Finite Element Analysis to determine the impact of Infill density on Mechanical Properties of 3D Printed Materials

Zahra Andleeb Abyss Solutions

3D Printing of Materials

continuous carbon fiber [3]

Infill patterns in 3D printing

Figure 2: Cross-section of 3D printed parts with different infills [17]

Infill density Calculation

$$Infill (\%) = \frac{V - V_{hollow}}{V_{solid} - V_{hollow}}$$

Where V is the volume of cuboid (mm^3) , V_{hollow} is the volume of hollow cuboid (mm^3) and V_{solid} is the volume of solid cuboid (mm^3) .

(1)

Table 1: Volume of various Infills (%)					
Configuration	Volume (mm ³)	$V - V_{hollow}$			
		$Infill(\%) = \frac{V + V_{hollow}}{V_{solid} - V_{hollow}}$			
0	192.824 (hollow)	0 %			
1	369.45	10 %			
2	538.02	19 %			
3	693.79	28 %			
4	1348.4	64 %			
5	2000 (solid)	100 %			

FEA Analysis

- 10 mm x 10 mm x 20 mm cuboid
- Linear Isotropic Material with Young's Modulus of **70 GPA** and Poisson ratio is **0.3**
- Quarter symmetry was applied to reduce mesh size

Figure 3: Quarter symmetry for mesh size reduction

FEA Analysis

Figure 4: Boundary condition of compressive load of 1 MPa on the top

Figure 5: Fixed support in the bottom surface

MULTIPHYSICS www.multiphysics.org

CAD Model and FEA Mesh of Configuration 0 (Volume: 192.824 mm³), infill ratio of 0%)

CAD Model of Configuration 1

FEA Mesh of Configuration 1

CAD Model and FEA Mesh of Configuration 0 (Volume: 192.824 mm³), infill ratio of 0%)

Max Deformation = 0.36815 mm

Von-Misses Stress = 432.95 MPa

CAD Model and FEA Mesh of Configuration 1 (Volume: 369.45 mm³), infill ratio of 10%)

CAD Model of Configuration 1

FEA Mesh of Configuration 1

MULTIPHYSICS www.multiphysics.org

CAD Model and FEA Mesh of Configuration 1 (Volume: 369.45 mm³), infill ratio of 10%)

Deformation = 0.010921 mm

Von-Misses Stress = 79.051 MPa

CAD Model and FEA Mesh of Configuration 2 (Volume: 538.02 mm³), infill ratio of 19%)

11

CAD Model of Configuration 2

www.multiphysics.org

FEA Mesh of Configuration 2

CAD Model and FEA Mesh of Configuration 2 (Volume: 538.02 mm³), infill ratio of 19%)

Deformation = 0.0047711 mm

Von-Misses Stress = 24.534 MPa

CAD Model and FEA Mesh of Configuration 3 (Volume: 693.79 mm³), infill ratio of 28%)

CAD Model of Configuration 3

FEA Mesh of Configuration 3

CAD Model and FEA Mesh of Configuration 3 (Volume: 693.79 mm³), infill ratio of 28%)

Deformation = 0.0038717 mm00 (mm)

Von-Misses Stress = 24.227 MPa

CAD Model and FEA Mesh of Configuration 4 (Volume: 1348.4 mm³), infill ratio of 68%)

CAD Model of Configuration 4

FEA Mesh of Configuration 4

CAD Model and FEA Mesh of Configuration 4 (Volume: 1348.4 mm³), infill ratio of 68%)

Deformation = 0.00091986 mm

Von-Misses Stress = 5.1365 MPa

CAD Model and FEA Mesh of Configuration 5 (Volume: $2000 mm^3$), infill ratio of 100%) FEA Mesh of Configuration 3

CAD Model of Configuration 3

7,500

www.multiphysics.org

CAD Model and FEA Mesh of Configuration 5 (Volume: 2000 mm³), infill ratio of 100%)

Deformation = 0.0002831 mm

Von-Misses Stress = 3.1881 MPa

Results

Config. #	sides	Volume	Infill	Infill ratio	Max.	Max. VM
			ratio	function	Deformatio	Stress
				with sides	n (mm)	(MPa)
0	0	192.824	0 %	0 %	0.36815	432.95
1	2	369.45	10 %	9 %	0.010921	79.051
2	4	538.02	19 %	19 %	0.0047711	24.534
3	6	693.79	28 %	27 %	0.0038717	24.227
4	16	1348.4	64 %	64 %	0.00091986	5.1365
5	18	2000	100 %	99 %	0.0002831	3.1881

Thank you