Q3-Q1 0 0 0 0 0 0 

 BMIQ1-Obesity: WC4, 6
Q3-Q1 0 0 0 0 0 0 

 

 WC4, 5
Q3-Q2 217 31 186 169 23 146 

 BMIQ2-Overweight: WC4, 5
Q3-Q2 0 0 0 0 0 0 

 BMIQ2-Obesity: WC4, 6
Q3-Q2 0 0 0 0 0 0 

  

Second interaction model (BMIQ3*WC) 

 

 WC4, 5
Q3-Q1 17 3 14 5 0 5 

 BMIQ3-Overweight: WC4, 6
Q3-Q1 0 0 0 0 0 0 

 BMIQ3-Obesity: WC4, 6
Q3-Q1 27 25 2 9 9 0 

 

 WC4, 5
Q3-Q2 4 2 2 1 0 1 

 BMIQ3-Overweight: WC4, 6
Q3-Q2 0 0 0 0 0 0 

 BMIQ3-Obesity: WC4, 6
Q3-Q2 1 0 1 1 0 1 

 

1Adjusted for laboratory batch (laboratory plates) and sample storage time 
2Adjusted for minimally-adjusted model plus selected white blood cell proportions, age, and smoking status at Q3 
3BMI was included in the model as a scaled continuous metric 
4WC was included in the model as a scaled continuous metric 
5These results represent those for the main effect of WCs in the interaction model  
6These results represent those for the interaction effect of BMI and WCs in the interaction model  

 

Note: No DEGs were observed in models comparing WC categories (CWG-vs-CSW, CWL-vs-CSW, FWG-vs-CSW, 

FWL-vs-CSW, RWG-vs-CSW, and RWL-vs-CSW), hence they are not presented here. 

 

DEGs: differentially expressed genes; BMI: body mass index; WC: weight change; logFC: log2 fold-change, FDR: 

false discovery rate; CSW: consistent stable weight; CWG: consistent weight gain; CWL: consistent weight loss; 

FWG: former weight gain; FWL: former weight loss; RWG: recent weight gain; RWL: recent weight loss; Q1: 

baseline questionnaire; Q2: follow-up questionnaire; Q3: questionnaire at blood collection.  
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Main Figures 

 

Figure 1. Flowchart of study sample (A) and timeline of questionnaires (B) in the NOWAC 

study (Created with BioRender.com). Q1: baseline questionnaire; Q2: follow-up questionnaire, 

Q3: questionnaire at blood collection; sd: standard deviation; BMIQ3: body mass index 

categories at Q3; WCQ3-Q1: weight change between Q1 and Q3; WCQ3-Q2: weight change 

between Q2 and Q3; y: year(s); NOWAC: The Norwegian Women and Cancer study. 

https://biorender.com/
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Figure 2. BMI category at blood collection by age at blood collection (years) (A), physical 

activity (per day) (B), total energy intake (kJ per day) (C), and smoking status at blood 

collection (D). In Figure A-C: The violin plots represent the kernel density estimates for women 

with obesity, overweight, and normal-weight. White boxes extend from the 25th to the 75th 

percentile, vertical bars inside the box represent the median, whiskers extend 1.5 times the 

length of the interquartile range to the right and left side of the 75th and 25th percentiles 

respectively, and outliers are represented as black dots. The black diamond-shaped dot 

represents the respective mean. In Figure D: the colour lightness represents smoking status 

(never, former, current smokers) at blood collection. Here, physical activity and total energy 

intake were from either Q2 or Q1 (not available for Q3). BMI: body mass index; Q1: baseline 

questionnaire; Q2: follow-up questionnaire, Q3: questionnaire at blood collection.  
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Figure 3. Volcano plots of the test statistics for BMI categories at blood collection in fully-

adjusted models from the tests of DEGs (A-C) and forest plots for the 10 top-ranked genes 

in tests of DEGs (D-F). In volcano plots (A-C), red dots display over-expressed genes 

(FDR≤0.05 and logFC>0), blue dots display under-expressed genes (FDR≤0.05 and logFC<0), 

while grey dots display genes with FDR>0.05; and gene names displayed are the top 20 DEGs 

in the respective tests. In forest plots (D-F), the gene ID of DEGs are presented with the lowest 

FDR-adjusted p-values ranked from the top; the horizontal line for each gene represents their 

confidence interval; and the vertical dotted line represents the line of no difference. BMI: body 

mass index; DEGs: differentially expressed genes; FDR: false discovery rate; logFC: log2 fold-

changes; Ob-vs-No: comparison of women with obesity versus normal-weight; Ob-vs-Ov: 

comparison of women with obesity versus overweight; Ov-vs-No: comparison of women with 

overweight versus normal-weight. 
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Figure 4. Volcano plots for the test statistics of DEGs in fully-adjusted models WC-BMI 

interaction analyses according to WC from Q1 to Q3 (A) and from Q2 to Q3 (B). Red dots 

display over-expressed genes (FDR≤0.05 and logFC>0), blue dots display under-expressed 

genes (FDR≤0.05 and logFC<0), while grey dots display genes with FDR>0.05; and gene 

names displayed are the significant DEGs in the respective tests. Here, WC is modelled as 

scaled continuous metric. The results are of the interaction effect of WC and BMI from the 

second interaction model (i.e., BMIQ3* WCQ3-Q1 or BMIQ3* WCQ3-Q2). BMI: body mass index; 

DEGs: differentially expressed genes; WC: weight change; FDR: False Discovery Rate; logFC: 

log2 fold-changes; Q1: baseline questionnaire; Q2: follow-up questionnaire; Q3: questionnaire 

at blood collection, WCQ3-Q1: weight change between Q1 and Q3; WCQ3-Q2: weight change 

between Q2 and Q3. 
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Figure 5. Summary of functional enrichment analyses for BMI categories at blood 

collection for over-expressed (Up-regulated) and under-expressed (Down-regulated) 

genes for the GO-BP (A), GO-MF (B), GO-CC (C), KEGG (D), and REACTOME 

pathway (E) databases. The colour of the dots indicates -log10FDR, where red dots represent 

the most enriched categories (i.e., ones with the lowest -log10FDR); the ‘GeneRatio’ indicates 

the proportion of genes overlapping between lists of DEGs and the genes in GO categories. 

BMI: body mass index; DEGs: differentially expressed genes; FDR: false discovery rate; 

logFC: log2 fold-changes; GO: gene ontology; BP: biological processes; MF: molecular 

functions; CC: cellular components; KEGG: Kyoto Encyclopedia of Genes and Genomes; Ob-

vs-No: comparison of women with obesity versus normal-weight; Ob-vs-Ov: comparison of 

women with obesity versus overweight; Ov-vs-No: comparison of women with overweight 

versus normal-weight; U: Over-expressed genes (Up-regulated, FDR≤0.05, logFC>0); D: 

Under-expressed genes (Down-regulated, FDR≤0.05 and logFC<0). 
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Figure S1. Estimated WBC proportions that differed among women with normal-

weight, overweight, or obesity. Boxes extend from the 25th to the 75th percentile, horizontal 

bars represent the median, whiskers extend 1.5 times the length of the interquartile range 

above and below the 75th and 25th percentiles, respectively, and outliers are represented as 

small circles. BMI: body mass index; WBC: white blood cell. 
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Figure S2. Volcano plot of the test statistic for BMI at blood collection as a continuous 

metric in fully-adjusted model from the test of DEGs (A) and forest plot for the 10 top-

ranked genes in test of DEGs (B). In volcano plot (A), red dots display over- expressed 

genes (FDR≤0.05 and logFC>0), blue dots display under-expressed genes (FDR≤0.05 and 

logFC<0), while grey dots display genes with FDR>0.05; and gene names displayed are the 

top 20 DEGs in the test. In forest plot (B), the gene ID of DEGs are presented with the lowest 

FDR-adjusted p-values ranked from the top; the horizontal line for each gene represents their 

confidence interval; and the vertical dotted line represents the line of no difference. Here, BMI 

is modelled as scaled continuous metric. BMI: body mass index; DEGs: differentially 

expressed genes; FDR: false discovery rate; logFC: log2 fold-changes. 
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Figure S3. Distributions of expression values for the top-ranked significant genes in BMI 

models: FAM46C (A and B) and SLC45A3 (C and D) according to BMI categories (A and 

C) and BMI as continuous metric (B and D) at blood collection. In figures A and C: boxes 

extend from the 25th to the 75th percentile, horizontal bars represent the median, whiskers extend 

1.5 times the length of the interquartile range above and below the 75th and 25th percentiles, 

respectively, and outliers are represented as points. The black diamond-shaped dot represents 

the respective mean. In figures B and D: the blue line represents the regression line with a 

shaded grey area representing the standard error. BMI: body mass index. 
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Figure S4. Quantile-quantile plots for comparisons of BMI categories (A- C) and for 

BMI as a continuous metric (D) at blood collection in minimally-adjusted models (red), 

and fully-adjusted models (blue). In figure D, BMI was modelled as scaled continuous 

metric. BMI: body mass index; Ob-vs-No: comparison of women with obesity versus normal-

weight; Ob-vs-Ov: comparison of women with obesity versus overweight; Ov- vs-No: 

comparison of women with overweight versus normal-weight. 
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Figure S5. Clustering hierarchical heatmap according to BMI categories at Q3 and BMI 

as a continuous metric at Q3 for the genes (N=525) overlapping across all models testing 

associations to BMI (obesity-vs-normal-weight, overweight-vs-normal-weight 

comparisons, and association to BMI as a continuous metric; both minimally- and fully-

adjusted models). Here, the rows represent genes, and the columns represent women. 

Expression levels are centered; red color represents higher expression, while blue color 

represents lower expression. BMI: body mass index, Q3: questionnaire at blood collection.  
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Figure S6. Clustering hierarchical heatmap according to WCQ3-Q2 and WCQ3-Q1 for the 

genes (N=169) in the WC model (from the first interaction model). Here, the rows 

represent genes, and the columns represent women. Expression levels are centered; red color 

represents higher expression, while blue color represents lower expression. Q1: baseline 

questionnaire; Q2: follow-up questionnaire; Q3: questionnaire at blood collection; WC: weight 

change; WCQ3-Q1: weight change between Q1 and Q3; WCQ3-Q2: weight change between Q2 

and Q3. 
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Figure S7. Distributions of expression values for the top-ranked significant genes in WC 

analyses: CECR6 (A-C), and STT3A (D-F) according to BMI categories at blood 

collection (A and D), WCQ3-Q1 (kg/year) (B and E), and WCQ3-Q2 (kg/year) (C and F). In 

figures A and D: Boxes extend from the 25th to the 75th percentile, horizontal bars represent 

the median, whiskers extend 1.5 times the length of the interquartile range above and below the 

75th and 25th percentiles, respectively, and outliers are represented as points. The black 

diamond-shaped dot represents the respective mean. In figures B, C, E, and F, the lines 

represent the regression lines for different BMI categories at blood collection. Here, WC is 

modelled as scaled continuous variable. The top-ranked genes are results of the interaction 

effect of WC and BMI from the second interaction model (i.e., BMIQ3*WCQ3-Q1 or 

BMIQ3*WCQ3-Q2). BMI: body mass index; WC: weight change; Q1: baseline questionnaire; Q2: 

follow-up questionnaire; Q3: questionnaire at blood collection; WCQ3-Q1: weight change 

between Q1 and Q3; WCQ3-Q2: weight change between Q2 and Q3. 



10 
 

 



11 
 

Figure S8. Quantile-quantile plots for comparisons of WCQ3-Q1 (A), and WCQ3-Q2 (B) as 

continuous metrics in minimally-adjusted models (red), and fully-adjusted models (blue). 

Here, WCs were modelled as a scaled continuous metric. Q1: baseline questionnaire; Q2: 

follow-up questionnaire; Q3: questionnaire at blood collection; WCQ3-Q1: weight change 

between Q1 and Q3; WCQ3-Q2: weight change between Q2 and Q3; WC1: Results from the first 

interaction model (i.e., BMIQ1*WCQ3-Q1 or BMIQ2*WCQ3-Q2); WC2: Results from the second 

interaction model (i.e., BMIQ3*WCQ3-Q1 or BMIQ3*WCQ3-Q2). 
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Figure S9. Summary of functional enrichment analyses for BMI at blood collection as a 

continuous metric for over-expressed (Up-regulated) and under-expressed (Down-

regulated) genes for the GO-BP (A), GO-MF (B), GO-CC (C), and KEGG (D) pathway 

database. The colour of the dots indicates the -log10FDR, where red dots represent the most 

enriched categories (i.e., ones with the lowest -log10FDR); the ‘GeneRatio’ indicates the 

proportion of genes overlapping between lists of DEGs and the genes in GO categories. Here, 

BMI was modelled as scaled continuous metric. BMI: body mass index; DEGs: differentially 

expressed genes; FDR: false discovery rate; logFC: log2 fold-changes; GO: gene ontology; 

BP: biological processes; MF: molecular functions; CC: cellular components; KEGG: Kyoto 

Encyclopedia of Genes and Genomes; U: Over-expressed genes (Up-regulated, FDR≤0.05, 

logFC>0); D: Under-expressed genes (Down-regulated, FDR≤0.05 and logFC<0).
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Figure S10. Summary of functional enrichment analyses for genes (N=525) overlapped 

across all models testing association to BMI (obesity-vs-normal-weight, overweight-vs-

normal-weight comparisons, and association to BMI as a continuous metric; both 

minimally- and fully-adjusted models) for over-expressed (Up-regulated) and under-

expressed (Down-regulated) genes for the GO-BP (A), GO-MF (B), GO-CC (C), and 

KEGG (D) pathway database. The colour of the dots indicates the -log10FDR, where red 

dots represent the most enriched categories (i.e., ones with the lowest -log10FDR); the 

‘GeneRatio’ indicates the proportion of genes overlapping between lists of DEGs and the 

genes in GO categories. Here, BMI was modelled as scaled continuous metric. BMI: body 

mass index; DEGs: differentially expressed genes; FDR: false discovery rate; logFC: log2 

fold-changes; GO: gene ontology; BP: biological processes; MF: molecular functions; CC: 

cellular components; KEGG: Kyoto Encyclopedia of Genes and Genomes; U: Over-expressed 

genes (Up-regulated, FDR≤0.05, logFC>0); D: Under-expressed genes (Down-regulated, 

FDR≤0.05 and logFC<0).
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Figure S11. Correlation plot for logFC in the current study (N=3,106 DEGs) and 

estimates presented in four published studies investigating gene expression and the 

association with BMI. Blue color indicates positive correlation, and red indicates negative 

correlation, whereas the size and number in the circles represent the strength of correlation. 

Homuth et al. (N=3,762) and Ghosh et al. (N=144) performed studies using whole-blood 

(overlapping DEGs with the current study: N=1,552 and N=42, respectively); Vargas et al. 

(N=1,864) was based on PBMCs (overlapping DEGs with the current study: N=337); and 

Ronn et al. (N=2,936) conducted the study using adipose tissue (overlapping DEGs with the 

current study: N=538). 
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