MULTIPHYSICS

Finite Element Analysis to determine the impact of Infill density on Mechanical Properties of 3D Printed Materials

Zahra Andleeb
Abyss Solutions

3D Printing of Materials

Figure 1: Schematic view of the 3D printing of Composite reinforced with continuous carbon fiber [3]

Infill patterns in 3D printing

Figure 2: Cross-section of 3D printed parts with different infills [17]

Infill density Calculation

$$
\begin{equation*}
\operatorname{Infill}(\%)=\frac{V-V_{\text {hollow }}}{V_{\text {solid }}-V_{\text {hollow }}} \tag{1}
\end{equation*}
$$

Where V is the volume of cuboid $\left(\mathrm{mm}^{3}\right), V_{\text {hollow }}$ is the volume of hollow cuboid $\left(\mathrm{mm}^{3}\right)$ and $V_{\text {solid }}$ is the volume of solid cuboid (mm^{3}).

Table 1: Volume of various Infills (\%)

Configuration	Volume $\left(\mathrm{mm}^{\mathbf{3}}\right)$	Infill $(\%)=\frac{\boldsymbol{V}-\boldsymbol{V}_{\text {hollow }}}{\boldsymbol{V}_{\text {solid }}-\boldsymbol{V}_{\text {hollow }}}$
0	192.824 (hollow)	0%
1	369.45	10%
2	538.02	19%
3	693.79	28%
4	1348.4	64%
5	$2000($ solid $)$	100%

FEA Analysis

- $10 \mathrm{~mm} \times 10 \mathrm{~mm} x$ 20 mm cuboid
- Linear Isotropic Material with Young's Modulus of 70 GPA and Poisson ratio is 0.3
- Quarter symmetry was applied to reduce mesh size

Figure 3: Quarter symmetry for mesh size reduction

FEA Analysis

Figure 4: Boundary condition of compressive load of 1 MPa on the top

Figure 5: Fixed support in the bottom surface

CAD Model and FEA Mesh of

 Configuration 0 (Volume: $192.824 \mathrm{~mm}^{3}$), infill ratio of 0\%)CAD Model of Configuration 1

FEA Mesh of Configuration 1

CAD Model and FEA Mesh of Configuration 0 (Volume: $192.824 \mathrm{~mm}^{3}$), infill ratio of 0\%)
Max Deformation $=0.36815 \mathrm{~mm}$

CAD Model and FEA Mesh of

 Configuration 1 (Volume: $369.45 \mathrm{~mm}^{3}$), infill ratio of 10\%)CAD Model of Configuration 1

FEA Mesh of Configuration 1

CAD Model and FEA Mesh of

 Configuration 1 (Volume: $369.45 \mathrm{~mm}^{3}$), infill ratio of 10\%)Deformation $=0.010921 \mathrm{~mm}$ Von-Misses Stress $=79.051 \mathrm{MPa}$

CAD Model and FEA Mesh of

 Configuration 2 (Volume: $538.02 \mathrm{~mm}^{3}$), infill ratio of 19\%)CAD Model of Configuration 2

FEA Mesh of Configuration 2

CAD Model and FEA Mesh of

 Configuration 2 (Volume: $538.02 \mathrm{~mm}^{3}$), infill ratio of 19\%)Deformation $=0.0047711 \mathrm{~mm}$

Von-Misses Stress $=24.534 \mathrm{MPa}$

CAD Model and FEA Mesh of

 Configuration 3 (Volume: $693.79 \mathrm{~mm}^{3}$), infill ratio of 28\%)CAD Model of Configuration 3

FEA Mesh of Configuration 3

CAD Model and FEA Mesh of

 Configuration 3 (Volume: $693.79 \mathrm{~mm}^{3}$), infill ratio of 28\%)Deformation $=0.0038717 \mathrm{~mm}$

Von-Misses Stress $=24.227 \mathrm{MPa}$

CAD Model and FEA Mesh of

 Configuration 4 (Volume: $1348.4 \mathrm{~mm}^{3}$), infill ratio of 68\%)CAD Model of Configuration 4

FEA Mesh of Configuration 4

CAD Model and FEA Mesh of

 Configuration 4 (Volume: $1348.4 \mathrm{~mm}^{3}$), infill ratio of 68\%)Deformation $=0.00091986 \mathrm{~mm}$

Von-Misses Stress $=5.1365 \mathrm{MPa}$

CAD Model and FEA Mesh of

 Configuration 5 (Volume: $2000 \mathrm{~mm}^{3}$), infill ratio of 100\%)CAD Model of Configuration 3

FEA Mesh of Configuration 3

CAD Model and FEA Mesh of

 Configuration 5 (Volume: $2000 \mathrm{~mm}^{3}$), infill ratio of 100\%)Deformation $=0.0002831 \mathrm{~mm}$
Von-Misses Stress $=3.1881 \mathrm{MPa}$

Results

Config. \#	sides	Volume	Infill ratio	Infill ratio function with sides	Max. Deformatio $\mathrm{n}(\mathrm{mm})$	Max. VM Stress (MPa)
0	0	192.824	0%	0%	0.36815	432.95
1	2	369.45	10%	9%	0.010921	79.051
2	4	538.02	19%	19%	0.0047711	24.534
3	6	693.79	28%	27%	0.0038717	24.227
4	16	1348.4	64%	64%	0.00091986	5.1365
5	18	2000	100%	99%	0.0002831	3.1881

MULTIPHYSICS

Thank you

