
Auxiliary Network: Scalable and agile online
learning for dynamic system with inconsistently

available inputs

Rohit Agarwal1[0000−0003−4846−7745], Krishna Agarwal1[0000−0001−6968−578X],
Alexander Horsch1[0000−0001−7745−0139], and Dilip K.

Prasad1[0000−0002−3693−6973]

Bio-AI group, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019
Tromsø, Norway Corresponding: agarwal.102497@gmail.com

Abstract. Streaming classification methods assume the number of in-
put features is fixed and always received. But in many real-world sce-
narios, some input features are reliable while others are unreliable or in-
consistent. In this paper, we propose a novel deep learning-based model
called Auxiliary Network (Aux-Net), which is scalable and agile. It em-
ploys a weighted ensemble of classifiers to give a final outcome. The
Aux-Net model is based on the hedging algorithm and online gradient
descent. It employs a model of varying depth in an online setting using
single pass learning. Aux-Net is a foundational work towards scalable
neural network for a dynamic complex environment requiring ad hoc or
inconsistent inputs. The efficacy of Aux-Net is shown on a public dataset.

Keywords: Online Learning · Dynamic System · Inconsistent inputs

1 Introduction

Supporting varying number of input features can be a game changer in real life
applications which deal with dynamic complex environments. Examples include
a device in smart city environment, an autonomous vehicle, etc. To model such
environment of inconsistent and scalable nature, we assume some reliable data
channels and refer it as base input features, denoted by {xB

1 , . . . , x
B
b , . . . , x

B
B}.

In addition, it may receive other information through auxiliary sensor arrays
termed as auxiliary input features and denoted by {xA

1 , . . . , x
A
a , . . . , x

A
A}. Here, x

denotes input features, B in superscript and subscript denotes base feature and
the number of base features respectively. Similarly, A in superscript and subscript
denotes auxiliary feature and the number of auxiliary features respectively. Due
to the intermittent availability, only a subset of auxiliary features arrive along
with the base features at any time instance t as shown in Figure 1. This imparts
a lot of challenges as mentioned in Table 1. This problem can be approached via
minimalist (only using base features), maximalist (making ensemble of model,
one for each possible combinations of auxiliary features) and imputation based
approaches (imputing the values wherever possible) but all the solutions are
inefficient to address the problem. More information is given in Appendix 1.

2 R. Agarwal et al.

Table 1. Key differentiators of Aux-Net. ✓Fullsupport.×
No support. ○ Partial support. Missing data: data for some
time instances of an input feature is missing. Missing fea-
tures: prior knowledge about their existence or distribution
may be assumed (even if they arrive late). Obsolete features:
features ceases to exists after some time. Sudden unknown
features: no prior knowledge of their existence is available
and they arrive late unannounced (true ad hoc). Unknown
no. of features: no information about the number of inputs.

Characteristics Aux-Net ODL Impute based

Online ✓ ✓ ✓
Missing data ✓ ○ ✓
Missing features ✓ × ○
Obsolete features ✓ × ○
Sudden unknown features ✓ × ×
Unknown no. of features ✓ × ×

An ideal solution
would be an agile and
scalable network ar-
chitecture that adapts
itself to the availabil-
ity of auxiliary inputs
without needing to
maintain or train mul-
tiple networks or im-
pute data. In this pa-
per, we present a new
paradigm of learning
in the presence of in-
consistently available
auxiliary inputs, which
we call auxiliary net-
work (Aux-Net). The
key-stone of Aux-net is the separation of learning corresponding to auxiliary
and base inputs into separate modules parallel to each other (see Figure 2). The
base features are processed as a chunk in base module while auxiliary module
contains one independent layer per auxiliary input in parallel with other layers.

2 Related Works

Many methods based on Bayesian theory [14], k-nearest neighbour [1], support
vector machines [15], decision tree [16], fuzzy logic [6, 2] are proposed for stream-
ing classification task. A brief study of all these techniques can be found in [17,
18]. Furthermore, some incremental learning approaches are also proposed [7–
11]. Other deep learning approaches for online learning include [19–22]. But
these techniques assume the dimension of incoming data is fixed. Hou et al. [12,
13] proposed machine learning approaches for dynamic environments. However,
they assumed the dimensionality of inputs is constant in batches and therefore
batch wise learning can be used. Hou et al. [12] further assume that there are
multiple sets of features, where one entire set is either available or unavailable
in a given batch. [13] assumes an overlapping period between two batches when
all the inputs from previous and next batches are available, which allows in
supporting soft transition across batches. These methods are indeed more scal-
able than approaches that assume fixed input dimensionality. Nonetheless, they
cannot handle as challenging situations as depicted in Figure 1 and discussed
in Table 1 where no assumption is made on availability of auxiliary features in
batches or sets. To the best of our knowledge, our work is a foundational work for
problems of inconsistently available inputs. The only assumption is that at least
one base feature is consistently available. Our work has a more general premise.
We note that our framework is inspired from the concept of hedge algorithm [3]
and online gradient descent (OGD) [4].

Auxiliary Network 3

Fig. 1. Arrival of streaming data with all the
base features and inconsistently available aux-
iliary features is demonstrated here.

Fig. 2. Block diagram of Aux-Net. The
green bold arrow represents the ground
truth and the circle with a + sign
calculates a final prediction from the
weighted output of each classifier. All
the modules are the combination of one
or more hidden layers where the auxil-
iary module is scalable i.e. the number
of layers keeps changing with time and
scalability needs of the application.

3 Auxiliary Network (Aux-Net)

Problem Setting Let’s denote streaming classification data byD = {(x1, y1), ...,
(xt, yt), ..., (xT , yT)} where xt = {xB

t , x
At
t } is input at time t. The base features

are denoted by xB
t = {xB

1,t, ..., x
B
b,t, ..., x

B
B,t}, where B in superscript and subscript

denotes base features and total number of base features respectively. xB
b,t denotes

bth base feature at t. The auxiliary features is represented by xAt
t = {xA

j,t}∀j∈At

where At ⊆ {1, ..., a, ...A} is subset of auxiliary features received at t. The nota-
tion A has denotation similar to B. The input xt ∈ Rdt where dt is the dimension
of xt varying with t (Figure 1). The output yt ∈ RC is the class label where C is
the total number of classes. The Aux-Net learns a mapping F ∶ Rdt → RC. The
prediction of the model is given by ŷt = F (xt). Model trains in an online setting
where xt arrives, it predicts ŷt, yt is revealed and it is updated based on the loss.

Architecture Consider a DNN with S number of base layers, one middle layer,
A number of auxiliary layers and E number of end layers. The base layers,
middle layer, auxiliary layers and end layers constitute the base module, middle
module, auxiliary module and end module respectively. The base, middle and
end modules are stacked sequentially and auxiliary module is placed in parallel
to the base and middle module with a connection to the end module as shown in
the Figure 2. A softmax classifier is attached to each of the layer. The detailed
architecture of the model is presented in Figure 3. The output of the Aux-Net
model is given as the weighted combination of all the classifiers by the equation:

F (x) = ∑
Z∈U

Z

∑
z=1

αZ
z f

Z
z (1)

where U = {S,M,E,A} denotes all the modules, and S,M,E,A in superscript
and subscript denotes module name and the total number of layers in module

4 R. Agarwal et al.

Fig. 3. (a) Detailed architecture of Aux-Net is presented here. The gray colored rect-
angular boxes represents a layer. (b) The functional diagram of a layer is shown here.

respectively. The notation fZ
z and αZ

z represents the output of the classifier
associated with the layer z of module Z and weight of the classifier respectively.

Architecture of a layer is shown in Figure 3(b). Each layer is attached to
a classifier f parameterized by θ that gives an output fZ

z = softmax(hZz θZz),
where hZ

z is the hidden feature of layer. Each layer is parameterized by W and c
and generates its hidden feature hZ

z = σ(WZ
z hZ

z−1+cZz), where σ is the activation
function, and θ,W and c are learnt using OGD. A hedge block is used to compute
α based on the loss incurred by the classifier.

Now, we describe the inputs to the different layers. The first base layer re-
ceives the complete xB

t as the input i.e. hZ
0 = xB

t . The subsequent base layers
receive the hidden feature of its previous layer as its input. The input to middle
layer is the hidden feature of the last base layer, i.e. hM

0 = hS
S . The ath auxiliary

layer receives the ath auxiliary feature, i.e., hA
a = xA

a . All the end layers, except
the first end layer receive its previous layer features as the input. The first end
layer is special since the input to it needs to support agility arising from only a
subset of auxiliary features being available at time t. The input hE

0,t to the first
end layer at time instance t is a vector derived by concatenating weighted hidden
features h of the middle and the auxiliary layers corresponding to the currently
available auxiliary inputs. It is given by hE

0,t = [γM
1,th

M
1,t,{γA

j,th
A
j,t}∀j∈At

], where γ
is importance of the layers connected to first end layer, denoting the fraction of
the connected layer’s output passed as an input to the first end layer.

Parameters Learning The learning of the model occurs in an online setting
through the use of a loss function defined as:

L(F (x), y) = ∑
Z∈U

Z

∑
z=1

αZ
z L(fZ

z (x), y) (2)

where L(fZ
z (x), y) is the loss of classifier associated with layer z of module Z.

Based on the loss at each time step t, the values of γ, θ,W, c,α are updated.
Updating γ : The highlight of Aux-Net is the update of γ which allows for

soft handling of the asynchronous availability of auxiliary features. It depends

Auxiliary Network 5

Algorithm 1: Aux-Net algorithm

Inputs: Base Module: S; Middle Module: M ; Auxiliary Module: A; End
Module: E; Learning rate: η; Smoothing Parameter: λ; Discounting
Parameter: β ;

Initialize: A DNN with L = S +M +A+E layers and attach classifiers to each
layer as shown in Figure 3(b); αZ

z = 1/L ∀Z ∈ {S,M,A,E}, z ∈ {1, ..., Z} ;
K1 using equation 7;

for t = 1, ..., T do
Receive input feature xt;
Create a list At of the auxiliary features received in xt;
Create the model Mt based on At using equation 8;
Predict ŷt on xt using equation 1 based on Mt;
Receive output label yt;
Calculate the loss of the model Mt based on yt and ŷt using equation 2;
Update parameters of Mt based on the loss incurred and get M∗

t using 9;
Update Kt based on M∗

t to get Kt+1 using 10;

end

only on its classifiers weights and are calculated as follows:

γP
p,t =

αP
p,t

αM
1,t +∑j∈At

αA
j,t

for C1:(P =M, p = 1) or (P = A, p ∈ At) (3)

Updating θ : The parameter θZz is associated with only one classifier and
does not depend on the other classifiers. Therefore, its update will only be with
respect to the loss of its own classifier through OGD. After every time instance
t, θZz of classifier z of the module Z is updated as:
θZz,t+1 = θZz,t − ηαZ

z,t∆
Z
θZ
z,t,z

for C2:(Z ∈ U ′, z ∈ {1, ..., Z}) or (Z = A, z ∈ At) (4)

where,∆R
θZ
z,t,r
= ∂L(fR

r (xt),yt)

∂θZ
z,t

, η is learning rate of parameters and U ′ = {S,M,E}.
Learning W and c : The weights (W) and bias (c) of a layer are learned

by back propagation on the final loss similar to OGD. But, since each layer is
associated with a classifier unlike the traditional DNN where only last layer gives
a prediction, the gradient descent is different. Here, the parameters of a layer
depends on loss of all its successive layers that directly or indirectly influence it.
The following equation shows update rule for W and same is applicable for c.

WA
a,t+1 =WA

a,t − η[αA
a,t∆

A
WA

a,t,a
+

E

∑
e=1

αE
e,t∆

E
WA

a,t,e
]

WZ
z,t+1 =WZ

z,t − η[
Z

∑
j=z

αZ
j,t∆

Z
WZ

z,t,j
+ ∑

Q=set

Q

∑
q=1

αQ
q,t∆

Q

WZ
z,t,q
]

(5)

where set = {M,E},{E}, ϕ if Z ∈ {S},{M},{E} respectively, and z ∈ {1, ..., Z}.
Learning α : The value of α is learned through hedge algorithm. Initially,

α is uniformly distributed i.e., αZ
z = 1/L, where L is the total number of layers,

L = S +M + A + E. The loss incurred by classifier z of module Z at time t is

6 R. Agarwal et al.

L(fZ
z (xt), yt) and its weight is αZ

z,t. The weights of the classifier are updated as:

αZ
z,t+1 = αZ

z,tβ
L(fZ

z (xt),yt) for C2, (6)

where β ∈ (0,1) is the discount rate parameter. To avoid situation, αZ
z → 0 (since

we don’t want to neglect any layer), a smoothing parameter λ ∈ (0,1) is intro-
duced. It ensures minimum weight for each classifier by αZ

z,t+1 =max(αZ
z,t+1, λ/L).

The value of all α is then normalized such that ∑
Z=U ′

Z

∑
z=1

αZ
z,t+1 + ∑

j∈At

αA
j,t+1 = 1.

Algorithm Aux-Net is a test-then-train approach and since auxiliary features
are changing, the trained model learned at t can’t be used as it is for training or
testing at t+1. We define a knowledge base K (updated parameters represented
by ′) which is updated after every time t. K at any time instance t is given by

Kt = {W ′

t , c
′

t, θ
′

t, α
′

t}, where Gt = {GS
t ,G

M
t ,GA

t ,G
E
t } if G ∈ {W ′, c′, θ′, α′} (7)

Before training or testing, model needs to incorporate the incoming dynamic
auxiliary features. We define a model Mt (eq. 8), that handles the asynchronous
availability of auxiliary features (At) by introducing the variable γ. The model
Mt predicts an output ŷt, given xt and updates its parameter giving M∗

t based
on the loss incurred. Before moving to the next instance, we update the final
parameters of Kt based on M∗

t , giving knowledge base Kt+1 (see Algorithm 1).
Creating Model (Mt): Based on the auxiliary features At received at time

step t and knowledge base Kt, the model Mt is created before prediction and
training. The auxiliary layers corresponding to At are kept active and all the
other auxiliary layers are freeze. Freezing of layers means all the parameters
associated with this layer will not be trained (or removing the layer from the
model). Since, some of the auxiliary layers are removed, the value α of the model
changes and a parameter γ is introduced. The model Mt is given by:

Mt =M(Wt, ct, θt, αt, γt) (8)

where Gt = {G′St ,G′Mt ,{G′Aj,t}∀j∈At ,G
′E
t } if G = {W,c, θ}, αt = {αZ

z,t}∀C2 where

αZ
z,t = α′Zz,t/[∑

Z=U ′

Z

∑
z=1

α′Zz,t + ∑
j∈At

α′Aj,t], γt = {γP
p,t}∀C1, γ

P
p,t = α′Pp,t/[α′M1,t + ∑

j∈At

α′Aj,t].

Obtaining knowledge base Kt+1 for next instance:Mt is updated based
on loss incurred at time t. The updated model, represented by M∗

t is given by:

M∗

t =M(W ∗

t , c
∗

t , θ
∗

t , α
∗

t) (9)

where W ∗

t , c
∗

t , θ
∗

t , α
∗

t are the parameters obtained by updating the parameters
Wt, ct, θt, αt of the model Mt by using equation 2, 4, 5 and 6. After training the
model at time step t, we create the knowledge base Kt+1 before moving to the
next iteration. All the parameters updated at time step t and the parameters of
the freezed layers (A −At) are collected. Then, Kt+1 is given by:

Kt+1 = {W ′

t+1, c
′

t+1, θ
′

t+1, α
′

t+1} (10)

where G′t+1 = {G∗t ,{G′Aj,t}∀ j∈A−At} if G ∈ {W,c, θ}, α′t+1 = {α′Zz,t+1}Z∈U, z={1,...,Z}

where α′Zz,t+1 = α′′Zz,t /[∑
Z∈U

Z

∑
z=1

α′′Zz,t] and α′′t+1 = {α∗t ,{α′Aj,t}∀ j∈A−At}.

Auxiliary Network 7

Fig. 4. Cumulative average accuracy (a) and loss (b) for different values of probability
p of auxiliary inputs on Italy power demand dataset. ODL with 12 and 24 features is
included for baseline. Snippet of data availability for p = 0.6 and p = 0.9 are shown in
(c), analogous to Figure 1.

4 Experimental Results

We show robust, agile and scalable performance on Italy power demand dataset
[5]. It has 1096 data instances with 24 features. In all the studies, we retain the
original order of features. To the best of our knowledge, no method incorporates
the intermittently available input data in an online setting. Thus, we compare
Aux-Net with ODL [21] (in minimalist approach). We train both the models in
a purely online setting where after each instance the model predicts and trains.

Architecture details The number of base layers (S) are 5, middle layer (M)
is 1, and end layers (E) are 5 for Aux-Net. The number of auxiliary layers (A)
are equal to number of auxiliary features. The number of layers for ODL is set
as 11 (S +E +M = 11). For both Aux-Net and ODL, we used ReLU activation
function, adam optimizer (η = 0.01), cross-entropy loss, smoothing rate (λ =
0.2), discount rate (β = 0.99) and number of nodes in each layer was set as 50.

Varying probability of the availability of auxiliary inputs in Aux-Net
The first 12 features of Italy power demand dataset are considered as base fea-
tures and remaining as auxiliary features. The availability of each auxiliary fea-
ture at a given time instance is modeled as a uniform distribution with probabil-
ity p. The same value of p is used for all auxiliary features but the availability of
each is computed independently. The results of Aux-Net with varying values of
p, ODL with all 24 features, and 12 base features are presented in Table 2. We
report the average of losses and accuracy observed across all time instances. The
cumulative average loss and accuracy curves are shown in Figure 4. We study
the performance of Aux-Net and compare with ODL with the following aims:

Sensitivity of Aux-Net to p and its performance: The average accuracy
and loss for all the time instances in the dataset shows monotonic trend as a
function of p, as noted in Table 2. This shows that Aux-Net is sensitive to the
availability of the auxiliary inputs, as expected. Yet, the performance of Aux-
Net degrades gracefully as p reduces. Moreover, Aux-Net still performs better
compared to ODL with 12 features when p < 1 (as ODL can not work with
inconsistent features). Further, the best case performance of Aux-Net when p = 1,
is comparable to the scenario of ODL with 24 features.

8 R. Agarwal et al.

Table 2. Average accuracy and loss
of Aux-Net (for different values of
probability(p) of availability of auxil-
iary features) and ODL (with different
number of input features(feat)) in Italy
Power Demand dataset. ODL is shown
in italics.

Model Accuracy Loss

ODL(24 feat) 0.8783 0.4297
Aux-Net(p = 1.00) 0.8884 0.5093
Aux-Net(p = 0.99) 0.8811 0.5165
Aux-Net(p = 0.95) 0.8637 0.5168
Aux-Net(p = 0.90) 0.8243 0.5456
Aux-Net(p = 0.80) 0.7054 0.6130
Aux-Net(p = 0.70) 0.6240 0.6788
Aux-Net(p = 0.60) 0.6167 0.6831
ODL(12 feat) 0.6139 0.6868
Aux-Net(p = 0.50) 0.5956 0.6975

This means that even though the
knowledge base of Aux-Net supports for
212 knowledge models, only the knowl-
edge model with largest dimensionality is
invoked and trained. In this case loss of
Aux-Net is poorer than ODL, but the ac-
curacy is better. In case of p = 0.5 which
means no consistency in either availabil-
ity or unavailability of the auxiliary in-
puts, the observed poorer performance of
Aux-Net in comparison to ODL is only
marginal, indicating robustness of Aux-
Net to the extremely challenging scenario
and its graceful degradation.

Agile adaptation of Aux-Net: The
demand on agility significantly enhances
as p reduces. For example, for p = 0.6 in
Figure 4(c), not only a different knowl-
edge model needs to be invoked at every
instance but also the same knowledge model may not be invoked in next many
instances. The situation is easier when p = 0.9 even though there are many
instances when a different knowledge model is invoked. Nonetheless, Aux-Net
remains stable in either case and adapts to the agility needs in an efficient man-
ner, indicated in accuracy and loss plots in Figure 4(a,b). Indeed, accuracy is
better and loss decreases faster over time for p = 0.9. Nonetheless, when p = 0.6,
the accuracy and loss curves closely follow ODL with 12 features, indicating
that even though new knowledge models are being dynamically invoked every
single instance, the performance of Aux-Net does not deteriorate in comparison
to ODL and Aux-Net is indeed able to maintain agility over time, contributing
to reduced loss and improved accuracy as time passes.

Decreased loss and improved accuracy over time: For situation of
12 auxiliary inputs, support for 212 knowledge models, and invocation of each
knowledge model multiple times is needed to study the convergence of knowledge
base over time. Yet, the decreasing loss (Figure 4(b)) is a positive indicator of
performance improvement over time and possible convergence.

Varying number of base features In this experiment, we fix p as 0.9, but
vary the number of base features (B) from 1-23. The number of auxiliary features
(A) are consequently (24-B). The first B features in the dataset are used as base
features in Aux-Net and the only features in ODL. The average loss of Aux-Net
and ODL are compared in Figure 5 as a function of B. We observe the following:

Extreme scalability: As expected, the performances of both Aux-Net and
ODL deteriorate as B reduces. Nonetheless, the loss of Aux-Net is significantly
smaller than ODL in the challenging scenarios when more than 4 inputs are
inconsistently available. This clearly indicates that Aux-Net is able to leverage
the auxiliary inputs for better learning. Especially, the extremely challenging

Auxiliary Network 9

Fig. 5. Loss of Aux-Net as function of the number of base features B and ODL (trained
using B number of features) in Italy power demand dataset. The probability of avail-
ability of the (24 −B) auxiliary inputs is fixed at p = 0.9. Lower loss indicates better
learning.

scenarios (B = 1 for example) demonstrate that Aux-Net is indeed able to step
up to the need of supporting several knowledge models of varying inputs and
dimensionalities and provide better performance than the minimalist approach.

Poorer performance than ODL when B ∈ [20,23]: During initialization,
Aux-Net assigns the same weights (α) to each classifier. However, the classifier
corresponding to an auxiliary feature will be lossier as compared to the classifier
of middle layer that uses base features. As time progresses, the value of α for
each layer gets customized to suit its contribution towards accurate classification.
Often, it means that α of auxiliary layer reduces in the first few time instances,
indicating that Aux-Net has learnt that its inconsistent availability may cause
increased loss if α corresponding to it is high.

Obsolete features In Figure 6, we consider an example in which all the auxil-
iary features (12 out of 24 features of the original dataset) are available initially,
but become obsolete after the 100th instances out of a total of 1096 instances
(unavailable > 90% of the time). Therefore, the remaining 12 (base) features
represent the data trend over the long term. In this condition, since we have the
information about the obsolete features from their previously received instances,
we can perform imputations. In the first 100 instances when all the features are
available, ODL (mean imputation) and Aux-Net generate lower loss than ODL
(12 features). However, after the 12 auxiliary features become obsolete, Aux-Net
quickly adapts to the new normal and converges to similar performance as ODL
(12 features). On the other hand, ODL (mean imputation) performs robustly for
sometime due to imputation, but very slowly converges thereafter towards the
new normal over the long term.

Sudden unknown features In Figure 7, we consider an example where only 6
(base) features are available. Suddenly, 18 new features with no prior knowledge
appear from 201st time instance. Aux-Net performs similar to ODL (6 features)
till the 200th instance. Thereafter, Aux-Net quickly adapts to the availability of
new features and its loss starts decreasing at a rapid rate.

10 R. Agarwal et al.

Fig. 6. All 12 auxiliary
features become obsolete
after 100th instance on
Italy power demand
dataset.

Fig. 7. 18 unknown aux-
iliary features starts ap-
pearing after 200th in-
stance on Italy power de-
mand dataset.

Fig. 8. Downsampled
MNIST data with feature
unavailability

MNIST dataset We applied AuxNet on MNIST [23] dataset for classification
of 2 similar looking digits, namely ‘5’ and ‘6’ (see Figure 8) to demonstrate its
performance on challening situations. In our version, we consider availability of a
downsampled versions of the original 28×28 pixels. We consider two cases, 10×10
pixels and 5 × 5 pixels. In either case, the intensity at each pixel is one feature
and a series of images is provided as data stream. For the case of 10× 10 pixels,
we consider 75:25 ratio of base and auxiliary features (blue and magenta colored
boxes in Figure 8, respectively) and achieve classification accuracy of > 84%. We
further challenge Aux-Net with 12:13 ratio of base and auxiliary features for the
case of 5 × 5 pixels, and achieve classification accuracy of > 72%.

5 Conclusion

We have demonstrated scalability, agility, and stability of Aux-Net and its ability
to deal with intermittently available inputs in an online setting. It supports scal-
ability for the situations ranging from no auxiliary input being available to all
auxiliary inputs being available. It incorporates knowledge models correspond-
ing to all possible combinations of auxiliary inputs within a single knowledge
base. The architectural support in Aux-Net for auxiliary inputs in the form of
dedicated parallel layers is a critical feature for scalability. Agility in Aux-Net is
characterized by its ability to dynamically invoke the relevant knowledge model
without making the network unstable or unadaptive. A key factor that supports
dynamic stability and agility is the importance parameter γ, which automati-
cally adjusts the contributions of base inputs (through the middle layer) and the
currently available auxiliary inputs so that neither the new auxiliary features in-
troduce inordinate instability, nor are they suppressed. This, in our observation
is not only the first such architecture, it is also a first demonstration of results
on intermittently available input features. Having set a new paradigm, we hope
that new datasets, frameworks, applications and more extensive studies are de-
veloped in future to exploit the possibility of learning in extremely dynamic and
uncertain scenarios.

Auxiliary Network 11

References

1. Aggarwal, Charu C., et al. ”A framework for on-demand classification of evolv-
ing data streams.” IEEE Transactions on Knowledge and Data Engineering 18.5
(2006): 577-589.

2. Iyer, Aparna Ramesh, Dilip K. Prasad, and Chai Hiok Quek. ”PIE-RSPOP: A
brain-inspired pseudo-incremental ensemble rough set pseudo-outer product fuzzy
neural network.” Expert Systems with Applications 95 (2018): 172-189.

3. Freund, Yoav, and Robert E. Schapire. ”A decision-theoretic generalization of on-
line learning and an application to boosting.” Journal of computer and system
sciences 55.1 (1997): 119-139.

4. Zinkevich, Martin. ”Online convex programming and generalized infinitesimal gra-
dient ascent.” Proceedings of the 20th international conference on machine learning
(icml-03). 2003.

5. Dau, Hoang Anh, et al. ”The UCR time series archive.” IEEE/CAA Journal of
Automatica Sinica 6.6 (2019): 1293-1305.

6. Das, Ron Tor, Kai Keng Ang, and Chai Quek. ”ieRSPOP: A novel incremental
rough set-based pseudo outer-product with ensemble learning.” Applied Soft Com-
puting 46 (2016): 170-186.

7. Polikar, Robi, et al. ”Learn++: An incremental learning algorithm for supervised
neural networks.” IEEE transactions on systems, man, and cybernetics, part C
(applications and reviews) 31.4 (2001): 497-508.

8. Polikar, Robi, et al. ”Learn++. MF: A random subspace approach for the missing
feature problem.” Pattern Recognition 43.11 (2010): 3817-3832.

9. Muhlbaier, Michael D., Apostolos Topalis, and Robi Polikar. ”Learn ++. NC: Com-
bining Ensemble of Classifiers With Dynamically Weighted Consult-and-Vote for
Efficient Incremental Learning of New Classes.” IEEE transactions on neural net-
works 20.1 (2008): 152-168.

10. Muhlbaier, Michael D., and Robi Polikar. ”Multiple classifiers based incremental
learning algorithm for learning in nonstationary environments.” 2007 International
conference on machine learning and cybernetics. Vol. 6. IEEE, 2007.

11. Ditzler, Gregory, Robi Polikar, and Nitesh Chawla. ”An incremental learning al-
gorithm for non-stationary environments and class imbalance.” 2010 20th Interna-
tional Conference on Pattern Recognition. IEEE, 2010.

12. Hou, Chenping, and Zhi-Hua Zhou. ”One-pass learning with incremental and decre-
mental features.” IEEE transactions on pattern analysis and machine intelligence
40.11 (2017): 2776-2792.

13. Hou, Bo-Jian, Lijun Zhang, and Zhi-Hua Zhou. ”Learning with feature evolvable
streams.” Advances in Neural Information Processing Systems 30 (2017).

14. Seidl, Thomas, et al. ”Indexing density models for incremental learning and any-
time classification on data streams.” Proceedings of the 12th international confer-
ence on extending database technology: advances in database technology. 2009.

15. Tsang, Ivor W., Andras Kocsor, and James T. Kwok. ”Simpler core vector ma-
chines with enclosing balls.” Proceedings of the 24th international conference on
Machine learning. 2007.

16. Domingos, Pedro, and Geoff Hulten. ”Mining high-speed data streams.” Proceed-
ings of the sixth ACM SIGKDD international conference on Knowledge discovery
and data mining. 2000.

17. Nguyen, Hai-Long, Yew-Kwong Woon, and Wee-Keong Ng. ”A survey on data
stream clustering and classification.” Knowledge and information systems 45.3
(2015): 535-569.

12 R. Agarwal et al.

18. Gama, Joao. ”A survey on learning from data streams: current and future trends.”
Progress in Artificial Intelligence 1.1 (2012): 45-55.

19. Das, Monidipa, et al. ”FERNN: A fast and evolving recurrent neural network model
for streaming data classification.” 2019 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2019.

20. Das, Monidipa, et al. ”Muse-rnn: A multilayer self-evolving recurrent neural net-
work for data stream classification.” 2019 IEEE International Conference on Data
Mining (ICDM). IEEE, 2019.

21. Sahoo, Doyen, et al. ”Online deep learning: Learning deep neural networks on the
fly.” arXiv preprint arXiv:1711.03705 (2017).

22. Ashfahani, Andri, and Mahardhika Pratama. ”Autonomous deep learning: Contin-
ual learning approach for dynamic environments.” Proceedings of the 2019 SIAM
international conference on data mining. Society for Industrial and Applied Math-
ematics, 2019.

23. LeCun, Yann. ”The MNIST database of handwritten digits.” http://yann. lecun.
com/exdb/mnist/ (1998).

Appendix 1

Minimalist: All uncertain inputs are dropped and a single knowledge model
is trained using only base features. This model provides certain base accuracy,
but does not utilize additional information from auxiliary inputs. The trade-off
is the loss of opportunity for better performance.
Maximalist: An ensemble of 2A networks can be formed to cater for all pos-
sible combinations of availability of auxiliary features. Therefore network with
the smallest dimensionality caters to only the base features and network with
the largest dimensionality caters to all the base and auxiliary features, where the
number of inputs to a network is its dimensionality. However, learning the knowl-
edge model in such ensemble of networks is cumbersome. Given At inputs fea-
tures at time t, we have 2At subsets, therefore the network corresponding to each
subset needs to be trained. This results into long training durations. Another
trade-off is that huge number of networks need to be maintained throughout.
Imputation: As shown in Table 1, it is possible to impute features whose prior
information is known but it will introduce a lot of misinformation in cases where
it is required to impute for many consecutive instances. Moreover, for the con-
ditions of sudden unknown features, no prior information is available. So the
approach can be to model noise (gaussian or otherwise) but we don’t know the
total number of features hence making it impossible to impute.

