Image analysis and Segmentation of Polar Mesospheric Summer Echoes

Dorota Jozwicki, Puneet Sharma, Ingrid Mann, Ulf-Peter Hoppe UiT- The Arctic University of Norway

Tromsø

Summary

- 1. What are PMSE?
- 2. Classification of PMSE
 - 1. Method employed
 - 2. Results
 - 3. Conclusion
- 3. Segmentation of PMSE
 - 1. Method employed
 - 2. Results
 - 3. Conclusion
- 4. Future work

1- What are PMSE ?

Data: comes from EISCAT VHF (224MHz) in Tromsø

Date: 10th of August 2015

Typical PMSE altitude : 80 km to 90 km during summer months

The equivalent electron density is equivalent to the backscattered power

Prerequisites for PMSE observation

2- Classification of PMSE

Original grey image with an example of a scanning window

Zoom over the white window

Where X is a random variable and E[X] is the expected value of X (which is equivalent to arithmetic mean)

Conclusion of PMSE investigation with LDA

- LDA can be used to distinguish image regions containing PMSE from those with noise or ionospheric background with up to 98% accuracy
- Our proposed method can be used to pre-select data for further analysis of the shape of the PMSE

3-Segmentation of PMSE

Labels with reduced weighting from Almeida et. al. (2021)

30 images in total - 18 labeled images (56250 labelled samples in total)

After wighting-down the data: - 60% use for training - 40% used for quantitative testing

Random forests are a multitude of decision trees

	Height	Thorns	Average Petal size	Туре
Flower1	55 cm	Yes	1.9cm	ROSE
Flower2	13 cm	No	2cm	TULIP
Flower3	20 cm	No	1.5 cm	TULIP
Flower4	150 cm	No	8cm	SUNFLOWER
Flower5	60 cm	Yes	2.2 cm	ROSE
Flower6	130 cm	No	9cm	SUNFLOWER

Predicted labels

7 July 2010

30 June 2008

Conclusion of PMSE segmentation with Random forests

- It is possible to segment PMSE from the data by using random forests.
- The weighted-down labels technique we used improves the performance of the random forests method.
- Some refinement needs to be done to be able to use it automatically in our future work plans

For details see : https://www.mdpi.com/2072-4292/14/13/2976/htm

Future work

- Study of PMSE under different geophysical conditions
- Study PMSE over many years and see if there are any change in their shape, thickness, number of layers, altitude, etc... Use of archived EISCAT data in the first place.
- We would have access to a lot of data through EISCAT 3D in a further future
- Aknowledgement : all data from EISCAT Madrigal

Thank you for your attention

Bonus slides

Predictor importance

Classification error for these results is: 0.12580 ± 0.01500

Detail about the altitude scale of the 10/08/2015

Labels with reduced weighting from Almeida et. al. (2021)

30 images in total - 18 labeled images (56250 labelled samples in total)

After wighting-down the data: - 60% use for training - 40% used for quantitative testing