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Abstract
The electric power system infrastructure is essential for modern economies and
societies, as it provides the electricity needed to power homes, businesses, and
industries. It is of critical importance that the operation of the power system is
optimized to serve the electricity demand reliably and sustainably. Advances
in machine learning and optimization have enabled the potential to enhance
decision-making in the electric power sector by gaining deep insight into the
vast amount of data stored digitally.

The operation of electric power systems poses many challenges, such as those
related to the rising integration of renewable energy sources, the need for
energy storage, and the aging transmission infrastructure. To address these
challenges, this thesis explores machine learning and optimization techniques
to enhance decision-making concerning decarbonization targets, integration
of renewable energy sources, cost savings, and reliable power supply.

The main contributions are the following:

• In the first work we presented a framework for predicting the electricity
demand. We compared the accuracy of statistical and machine learning
models at short- and medium-term forecasting horizons. The experimen-
tal results showed that machine learning methods achieve higher accu-
racy overall and exhibit good transferability, as they managed to predict
the load at new locations that were not accounted for during training.
The study highlights the importance of selecting the appropriate model
to accurately predict the electricity demand in locations where historical
consumption data may be limited or unavailable.

• Next, we analyzed the electricity transmission grid to identify the poten-
tial causes of disturbances in the power distribution network using ma-
chine learning classification techniques. Traditional classification meth-
ods can only indicate variables that, on average, mainly explain fault
occurrences. In addition to providing such a global interpretation, it is
essential to identify the specific variables that explain each fault. To
address this challenge, we adopted a recent technique to interpret the
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decision process of a deep learning model called Integrated Gradients.
The proposed approach demonstrated the importance of gaining detailed
insights into the occurrence of a specific fault.

• We adopted probabilistic forecasting to model the uncertainty when pre-
dicting electricity generation from wind power in the third work. As point
forecasts do not account for such uncertainties, it is necessary to rely on
probabilistic forecasts. We demonstrated how deep learning models can
make day-ahead probabilistic forecasts and compared the accuracy of
different dataset configurations. The findings show that the accuracy of
forecasts improves when historical data on measured weather and nu-
merical weather predictions are included as exogenous variables. This
study shows the importance of understanding which covariates must be
included in the dataset to improve the accuracy of the predictions.

• We modeled the electric power system using a novel optimization tech-
nique in the fourth and fifth works. In the fourth work, we analyzed the
benefit of using a low-cost thermal energy storage unit called Thermal
Energy Grid Storage (TEGS) to balance intermittent generation from
solar energy systems. Our analysis emphasizes the need for storage to
provide the grid with electricity more reliably. In the fifth and final work,
we optimized the engineering design of TEGS to minimize the cost of
decarbonization in electric power systems. The findings show that TEGS
enables cost-effective grid decarbonization and improves reliability com-
pared to a baseline scenario where TEGS is not an available technology.
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1
Introduction
1.1 Energy analytics

The global society is now in an era where we should transform the electric
power infrastructure from being dependent on fossil-based resources such as
oil, coal, and gas to be dependent on technologies with zero Greenhouse Gas
(ghg) emissions associatedwith it (IRENA,2022). The power sector’s full trans-
formation can potentially reduce the globalghg emissions by 25% (IPCC, 2014;
EPA, 2011). The main motivation for reducing ghg emissions is global climate
change, and the increased environmental challenges recently underpinned in
the last Climate Change Assessment Report by The Intergovernmental Panel
on Climate Change (ipcc) (Masson-Delmotte et al., 2021). This report claims
that there is now "code red" for humanity due to the increased temperature
and more extreme weather. Therefore, the report states the urgent need to re-
duce greenhouse gas emissions and transform society into a zero-emission one
where we no longer depend on fossil fuels. This transition is highly complex
and difficult for a global society dependent on fossil-based technologies, and
multiple challenges must be addressed. Additionally, the transition should take
place within 30 years, a short period for changing the infrastructure of a global
society.

A vast amount of ongoing research and development (R& D) is enabling path-
ways and scenarios for how to make the energy transition toward decarboniza-
tion possible. The International Energy Agency (iea) recently presented a
roadmap for the global energy sector called "Net Zero by 2050" (Bouckaert et

1
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al., 2021) explaining how transitioning to a net-zero energy system by 2050
could be possible. The European Commission has recently presented the "the
European Green Deal". The Green Deal presents the roadmap for how the Eu-
ropean Union (eu) should strive to be the first climate-neutral continent with
no emissions of greenhouse gases by 2050 (EU, 2020). The Green Deal also
aims to inspire the rest of the global society to perform such a green transfor-
mation.

Data analytics within the electric power system sector has gained increased at-
tention due to the combination of advancements in data science and a rapidly in-
creasing amount of data being generated in digital format. In-depth analytics of
the vast amount of data continuously being recorded within the electric power
system enables enhanced decision-making1 processes to reach decarbonization
targets and ensure a reliable power supply. Other examples of disciplines where
data analytics has led to new insights and solutions to existing challenges in-
clude e.g., healthcare, finance, education,media, andmanufacturing (Mikalsen,
2019; Dixon, Halperin, & Bilokon, 2020; Shah, Patel, Adesara, Hingu, & Shah,
2021; Athmaja, Hanumanthappa, & Kavitha, 2017; Wuest, Weimer, Irgens, &
Thoben, 2016).

Data within the electric power sector has been logged over several decades;
thus, a vast amount of data is recorded. However, the information in this data
has been utilized historically to a lesser degree due to a lack of analytics knowl-
edge (Karschnia, 2022). Gaining in-depth knowledge of the energy data being
recorded using data analytics frameworks has shown great potential to visual-
ize the problems that must be addressed in achieving global decarbonization
goals. Several companies 2, and research institutions 3 consistently work on col-
lecting and analyzing data within the electric power sector to provide insights
about what steps must be taken to achieve decarbonization goals.

This research direction, in which machine learning and optimization tech-
niques play a key role, is the main focus of this thesis and will be referred to
as energy analytics hereafter. Energy analytics is a broad field involving data
and analytical techniques to gain insights and make decisions about electricity
generation, distribution, and consumption. This can include analyzing data

1. The term decision-making has been widely analyzed and discussed for decades (March &
Olsen, 1976). In this thesis, we use a rational decision-making approach. Rational decisions
involve identifying problems, gathering data, analyzing results to gain knowledge, and
deciding what measures should be taken to reach actual aims.

2. Some examples include: DNV (https://www.dnv.com/), EIA (https://www.eia.gov/),
IEA (https://www.iea.org/), IRENA (https://www.irena.org/), Rystad Energy
(https://www.rystadenergy.com/).

3. Some research institutions focusing on the energy transition: MIT energy ini-
tiative (https://energy.mit.edu/), Arctic Centre for Sustainable Energy (ARC)
(https://uit.no/research/arc).
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from smart meters, sensor networks, and other sources to optimize electricity
generation and usage and identifying patterns and trends that can help reduce
costs and improve efficiency. Energy analytics can also identify potential
issues, such as equipment failure, and develop strategies to mitigate risks
and improve overall performance (Belagoune, Bali, Bakdi, Baadji, & Atif,
2021). Fig. 1.1 illustrates how energy analytics processes might look in practice.

Figure 1.1: Overview of how Energy analytics might look like in practice. First, the
data is collected from different parts of the electric power system. Then the
collected data are pre-processed and analyzed before machine learning
and optimization techniques are applied to gain insight into the collected
data. The data insight gives enhanced knowledge to decide on the most
optimum action to solve the problem.
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The energy analytics research field is developing rapidly with respect to the
increased attention to urgent decarbonization needs, as reflected by the vast
number of companies and research institutions that work on these topics. As a
result of these efforts, many research articles have been published in academic
journals and reports, showing great promise for energy analytics approaches
to give the insight to enhance decision-making in the electric power sector
(Manfren, Nastasi, Groppi, & Garcia, 2020; Singh, Bocca, Gomez, Dahlke, &
Bazilian, 2019; Bocca & Ashraf, 2022; Breyer et al., 2022).

A popular research field within energy analytics includes using machine learn-
ing methods to analyze and predict the electricity demand (Yildiz, Bilbao, &
Sproul, 2017; Bouktif, Fiaz, Ouni, & Serhani, 2018; Hong & Fan, 2016; Bedi &
Toshniwal, 2019; Chou & Tran, 2018). Similarly, the growing share of renew-
able energy sources in the electric power system has developed the research
field of making accurate predictions of electric generation from technologies
such as wind and solar energy, which has an intermittent generation profile
(N. Sharma, Sharma, Irwin, & Shenoy, 2011; Kumar & Kalavathi, 2018; Foley,
Leahy, Marvuglia, & McKeogh, 2012; Hossain, Chakrabortty, Elsawah, Gray, &
Ryan, 2021; Zhang, Wang, & Wang, 2014; Mashlakov, Kuronen, Lensu, Kaarna,
& Honkapuro, 2021). Predicting the electricity demand and generation accu-
rately at different time horizons is critically important for several reasons. A few
examples include resource planning (better plan how to utilize the available
resources in the grid), grid stability (forecast peak demand to allocate resources
to meet the need), cost optimization (using the most electricity in low-cost pe-
riods), renewable integration (asses the grid capacity to accommodate variable
renewable energy electricity generation), energy market operations (market
participants can maximize revenue by optimize generation schedules), as well
as investment and planning decisions.

To optimize the reliability and energy security of the electric power system,
it is necessary to detect and predict unscheduled power disturbances in the
distribution network, which has severe consequences for both customers and
grid operators. Several academic studies use machine learning methods to de-
tect and predict such events with promising results (Owerko, Gama, & Ribeiro,
2018; Perera, Nik, Chen, Scartezzini, & Hong, 2020; Panteli & Mancarella, 2015;
Hoffmann, Michałowska, Andresen, & Torsæter, 2019; Chen, Hu, Zhang, Yu, &
He, 2019). Additionally, specific research initiatives are working on developing
methodologies to predict faults in the grid ⁴. Accurately detecting faults in
the electric distribution grid enables utilities to enhance reliability, improve
safety, allocate the available resources efficiently, and make better planning

4. This research initiative focuses on improved vegetation management and
more resilient electric grids through satellites and artificial intelligence
(https://www.stormgeo.com/solutions/data-science/grideyes/)
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and investment decisions.

Another popular energy analytics approach is to use Capacity Expansion Model
(cem) to model electricity systems. Such models allow the construction of a
digital representation of a real-world electric grid (i.e., a digital twin) and gain
insight into how the electric power system should be operated in different
scenarios. Such modeling exercises have become increasingly popular to gain
insight into how to decarbonize electric power systems and how the portfolio
of generation technologies in decarbonized grids should look like, as well as
provide knowledge regarding what steps (i.e., cost improvement, technical
specifics) that must be taken to achieve the modeled decarbonization goals
(Sepulveda, Jenkins, Edington, Mallapragada, & Lester, 2021; Cole et al., 2021;
Baik et al., 2021; Denholm et al., 2021; Sepulveda, Jenkins, de Sisternes, &
Lester, 2018).

Nevertheless, despite the many promising results reported in academic journals
and company reports, solutions implemented in industries ⁵, the seemingly
large availability of data, the vast amounts of companies ⁶ and initiatives, and
the great promises reported in media (Åge Algerøy, 2023; Dimmen, 2022;
Bloomberg, 2023; Mehlum, Hischier, & Caine, 2021; Enel, 2023), data analytics
using machine learning and optimization based-approaches within the power
sector still have challenges that must be further addressed (i.e., data quality,
analytics knowledge, data integration, scalability, data privacy and security).
Thus, although energy analytics has been an active research field for many
years, it is still research areas that should be further explored to enable insights
to enhance decision-making within the power sector. In the next section, we
will briefly describe some of the challenges and objectives of energy analytics
approaches that will be addressed in this thesis.

1.2 Challenges and objectives of energy analytics

Despite the challenges and objectives of energy analytics being well-
documented in the literature, the complexity of the electricity system, in gen-
eral, makes it difficult to provide a complete overview of all challenges and

5. This industry harnessed Artificial Intelligence (ai) decarbonize their operations
(https://www.nature.com/articles/d42473-021-00508-6). The Norwegian grid operation
company Elvia is implementing Machine learning (ml) strategies to detect faults in their
power grids (https://computas.com/elvia-og-computas-loser-samfunnsutfordringer-med-
maskinlaering/)

6. e.g. some startup-companies focusing on applying AI to tackle climate change
(https://www.forbes.com/sites/robtoews/2021/06/20/these-are-the-startups-applying-
ai-to-tackle-climate-change/?sh=430b1647b26c)
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objectives in the energy analytics field. In Fig. 1.2, we have provided a rough
overview of some major elements.

Figure 1.2: Overview of some challenges and objectives the energy analytics field faces.
The elements that we are tackling in this thesis are marked in orange
(challenges), and blue (objectives/goals).

Challenges
Data quality. Consistent and accurate data is critical to ensure precise results
in an energy analytics process. It is, therefore, essential to gain a strong under-
standing of which data to include in the analysis and ensure that it contributes
to insight into the problem. Hence, a good understanding of the problem at
hand is important to collect data of sufficient quality that can explain the anal-
ysis results.

Data Integration. Energy systems are often highly distributed, with data coming
from various sources, such as building management systems, smart meters,
and sensor networks. Integrating and harmonizing data from these different
sources can be difficult (Lopes, Hatziargyriou, Mutale, Djapic, & Jenkins, 2007;
Almas, Vanfretti, Løvlund, & Gjerde, 2014).

Scalability. As the amount of data generated by energy systems continues to
grow, the ability to process and analyze that data promptly and efficiently
becomes increasingly important. Scalability is a major challenge for energy
analytics processes (Bhattarai et al., 2019).

Privacy and Security.With the increasing use of smart meters and other Internet
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of Things devices, there are concerns about the privacy and security of energy
data. Ensuring the security of energy data and protecting consumers’ privacy
is an important challenge for energy analytics (Boroojeni, Amini, & Iyengar,
2017).

Analytics knowledge. Although a vast amount of data is continuously being
logged within the energy sector, there is an urgent need to develop expertise
in analyzing the available data to gain meaningful insights that can be used to
enhance decision-making.

Goals and objectives
Cost Savings. Energy analytics can help organizations reduce costs by identify-
ing inefficiencies and optimizing their operation.

Improved Performance and reliability. Energy analytics can be used to improve
the performance of electric power systems, such as by identifying and address-
ing equipment failures, reducing downtime, and increasing reliability.

Renewable Integration. With the increasing penetration of renewable energy
sources, energy analytics can be used to optimize the integration of renew-
able energy into the electric power grid and improve the grid’s overall perfor-
mance.

Predictive Maintenance. By analyzing data from electric power systems, energy
analytics approaches can be used to predict when equipment is likely to fail,
allowing for proactive maintenance and reducing downtime (Selcuk, 2017;
De Benedetti, Leonardi, Messina, Santoro, & Vasilakos, 2018).

Decarbonization. Energy analytics can be used to monitor and identify energy
consumption patterns and inefficiencies, which can help organizations reduce
their carbon footprint and achieve decarbonization goals.

Enhanced decision-making. An in-depth analysis of the data sets is of value
to gain insights into optimizing electricity usage, operation, and generation,
which can help organizations make better-informed decisions about actions
that must be taken.

1.3 Objectives and Achievements

In this thesis, we focus on some of the above-mentioned challenges and objec-
tives. Ourmain achievement is providing methodological solutions that address
the objective of Improved performance and reliability of the power system. All
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five included papers deal with this objective.

The secondary achievements are to provide methodological solutions to objec-
tives related with

• Renewable integration
• Decarbonization
• Cost savings

In addition,we also touch upon challenges related to ensuring high data quality
by having an in-depth understanding of the task at hand and discuss why lack
of analytics knowledge is an important challenge that must be addressed to
enhance decision-making. Fig. 1.3 provides an overview of how the different
publications relate to the objectives.

Figure 1.3: Categorization of publications according to the objectives they deal with.

By addressing these challenges and objectives using energy analytics ap-
proaches, this thesis aims to provide solutions to obtain the goal of Enhanced
decision-making in the electric power sector.

1.4 Proposed approaches

The work presented in this thesis is motivated by the challenges the energy
sector is facing; how to ensure a reliable electricity supply when transitioning
the electricity system toward full decarbonization. The transformation from
an electricity system mainly dependent on fossil-fuel-based technologies to
an electricity system dominated by renewable energy technologies requires
a deeper understanding of the data that is being logged in the energy sector.
Advanced data science techniques such as machine learning and optimization
have become promising approaches to gain additional insight into the data
being logged, thus enable enhanced decision-making to decarbonize the electric
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power sector. Using such techniques to analyze and gain deeper insight into
the available data has also gained increased attention in other sectors, such as
within the healthcare (Mikalsen, 2019) and finance sector (Dixon et al., 2020),
to name a few examples.

In this thesis, we have analyzed datasets related to the energy sector. However,
we take a general approach to these problems by using models that can be
used in a wide range of applications. And thus, the approaches we come up
with in this thesis are not restricted to applications within the energy sector
only and can potentially be applied to any sector facing similar challenges.
Our main goal in this thesis is to show the value of understanding the data
available in a particular sector and use the increased knowledge to enhance
decision-making.

In this thesis, the key solution to our main objective (Improved performance and
reliability of the power system) is to use machine learning methods to make pre-
dictions and use optimization methods to identify cost-effective pathways to
decarbonize the power system. In Paper I and Paper III, we used machine learn-
ing methods to predict electricity demand and generation. In Paper I, we used
different machine learning models to predict the electricity demand, which
is important when planning how to manage and optimize available energy
resources. In Paper III, we analyzed the supply side of the electricity system by
making probabilistic forecasts of the expected electricity generation from wind
power plants. Wind power has a highly intermittent generation profile, so mak-
ing probabilistic forecasts to account for uncertainties in a given prediction is
important. Making accurate predictions that account for possible uncertainties
is becoming important in the increasingly liberalized electricity market, where
renewable energy contracts and auctions heavily rely on forecasting future
power generation. This paper (Paper III) also addressed the challenge imposed
by the increased share of Renewable integration in the electricity system.

It is of critical importance to have an electricity distribution grid that supplies
consumers with electricity reliably. In Paper II, we addressed the problem of
unscheduled power disturbances, which cause severe consequences for cus-
tomers and grid operators. We used machine learning classification techniques
to predict the onset of a fault. We adopted a recent technique to interpret the
decision of the machine learning model, which allows for gaining detailed in-
sights into the occurrence of a specific fault. Paper II also addresses the cost
savings objective in the thesis, as identifying causes for failures in the power
system can enable the distribution system operators to implement strategies
to prevent and mitigate power disturbances which reduces the cost for both
customers and the grid operators.

As variable renewable energy sources comprise a growing share of total electric-
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ity generation, energy storage technologies are becoming increasingly critical
for balancing energy generation and demand to ensure a reliable power supply
to consumers. In Paper IV and Paper V, we address this challenge by using
optimization techniques to model how storage can enable full decarbonization
of emerging electric power systems that are heavily dependent on renewable
energy technologies. Since the optimization schedule requires that we meet
the demand for electricity at all times, Paper IV and Paper V also deal with
the challenge related to Improved performance and reliability. A major chal-
lenge of the current energy storage technologies is the capital cost which is too
high. Therefore, we model and optimize an existing thermal energy storage
unit with estimated capital costs that are sufficiently low to enable large-scale
deployment in the electric power system. Paper IV address the challenge of
decarbonization and renewable integration since we model the electricity sys-
tem under different scenarios where CO2 emissions must be reduced. Such
power systems are forced to depend more on renewable energy technologies
such as wind and solar power. We deal with challenges Cost savings, Renew-
able integration, Decarbonization, and Improved performance and reliability in
Paper V. Here we model hypothetical future decarbonized power systems that
are dominated by wind and solar power technologies (Decarbonization and
Renewable integration) and analyze how emerging storage technologies can be
cost-optimized engineering-wise to reduce the cost for decarbonization (Cost
savings).

1.5 Brief summary of papers

Paper I. In this paper, we present a framework for selecting the appropriate
model by comparing the accuracy between statistical- and machine learning
methods when predicting the electricity demand. We compare the prediction
accuracy on several prediction horizons to gain insight into which model is
most accurate on short-and medium-term load forecasts. Then we evaluated
each model’s transferability, which is important when predicting the demand
where historical time series data may be limited. The findings show that the
machine learning models achieved the most accurate predictions overall and
exhibited good transferability as they managed to predict the load at different
locations that were not accounted for during training.

Paper II. This paper presents a novel method to predict and interpret the causes
of faults in the power distribution network. We compare linear and non-linear
machine learning classification techniques to predict faults in an electric grid
that experiences faults whose sources are unknown. We find that both the lin-
ear and non-linear classifiers achieved good classification performance, which
shows that we constructed a data set that consists of features that explain well
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the power disturbances. To gain detailed insight into which features explain
specific fault occurrences, we adopted a recent technique to interpret the de-
cision process of a deep learning model called Integrated Gradients. This is
important knowledge for distribution system operators when implementing
strategies to prevent and mitigate power disturbances.

Paper III. Improving prediction accuracy is of fundamental value for the en-
ergy market that relies on accurate forecasting capabilities. Here we addressed
the problem of predicting the electricity generation from wind power that has
a highly intermittent nature, increasing the uncertainty about future power
generation. To account for the increased uncertainty, we computed probabilis-
tic forecasts to generate samples of possible outcomes. Since the electricity
generation from wind power heavily depends on external weather factors, we
compared the prediction performance with different covariates. We found that
the accuracy of the predictions improved vastly when we included the most
optimum set of covariates. The work shows the importance of understanding
which variables must be included to improve the prediction performance.

Paper IV. In this paper, we used a least-cost optimization model to analyze the
value of using energy storage units to balance the electricity generation from
solar power and thus provide reliable power to the grid. We modeled a thermal
energy storage concept with estimated capital costs that are sufficiently low
to enable large-scale deployment in the electric power system. The modeling
was performed under a baseline case with no emission constraints and under
hypothetical scenarios in which CO2 emissions were reduced. The results show
that the power available to the grid from our hypothetical solar and storage
unit increases when the CO2 emissions are reduced. The proposed approach
shows how adding solar + storage systems to electric grids can contribute to
the efficient stepwise decarbonization of electric power systems.

Paper V. In this paper, we build upon the work in Paper IV. We modeled the
same storage concept based on thermal energy. In this work, we optimized the
engineering design of the thermal energy storage to obtain the highest cost re-
duction compared with a baseline scenario where the storage unit is excluded.
The findings show that the electric power system becomes approximately 3%
cheaper than the baseline scenario for the thermal storage unit that is fully
optimized engineering-wise. By modeling electric grids in different geographi-
cal regions, we find that the optimized engineering design depends on specific
market conditions. The findings provide important insight into optimizing the
value of emerging storage technologies to enable cost-effective decarbonization
of the electric power system.
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1.6 Organization of the thesis

The remainder of this thesis is organized into three parts; methodology and
context, summary of research, and included papers. The methodology and
context part contains two chapters. Chapter 2 describes the different sections
of the electricity system and explains the value of in-depth analysis of the
datasets generated in each power system sector. We also provide an example
showing the value of using energy analytics approaches to identify ways to
utilize renewables to cover a specific demand critical to decarbonizing the
electric power system. Chapter 3 presents machine learning and optimization,
which constitute the theoretical background for the research presented in this
thesis. The machine learning time series section is relevant for Paper I and
Paper III, machine learning classification is relevant for the work in Paper II,
and the final section on optimization of electric power systems is relevant for
Paper IV and Paper V.

In the summary of the research part,we provide a short overview of the scientific
contribution of each paper in this thesis. We also add some concluding remarks,
limitations of the works, and a discussion on future directions. The research
papers are included in Part III of this thesis.



Part I

Methodology and context
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2
Energy Analytics: In-depth
analysis of the electric
power system
Electric power systems are complex infrastructures, including power genera-
tion and transmission grid lines that supply electricity to homes, industries,
and other connected customers (Blume, 2016). The electric power system is
a dynamic system that must be carefully managed to ensure a reliable supply
of electricity to customers. This involves balancing the supply and demand of
electricity in real-time, ensuring the system’s stability, and maintaining a safe
and secure power supply. Fig. 2.1 provides a schematic overview of the main
elements of an electric power system.

In Fig. 2.1, electric power is generated using technologies such as Coal, Nat-
ural Gas, hydroelectricity, wind, and solar power. The generated electricity is
then transported to customers through transmission grid lines, transporting
high-voltage power over long distances. Power is transported to a substation
that converts electricity to a lower voltage. Low-voltage power is directly trans-
ported to customers through the distribution grid lines. All elements in the
electricity system must cooperate perfectly to avoid failures, resulting in crit-
ical power interruptions for customers. To reduce and mitigate the risk, it is
critical to have an in-depth understanding of the data logged in different sec-
tions of the electricity system.

15
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Figure 2.1: Illustration of different components of the electricity system. Electricity is
generated using technologies such as e.g., solar, wind, natural gas, or hy-
dropower before the electricity is transported through power lines. Then
the power is further distributed to end users (e.g., households or indus-
tries). Energy storage technologies can optimize the operation of the elec-
tric power system by charging in periods with excess generation and dis-
charging in periods with a surge in demand. Energy analytics is an essen-
tial part of the electricity system to gain insight into the generated data
and thus enhance decision-making to optimize the operation.

To achieve global emission reduction targets, there is an urgent need to trans-
form the electricity system from the current fossil-based system to an electricity
system powered by Renewable Energy (re) technologies with no associated
emissions (IPCC, 2018). However, this transformation makes ensuring a reliable
electricity supply to customers increasingly challenging owing to the increased
dependency on RE technologies, such as wind and solar power, which have
intermittent and uncontrollable generation profiles (Eikeland, Hovem, Olsen,
Chiesa, & Bianchi, 2022; Zhou, Wang, Zhou, Clarke, & Edmonds, 2018; J. Yin,
Molini, & Porporato, 2020). Consequently, to ensure reliable electricity supply
in decarbonized power systems, there is an urgent need to understand better
the operation of electric power systems that are increasingly dependent on re
technologies.

At the same time, as the electricity system has become increasingly complex to
operate, there has been rapid development in the field of data science, where
advanced machine learning and optimization techniques have become popular
to gain more insight into energy systems (Mosavi et al., 2019; Donti & Kolter,
2021; Duchesne, Karangelos, & Wehenkel, 2020; Ahmad & Chen, 2020). Using
such approaches to analyze energy-related datasets is referred to as Energy
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Analytics which is the main topic of this thesis.

In the following, more detailed information on the different sections of the
electricity system, with examples illustrating the importance of an in-depth
analysis of the various sections. Such an analysis allows a better understanding
of the available data within each sector. This is critical when deciding how to
proceed by applying the correct machine learning and optimization methods
to solve the task. Consequently, a good understanding of the available data
enables the possibility to develop studies that can enhance the decision-making
to optimize the operation of the electric power system.

2.1 Electric power generation

Electric power generation is the process of converting various forms of en-
ergy into electricity that can then be transmitted and distributed to customers
(Grigsby, 2007). There are several ways to generate electricity, each with ad-
vantages and disadvantages. Some main types of power generation include
fossil fuels (coal, natural gas, and oil), nuclear power, biomass, and renewable
technologies, such as hydroelectric, biomass, wind, and solar power.

Reducing carbon emissions requires transforming from fossil fuel-based tech-
nologies to re technologies with no associated emissions. The share of wind
and solar energy in the electricity system has increased significantly and is
believed to be the primary source of electricity supply in the future (Eriksen
et al., 2022). In addition, to achieve zero emissions, the capital costs of wind
and solar power have become lower than those of fossil-fuel-based technolo-
gies such as coal and natural gas, which has contributed to the rapid growth in
installation in recent years (Kåberger, 2018; Apostoleris, Sgouridis, Stefancich,
& Chiesa, 2018). In this thesis, we analyzed data from re technologies that are
believed to dominate future and decarbonized electric power systems. More
specifically, we analyzed electricity generation data from wind and solar power
to identify their applicability to play an increasing role in future decarbonized
electricity systems.

The energy market relies on the demand and power generation forecasting
capabilities that must be maintained in a dynamic balance. In Paper III, we
tackled the challenge of predicting the expected electricity generation from
wind power,which has a highly intermittent nature, using probabilistic forecasts.
We performed a detailed analysis of the specific wind power plant we studied to
understand better which features affect the generation of this particular power
plant. In addition, we discussed with experts within the field and eventually
constructed a dataset that consisted of the features that mainly contributed to
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provide the most accurate prediction result.

Here we performed an in-depth analysis of the specific power plant and gained
knowledge about which covariates must be included in the data set. Interest-
ingly we achieved higher prediction performance once all the covariates were
included. In addition, by including information regarding the technical lim-
itations of the wind power plant, we gained even more accurate prediction
results.

Another example where energy analytics were used to identify the applicability
of using re in an electric power system is described in Section 2.5. Here we
tackled the challenge of intermittent electricity generation from solar energy by
matching the generation profile to meet a specific demand for electricity.

2.2 Consumers of electricity

Electricity consumers are households, businesses, and organizations that use
electricity to power their homes, buildings, and operations. Residential cus-
tomers are individuals and households that use electricity to power their homes
and appliances. They typically have a low electricity consumption compared
to commercial and industrial customers, and the consumption follows a typical
household behavior with high consumption during morning hours before the
individuals are leaving for work, low consumption during mid-day, and an in-
creased consumption during the afternoon due to cooking of dinner and family
activities.

Industrial customers have a much greater electricity demand and have a differ-
ent demand pattern than household consumers. Here energy consumption is
affected by the need for the products and services the industry serves.

First, to gain better insight into the differences between the household and
industry sectors, in Paper I, we transformed the datasets from the time domain
to the frequency domain using Fourier transformation (Foldvik Eikeland et al.,
2021a). In Paper I, we analyzed energy data from the household and industry
sector to predict expected energy demand in both sectors, which is of essential
importance for developing strategies to manage and optimize available energy
resources. The uppermost graph in Fig. 2.2 shows the typical energy consump-
tion frequency for the industry that was analyzed in Paper I. This industry has
a peak frequency of 24 and 165 hours, which aligns with the industry’s daily
(24 hours) and weekly (165 hours) operations. On the other hand, the house-
hold frequency that is illustrated in the lowermost graph in Fig. 2.2 shows
that the households that are analyzed have a primary frequency at the daily
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cycle (24 hours), but also at 12 hours, which correlates well with the typical
household everyday life with routines as breakfast every morning and dinner
every afternoon. Analyzing the typical seasonality in electricity consumption
using pre-processing techniques such as Fourier transformation is critical to
understand the available data better and interpreting the results.

Figure 2.2: Difference in typical household and industry consumption periodicity. The
uppermost graph indicates the industry sector, which clearly has a daily
and weekly periodicity, while the lowermost figure shows the household
sector has a clear daytime and daily periodicity. The frequencies for the
industry and household sectors are from the time series in (Foldvik Eike-
land et al., 2021b)

2.3 Energy storage

Energy storage technologies are units that store excess electricity to cover a
demand at a later time. The goal of energy storage is to make energy available
on request, regardless of energy availability from re technologies. Therefore,
to enable full decarbonization for the electric power system heavily dependent
on re sources, energy storage is an essential technology that must be a part
of the energy transition to provide electricity to customers in a reliable way
at all times. There are several types of energy storage technologies available,
including Li-ion batteries, Pumped Hydroelectric Storage (phs), Compressed
Air Storage (caes), Hydrogen, and Thermal Energy Storage (tes) (Armstrong
et al., 2022).

However, a significant drawback for the existing energy storage technologies
is that they are geographically constrained (phs and caes) or have a too
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high capital cost which makes them unaffordable for the multi-day storage
objectives required to completely decarbonize the grid (e.g., Li-ion batteries)
(Braff, Mueller, & Trancik, 2016; Ziegler et al., 2019; Mallapragada, Sepulveda,
& Jenkins, 2020). Studies suggest that achieving cost-efficient multi-day stor-
age requires a capital cost reduction to US$3-30 kWh−1 (Ziegler et al., 2019;
Albertus, Manser, & Litzelman, 2020).

This thesis addresses this problem by analyzing a storage concept based on
Thermal Energy Storage tes, called Thermal Energy Grid Storage (tegs). This
technology has shown promising potential to achieve sufficiently low capital
costs in the multi-day storage regime. tegs stores the electricity as heat rather
than electrochemically and then converts it back to electricity when needed
(Henry, Prasher, & Majumdar, 2020).

To charge the tegs unit, excess electricity is used to fuel resistive heating
materials (graphite), transforming the electricity into heat at a temperature
exceeding 2500◦C. Then, the energy is transferred to graphite conduits via
thermal radiation. Inside the conduits, liquid tin is used as the heat transfer
fluid. The tin is heated from 1900◦C to 2400◦C, transforming the energy input
into sensible heat and increasing its enthalpy. The liquid tin is continuously
pumped through the conduits and then conveyed to the graphite blocks in
the storage unit. When the 2400◦C tin is pumped through the graphite blocks
via conduits, it heats the graphite blocks from 1900◦C to 2400◦C via thermal
radiation. Consequently, this cools the tin back to 1900◦C. The tin is then
reheated by being pumped back through the resistance heaters. This process
constitutes the charging process until the graphite blocks are heated back to
peak temperature. The storage unit should have a sufficiently large thermal
mass to enable the storage unit to be charged for long periods with low heat
loss (between 1% and 10%). The heat loss is an important design parameter
which we optimize in Paper V with respect to minimize the cost of the tegs
unit. During discharging, liquid tin is pumped through the graphite storage to a
power block. The power block consists of graphite conduits with unit cells. Each
unit cell of piping creates a rectangular cavity lined with tungsten foil. This is
a diffusion barrier to prevent graphite deposition onto Thermophotovoltaics
(tpv) cells. Inside each cavity, the tpv cells can be lowered into the unit cell
cavity. Here the tpv cells will be illuminated with the light emitted by the
tungsten foil, which is heated by the light emitted by the graphite conduit
carrying the tin. This net transfer of energy converts a large fraction (> 50%)
of the energy to electricity, which causes the tin’s temperature to decrease to
1900◦C before being pumped back to the graphite storage unit, where the tin
is reheated again during the charging phase. In this way, the tegs unit is
a rechargeable grid-scale thermal battery that can store energy as heat and
supply electricity to the grid on demand.
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A recent development at lab-scale has enabled a roundtrip efficiency of 50% of
the tegs unit (LaPotin et al., 2022). The roundtrip efficiency of the tegs unit
is is entirely determined by the tpv conversion efficiency (i.e., the discharge
efficiency from heat to electricity) (Amy, Seyf, Steiner, Friedman, & Henry,
2019; Kelsall, Buznitsky, & Henry, 2021). The charging efficiency (from heat to
electricity) is assumed to be 100%. Technology developments of the tegs unit
at lab-scale has enabled the potential to achieve a projected cost below US$ 20
kWh−1 at gigawatt scales which is sufficiently low to completely decarbonize
the electric power system (LaPotin et al., 2022; Amy et al., 2019; Kelsall et al.,
2021). Fig. 2.3 provides a schematic illustration of the tegs concept. A more
detailed description of the tegs technology is given in (Kelsall et al., 2021;
Amy et al., 2019).

Figure 2.3: The tegs technology concept. During charging, electricity from any gen-
eration technologies is used to power resistive heating materials (such as
graphite or tungsten), transforming the electricity into heat at extremely
high temperatures. During discharging, the energy (i.e., stored heat) is
transferred to a power block consisting of Multi-Junction Thermophoto-
voltaic cells that convert the stored heat to electricity on demand. The
illustration is from (Kelsall et al., 2021).

In Paper IV and Paper V, we studied how using tegs can enable cost-efficient
decarbonization of the electric power system. We gained an in-depth under-
standing of the techno-economic features of the tegs concept. We combined
the information about the capital cost and technical specifies with a cem to
investigate which engineering design is the most optimum one to utilize in the
grid. We also find that for future electric power systems heavily dependent on
weather conditions, the storage design requirements vary depending on the
specific market conditions for each geographical region.
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2.4 Transmission and distribution grid lines

The electric grid lines are divided into transmission and distribution lines. Trans-
mission is high-voltage lines that transport electricity from power plants to
sub-stations where the power is transformed to low-voltage lines, representing
the distribution lines (Grigsby, 2007). The distribution system is the final step
of electricity transportation towards the end-users. Grid lines play a crucial
role in the electric power system. They allow electricity to be transported over
long distances from power plants to end-users where the electricity is needed.
They also connect different regions, sharing electricity across different states
and regions. This makes the electric power system more flexible and resilient,
allowing electricity to be moved from areas with surplus generation to areas
with higher demand.

The Transmission and distribution lines are typically owned and operated by a
Transmission System Operator (tso), Distribution System Operator (dso), or
Independent System Operator (iso) (Merino et al., 2021; Greer, 2012). They
are responsible for the maintenance and operation of the grid. They also have
a role in planning, developing, and expanding the grid lines. Transmission and
distribution lines face challenges such as aging infrastructure and integrating
more renewable energy sources. The transmission system needs to be upgraded
and expanded to accommodate the growing demand for electricity (Clifford,
2023).

In this thesis, we focus on a specific grid in the Arctic region of North Norway,
which faces problems with providing reliable power to its customers (Paper II,
Paper 6, and Paper 8). More specifically, the customers are at the end of an
old radial distribution network. The current distribution network has problems
meeting the growing demand for electricity. This has increased the number of
customer power interruptions, which has significant consequences for a commu-
nity that relies on a stable power supply. A large portion of this thesis addresses
the challenge of identifying potential causes for failure in the power system
using energy analytics methodologies. In Paper 6, we collaborated closely with
the dso that operates the grid that was studied. We performed an in-depth
grid analysis and were provided with inputs from the dso, who had expertise
and experience about potential causes for failures in the grid. Based on the
research and information from experts, we constructed a dataset pertaining
to the grid topology, the area’s topography, the historical meteorological data,
and the historical energy consumption/production data.

Gaining a deeper understanding of the problem to construct the correct dataset
that could explain potential causes for grid failures proved an essential part
of this study as we managed to predict the failure occurrence in the power
grid with high performance. In Paper 8 and Paper II, we used a similar dataset
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construction methodology as in Paper 6. The outcome showed that we also
managed to predict fault occurrence using different prediction models.

2.5 Example of energy analytics applications

Lastly, in this section, we show an example of how energy analytics approaches
can address a well-known problem of utilizing solar power in Arctic regions
at high latitudes, namely the lack of solar availability during winter. However,
there is a high solar availability during the summertime due to the midnight
sun above the polar circle. Therefore, in Paper 7, we analyzed the yearly gen-
eration profile from solar energy to propose a system designed specifically for
applications that are naturally matched to the solar resource. More specifically,
we illustrated the value of using tailor-made photovoltaic systems to satisfy a
specific Arctic demand: a booming cruise ship tourism industry in the north of
Norway (Skinner, 2018). The Arctic has become an increasingly popular tourist
destination in recent years, arguably due to 1) warmer temperatures and 2)
increasing demand for the so-called “last chance” tourism as a consequence of
the impact of climate change (Palma et al., 2019). Cruise Ship (cs) tourism is
one of the fastest-growing economic sectors in some Arctic areas. The pollution
associated with such growth of tourism activity aggravates the local air quality
while increasing greenhouse gas emissions (D’Aprile, 2018).

To reduce emissions, the future cs industry is expected to retrofit ships to have
the possibility to connect to shore power facilities. This could contribute to the
electrification of css while harbored. In Paper 7, we proposed a system where
cs is connected to shore power facilities that are powered by solar energy
systems to provide renewable power to the cs that are harbored. Fig. 2.4
illustrate our proposed system design.

Our study concludes that solar energy generation could be a solid contribution
to charging cs in the summer with no need for generation and transmission
investments. Using energy analytics techniques enabled us to gain an in-depth
understanding of the data concerning solar energy generation. We identified
new ways of utilizing solar energy to cover a specific demand critical to decar-
bonize the electric power system.
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Figure 2.4: Typical system for connecting a ship to shore power when in port. This
system consists of a power supply source where the energy is transported
to a frequency/transformer converter to connect onboard. On the ship, the
power is transformed and distributed to the different components from a
control panel. The illustration is from our work in (Eikeland et al., 2020).



3
Gaining energy insight with
machine learning and
optimization
This chapter presents background theory on ml and optimization methods to
gain insight into the energy-related datasets analyzed throughout the thesis
papers. Machine learning is a subset of ai that allows models to train and
learn from given input data and make predictions or decisions based on the
specific task at hand (Alpaydin, 2020; Jordan & Mitchell, 2015). Several types
of ml models have become popular to use in a wide range of applications.
This thesis focuses on using different kinds of ml models to analyze energy-
related datasets. Another data-science technique that has become popular to
use to gain insight into energy-related data sets is optimization. Optimiza-
tion techniques are methods to find the most optimum solution to a problem
within a given set of constraints. Optimization techniques have become popu-
lar in various issues, including resource allocation, scheduling, transportation,
and production planning. In this thesis, we are using least-cost optimization
techniques to model the electric power system with respect to optimizing the re-
source allocation of electric generation technologies to achieve a power system
with the lowest cost under different decarbonization scenarios.

25
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3.1 Machine learning time series predictions

A time series is a collection of data points collected at regular intervals over time.
Time series data is popular to analyze to identify patterns and trends in the
data and to make predictions about future values based on past observations.
This section presents background theory into ml time series predictions used
in Paper I and Paper II. In this thesis, we have predicted the electricity demand
from household and industry consumers and the electricity generation from
wind power.

Several types of time series prediction methods exist, and two common tech-
niques to predict time series are ml-based methods or statistical methods.
Fig. 3.1 provides an overview of the different techniques used to predict the
electricity demand in Paper I.

Figure 3.1: Overview of methodology for making time series predictions with
statistical-and ml models. The advantages and disadvantages of each
approach are given. The illustration is from our work in (Foldvik Eikeland
et al., 2021b).

Our work in Paper I found that ml techniques outperform statistical methods
when making time series predictions on energy demand data. Other work in
the literature also highlights thatmlmodels are better suited to make accurate
predictions of time series of energy data (Gasparin, Lukovic, & Alippi, 2022;
Bianchi, Maiorino, Kampffmeyer, Rizzi, & Jenssen, 2017). Therefore, this thesis
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focuses on time series prediction using ml methods. More specifically, we use
Artificial Neural Network (ann), a ml architecture that has shown promise in
making accurate predictions of time series data.

3.1.1 Artificial Neural Networks

anns are machine learning networks composed of layers of interconnected
nodes, or neurons, that process and transmit information. The Neural Network
(nn) is divided into three layers: The input, hidden, and output layers (see
schematic overview in Fig. 3.2). The input layer provides the input data that the
ann should train on. In the hidden layer, the ann learns from the given input
data and trains the ann algorithm by adjusting its connections and weights.
Once trained, the network makes predictions or decisions based on the given
task in the output layer. An ANN with several hidden layers is called a Deep
Neural Network (dnn). Fig. 3.2 provides a schematic overview of a nn with
three hidden layers.

Figure 3.2: Schematic overview of a typical artificial neural network. First, input data
is given. In the hidden layer, the nn processes the input data by applying
weights to the inputs and produces outputs through an activation function
(e.g., sigmoid,ReLU, or tanh). Ann can have one ormore layers depending
on the specific task. An nn with two or more hidden layers is referred to
as a deep neural network. The output layer is where the result is presented
for the particular problem.

anns are typically divided into Feedforward Neural Networks (fnn), Convolu-
tional Neural Networks (cnn), Recurrent Neural Networks (rnn). The papers
included in this thesis mainly focus on using fnns and rnns to analyze energy
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datasets. Therefore, we do not include a discussion about cnns in this chapter.
More information about cnns can be found in (Albawi,Mohammed, & Al-Zawi,
2017), where the authors describe the cnn model. In addition, the authors in
(Gu et al., 2018; Li, Liu, Yang, Peng, & Zhou, 2021) provided a comprehensive
survey of recent development and applications of cnns.

In a feedforward NN, one or more layers of neurons are connected to the next
layer in a single direction without feedback connections. The input data are
fed into the first layer, which processes it and passes it to the next layer (Bebis
& Georgiopoulos, 1994). The output of the last layer is the final output of the
network. fnns are widely used for tasks such as classification and regression,
in which the input is mapped to a corresponding output. The error between
the predicted and actual output is calculated and used to adjust the weights of
the connections between the neurons. The network is trained using a process
called backpropagation (Sazli, 2006). The architecture of an fnn is defined by
the number of layers, the number of neurons in each layer, and the activation
function. The fnns’ most common activation functions are sigmoid, Rectified
Linear Unit (relu), and hyperbolic tangent (tanh) (S. Sharma, Sharma, &
Athaiya, 2017). The advantages of fnns include their ability to learn complex
nonlinear relationships between inputs and outputs, their ability to generalize
new data, and their flexibility regarding the number of layers and neurons.
However, they can be prone to overfitting if the network is too complex or the
training data are too limited (Schittenkopf, Deco, & Brauer, 1997).

rnns were designed to handle data sequences like time series, where each
input has a temporal relationship with the previous inputs. Unlike fnns, rnns
have feedback connections that allow them to pass information from one time
step to another (Medsker & Jain, 2001). The key feature of an rnn is the
presence of a hidden state that acts as a memory of the previous inputs. The
hidden state is updated at each time step using a recurrent function that uses
the current input and the previous hidden state as the input (Bianchi et al.,
2017). The output of the rnnat each time step is a function of the current
input and hidden states.

rnns are helpful for tasks such as language modeling (Graves, 2013), speech
recognition (Graves, 2011), and machine translation (Cho et al., 2014), where
the output depends on the context of previous inputs. In addition, they
have become increasingly popular for use in time-series prediction tasks be-
cause they provide state-of-the-art performance (Salinas, Flunkert, Gasthaus,
& Januschowski, 2020; Bianchi et al., 2017). The effectiveness of rnns in han-
dling time series comes from their ability to learn an input sequence using a
recurrent function. They can also be trained using backpropagation through
time, a variation of the backpropagation algorithm used in fnns (Rumelhart,
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Hinton, & Williams, 1985).

In this thesis, the rnns have achieved the best overall performance in our
prediction tasks, and we hereby provide more detailed descriptions of a few
popular models we have used in our thesis.

Elman Recurrent Neural Network (ernn) is the most standard rnn
(Gasparin et al., 2022). The ernn was proposed by Jeffrey L. Elman (Elman,
1990). Here, one sequence element is processed simultaneously. At each times-
tamp 𝑡 , the input layer processes information at x[t] 𝜖 R𝑁𝑖 , where 𝑁𝑖 is the
number of nodes in the input layer. The input time series x has a total length
of 𝑇 . In the input layer, each component is summed by a bias vector b𝑖 𝜖 R𝑁ℎ ,
where 𝑁ℎ is the number of nodes in the hidden layer. Each component x[t] is
then multiplied by the weight matrixWℎ

𝑖 𝜖 R
𝑁𝑖×𝑁ℎ . Similarly, the internal state

h[t-1] 𝜖 R𝑁ℎ from the recurrent time is summarized using a bias vector bh 𝜖
R𝑁ℎ before multiplying with the weight matrix Wℎ

ℎ
𝜖 R𝑁𝑖×𝑁ℎ of the recurrent

connections. The transformed input and past network state are then combined
and processed by the neurons in the hidden layers (Foldvik Eikeland et al.,
2021b). Finally, the output of the network at timestamp 𝑡 is

y[𝑡] = 𝑔(W𝑜
ℎ
(h[𝑡] + b𝑜)), (3.1)

where the output is computed through the transformation 𝑔(·) of the matrix
of the output weights W𝑜

ℎ
𝜖 R𝑁𝑟 ×𝑁𝑜 (N𝑜 is the number of nodes in the output

layer). The output weights are applied to the the current state h[t] sum, and
bias vector b𝑜 𝜖 R𝑁𝑜 (Bianchi et al., 2017). One limitation of ernns is the
vanishing gradient problem (Hu, Huber, Anumula, & Liu, 2018), in which the
gradient of the loss function with respect to the weights becomes very small as
the sequence length increases. This makes it difficult to train rnns to capture
long-term dependencies. Several variations of rnns have been proposed to
address this problem, including Long Short-Term Memory (lstm) (Hochreiter
& Schmidhuber, 1997) and gated recurrent units Gated Recurrent Unit (gru)
(Chung, Gulcehre, Cho, & Bengio, 2014), which use specialized recurrent units
that can retain information over longer periods.

The lstm architecture is comparable to the ernn architecture. The com-
position of the inner module, where lstm implements a more sophisticated
internal processing unit called a cell, is the primary distinction between lstm
and ernn (Bianchi et al., 2017; Gasparin et al., 2022). The lstm uses a gated
system to manage the information in this case. The ability of gated networks
to resolve the vanishing gradient problem by not imposing any bias toward
recent observations is its main characteristic and the reason they are so popular.
As a result, the lstm may keep its internal memory unchanged for extended
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periods (Bianchi et al., 2017; Gasparin et al., 2022)

grus are simplified versions of lstms. In contrast to lstm networks, gru
networks combine and merge the forget and input gates into a single update.
This update controls the degree to which each hidden unit could remember
or forget. In contrast to the lstm, which has three gates, the gru network
only has two gates (Bianchi et al., 2017; Gasparin et al., 2022). Studies have
demonstrated that grus can perform similarly to lstms but typically train
more quickly due to less computational intensity (Chung et al., 2014; W. Yin,
Kann, Yu, & Schütze, 2017).

Probabilistic time series forecasting

Making probabilistic forecasts to account for possible uncertainties in a given
prediction has received increasing attention in the literature (Hong & Fan,
2016; Zhang et al., 2014; Mashlakov et al., 2021). In Paper III, we used a special
architecture of rnns to compute a probabilistic forecast of expected electricity
generation from wind power. More specifically, we employed an autoregressive
rnn called DeepAR proposed by (Salinas et al., 2020). The DeepAR model
learns a globalmodel from the historical data of all time series in the dataset and
produces probabilistic forecasts by incorporating a Negative Binomial likelihood
for count data. The internal units in the DeepAR model that process the input
data can be lstm orgru. Fig. 3.3 provides a schematic overview of the DeepAR
model with gru or lstm as internal units.

3.2 Machine learning classification

Instead of time-series predictions, it is possible to predict the class or category
of an observation based on a set of input features. Such predictions are referred
to as classification (Kotsiantis, Zaharakis, Pintelas, et al., 2007). This section
presents the background theory of the ml classification techniques used in Pa-
pers II, 6, and 8. In these studies, we used ml classification models to predict
the onset of faults in the distribution grid lines. In these studies, the classifica-
tion datasets consisted of two labels: one representing a fault occurrence and
one representing normal conditions where the grid operates as it should.

When classifying datasets, the classification can be linear or nonlinear. The
differences between linear and nonlinear classification are shown in Fig. 3.4.

Linear classification works by finding a linear boundary (hyperplane) separat-
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Figure 3.3: The DeepAR architecture. Here the time series and covariates are concate-
nated (CAT) and fed into the internal units (lstm or gru). The internal
units can have one or more layers depending on which architecture gives
the highest prediction performance. The output layer’s mean and standard
deviation are computed to generate predictive samples. The illustration
is from (Eikeland, et al., 2022).

Figure 3.4: Difference between classes that are linearly and non-linearly separable.

ing different classes of input data (Konishi, 2014). In linear classification, the
input data are represented as a set of features, and each feature is assigned a
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weight. The model learns the optimal weights that maximize the separation
between different classes. The linear hyperplane can then be used to predict
the class of the new data points. Linear models are useful because they are
used to construct a decision boundary directly into the input space. This allows
the interpretation of the decision process of the classifier (Eikeland, Bianchi,
Holmstrand, Bakkejord, & Chiesa, 2022). Nonlinear classification is when the
hyperplane between classes is not linear. Nonlinear classification models are
required when input data are complex and cannot be separated by a linear
hyperplane. These models can capture more complex patterns and relation-
ships in the data, allowing for more accurate classification if the input data are
complex and cannot be separated linearly. However, such complex nonlinear
relationships in the data can make the interpretation of the decision process
of the classifier model more difficult (Montavon, Lapuschkin, Binder, Samek,
& Müller, 2017). In this thesis, we adopt recent techniques to interpret the
decision process of nonlinear classifiers.

Several types of linear and nonlinear classification techniques are popularly
used in ml, and they are outside the scope of this thesis to describe all ml
classification models. In this thesis, we provide background theory for the clas-
sification methods mainly used in Papers II, 6, and 8. The linear and non-linear
classification models that were in this thesis are given in Tab. 3.1

Table 3.1: Classification models used in this thesis

Linear classifiers
Logistic Regression
Ridge Classifier
Linear Support Vector Classifier (LinearSVC)
Non-linear classifiers
Radial Basis Function SVC (RBFSVC)
Multi-level Perceptron (MLP)

The following sections provide background theory into the different mod-
els.

3.2.1 Linear classifiers

Logistic regression models use a logistic function to approximate the proba-
bility of a binary outcome (i.e., whether an event occurs or not). The Logistic
regression model is used to classify data points into one or two distinct classes
based on a set of input features (Bishop & Nasrabadi, 2006; Harrell et al., 2001).
Logistic regression multiplies the input features by their respective weights or
coefficients. The resulting linear combination is passed through a logistic (sig-
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moid) function that maps the output to a probability value between 0 and 1.
The logistic function was computed as follows:

𝑃 =
1

1 + 𝑒−𝑥 , (3.2)

The maximum likelihood estimation function is a popular metric for computing
the conditional probability for classification problems. The logistic functions
show that if probability P exceeds 0.5, the predictions are classified as class 0.
Otherwise, Class 1 is assigned (Belyadi & Haghighat, 2021).

Ridge Classifiers converts the target values into {-1, 1} and then treat the prob-
lem as a regression task (Bishop & Nasrabadi, 2006). Subsequently, a ridge
regression model is constructed to predict the target variable. Unlike Logistic
regression, where the maximum likelihood estimation is the loss function, the
ridge model uses a mean squared error loss function with L2 regularization as
a penalty term. The Ridge regression model is also known as the Tikhonov reg-
ularization (Golub, Hansen, & O’Leary, 1999). If the predicted value is greater
than zero, the resulting class is +1, and the negative predicted class is assigned
as -1.

Linear Support Vector Classifier (linearsvc) is a special type of a Support
Vector Machine (svm) endowed with a linear kernel (Boser, Guyon, & Vap-
nik, 1992). the svm aims to find a hyperplane in an N-dimensional space that
distinguishes data points (Suthaharan, 2016). When separating classes, many
possible hyperplanes can be selected. The objective of svm is to find the hy-
perplane with the maximum distance between the data points of both classes.
The svm loss function that is computed to maximize the distance is computed
using hinge loss as follows:

𝑙 =𝑚𝑎𝑥 (0, 1 − 𝑦𝑖 (𝑥𝑖 − 𝑏)), (3.3)

where 𝑦𝑖 and 𝑥𝑖 refer to the ith instance in the training set and b refers to
the bias term. The objective of loss function l is to maximize the loss function,
which maximizes the distance between classes. The linearsvc model finds a
linear hyperplane between two classes.

3.2.2 Non-linear classifiers

Radial Basis Function Support Vector Classifier (rbfsvc) is a special type
of a svm endowed with a non-linear Radial Basis Function (rbf) kernel. In
contrast to svm with a linear kernel, rbf can compute nonlinear relationships
between two classes (Orr et al., 1996). The rbf kernel is widely used due
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to its similarity to the Gaussian distribution (Musavi, Ahmed, Chan, Faris, &
Hummels, 1992). The rbf kernel function is computed as the distance between
two points 𝑋1 and 𝑋2 and is mathematically defined as follows:

𝐾 (𝑋1, 𝑋2) = 𝑒𝑥𝑝 (−
|| 𝑋1 − 𝑋2 | |

2𝜎2 ), (3.4)

where 𝜎 is the variance, and | | 𝑋1 − 𝑋2 | | represent the Eucledian Distance
between the two points 𝑋1 and 𝑋2.

Multi-Layer Perceptron (mlp) is essentially a fnn that generates a set of
outputs from a set of inputs (LeCun, Bengio, & Hinton, 2015), as explained in
previous sections. In paper II, we employed anmlp specifically constructed for
classification problems (Eikeland, Holmstrand, Bakkejord, Chiesa, & Bianchi,
2021). This mlp consists of an input layer that takes the input vectors 𝑥 𝜖 R𝑛,
L hidden blocks, an output layer that generates a 2-dimensional output 𝑜 𝜖 R2,
and softmax activation that gives the vector of class probabilities 𝑦. The mlp
was trained by minimizing the cross-entropy loss using batches of size 𝑏 and
the Adam optimization algorithm (Kingma & Ba, 2014) with an initial learning
rate 𝑟 . We refer to Figure 1 in our Paper II for a graphical illustration of the
mlp architecture (Eikeland et al., 2021).

3.2.3 Interpreting the decision process of non-linear
classification models

It is difficult to interpret the decision process of a nn due to the presence of
many non-linear transformations. However, we are interested in identifying
the specific variables that explain each fault when predicting faults in the
distribution grid lines. Thus, we can better understand which measures must
be taken to prevent and mitigate specific power disturbances.

A considerable research effort has been devoted to understanding what a nn
learns and thus makes decisions. A popular interpretation technique that aims
to identify which inputs influence the model the most, is Gradient-based ap-
proaches. In (Simonyan, Vedaldi, & Zisserman, 2013), a saliency map was com-
puted by taking the gradient of the class activation score with respect to each
input feature. To project the activations of an intermediate hidden layer back
to the input space, the authors in (Zeiler & Fergus, 2014) inverted a cnn opera-
tion from the hidden layer to the input layer. This allows gaining an insight into
which details the hidden layer has captured from the input. Another gradient-
based technique was proposed by authors in (Springenberg, Dosovitskiy, Brox,
& Riedmiller, 2014). The authors constructed a Guided Back Propagation tech-
nique, outperforming the standard gradient backpropagation. However, when
relu is encountered, the gradient is back propagated only if both the gradient
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and the relu activation function are positive.

A drawback of gradient-based methods is that such approaches attribute zero
contribution to inputs that saturate the relu or MaxPool activation functions.
The authors in (Bach et al., 2015) introduced an axiom to capture such short-
comings of the gradient-based methods. The axiom state that the sum of the
relevance of all pixels must be equal to the class score of the model, and the total
relevance of the class score to the input features are distributed with a method
called Layer-wise Relevance Propagation. A downside of this method is that it
does not formalize how to distribute the relevance among the input features.
The DeepLiFT method proposed by the authors in (Shrikumar, Greenside, &
Kundaje, 2017) enforced an additional axiom on propagating the relevance by
following the chain rule like gradients.

In Paper II, we use an Integrated Gradients (ig) technique proposed by
(Sundararajan, Taly, & Yan, 2017). The ig is constructed to satisfy two axioms;
sensitivity and invariance. Although the Layer-wise Relevance Propagation
and the Deeplift approaches ensure sensitivity, their coarse approximations to
gradients might break the invariance assumption.

In the following, we illustrate the working mechanism of the ig method by
studying pixels (image classification). Here, we use the ig method to detect
polar lows in a satellite image. We illustrate the ig mechanism using pixels
as it is easier to visualize how the interpretation method works. In our Paper
II, we used ig to interpret the decision process of an nn used to classify time
series data concerning electric grid lines.

The ig method is divided into four steps:

1. Start from an uninformative baseline (e.g., a black image)

2. Interpolate small steps along a straight line in the feature space between
the baseline and the actual image

3. Compute gradients at each step between the model’s predictions with
respect to each step

4. Approximate the integral between baseline and input by accumulating
the local gradients

Step 1 and step 2 are illustrated in Fig. 3.5, where one starts from the black
baseline image to the right and performs a linear interpolation to the actual
image.
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Figure 3.5: Interpolate small steps along a straight line in the feature space between
the baseline and the actual image.

In step 3, the ig for each feature 𝑖 is computed as

IG𝑖 (𝑥) ::= (𝑥𝑖 − 𝑥 ′𝑖 ) ×
∫ 1

𝛼=0

𝜕𝐹 (𝑥 ′ + 𝛼 × (𝑥 − 𝑥 ′))
𝜕𝑥𝑖

𝑑𝛼, (3.5)

here 𝑖 is an input feature, 𝑥 is a sample in the dataset, 𝑥 ′ is the uninformative
baseline, and 𝛼 is an interpolation constant used to perturb the features of the
input sample. The above definition ensures the two axiom assumptions:

• Sensitivity: ig sum up the difference in feature score
• Invariance: ig attribution is completely defined in terms of gradients

As the computation of the integral is often not tractable, it is necessary to use
numerical approximations. In step 4, the ig is approximated using the Riemann
trapezoidal, which modifies the original ig integral into:

IGapprox
𝑖

(𝑥) ::= (𝑥𝑖−𝑥 ′𝑖 )×
𝑚∑︁
𝑘=1

𝜕𝐹

(
𝑥 ′+ 𝑘

𝑚
×(𝑥 − 𝑥 ′)

)
𝜕𝑥𝑖

× 1
𝑚
, (3.6)

where 𝑚 is the number of finite steps that approximate the integral and
𝛼 ≈ 𝑘/𝑚. The 𝑚 samples X = {𝑥 ′ + 𝑘

𝑚
× (𝑥 − 𝑥 ′)}𝑚

𝑘=1 represent the linear
interpolation between the baseline and the input (Eikeland et al., 2021).

Fig. 3.6 illustrate how ig is used to identify polar lows in satellite images
(highlighted in green).

Due to its wide application to different nns, simplicity of use, theoretical ex-
planations, and computing efficiency, ig has become a popular interpretability
method (Eikeland et al., 2021; Qi, Khorram, & Li, 2019; Sundararajan et al.,
2017). In Paper II, we used the ig technique to detect potential causes for spe-
cific failures in the grid. Instead of using ig to analyze images, we analyzed
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Figure 3.6: IG to identify polar lows in satellite images. The polar lows are highlighted
in green color.

feature vectors that could potentially explain fault occurrence in the electricity
distribution grid. A black image (all pixels at 0, as in the leftmost picture in
Fig. 3.5) is commonly used as a baseline in computer vision tasks. However,
when identifying potential causes for a specific fault, the value 0 might be in-
formative because the absence of specific features can increase the probability
of belonging to a specific class (e.g., in the absence of wind, it is less likely to
observe a fault). From our Paper II, we found that the best method to find the
baseline is to use a mean baseline, which gives almost the same probability of
obtaining classes 0 or 1. The baseline 𝑥 ′𝑚 is a vector computed as a weighted
average of the features across the two classes. Fig. 3.7 depicts the interpolation
path from the mean baseline to a specific class “fault” sample in the dataset.

3.2.4 Confusion matrix and the F1 score

The confusion matrix is a widely used metric for measuring the performance of
classification models (Pedregosa et al., 2011). The confusion matrix summarizes
the performance of the classification algorithm by comparing the predicted
class labels with true class labels. The confusion matrix has four quadrants:
true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN). The following is a common format for a confusion matrix:

True Positive (TP): The number of correctly classified as positive observations.
False Positive (FP): The number of incorrect observations classified as positive.
True Negative (TN): The number of correctly classified as negative observa-
tions.
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Figure 3.7: Top row: linear interpolation from the mean-baseline (left) to an actual
sample of class fault (right). Bottom row: classification probabilities as-
signed by the mlp at each interpolation step.

False Negative (FN): The number of incorrect observations classified as
negative.

To quantify the classification performance from the confusion matrix using
one single metric, it is possible to calculate the F1-score, which is computed
as:

𝐹1 = 2 · 𝑇𝑃

𝑇𝑃 + 𝐹𝑃+𝐹𝑁
2

, (3.7)

Where a higher F1 score indicates a better classification performance of the
model, the highest possible F1 score is 1 (i.e., no FP and FN).

3.3 Optimization of electric power systems

This section presents the background theory of the least-cost optimization
techniques used in Paper IV and Paper V. Least-cost optimization is a widely
used strategy in decision-making processes to minimize the cost of achieving
a specific objective. Framing a cost-optimization problem involves identify-
ing the most cost-effective way to allocate available resources to achieve a
desired outcome. Least-cost optimization is widely used in many applications,
such as manufacturing, logistics, and electric power systems (Fazlollahtabar,
Saidi-Mehrabad, & Balakrishnan, 2015; Hezam & Nayeem, 2020; Sepulveda
et al., 2018, 2021). An optimization problem typically has the following ele-
ments:
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• Objective function
• Decision variables
• Constraints

The objective function states the problem that must be solved, where the de-
cision variables are the unknown variables that must be optimized to solve
the objective function. The decision variables are subject to (s.t) constraints
that define the feasible solutions to the system. That is, the decision variables
must be within the given constraints to obtain a feasible solution to the opti-
mization problem. A general minimization optimization problem (P) can be
mathematically formulated as follows:

(𝑃) : min 𝑓 (x)
s.t. x𝜖𝑋

(3.8)

where 𝑓 (x) is an objective function that depends on decision variables x =

(𝑥1...𝑥𝑛)𝑇 . The set X defines the feasible solutions to the problem. The feasible
solutions X are expressed by constraints, which give the alternative formulation
of the optimization problem (P) as

(𝑃) : min 𝑓 (x)
s.t. 𝑔𝑖 (x) ≤ 𝑏𝑖,

𝑖 = 1, ...,𝑚
(3.9)

where 𝑔1(x), ..., 𝑔𝑚 (x) are functions that depends on x, and 𝑏1, ..., 𝑏𝑚 are given
parameters.

In this thesis, we apply least-cost optimization techniques to analyze and mini-
mize the costs of electric power systems. The least-cost optimization of electric
power systems aims to minimize the total cost of generating, transmitting, and
distributing electricity while meeting the demand for electricity and satisfying
various system constraints. In Paper IV and V, we employed the least-cost op-
timization model GenX developed by (Jenkins & Sepulveda, 2017). The GenX
model is a cem which takes the perspective of a centralized power system
planner to determine the cost-optimal generation portfolio, energy storage,
and transmission investments required to meet a predefined system demand.
The objective function with the associated constraints is presented in Tab. 3.2
as:

The full mathematical description of the GenX cem model is given in detail in
(Jenkins & Sepulveda, 2017).
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Table 3.2: The GenX optimization problem

Objective: Minimize total cost over one year
(annuitized investment costs + operating costs
+ penalties for non-served energy and unmet reserves)

Subject to:
Demand = Resource Operation (+/-) + Non-Served Energy + Power Flows (+/-)
Thermal plant operating constraints (Ramping Limits, Unit Commitment)
Electric power generator capacity limits
Storage inter-temporal state-of-charge balance
Minimum operating reserves requirements (Regulation, Spinning up, down)
CO2 emission limits and/or VRE mandates
Capacity reserve margin requirements
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4
Summary of papers
Paper I - Predicting Energy Demand in Semi-Remote Arctic Locations

Forecasting energy demand accurately is essential for developing strategies to
manage and optimize available energy resources and the associated infrastruc-
ture. This paper presents a framework for selecting the appropriate approach
to predict electricity demand accurately at two different locations (location
1 and location 2). These locations represent two remote communities at the
end of a radial distribution network without an alternative electricity supply.
It is, therefore, crucial to develop an accurate forecasting framework of the
electricity demand to manage and optimize the limited electricity resources
available. The prediction approaches were divided intoml and statistical meth-
ods. The different approaches have advantages and disadvantages, highlighted
in Fig. 4.1.

The prediction accuracy was compared on several horizons (from 1 to 165 hours
ahead) to gain insights into which approach gave the highest accuracy on dif-
ferent horizons. The ml-based methods provided the most accurate prediction
results on all horizons, except on a 24-hour prediction horizon, where an Au-
toregressive Integrated Moving Average model gained slightly better accuracy.
The idea of using ml and statistical models to predict electricity demand time
series is not new, and a large body of literature exists on this research. However,
the proposed framework provides valuable insight into effectively selecting the
most appropriate model when predicting at different time horizons.

43
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Figure 4.1: Overview of the different approaches to predict the electricity demand.
Each method has its advantages and disadvantages.

In addition, this study investigated eachmethod’s transferability. Transferability
predictions are to train a model on one-time series and use the trained model
to predict another time series that are not accounted for during training. This
is of value when predicting time series where historical data may be limited or
unavailable. To investigate transferability, we optimize the prediction model
on the training and validation set of a source dataset (location 1). Then, the
trained model is used to predict the test set of the target dataset (location 2).
The ml models exhibit good transferability when performing transferability
predictions. They managed to predict the load at new locations not accounted
for during training with acceptable accuracy. The statistical methods were not
useful for transferability predictions and could only be used when trained on
the same time series being predicted. Our work will guide in selecting and
applying the appropriate prediction model to perform energy load forecasting
of different prediction horizons in rural areas and locations where historical
consumption data may be limited or unavailable.

Contributions by the author. The idea was conceived by myself and further
developed in collaboration with the co-authors. The implementation and exper-
iments were carried out by myself with the help of Matteo Chiesa and Filippo
Maria Bianchi. I wrote the draft of the manuscript.
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Paper II - Detecting and Interpreting Faults in Vulnerable Power Grids
With Machine Learning

This paperwas based on two preliminary works. The first was Paper 6,where we
spent significant effort constructing the dataset. The second work was a confer-
ence paper (Paper 8) presented at the International Conference on Intelligent
Technologies and Applications (INTAP) in Grimstad, Norway, in 2021.

In this paper, we predict and interpret the causes of faults in the power distri-
bution networks, which severely affect customers and grid operators. In this
work, we focus on the power grid of a Norwegian community in the Arctic
that experiences several faults whose sources are unknown, and it is of crit-
ical importance to identify these sources to implement strategies to prevent
and mitigate incoming faults. We adopt linear and non-linear ml classification
models to detect fault occurrences. The experimental results show that the lin-
ear and non-linear classification models perform well in predicting faults. The
good classification score of all models indicates that the features considered in
the dataset explain well the power faults.

To identify the causes of interruptions, it is necessary to interpret the decision
process of the ml classification models. First, we used a traditional feature
selection method to identify the variables that mostly explain the fault occur-
rences in the dataset. However, such global interpretation methods only show
which variables, on average, contribute to explaining the causes of power in-
terruptions. It is also interesting to identify reasons for specific faults in the
dataset. Therefore, we adopt the recent technique ig, to interpret the decision
process of a mlp. Fig. 4.2 shows the result from the ig method for one fault
sample in the dataset.

The top-left plot corresponds to an "average" sample in the dataset (i.e., un-
informative baseline). The blue bar plots represent the value of the features
in the selected samples. The green and red bar plots are the output of the ig
procedure.

The green bars denote that a feature is important for the classification result.
The higher the green bar, the more the feature value in the sample (blue bar)
explains the classification result compared to the value in the baseline (black
bar). The red bars mean that the value of the features in the sample decreases
the classifier’s confidence that the sample is a fault occurrence.

The ig approach allows us to understand more deeply what features were
important to classify a specific sample as a fault. This is essential when imple-
menting programs to prevent and mitigate potential faults in the distribution
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Figure 4.2: The green bars denote that a feature is important for the classification
result. The higher the green bar, the more the feature value in the sample
(blue bar) explains the classification result compared to the value in the
baseline (black bar). The red bars mean that the value of the features in
the sample decreases the classifier’s confidence that the sample is actually
a fault.

grid.

Contributions by the author. The idea was conceived by myself and further
developed in collaboration with the co-authors. The implementation and
experiments were carried out by myself with the help of Matteo Chiesa and
Filippo Maria Bianchi. I wrote the draft of the manuscript.
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Paper III - Probabilistic forecasts of wind power generation in regions
with complex topography using deep learning methods: An Arctic case

Making accurate predictions about future electricity generation is of fundamen-
tal value for the energy market that relies on accurate forecasting capabilities.
In this study, we made day-ahead predictions of the electricity generation from
a wind power plant in Northern Norway that lies in a region of complex topog-
raphy and has a highly intermittent nature in electricity generation, increasing
uncertainty about future power generation. We computed probabilistic fore-
casts of expected future electricity generation to account for such uncertainties.
When making probabilistic forecasts, the goal is to make a Prediction Interval
(pi) that considers the uncertainties in the predictions. The pi estimates an
interval where the future observation will fall with a certain probability. For
instance, for a 95% PI, there should be a 95% probability that the next value
will fall within the lower and upper bounds. A pi can be high and low quality.
A high-quality pi is both sharp to convey useful information about the uncer-
tainty and should be calibrated, which means that for a 95% PI, 95% of the
observed values should fall within the PI. Fig. 4.3 shows examples of pis of
both high and low quality.

Electricity generation from wind power is directly dependent on the external
weather factors. Thus, to optimize the accuracy of the forecasts, it is of fun-
damental importance to understand which variables (covariates) to include in
the prediction model.

We compared the performance of the day-ahead probabilistic forecasts of deep
learning models with different sets of covariates. Three different dataset config-
urations were compared. The first configuration used measured weather data
and Numerical Weather Predictions (nwp) on wind speed and direction to
predict day-ahead electricity generation. The second configuration used only
measured weather data, while the third configuration used only nwp as an
exogenous variable in the deep learning model. The configuration where mea-
sured weather and the nwp was included gave the highest prediction perfor-
mance and improved the accuracy by 37% compared to the third configuration
when only nwpwere used as exogenous variables. The reason is that when pre-
dicting the day-ahead weather using nwp, the nwps often incorrectly estimate
the amount of wind since it has a very intermittent and non-linear nature. Using
historical measured data in addition to nwps allows the deep learning model
to auto-correct systematic biases in the nwps. This study shows the importance
of gaining insights into which variables mostly affect wind power electricity
generation (wind speed and wind direction). In addition, this study highlights
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Figure 4.3: Examples of piwith high (uppermost figure) and low quality. The red dots
represent the observed values. The blue dots are the point predictions.
The yellow line represents the pi, which in this case is the 95% prediction
interval.

the importance of improving the accuracy of the NWP weather forecasts.

Contributions by the author. The idea was conceived by myself and further
developed in collaboration with the co-authors. The implementation and
experiments were carried out by myself with the help of Matteo Chiesa and
Filippo Maria Bianchi. I wrote the draft of the manuscript.
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Paper IV - Power Availability of PV plus Thermal Batteries In Real-World
Electric Power Grids

As variable renewable energy sources comprise a growing share of total electric-
ity generation, energy storage technologies are becoming increasingly critical
for balancing energy generation and demand. A major problem of the current
state-of-the-art battery technologies such as li-ion is the too-high capital cost
between US $80 kWh−1 and US $100 kWh−1 (Braff et al., 2016; Ziegler et al.,
2019; Mallapragada et al., 2020). Studies suggest that achieving cost-efficient
storage requires a capital cost reduction between US $3 kWh−1 and US $3
kWh−1 (Ziegler et al., 2019; Albertus et al., 2020) to enable full decarboniza-
tion of the grid. There exist storage concepts with sufficiently low capital cost,
but these are geographically constrained (phs and caes). In this work, we
addressed these issues by modeling the novel tegs concept that is both geo-
graphically unconstrained and has estimated capital costs that are sufficiently
low to enable large-scale deployment in the electric power system (Amy et al.,
2019).

We used a cem to model an existing electricity system representing the New
England grid region in Northern America. To analyze the importance of using
storage to balance the electricity generation of renewables, we introduced a
hypothetical solar energy + tegs system to the modeled electricity grid. The
solar energy system had a capacity of 100 MW, while the tegs unit has storage
capacities between 400 MWh and 600 MWh. The Power Availability Factor
(paf) metric was introduced to investigate the percentage of time during the
year the grid could achieve a certain derated amount of power from themodeled
solar + tegs system. The paf at different derate levels are given in Fig. 4.4.

Themodeling was performed under a baseline case with no emission constraints
and under hypothetical scenarios where CO2 emissions were reduced. The
results show that the power available to the grid from our hypothetical solar +
tegs system increases when the CO2 emissions are reduced.

In the CO2 emission reduction case, the increased retirement of fossil fuel tech-
nologies, such as Natural gas, makes the grid more dependent on the hypothet-
ical solar + tegs system. This results in the system supplying the necessary
power 100% of the time for a derated power between 5 MW and 20 MW for
the tegs unit with a storage capacity of 600 MWh and 800 MWh. This is
remarkably higher than the baseline case, where the system cannot deliver the
required power 5-15% of the time for such derated powers.

The proposed approach provides insight into how adding solar + emerging
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Figure 4.4: Percentage of time during the year when the hypothetical system can
deliver the requested power to the grid

storage systems to electric grids can contribute to the efficient stepwise decar-
bonization of electric power systems by providing more reliable power to the
grid on demand.

Contributions by the author The idea was conceived by myself and further
developed in collaboration with the co-authors. The implementation and
experiments were carried out by myself with the help of Asegun Henry and
Matteo Chiesa. I wrote the draft of the manuscript.

Paper V - Cost-Effective Thermal Energy Grid Storage for Decarbonizing
Electric Power Systems

This paper was built on preliminary work in Paper IV, where the cem frame-
work and the tegs technology were the same.

In this paper, we address the problem of the high cost of the most scalable
options for electrical energy storage, limiting the amount of renewable energy
that can be incorporated into an energy system without significantly increas-
ing the overall cost. We optimize the engineering design of the tegs unit
with respect to obtaining the highest cost reduction compared with a baseline
scenario where tegs is not an available technology. The engineering param-
eters considered in the optimization schedule were the daily heat loss (from
1% to 10%), operating temperature (from 1900◦C to 2400◦C), and the charge-
discharge ratio. The optimization procedure was computed for four different
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CO2 reduction scenarios (80%, 90%, 95%, and 99%). The modeled electricity
systems represented the New England grid in Massachusetts and the Electric
Reliability Council of Texas (ercot) grid in Texas. The optimum tegs design
under different CO2 scenarios for the New England grid is presented in Fig. 4.5.

Figure 4.5: Optimum tegs design under different CO2 reduction scenarios. For each
row, the leftmost figure shows the cost reduction compared to the baseline
scenario, and the next figure to the right shows the amount of charging
capacity needed. The third figure shows the charge/discharge capacity
ratio. The rightmost figure shows the number of hours of storage required.

The results show that the cost-optimized tegs has a working temperature of
2400◦C and a daily heat loss of approximately 3%. This design is the most
cost-optimum one for all CO2 reduction scenarios, and it reduces the cost by
approximately 4% in the 99% reduction scenario. To enable such cost-reduction,
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approximately 4000 MW of discharging and 55 hours of storage is required.
Interestingly, the charge-discharge capacity shows that the tegs unit should
be capable of charging twice as fast as discharging to charge a large amount
of energy when the electricity demand is low. Similar results were obtained
when modeling the ercot grid.

In addition to enabling cost-efficient decarbonization of the electricity system,
it is critically important that storage units contribute to ensuring the grid’s
reliability by serving the grid with sufficient power when there is a lack of
electricity generation from renewable energy sources. The annualized Non-
Served Energy (nse) cost was computed to measure resiliency. The nse cost is
computed as the number of hours during the year when the demand is unmet,
times the value of the lost load. Fig. 4.6 show the cost for nse for the baseline
and optimum TEGS scenario over 22 years under 99% CO2 reduction in the
New England grid.

Figure 4.6: Cost of non-served energy for weather years with different VRE availability

It is clear that tegs vastly reduces the cost of nse compared to the baseline
case due to the larger amount of available storage technologies that can serve
the grid when there is a lack of solar and wind availability. The findings show
that design-optimized storage units can be essential in obtaining cost-efficient
decarbonization of electric power systems while maintaining resiliency.

Contributions by the author. The idea was conceived by myself and further
developed in collaboration with Ruaridh Macdonald. The implementation
and experiments were carried out together with Ruaridh Macdonald under
the supervision of Asegun Henry and Matteo Chiesa. I wrote the draft of the
manuscript.
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5
Concluding remarks
In this thesis, we have addressed some important challenges, goals and objec-
tives regarding the operation and decarbonization of the energy sector. Our
solution to address these goals was to employ machine learning and optimiza-
tion techniques to gain deep insight into energy-related datasets. In the first
and third works, we presented frameworks to predict the time series of energy
datasets by comparing several statistical and machine-learning-based models.
We found that constructing the datasets and defining the correct sets of co-
variates is essential to improve accuracy when the time series are highly non-
linear.

We also analyzed the problem of detecting the distribution network’s power
faults whose sources are unknown. In the second paper, we usedmachine learn-
ing classification models to predict the occurrence of faults in a distribution
network that serves a Norwegian community in the Arctic that experiences
several faults whose sources are unknown. A significant focus of this work was
to gain insight into the problem by collaborating with industry experts and thus
constructing a dataset with variables that could explain the fault occurrences.
The resulting dataset consisted of variables divided into weather-related and
power-quality-related variables. The machine learning classification models
performed well when predicting the fault occurrence, indicating that power
quality and weather variables explained the power disturbance well. To prevent
and mitigate power fault occurrences, the second work also adopted a machine
learning interpretation technique to identify and understand the main causes
of faults in the electricity system.

55
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In addition to using machine learning methods, this thesis has presented two
works where optimization techniques have been used to model electricity sys-
tems. The optimization was done to gain insight into the importance of using
emerging storage technologies to reduce the cost of decarbonized grids and
maintain reliability by balancing the intermittent electricity generation from
renewables. In Paper IV, we modeled a hypothetical solar + tegs system and
found that the tegs storage concept contributed to improving grid reliability
by discharging power when there is a lack of solar availability. In addition,
the importance of using such combined solar + tegs systems increases in
the modeled CO2 reduction scenarios as the grid must be less dependent on
fossil-fuel-based technologies. This thesis’s fifth and final work assessed the
importance of using emerging storage technologies to enable cost-efficient de-
carbonization. We cost-optimized the engineering design of the tegs unit and
found that such technologies can reduce the grid’s overall cost by approximately
4% when compared to a baseline scenario. In addition, we found a large ben-
efit of using such storage units to balance renewable energy generation as it
significantly improves the grid’s reliability by discharging power on demand.
This work provides important insights into optimizing storage for cost-effective
grid decarbonization while maintaining resiliency.

We conclude that, with the five works of research presented in this thesis, we
contributed to advancing the field of energy analytics, mainly by addressing
the objectives of Improved performance and reliability, renewable energy inte-
gration, decarbonization, and cost savings.

5.1 Limitations and further work

We acknowledge that every research paper has both strengths and weaknesses.
Therefore, we end the concluding remarks by discussing limitations, practi-
cal applications, and suggested future work for the research presented in this
thesis.

Paper I. We mentioned in Paper I that interesting future work is to investigate
the possibility of combining the Echo State Network (esn) and cnn models
for long- and short-term prediction purposes. If such a model could achieve
high prediction results on multiple time series on both long and short-term
horizons, it would be a valuable prediction tool for energy planning purposes at
several locations and sectors with different time series dynamics. We have also
identified other weaknesses that should be considered in future work.

All models in this paper performed univariate predictions where we trained the
models on only one time series considering the historical data of electricity de-
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mand. The electricity demand is affected by external weather factors (i.e., cold
weather increases the demand for electricity due to heating). Suggested future
research is to consider the same time series, but do multivariate predictions
to consider external factors that might explain the future electricity demand.
However, given the high prediction accuracy of this work, it is questionable if
such multivariate predictions will significantly improve the accuracy.

In addition, this study covers two locations that are in an Arctic environment
with harsh weather conditions. It would be interesting to repeat the suggested
framework for this paper in other locations with different climates. If our frame-
work could be applied to multiple locations, it would be useful in different
practical applications, such as contributing to setting the electricity price day
ahead by bidding the expected demand for electricity into the market.

Paper II. The dataset construction methodology was a major part of this paper,
built on the preliminary works (Paper 6 and Conference Paper 8). In collabo-
ration with expert knowledge within the dso, we decided to collect weather
data from weather-exposed areas in the grid to detect possible weather-related
failures in the grid. Two assumptions were made to collect the weather data
from these areas: One was to assume that higher elevation increases the prob-
ability of exposure to harsh weather conditions, such as strong wind. Indeed,
utility poles at high altitudes are often in mountainous areas where there is
no vegetation that can protect from the wind. However, this approach neglects
other grid areas that might contribute to explaining possible weather-related
fault occurrences. There have already been efforts building on our work where
the authors have applied a more theoretical methodology to collect the weather
data that can explain fault occurrences. However, the authors ended up with
similar results as in this study, which shows that our approach to identifying
the weather-exposed areas is useful when collecting data that might explain
the weather-related fault occurrences.

This study covers an Arctic region with harsh weather conditions, and there is
not much vegetation that can fall on the transmission lines and thus result in
power interruptions. Therefore, our dataset, which does not include vegetation
information, will not be very useful in other regions with other climates which
have problems with trees falling on the power lines, as analyzed in the study
in (Gazzea, Aalhus, Kristensen, Ozguven, & Arghandeh, 2021).

However, this study has several useful, practical applications for dsos. If the
dsos understand the sources of potential fault occurrences, they can imple-
ment specific programs to strengthen the grid and thus avoid incoming faults.
Potential actions to improve the grid stability are: i) make changes in grid topol-
ogy, such as optimizing coupling to make the grid stronger, isolating parts of the
grid more likely to fail, running island mode whenever possible; ii) optimizing
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or even increasing the local production by introducing new power sources, in-
cluding renewable ones; iii) reduce or adjust power flows by controlling flexible
loads.

These kinds of strategies to mitigate incoming grid faults are currently being
developed by the dso operating the grid in this study. In particular, the local
power company has installed a battery system that should be activated before an
incoming power fault. Using themethodology in this study to understandwhich
variable should be monitored to detect an incoming power fault is fundamental
to optimizing the operation of the batteries. An interesting future study is to
analyze how many potential faults the batteries can prevent by knowing which
variables likely will cause a power fault.

Paper III. The wind power farm analyzed in this work consisted of 18 different
wind turbines, and we predicted the aggregated electricity generation from all
the turbines. However, during the pre-analyses of the wind farm, we noticed
differences in the electricity generation profiles between each turbine due to
local variations in wind speed and wind direction. When aggregating the elec-
tricity generation from all individual turbines, the individual differences in the
generation profile are consequently neglected. Therefore, a future interesting
study is to develop a forecasting framework where a ml model is trained and
optimized for each turbine’s generation profile. This ensures a model that will
consider local variations in the wind power generation profile and thus might
improve the overall prediction accuracy. However, as a downside, this will signif-
icantly increase the computational intensity as the ml model must be trained
and optimized on the time series of 18 different wind turbines.

This work proposed a prediction approach to predict future electricity genera-
tion and accounted for the uncertainties in the predictions by making proba-
bilistic forecasts. However, since re technologies participate in the electricity
market, it is interesting to address the potential benefit of improving predic-
tion accuracy in terms of reducing the potential financial penalties when mis-
matches between contracted generation and actual deliveries occur. Similar to
the work by (Mazzi & Pinson, 2017), a future suggested study is to incorpo-
rate our probabilistic forecasting approach into a financial model and compute
the reduction in financial penalties as a function of improved prediction accu-
racy.

Paper IV. This study presented an idealized representation of an existing grid in
Northern America. However, the grid representation might not fully capture all
details of the existing grid. There can be differences (sizes of the power plants,
electricity demand on the grid, share of the existing generation technologies)
between the abstract grid representation and the current real-world grid. In
addition to the transmission line between the existing grid and the hypothetical
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solar + storage system, the current grid was modeled as a single-zone grid re-
gion without considering transmission losses or congestion between generators
and demand.

The power availability of the solar + tegs system changes significantly as
a function of solar availability. Therefore, testing the paf at other locations
with different solar availability would be interesting. Additionally, we modeled
one year of weather data. It would be interesting to test the paf under dif-
ferent weather conditions by modeling several weather years. Also, we made
assumptions about the technical specifications of tegs by assuming a 1% heat
loss and a 2400◦C working temperature. This is not necessarily the most cost-
efficient design. In the next paper (Paper V), we considered this by optimizing
the engineering design that should preferably be used in the grid.

Paper V. In this work, we modeled representations of two electricity systems
in Northern America using a "greenfield" approach (i.e., starting from scratch).
Consequently, we ignore the existing electricity system infrastructure and mod-
eled fully hypothetical power systems with respect to how to obtain the most-
cost efficient grids under different decarbonization scenarios. As we were inter-
ested in modeling the value of using storage in hypothetical decarbonized grids,
we modeled the grids as a single-zone region without considering transmission
losses or congestion between generators and demand as it was outside the
scope of the study and will significantly increase the computational intensity
of the cem.

Additionally, we made a significant effort to optimize the engineering design
of tegs to minimize the system’s cost. However, due to the significantly in-
creased computational complexity of the cem when modeling non-linearities,
we assumed linear charging/discharging capacities and heat losses. In reality,
the exact operation of the tegs system has non-linear behavior. Consequently,
the findings in this paper might not represent the exact cost benefit of utilizing
tegs. However, after discussions with the lab designing the TEGS technology,
the authors have reasons to believe that the linear assumptions represent the
tegs operation mechanism well.
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Abstract: Forecasting energy demand within a distribution network is essential for developing
strategies to manage and optimize available energy resources and the associated infrastructure. In
this study, we consider remote communities in the Arctic located at the end of the radial distribution
network without alternative energy supply. Therefore, it is crucial to develop an accurate forecasting
model to manage and optimize the limited energy resources available. We first compare the accuracy
of several models that perform short-and medium-term load forecasts in rural areas, where a single
industrial customer dominates the electricity consumption. We consider both statistical methods
and machine learning models to predict energy demand. Then, we evaluate the transferability
of each method to a geographical rural area different from the one considered for training. Our
results indicate that statistical models achieve higher accuracy on longer forecast horizons relative to
neural networks, while the machine-learning approaches perform better in predicting load at shorter
time intervals. The machine learning models also exhibit good transferability, as they manage to
predict well the load at new locations that were not accounted for during training. Our work will
serve as a guide for selecting the appropriate prediction model and apply it to perform energy load
forecasting in rural areas and in locations where historical consumption data may be limited or even
not available.

Keywords: energy load predictions; statistical- and machine-learning-based approaches; short-term
load forecasting; longer forecasting horizons; transferability predictions

1. Introduction

Accurate load forecasting systems can reduce additional costs related to inaccurate
prediction of the energy demand and provide a better understanding of the dynamics
of existing power systems [1,2]. If the forecasts overestimate the demand, the result will
be excess power supply. Consequently, this will result in increased costs and contract
curtailments for the energy market participants. On the other hand, underestimation of the
demand could lead to a lack of energy availability at heavy loads, which in turn leads to
consequences for end-users, who in the worst-case scenario will not have sufficient energy
supply [3,4]. The global energy market is now evolving from centralized systems with
large power stations connected to a single electricity grid which support the area of interest,
towards the inclusion of more decentralized energy systems where the area of interest may
be supplied by multiple energy sources, such as local renewable distributed generation
(DG) technologies and battery storage systems [5–11]. In addition, inhabitants should have
the ability to participate actively in the energy market by acting as prosumers where they
both generate and consume electricity [12–17].

Energies 2021, 14, 798. https://doi.org/10.3390/en14040798 https://www.mdpi.com/journal/energies
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In the transition from centralized to decentralized energy systems, there is a need
to develop methodologies for understanding and interpreting the dynamics of existing
energy systems, which in turn will be an essential tool in developing emerging energy
systems [18–20]. The Norwegian Water Resources and Energy Directorate (NVE) states
that using the current electricity grid costs the households and industries in Norway
approximately 27 billion NOK per year [21,22]. This cost is expected to increase significantly
in the future, as the current electricity network must be upgraded to handle the increased
electrification in society. Therefore, NVE has proposed new power tariff schemes that
penalize the use of electricity during periods of heavy loads [21]. By optimizing the energy
flows in the electricity network, the profile of the load demand will become more evenly
distributed throughout the day and could allow postponement of upgrades to the current
infrastructure. The requirements by NVE show the importance of optimizing the use
of resources in an energy grid and developing accurate energy-forecasting systems are
fundamental to achieving this goal.

To manage the limited availability of energy at locations that rely on the stable power
supply, accurate predictions of energy demand are essential. In this study, we analyze
two remote communities on the island of Senja in Northern Norway, which represent
extreme examples of the challenges stated by NVE. The two communities experience
frequent power outages due to heavy loads in specific periods and, if the current grid is not
optimized, upgrading the whole energy system will be inevitable. The energy consumption
on the grid is heavily affected by the activities of the islands’ major industries [23].

Besides Northern Norway, the challenges mentioned above also apply to remote
communities worldwide, especially developing countries [24,25]. In 2018, there were
approximately 860 million inhabitants of remote areas that either do not have reliable
sources of electricity or are not connected to power grids at all [26]. In addition, remote
areas in Russia, Alaska, and Canada are heavily dependent on diesel generators for elec-
tricity supply, which imposes an economic, environmental, and social burden on the local
populations as diesel generators create noise pollution, aggravate the local air quality and
increase the emissions of greenhouse gases [27]. These examples confirm the importance of
transitioning towards new energy systems to improve economic, social, and environmental
conditions, in addition to ensuring a reliable power supply [27–29].

In the remote communities served by the Senja network analyzed in this paper,
there are still no services available for predicting the energy demand [23]. We evaluate
approaches to forecasting energy demand based on both statistical and machine learning-
based approaches to project future energy demand from historical data. The total energy
demand is characterized by a combination of load profiles from two sectors (households
and industry) that exhibit very different consumption profiles and require dedicated fore-
cast models. Unlike energy load profiles in cities and residential communities, where the
household sector is the main contributor to the total energy consumption, the total load
profiles for the remote communities analyzed here are dominated by industry [30]. Indus-
trial activities are therefore essential to consider when developing an accurate forecasting
model.

The contribution of our work is twofold. First, we investigate which model achieves
the best performance in predicting the energy load in rural areas, as a function of the forecast
horizon. Our analysis evaluates several statistical and machine learning approaches.

Secondly, we analyze the transferability of each prediction model, in terms of the
capability of predicting time series of energy demand at different locations within the Senja
electricity grid. Our study provides important insights about the possibility of applying
the models considered in our study to new geographical sites.

2. Background and Related Work

The energy load profiles are typically represented by time series that describe the
dynamics of the underlying energy distribution system and are characterized by typical
human-based seasonal and cyclic consumption patterns. Indeed, load patterns can vary
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significantly depending on the observation period, the nature of each system, and external
factors such as climate and weather. Achieving accurate load forecasting has been one of
the principal foci in several research areas. Different models have been proposed, each one
characterized by different properties in terms of complexity and effectiveness in predicting
on different forecasting horizons [31–33].

In this paper, we examine several approaches to predict energy consumption on both
short and longer forecasting horizons. Two different forecasting methodologies are used,
one statistical-based method, and one method based on neural networks.

2.1. Statistical Methods

For the statistical method, two different approaches were investigated. First, we
consider the statistical Autoregressive Integrated Moving Average (ARIMA) model, which
has been a baseline tool in prediction problems for several years [34]. The ARIMA model
is well known for its simplicity of implementation and high accuracy in predicting long
forecasting horizons [35]. The second approach is a newer statistical model called Prophet.
Prophet is a tool that has recently gained popularity due to its simplicity and flexibility
when performing predictions [36].

ARIMA models require an elaborated statistical analysis to optimize the model con-
figuration [37]. Moreover, ARIMA models make strong assumptions about the nature of
the underlying dynamical system that generates the observed time series. This usually
introduces strong biases that, in some cases, might be wrong and will hinder the accuracy
of the predictions [38]. In the study by Taylor [35], the ARIMA predictions at longer fore-
casting horizons were shown to outperform more complex models in terms of accuracy. In
Reference [39], short-term load forecasting with window-based ARIMA algorithms was
applied to predict electricity consumption to optimize the available energy supply. The
study concluded that it is sufficient to consider daily consumption data and aggregated
hourly coefficients of daily profiles to obtain accurate short-term predictions by use of the
sliding window-based forecasting algorithms proposed by the authors. In the study by
Bianchi et al. [40], the authors proposed a comparative study for heat demand forecasting
in a real-world case. The authors tested ARIMA models on different load time series and
the results showed that the ARIMA models can perform accurate predictions on long-term
horizons.

Prophet is implemented as an open-source library designed for making predictions
on univariate time series [36]. The library is easy to use and allows the identification
of optimum hyperparameter configurations for the model that will make a forecast of
the time series. The Prophet library offers a practical prediction tool that can be used
by analysts without expertise in time series modeling. In the original paper [36], the
authors compare the Prophet method against several automated forecast procedures such
as ARIMA, exponential smoothing models, random walk model with weekly seasonality,
and a TBATS model with both weekly and yearly seasonality. The result shows that the
Prophet forecasts result in lower prediction errors.

2.2. Machine Learning Methods

Five different neural network architectures are considered to predict the energy de-
mand. In particular, we examine both Recurrent Neural Networks (RNNs) and Convolu-
tional Neural Networks (CNNs).

In prediction-related problems, RNNs have gained significant attention due to their
ability to capture complex non-linear dynamics in the time series [41], and RNN architec-
tures have been shown to outperform other models in tasks related to forecasting energy
demand [42]. The RNNs examined in this paper have been previously applied to solve
different types of prediction related tasks [43]. As trainable RNN architectures, we consider
Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Elman Recurrent
Neural Networks (ERNN). In addition, we consider the Echo State Network (ESN), which
is a randomized neural network from the family of Reservoir Computing approaches [42].
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The RNNs are capable of modeling any non-linear dynamical systems up to a given
precision and have been applied in many contexts where the temporal dependency is an
important feature that characterize the data [41]. A popular RNN architecture is the LSTM,
which provides the capability of storing information for long periods of time [44,45]. In load
forecasting problems characterized by complex and variable temporal dependencies, RNNs
have been shown to outperform several forecasting methods like ARIMA, Support Vector
Machines (SVM), Multilayer Perceptron, and Adaptive Network-Based Fuzzy Inference
System (ANFIS) [40]. The authors in Reference [43] reviewed and evaluated two real-
world datasets of electricity load, comparing modern deep learning architectures on short-
term load forecasting problems. In particular, the paper focused on feedforward and
recurrent neural networks, sequence-to-sequence models, and temporal convolutional
neural networks. The authors found that on short-term load forecasting problems, the
simpler ERNN performs comparably to more advanced networks such as GRU and LSTM
when adopted in aggregated load forecasting cases. Therefore, in such cases, the authors
conclude that the ERNN may represent the most effective solution as it offers the benefits
of a low-complexity model without compromising the prediction accuracy.

The Echo State Network is an RNN model that has received increased interest among
researchers for simplicity of training and high-accuracy performance in predicting real-
valued time series [42]. In predictions of real-world energy load time series, the application
of the ESN model has achieved state-of-the-art results on 1-h and 24-h forecast hori-
zons [31,40,46–48]. The authors in References [31,49] performed predictions by using ESN
and ARIMA approaches and combined the models to obtain high-accuracy results. In a
study by Jaeger and Haas [50], the ESN model was applied on both real and benchmark
datasets, and the authors highlighted the capability of the network to compute accurate
predictions even when forecasting chaotic processes. In a comparative study by Bianchi
et.al [40], the ESN model was tested against several RNNs on synthetic and real-world time
series in different contexts. The result showed that the ESN architecture was competitive in
most tasks in terms of prediction accuracy. Moreover, the simplicity of its implementation
and training compared to other RNNs makes the ESN architecture especially attractive.
For load forecasting problems on real-world time series, the ESN architecture was therefore
concluded to be a convenient prediction tool for real-valued time series [40].

So far, CNNs have received less attention compared to RNNs in energy load fore-
casting tasks [43]. However, recent work indicates that CNNs achieve high performance
in several sequence and time series prediction tasks [51]. The authors in Reference [52],
developed a deep CNN called DeepEnergy. The experimental results show that Deep-
Energy can predict energy loads with high accuracy over three days and outperforms
SVM and LSTM. The authors of Reference [53] compared a CNN to recurrent and feed-
forward architectures, showing promising results on benchmark time-series. Several works
combined CNNs together with RNNs to achieve a hybrid prediction tool that increases
the prediction accuracy. For example, the authors in Reference [54] combined a CNN
and RNN to integrate different input sources and use the convolutional layer to extract
features from the historical data. The RNN was thereafter used to learn the dynamics of
the system. In Reference [55], another hybrid model was presented where the historical
load was processed by a CNN and LSTM. Then, the features from both networks were
used to predict the day-ahead load.

2.3. Transfer Learning

A large amount of scientific work on forecasting time series has resulted in a large num-
ber of methodologies that provide accurate results in several prediction-related challenges.
However, accurate forecasting of time series is a challenging task when the availability
of training data is limited. Recently, the transferability of machine learning models has
gained increased attention due to the necessity of generating predictions in systems where
training data are not available. In Reference [56], the authors investigated how to transfer
CNNs for the time series classification (TSC) task. A hybrid transfer learning model for
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short-term electric load forecasting was proposed by Reference [57] and shows significant
improvement in electric load predictions for a location by using additional data from
another location. In Reference [58], the monthly electric load was predicted by collecting
data from different districts in Seoul. After collecting all historical data from the different
districts, the model was trained to predict the electric load in a target district by using
transfer learning. The authors also proposed a novel load-forecasting scheme for a district
by using similar data from other cities or districts. To demonstrate the performance, the
model was compared to other popular machine learning techniques. The authors in Refer-
ence [59] considered the problem of developing predictive models with limited data for
energy assets. An energy predictive model based on CNN’s was developed and applied by
using a transfer learning strategy. The approach was demonstrated on a case study of daily
energy demand time series. In Reference [60], the authors show for the first time that using
an LSTM auto-encoder with attention trained on a large-scale dataset with pre-processing
can effectively transfer time-series features. The authors in Reference [61] proposed a new
training strategy for time-series transfer learning with two source datasets that outperforms
existing approaches when predicting a target dataset. The authors tested the performance
of the approach on predicting financial time series, and the experiments show that transfer
learning based on two datasets (market indexes) is superior to other baseline methods with
only one source dataset.

While not comprehensive, this short overview gives an idea of the significant amount
of research that has been carried out on developing forecasting methodologies. In addition,
the transferability of forecasting models has recently gained increased interest, and several
works have addressed the problem of accurate predictions when there are limited data
available for training.

3. Methodology

In this study, three trainable RNNs (LSTM, GRU, and Elman), a randomized RNN
(ESN), a CNN, and two statistical methods (ARIMA and Prophet) are compared for predict-
ing energy demand for multiple cases. The models are trained to predict energy demand at
the next hour and at longer time horizons (2, 6, 12, 24, and 165-h ahead). The predictions are
performed on two sectors (Households and Industry) at both communities of the Senja grid.

Section 3 explains the process of training the model and how to transfer them to a
new dataset. A brief description of the models used (LSTM, GRU, Elman, ESN, CNN,
ARIMA, and Prophet) is deferred to the Supplementary Materials (Chapter S7). In addition,
the Supplementary Materials briefly discusses the advantages and disadvantages of the
different approaches. All hyperparameter configurations used for predictions with the
different models are listed in Section S7.5 in the Supplementary Materials Section.

An overview of the methodology for making predictions with the different approaches
are provided in Figure 1. A brief explanation of each step is given in the Supplementary
Materials Section.

3.1. Prediction Strategy
3.1.1. Training, Validation, and Test

To train and evaluate the models, the time series is split into a training set (70%), vali-
dation set (15%), and test set (15%). The training set is used to fit the model parameters by
minimizing the prediction loss; the validation set is used to find the optimal configuration
of the hyperparameters and to compute the stop criterion for the models trained with
gradient descent; once the optimal model is found, its performance is evaluated on the test
set. We pre-process the data by removing the linear trend and the main seasonality (see
Section 4.2 for more details). Additionally, the data are standardized by subtracting the
mean and dividing by the standard deviation computed on the training set.
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3.1.2. Transferability

The strategy used to transfer the model is similar to the one proposed in Reference [61].
The model is first optimized on the training and validation set of a source dataset (location
1). Then, the trained model is used to predict the test set of the target dataset (location 2).
The data of both source and target datasets are pre-processed according to the statistics
computed on the target dataset.

3.2. Normalized Root Mean Squared Error

The normalized root mean squared error (NRMSE) is used both as the loss function
and as the metric to evaluate the prediction performance. The root mean squared error
(RMSE) is defined as:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (1)

where ŷ and y are the predicted and true values, accordingly. The RMSE measures the
discrepancy between the predicted values and observed values at time i, over n number
of observations [62]. The NRMSE relates the RMSE to the observed average value in the
observation period and is defined as:

NRMSE =
RMSE

y
(2)

where y is the average of the time series values.

4. Case Study

At present, the 66 kV cable that supplies Senja is operating close to its maximum
capacity. At Northern-Senja, the communities are provided with a 22 kV distribution
network. The total energy demand is characterized by a combination of load profiles from
two sectors (households and industry) that are very different from each other. The particular
feature of the rural communities in Senja is that industry accounts for more than 50% of
the total energy consumption [23]. When the industries operate at heavy load, the risk of
voltage drop at the end of the radial distribution network increases. Voltage drops increase
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the risk of interruption in the power supply. These communities have no alternative
energy supplies that can provide a backup when the voltage decreases. Therefore, given
the limited capacity of the existing grid, it is paramount to predict the periods with high
consumption. An accurate prediction tool is necessary for developing efficient strategies
to reduce the challenges in the existing grid. One way to deal with the current situation
is to build a new electricity grid connection with a higher capacity. However, this is
costly and time-consuming, has a huge environmental impact, and contradicts the vision
to better utilize the current electricity grid as stated by NVE [22]. Moreover, since the
communities are strongly industry-dominated, such an investment will be wasted if the
companies will stop their activities in the future, and the power companies will be left with
an over-dimensioned distribution network.

4.1. Real-World Time Series

The time series analysis in this paper is based on hourly energy consumption data in
the period spanning from 1 March 2019 to 1 February 2020. The time series are from two
separate communities located approximately 9 km apart in air distance, located at the end
of separate radials of the electricity network in the region. Both communities are small
with approximately 100 households at location 1, and 300 households at location 2.

The time series is provided from the power company Ishavskraft AS [63], which
collects consumption data for all their customers in the specific locations studied in this
paper. The time series is divided into three sectors: cabins, households, and industry. Due
to privacy policies, the household and cabin consumption is aggregated. From Figure 2, it
is possible to see that the industry sector in both locations is clearly the dominant source
for the total energy consumption pattern and the total energy consumption is significantly
larger for location 2 than for location 1, with average hourly consumption of 2553 kW/h
and 860 kW/h, respectively. Figure 2 illustrates that the consumption pattern decreases
significantly during the main holiday periods (Easter at end of April, summer vacation in
July, and Christmas in December/beginning of January). The period between September
and December is characterized by an increase in the total energy consumption due to the
electric heating because of colder temperatures. In addition, during this period the fishing
industries are heading towards the main fishing season when they operate frequently at
full load.
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To design an accurate predictive model, it is necessary to account for the different
consumption patterns, which vary between the holidays and the working periods.

We disregard the holiday periods, as the requirements for stable power supply are not
as critical as they are during working days. Consequently, we only consider the workdays
that are characterized by higher load consumption that is critical given the limited capacity
of the grid, and there is a risk of interruptions in the power supply.

For this reason, we train our prediction models only to predict the consumption during
workdays. The workdays also include the weekends, because especially in high-season, the
fishing industries have a high level of activity every day, including weekends. Specifically,
the periods with low consumption during holidays are removed from the data set and
we obtain a time series with 6544 time-steps in total. The resulting time series for both
locations with holidays removed are depicted in Figure 3.
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At each location, we analyze the consumption of households and industry separately.
The consumption of cabins is too low in both locations to significantly affect the overall
consumption patterns in the communities and the occurrence of power outages. Therefore,
the consumption of cabins is disregarded in this study.

4.2. The Industry Time Series in Location 1

Statistical analysis of real-world time series is important to gain a better understanding
of the consumption data and to interpret the results. Additionally, statistical models such
as ARIMA assume the data to be stationary, which implies that the trend, seasonality, and
short-term correlations must be removed before feeding the data into the models. On the
other hand, machine-learning models do not require the time series to be stationary [64].
By removing the trend and the seasonality from the data, the neural networks can exploit
all their resources to predict the “difficult” component of the time series. Such components
are fast and noise-like oscillations.

As an example, in the following, we show how the trend and the main seasonality are
computed for the industry sector in location 1. The trend is computed as the running mean
with a window size of one week (168 h).

The running mean of the industry consumption during workdays is plotted in Figure 4;
it shows a minor decrease from timestamp 0 to 3000 while increasing from 3000 to 6000
where the industry is heading towards the fishing season during the winter period. Figure 4
also shows that the consumption is cyclic with a similar load pattern every week.
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Figure 4. The industry energy consumption during workdays.

In order to identify the main consumption pattern in the time series, some statistical
analyses and pre-processing are required. First, the autocorrelation function (ACF) and
partial autocorrelation functions (PACF) are computed to get a better understanding of
the data provided. In addition, the ACF and PACF are interpreted to investigate whether
the data are stationary or not. When making predictions with statistical models such as
ARIMA, the time series are required to be stationary. If the ACF and PACF plots show no
correlations, the time series are stationary and ARIMA predictions can be performed [64].
The representation of the main consumption pattern together with the ACF and PACF for
the industry consumption is shown in Figure 5.
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Figure 5. Frequency domain of consumption data by Fourier transformation with autocorrelation
function (ACF) and partial autocorrelation functions (PACF) functions. The correlation outside the
standard deviations are correlations and not a statistical fluke. The red color represents the ACF and
PACF after differencing the time series.

The ACF and PACF show strong correlations outside the 95% confidence interval
(depicted as a blue area in Figure 5) at 24 h and between 150 and 175 h. We note that the
values outside of the blue cone are very likely actual correlations.
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Another way to identify the seasonality is through the Fourier transform, which
allows identifying the main periodicities in the time series [65]. The Fourier transformation
shows that the main seasonality is 24 h, which is expected as we have hourly data and the
consumption pattern follows a daily cycle. The time series has also a strong seasonality at
165 h, which corresponds to a week. This shows that the industry sector is strongly driven
by weekly consumption patterns in addition to the daily-varying consumption.

5. Results and Discussion
5.1. Result of Short-Term Predictions (1-h Forecasting Horizon)

The resulting predictions on 1-h ahead energy demand obtained by statistical ap-
proaches and neural networks are reported in Figure 6.
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5.1.1. Industry Energy Prediction for Location 1

Figure 6 indicates that all models achieve good performance in predicting the energy
consumption, except for the Prophet model. This model clearly underperforms compared
to the rest of the models as it makes larger prediction errors compared to the actual
consumption. This indicates that the Prophet model performs poorly in predicting the
energy load profiles. For this reason, the Prophet model is not considered further in this
study. The other statistical model, ARIMA, predicts the load consumption data with high
accuracy (NRMSE = 0.070), but it overestimates consumption patterns. We experience
larger errors from ARIMA predictions when the consumption is low.

All the neural networks used in this study achieve accurate results, and the ESN
model outperforms the rest with an NRMSE result of 0.012. Among the trainable neural
networks, the GRU and Elman underperform compared to the rest with an NRMSE of
0.074. All results are provided in Table 1.

We also note that all the neural networks seem to capture the peak loads with high
accuracy. At peak loads, strategies for demand response by use of accurate forecasts are
fundamental. The strategies are developed to plan what measures can be carried out to
create an immediate change in the energy load profile. For the particular industry analyzed
in this study, reducing the peak load is critical to avoid production stops resulting from
power outages. The capability of capturing peak loads indicate that the neural networks
are suitable tools when developing demand response strategies. Such strategies could
contribute to avoiding production stops in periods where the industry operates at high
loads.
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Table 1. Results from 1-h prediction for all cases with all models.

Prediction Results on 1-h Forecasting Horizon

Case 1: Train on Location 1 to Predict Location 1 and 2

Location 1 Location 2 (Transferability)
Company Household Company Household

Model NRMSE NRMSE NRMSE NRMSE
LSTM 0.066 0.055 0.084 0.096
GRU 0.074 0.047 0.084 0.063

Elman 0.074 0.047 0.085 0.063
CNN 0.068 0.048 0.075 0.062
ESN 0.012 0.013 0.096 0.034

ARIMA 0.070 0.039 0.368 0.110
Prophet 0.160 0.093 - -
Average 0.075 0.049 0.132 0.071

Case 2 (Validation): Train on Location 2 to Predict Location 2 and 1

Location 2 Location 1 (Transferability)
Company Household Company Household

Model NRMSE NRMSE NRMSE NRMSE
LSTM 0.045 0.035 0.149 0.064
GRU 0.046 0.036 0.129 0.047

Elman 0.046 0.036 0.129 0.047
CNN 0.050 0.029 0.075 0.046
ESN 0.032 0.004 0.395 0.040

ARIMA 0.052 0.027 0.843 0.215
Prophet 0.220 0.076 - -
Average 0.070 0.034 0.286 0.077

5.1.2. Short-Term Transferability Predictions of Industry Consumption at Location 2

To evaluate the transferability of the models in terms of the capability of predicting
the load time series associated with different energy grids we perform the following
experiments:

• the energy consumption at location 2 is predicted with the models trained on the time
series on location 1;

• the energy consumption at location 1 is predicted with the models trained on the time
series on location 2.

When examining the transferability by predicting the energy consumption at location
2 with the models trained on the time series on location 1, there is a larger difference in
terms of prediction accuracy.

Regarding transferability predictions, the data reported in Figure 7 illustrate how
the ARIMA model is no longer able to predict the load profile. In addition, ARIMA does
not capture any of the actual consumption patterns. This could be because the statistics
between the two-time series are significantly different.

On the other hand, all the neural networks we considered in this study seem to capture
the dynamics of the load profile with high precision. Figure 7 shows that the ESN model
systematically underestimates the energy consumption. This could be due to the property
of the dynamical system which changes from one location to the other. When making
predictions, the ESN uses a very large reservoir, which implies many parameters in the
readout layer. While this helps to achieve a high prediction accuracy at location 1, the ESN
can tend to over-fit the data of location 1 used for training. For this reason, the ESN makes
more errors when transferred to the second location. On the other hand, the other RNNs
have fewer parameters and the resulting model can generalize better to the data of the
second location (see Supplementary Materials Section for more details about each model).
In fact, the results show that the CNN is the model that achieves the highest prediction
accuracy in transferability predictions with an NRMSE of 0.075, slightly better than LSTM
with a result of NRMSE = 0.084.
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5.1.3. All Periods and Sectors for Both Locations

The NRMSE for both household and industry sectors and both locations are given
in Table 1. The highest reported prediction accuracy is in bold. The results show that the
ESN model provides the highest accuracy in predicting the energy consumption one hour
onward at both locations.

Looking at the average prediction accuracy for the two sectors studied, the error is
larger in the industry sector than for the household sector. The reason may be the fact that
the industry sector has higher energy consumption in terms of magnitude. In addition, the
larger differences between maximum and minimum load thorough the day could make the
load profile more difficult to capture with high accuracy. The Fourier transformations show
that the seasonality for each sector is different; the main seasonality for the household
sectors was 24 and 12 h (see Supplementary Materials Section), while for industry sectors,
the main seasonality were 24 and 165 h, which in turn also could affect the accuracy of the
models and should be considered when performing predictions.

For transferability predictions, the ESN still outperforms all the other models in the
household sector. However, when making transferability predictions in the industry sector,
the CNN outperforms all other models at both locations.

Looking at the validation case where the models are trained on location 2 to predict at
location 2 and location 1, the results are the same: The ESN model outperforms the other
models when predicting energy demand in location 2 for both sectors. For transferability
predictions, the ESN outperforms the other models in the household sector, while the CNN
outperforms the other models in the industry sector.

The results show that the ESN and CNN models can predict the dynamics of the time
series with high accuracy at several locations, even when trained on one source-dataset.

5.2. Predicting at Longer (2, 6, 12, 24, and 165-h) Forecasting Horizons

In some cases, it is necessary to have a prediction tool that can predict longer than one
hour ahead [66]. One-hour predictions are useful when examining what demand response
measures can be taken to create an immediate change in the energy load profile.

When planning for strategies in the longer term to create a more stable energy system,
it is necessary to have a prediction tool that can provide accurate forecasts days and
weeks in advance [66]. To investigate whether the models can predict at longer forecasting
horizons, the models are tested on the industry time series for location 1, now with longer-
term forecasting horizons of 2, 6, 12, 24, and 165 h. Without changing the order of the
ARIMA model or any configurations in the neural networks, the results in terms of NRMSE
are the following.

Again, the bold values indicate the model with the highest prediction accuracy. Table 2
shows that the ARIMA model outperforms all the other models at the 24-h forecasting
horizon. The ESN model provides the highest prediction accuracy at the 1-h forecasting
horizon, while the lowest accuracy is for the 12-h forecasting horizon. However, at the
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24-and 165-h forecasting horizons, the accuracy increases again, which is in line with the
main seasonality of 24 and 165 h observed by means of the Fourier transform discussed in
Section 4.2. Since we remove the seasonality, the ARIMA model is not that sensitive to the
seasonality in the data and provides significantly better prediction result at 6 h and 12 h
relative to the neural networks.

Table 2. Normalized root mean squared error (NRMSE) at short- and longer-term forecasting horizon.

Multistep Prediction Results (NRMSE)

Timestamp LSTM GRU Elman CNN ESN ARIMA

1 h 0.066 0.046 0.046 0.068 0.012 0.070
2 h 0.071 0.072 0.067 0.079 0.078 0.070
6 h 0.078 0.086 0.094 0.074 0.163 0.083

12 h 0.077 0.101 0.119 0.093 0.182 0.108
24 h 0.518 0.441 0.531 0.524 0.142 0.139
165 h 0.164 0.181 0.083 0.114 0.166 0.159

Looking at the neural networks, there is no clear indication that there is a model that
achieves higher accuracy than the others at longer forecast horizons. It is noteworthy that
all the trainable RNNs and the CNN outperform the ESN on longer forecasting horizons,
which indicates that the ESN model is most suitable for being used on short-term prediction
tasks. The Elman model outperforms the other models at both 2- and 165-h forecasting
horizons. Again, the CNN shows impressive results, with the highest accuracy of all
models at 6 h horizon, and acceptable accuracy for all horizons except for more than 24 h
ahead.

The results suggest that the Elman RNN, ARIMA, and the CNN are the preferable
models for longer-term energy planning purposes. However, from the results in Section 5.1,
we see that the ARIMA model is difficult to transfer. This means that ARIMA must
be trained on the same location where the energy consumption must be predicted and,
therefore, it is necessary to possess historical energy consumption data. If no such historical
data are available for training the ARIMA model, the CNN model is suggested as the
optimal one.

6. Conclusions

In this paper, we studied the application of statistical models and neural networks
to perform predictions of energy demand. The paper focused on predicting future loads
for two communities that experience frequent power outages due to heavy loads on the
existing electricity grid. Since the most important task is to predict the consumption when
the load is high and there is a risk of interruptions in the power supply, we focused on
energy consumption during workdays. Therefore, the periods with low consumption
during holidays was removed, and we analyzed a time series of 6544-time steps.

We performed statistical analysis on both aggregated household and industry sectors
and investigated the autocorrelation and partial autocorrelation functions before prediction
was performed. To determine the seasonality in consumption patterns within each sector,
the time series were transformed from the time domain to frequency domain by Fourier
transformations. From the Fourier transforms it is clear that the industry sectors have
a strong seasonality every 24 h and every 165 h, i.e., the seasonality of the industry
consumption is strongly dependent on the weekly pattern, while the households have a
strong seasonality every 24 h and 12 h (see Supplementary Materials Section).

The results of the predictive models in terms of NRMSE show that the ESN provides
the highest accuracy when making short-term predictions. In addition, the simplicity
in implementation and the fast training procedure makes the ESN model an appealing
instrument for time series prediction.

To evaluate the transferability of each model, we trained each model on location 1
(or 2) and used the trained models to predict the energy consumption at location 2 (or 1).
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For transferability predictions, the ESN model does also provide high accuracy results
when predicting at location 2 by use of the model trained on location 1. However, when
the differences in energy consumption in terms of magnitude are large, the ESN model
systematically underestimates the load at location 2, which has significantly larger energy
consumption. For the industry sector, the CNN model outperforms all the other models and
achieves impressive results in the transferability prediction. In particular, the CNN model
captured both the magnitude and consumption pattern with remarkable high accuracy.
In the household sector, where differences in energy consumption in terms of magnitude
were lower, the ESN model again outperforms the other models.

For longer-term predictions, the ARIMA model outperforms all models at all 24-h
forecasting horizons. However, the ARIMA model is limited in that it must be trained
on the same time series that are being predicted. Therefore, the ARIMA model cannot be
transferred effectively. In contrast, the neural networks, and the CNN model especially,
perform well when transferred to a second location. In addition, the CNN model achieves
accurate predictions at multiple forecasting horizons.

The study suggests that productive future research can be undertaken to investigate
the possibility of combining the ESN and CNN models for long- and short-term prediction
purposes. If such a model were able to achieve high prediction results in multiple locations
at both long-and short-term, it would be a valuable prediction tool to use for energy
planning purposes at several locations and sectors with different time series dynamics.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-107
3/14/4/798/s1, Figure S1: Energy demand for the aggregated household sector. Figure S2: ACF and
PACF plots for the energy consumption in households’ sector. The correlation outside the standard
deviations are correlations and not a statistical fluke. Figure S3: ACF and PACF plots for the residuals
after predictions with the ARIMA(1,0,1) model. Table S1: Each hyperparameter is searched in the
interval [min,max]. The parameters in Table S1 are the following: Order of the autoregressive term
(p), order of differentiation (d), and order of moving average term (p). The optimum hyperparameter
configurations for each sector are selected as the one yielding the highest prediction accuracy on the
validation set. The ARIMA(1,0,1) configuration are the model providing highest prediction accuracy
for both industry and household sector. Table S2: The hyperparameter configuration for the trainable
RNNs are specified as: Number of layers (L), number of units per layer (n). The hyperparameter
configuration are trained over 50 epochs. Table S3: The hyperparameter configuration for the CNN
are: Number of layers (L), number of units per layer (n), the convolutional kernel size (k). The
dilation rate dr, specifies how each convolutional layer L, are dilated with a factor a factor 2i. Here i
are the specific layer of the network. The hyperparameter configuration are trained over 50 epochs.
Table S4: Each hyperparameter is searched in the interval [min,max]. The parameters in the table are
the following: Neurons in the reservoir (Nr), connectivity (Rc), noise in the state uptdate (ξ), spectral
radius (ρ), the scaling of input, teaching and feedback weights (ωi, ωo, ωf), and regression parameter
C. The optimum hyperparameter configurations for each sector are selected as the one yielding the
highest prediction accuracy on the validation set.

Author Contributions: O.F.E. performed all analyzes and had the main responsibility for writing
the manuscript. F.M.B. contributed to the inception of the study and supervised in the analysis.
H.A. contributed by improving the English and the structure of the manuscript. M.H. contributed
with the data collections for the analyzes in the study. Y.-C.C. contributed with analyzing the data.
M.C. assisted in the analysis and interpretation of the results and contributed to the inception of the
manuscript O.F.E., F.M.B. and M.C. wrote the manuscript with input from all authors. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by UiT-the Arctic University of Norway, grant number 310026.
The APC was funded by 310026.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Energies 2021, 14, 798 15 of 17

Acknowledgments: O.F.E. and M.C. acknowledge the support from the research project “Transfor-
mation to a Renewable & Smart Rural Power System Community (RENEW)”, connected to the Arctic
Centre for Sustainable Energy (ARC) at UiT-the Arctic University of Norway through Grant No.
310026. We thank Ishavskraft AS for providing the necessary datasets for the studies in this paper.
We thank Maritsa Kissamitaki for designing Figure 1.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. De Gooijer, J.G.; Hyndman, J.R. 25 years of time series forecasting. Int. J. Forecast. 2006, 22, 443–473. [CrossRef]
2. Simchi-Levi, D.; Simchi-Levi, E.; Kaminsky, P. Designing and Managing the Supply Chain: Concepts, Strategies and Cases; McGraw-Hill:

New York, NY, USA, 1999.
3. Bunn, D. Forecasting loads and prices in competitive power markets. Proc. IEEE 2000, 88, 163–169. [CrossRef]
4. Ruiz, P.A.; Gross, G. Short-term resource adequacy in electricity market design. IEEE Trans. Power Syst. 2008, 23, 916–926.

[CrossRef]
5. Child, M.; Kemfert, C.; Bogdanov, D.; Breyer, C. Flexible electricity generation, grid exchange and storage for the transition to a

100% renewable energy system in Europe. Renew. Energy 2019, 139, 80–101. [CrossRef]
6. International Renewable Energy Agency. Power System Flexibility for the Energy Transition, Part 2: IRENA FlexTool Methodology;

IRENA: Abu Dhabi, United Arab Emirates, 2018.
7. Alstone, P.; Gershenson, D.; Kammen, D.M. Decentralized energy systems for clean electricity access. Nat. Clim. Chang. 2015, 5,

305–314. [CrossRef]
8. Olauson, J.; Ayob, M.N.; Bergkvist, M.; Carpman, N.; Castellucci, V.; Goude, A.; Lingfors, D.; Waters, R.; Widén, J. Net load

variability in Nordic countries with a highly or fully renewable power system. Nat. Energy 2016, 1, 16175. [CrossRef]
9. Bordin, C.; Thomasgard, A. SMACS MODEL, a stochastic multihorizon approach for charging sites management, operations,

design, and expansion under limited capacity conditions. J. Energy Storage 2019, 26, 100824. [CrossRef]
10. Orehounig, K.; Evins, R.; Dorer, V. Integration of decentralized energy systems in neighbourhoods using the energy hub approach.

Appl. Energy 2015, 154, 277–289. [CrossRef]
11. Ringkjøb, H.-K.; Haugan, P.M.; Nybø, A. Transitioning remote Arctic settlements to renewable energy systems—A modelling

study of Longyearbyen, Svalbard. Appl. Energy 2020, 258, 114079. [CrossRef]
12. Olkkonen, L.; Korjonen-Kuusipuro, K.; Grönberg, I. Redefining a stakeholder relation: Finnish energy “prosumers” as co-

producers. Environ. Innov. Soc. Transit. 2017, 24, 57–66. [CrossRef]
13. Liu, N.; Yu, X.; Wang, C.; Li, C.; Ma, L.; Lei, J. Energy-sharing model with price-based demand response for microgrids of

peer-to-peer prosumers. IEEE Trans. Power Syst. 2017, 32, 3569–3583. [CrossRef]
14. Morstyn, T.; Farrell, N.; Darby, S.J.; McCulloch, D.M. Using peer-to-peer energy-trading platforms to incentivize prosumers to

form federated power plants. Nat. Energy 2018, 3, 94–101. [CrossRef]
15. An, J.; Lee, M.; Yeom, S.; Hong, T. Determining the peer-to-peer electricity trading price and strategy for energy prosumers and

consumers within a microgrid. Appl. Energy 2020, 261, 114335. [CrossRef]
16. Xiao, X.; Wang, J.; Lin, R.; Hill, D.J.; Kang, C. Large-scale aggregation of prosumers toward strategic bidding in joint energy and

regulation markets. Appl. Energy 2020, 271, 115159. [CrossRef]
17. Jiang, Y.; Zhou, K.; Lu, X.; Yang, S. Electricity trading pricing among prosumers with game theory-based model in energy

blockchain environment. Appl. Energy 2020, 271, 115239. [CrossRef]
18. Hafeez, G.; Alimgeer, K.S.; Khan, I. Electric load forecasting based on deep learning and optimized by heuristic algorithm in

smart grid. Appl. Energy 2020, 269, 114915. [CrossRef]
19. Arcos-Aviles, D.; Pascual, J.; Guinjoan, F.; Marroyo, L.; Sanchis, P.; Marietta, M.P. Low complexity energy management strategy

for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting. Appl. Energy 2017,
205, 69–84. [CrossRef]

20. Giaouris, D.; Papadopoulos, A.I.; Patsios, C.; Walker, S.; Ziogou, C.; Taylor, P.; Voutetakis, S.; Papadopoulou, S.; Seferlis, P. A
systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand
side response. Appl. Energy 2019, 226, 546–559. [CrossRef]

21. Stokland, J.; Løksa, K. Omlegging til en Framtidsrettet Nettleie, NVE. 2020. Available online: https://www.nve.no/
reguleringsmyndigheten/nytt-fra-rme/nyheter-reguleringsmyndigheten-for-energi/omlegging-til-en-framtidsrettet-nettleie/
(accessed on 9 July 2020).

22. Norges Vassdrags-Og Energidirektorat; Miljødirektoratet; ENOVA; Statens Vegvesen; Kystverket; Landbruksdirektoratet. Kli-
makur 2030: Tiltak og Virkemidler mot 2030; Miljødirektoratet: Oslo, Norway, 2020.

23. ENOVA. Sluttrapport på Konseptutredning; Troms Kraft Nett AS: Tromsø, Norway, 2019.
24. Herran, D.S.; Nakata, T. Design of decentralized energy systems for rural electrification in developing countries considering

regional disparity. Appl. Energy 2012, 91, 130–145. [CrossRef]
25. Schäfer, M.; Kebir, N.; Neumann, K. Research needs for meeting the challenge of decentralized energy supply in developing

countries. Energy Sustain. Dev. 2011, 15, 324–329. [CrossRef]



Energies 2021, 14, 798 16 of 17

26. International Energy Agency. SDG7: Data and Projections–Access to Electricity; IEA: Paris, France, 2020; Available online:
https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity (accessed on 15 June 2020).

27. Boute, A. Off-grid renewable energy in remote Arctic areas: An analysis of the Russian Far East. Renew. Sustain. Energy Rev. 2016,
59, 1029–1037. [CrossRef]

28. Quitoras, R.M.; Campana, P.E.; Rowley, P.; Crawford, C. Remote community integrated energy system optimization including
building enclosure improvements and quantitative energy trilemma metrics. Appl. Energy 2020, 267, 115017. [CrossRef]

29. Aberilla, J.M.; Gallego-Schmid, A.; Stamford, L.; Azapagic, A. Design and environmental sustainability assessment of small-scale
off-grid energy systems for remote rural communities. Appl. Energy 2020, 258, 114004. [CrossRef]

30. Statistics Norway (SSB). Elektrisitet 10314: Nettoforbruk av Elektrisk Kraft, Etter Forbrukergruppe (GWh) (K) 2010–2019; Statistics
Norway: Oslo, Norway, 2020; Available online: https://www.ssb.no/statbank/table/10314/ (accessed on 23 October 2020).

31. Deihimi, A.; Orang, O.; Showkati, H. Short-term electric load and temperature forecasting using wavelet echo state networks
with neural reconstruction. Energy 2013, 57, 382–401. [CrossRef]

32. Van Oldenborgh, G.J.; Balmaseda, M.A.; Ferranti, L.; Stockdale, T.N.; Anderson, D.L.T. Did the ECMWF seasonal forecast model
outperform statistical ENSO forecast models over the last 15 years? J. Clim. 2005, 18, 3240–3249. [CrossRef]

33. Dang-Ha, T.H.; Bianchi, F.M.; Olssson, R. Local short term electricity load forecasting: Automatic approaches. In Proceedings of
the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; IEEE: Anchorage,
AK, USA, 2017.

34. Hyndman, R.; Koehler, A.; Ord, K.; Snyder, R. Forecasting with Exponential Smoothing: The State Space Approach; Springer Series in
Statistics; Springer: Berlin/Heidelberg, Germany, 2008.

35. Taylor, J.W. A Comparison of univariate time series methods for forecasting intraday arrivals at a call center. Manag. Sci. 2008, 54,
253–265. [CrossRef]

36. Taylor, S.J.; Letham, B. Forecasting at Scale. Am. Stat. 2018, 72, 37–45. [CrossRef]
37. Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken,

NJ, USA, 2011; Volume 74.
38. Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B Methodol. 1964, 26, 211–243. [CrossRef]
39. Alberg, D.; Last, M. Short-term load forecasting in smart meters with sliding window-based ARIMA algorithms. Vietnam J.

Comput. Sci. 2018, 5, 241–249. [CrossRef]
40. Bianchi, F.M.; De Santis, E.; Rizzi, A.; Sadeghian, A. Short-term electric load forecasting using echo state networks and PCA

decomposition. IEEE Access 2015, 3, 1931–1943. [CrossRef]
41. Schäfer, A.M.; Zimmermann, H.-G. Recurrent neural networks are universal approximators. Int. J. Neural Syst. 2007, 17, 253–263.

[CrossRef] [PubMed]
42. Bianchi, F.M.; Maiorino, E.; Kampffmeyer, M.C.; Rizzi, A.; Jenssen, R. An Overview and Comparative Analysis of Recurrent

Neural Networks for Short Term Load Forecasting. arXiv 2018, arXiv:1705.04378.
43. Gasparin, A.; Lukovic, S.; Alippi, C. Deep Learning for Time Series Forecasting: The Electric Load Case; Cornell University,: Ithaca, NY,

USA, 2019.
44. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 8, 1735–1780. [CrossRef] [PubMed]
45. Sak, H.; Senior, A.W.; Beaufays, F. Long short-term memory based recurrent neural network architectures for large vocabulary

speech recognition. arXiv 2014, arXiv:1402.1128.
46. Deihimi, A.; Showkati, H. Application of echo state networks in short-term electric load forecasting. Energy 2012, 39, 327–340.

[CrossRef]
47. Varshney, S.; Verma, T. Half hourly electricity load prediction using Echo State Network. Int. J. Sci. Res. (IJSR) 2014, 3, 885–888.
48. Bianchi, F.M.; Scardapane, S.; Uncini, A.; Rizzi, A.; Sadeghian, A. Prediction of telephone calls load using Echo State Network

with exogenous variables. Neural Networks 2015, 71, 204–213. [CrossRef]
49. Peng, Y.; Lei, M.; Li, J.-B.; Peng, X.-Y. A novel hybridization of echo state net-works and multiplicative seasonal ARIMA model

for mobile communication traffic series forecasting. Neural Comput. Appl. 2014, 24, 883–890. [CrossRef]
50. Jaeger, H.; Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science

2004, 304, 78–80. [CrossRef]
51. Borovykh, A.; Bothe, S.; Oosterlee, C.W. Conditional time series forecasting with convolutional neural networks. arXiv 2018,

arXiv:1703.04691.
52. Kuo, P.-H.; Huang, C.-J. A High precision artificial neural networks model for short-term energy load forecasting. Energies 2018,

11, 213. [CrossRef]
53. Amarasinghe, K.; Marino, D.L.; Manic, M. Deep neural networks for energy load forecasting. In Proceedings of the 2017 IEEE

26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; IEEE: Edinburgh, Scotland, UK,
2017; pp. 1483–1488.

54. He, W. Load forecasting via deep neural networks. Procedia Comput. Sci. 2017, 122, 308–314. [CrossRef]
55. Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A deep neural network model for short-term load forecast based on long short-term memory

network and convolutional neural network. Energies 2018, 11, 3493. [CrossRef]



Energies 2021, 14, 798 17 of 17

56. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.-A. Transfer learning for time series classification. In Proceedings of
the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; IEEE: Seattle, WA, USA,
2018; pp. 1367–1376.

57. Xu, X.; Meng, Z. A hybrid transfer learning model for short-term electric load forecasting. Electr. Eng. 2020, 102, 1371–1381.
[CrossRef]

58. Jung, S.-M.; Park, S.; Jung, S.-W.; Hwang, E. Monthly electric load forecasting using transfer learning for smart cities. Sustainability
2020, 12, 6364. [CrossRef]

59. Hooshmand, A.; Sharma, R. Energy predictive models with limited data using transfer learning. In Proceedings of the e-Energy
’19: The Tenth ACM International Conference on Future Energy Systems, Phoenix, AZ, USA, 25–28 June 2019; pp. 12–16.
[CrossRef]

60. Nikolay, L.; Yu, J.; Rajagopal, R. Applied time-series transfer learning. Stanford, CA, USA. Workshop track; ICLR; Standford university:
Standford, CA, USA, 2018; pp. 1–4.

61. He, Q.-Q.; Pang, P.C.-I.; Si, Y.-W. Transfer learning for financial time series forecasting. In Proceedings of the PRICAI 2019: Trends
in Artificial Intellegence, Yanuca Island, Fiji, 26–30 August 2019; Nayak, A., Sharma, A., Eds.; Lectore Notes in Computer Science.
Springer: Cham, Switzerland, 2019; Volume 11671. [CrossRef]

62. Holmes, S. RMS Error, Stanford. 28 November 2000. Available online: https://statweb.stanford.edu/~{}susan/courses/s60/
split/node60.html (accessed on 9 July 2020).

63. Ishavskraft AS. Om Oss. Available online: https://www.ishavskraft.no/om/ (accessed on 21 April 2020).
64. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018; Available

online: https://otexts.com/fpp2/ (accessed on 18 January 2021).
65. Omar, K. Deconstructing Time Series Using Fourier Transform, Medium. Available online: https://medium.com/@khairulomar/

deconstructing-time-series-using-fourier-transform-e52dd535a44e (accessed on 9 July 2020).
66. Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. Int. J. Forecast. 2016, 32, 914–938. [CrossRef]



 
 

 

 
Energies 2021, 14, 798. https://doi.org/10.3390/en14040798 www.mdpi.com/journal/energies 

Article 

Predicting Energy Demand in Semi-Remote Arctic Locations 
Odin Foldvik Eikeland 1, Filippo Maria Bianchi 2, Harry Apostoleris 3, Morten Hansen 4, Yu-Cheng Chiou 1 and 
Matteo Chiesa 1,2,* 

1 Department of Physics and Technology, UiT the Arctic University of Norway, 9037 Tromsø, Norway; 
odin.f.eikeland@uit.no (O.F.E.); yu.cheng.chiou@uit.no (Y.-C.C.) 

2 Department of Mathematics and Statistics and NORCE, The Norwegian Research Centre, UiT the Arctic 
University of Norway, 9037 Tromsø, Norway; filippo.m.bianchi@uit.no 

3 Laboratory for Energy and NanoScience (LENS), Masdar Institute Campus, Khalifa University of Science 
and Technology, 127788 Abu Dhabi, UAE; harry.apostoleris@gmail.com 

4 Ishavskraft Power Company, 9024 Tromsø, Norway; morten.hansen@ishavskraft.no 
* Correspondence: matteo.chiesa@uit.no 

Supplementary material 
All the models used are described briefly in this supplementary chapter, where rele-

vant references that describe the models more comprehensive are cited. In addition, a 
short discussion of the different advantages and disadvantages between the statistical-
and the machine-learning approaches are discussed. Then, the case study for the house-
hold sector, which follows the same methodology as for the industry case are described. 
In the end, all the hyperparameter configurations used for predictions are given in chapter 
5.5 

1. Statistical models 
1.1. Autoregressive Integrated Moving Average (ARIMA) 

The formalism ARIMA (p,d,q) can be used to define a large class of statistical models. 
The parameter p indicates the order of the auto-regressive component, d represents the 
initial differencing of the time series, and q the order of the moving average component. 
The value of the parameters must be carefully selected to achieve high prediction accura-
cies [1]. The equations for forecasting with ARIMA (p,q,d) are constructed as:  p: order of the autoregressive term d: order of differentiation q: order of the moving average term 

 y୲ = Y୲,                                        d = 0 y୲ = Y୲ − Y୲ିଵ,                           d = 1 y୲ = Y୲ − 2Y୲ିଵ + Y୲ିଶ,           d = 2  
where y୲ is the d୲୦ difference of Y, which gives that the second difference of Y as the 

first difference of the first difference, i.e. the time series has performed first order differ-
encing two times. This could be necessary if the time series are not stationary after per-
forming differencing one time. The general forecasting equation for ARIMA predictions 
are: 

yො = μ + ϕଵy୲ିଵ + ⋯ + ϕ୮y୲ି୮ − θଵe୲ିଵ − ⋯ θ୯e୲ି୯, ሺ1) 
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Where θ is the moving average parameter, ϕ the slope coefficient, μ are the auto-
regressive constant and 𝑒 are the exponential smoothing coefficient.  

In order to determine the optimal order of the ARIMA model to be used, some sta-
tistical analyses and pre-processing are required. First, the autocorrelation function (ACF) 
and partial autocorrelation functions (PACF) are computed to get a better understanding 
of the data provided, and the ACF and PACF are interpreted to investigate whether the 
data is stationary or not. Stationarity in time series is when statistical properties such as 
the mean and the variance do not change over time during the observation period. When 
performing predictions with ARIMA models, the time series are required to be stationary. 
To check for stationarity, the ACF and PACF are plotted. If the plots show no correlations, 
the time series are stationary and ARIMA predictions could be performed. Finally, by in-
terpreting the ACF and PACF plots, the correct orders of the AR and MA components are 
identified.  

1.2. Prophet 
The prophet-forecasting model developed by [2], uses a decomposable time series 

model divided into three main components [3]. The components are: Trend (h(t)), season-
ality (s(t)) and holidays (h(t)). The trend function models non-periodic changes in the data 
and the seasonality represents periodic changes in the data (for instance daily, weekly or 
yearly seasonality). The holiday effect h(t) represent potentially irregular data over one or 
several days. The model components are added together as: yሺt) = gሺt) + sሺt) + hሺt) + ϵ୲, ሺ2) 

Where ϵ୲ are the error term representing changes that are not captured by the model, 
and are assumed to be normally distributed [2]. The trend are divided into two trend 
models, a saturating piecewise growth model and a piecewise linear model. The piecewise 
logistic growth model are derived to handle trend changes in the growth rate by explicitly 
defining change points where the growth rate are allowed to change. If the trend shows 
no saturating growth, the model are selected as a piecewise constant rate of growth. The 
seasonality it the time series are fitted by specifying seasonality models that are periodic 
functions of time. To capture periodic effects, the seasonality component rely on Fourier 
transformation that allows identifying the main periodicities in the time series that explain 
the consumption pattern [4]. The final component in the prophet-forecasting model, the 
holidays, are incorporated by assigning a dataset 𝐷௜ that represent the set of past and fu-
ture dates for the each holiday i . An indicator function are added, which represent 
whether time t is during the holiday i, and assign each holiday the parameter κ୧, which 
represent the corresponding change in the forecast.  

When all the components are implemented in equation (2), the prophet-forecasting 
model in can be fitted to predict the specific task. All derivations of the different compo-
nents are provided in detail in [2]. 

2. Neural networks 
2.1. Elman Recurrent Neural Network (ERNN) 

The ERNN, also known as the Simple RNN, is usually considered as the most basic 
version of RNN [5]. The more advanced RNN architectures such as GRU and LSTM can 
be interpreted as an extension of ERNN. The ERNN was proposed by Jeffrey L. Elman [6], 
where the aim was to generalize neural networks for better handling data sequences like 
time-series. The effectiveness of the RNNs in handling time series comes from the ability 
of learning of an input sequence by means of a recurrent function [7]. The layers in an 
ERNN are divided into; input, hidden and output layers. The input and output layers are 
characterized by feedforward connections, while the hidden layer contain recurrent con-
nections. The specific ERNN processes one element of a sequence at time. At each 
timestamp t, the input layer process the information at 𝐱ሾtሿ ∈ ℝ୒౟, where N୧ are the num-
ber of nodes in the input layer. The input time series x has a total length T.  In the input 
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layer, each component is summed with a bias vector 𝐛𝐢 ∈ ℝ୒౞ , where N୦ is the number of 
nodes in the hidden layer. Each component x[t] is then multiplied with a weight matrix 𝐖୧୦ ∈ ℝ୒౟ × ୒౞. Similarly, the internal state 𝐡ሾt − 1ሿ ∈ ℝ୒౞ from the recurrent time interval 
is summarized with a bias vector 𝐛𝐡 ∈ ℝ୒౞ , before multiplied with the weigh matrix 𝐖୦୦ ∈ℝ ୒౞× ୒౞ of the recurrent connections. Then, the transformed input and past network state 
are combined and processed by the neurons in the hidden layers. Finally, the output of 
the network at timestamp t, are: 𝐲ሾtሿ = g൫𝐖୦୭ሺ𝐡ሾtሿ + 𝐛𝐨)൯, ሺ3) 

where the output are computed through the transformation 𝑔ሺ∙) on the matrix of the 
output weights 𝐖୦୭ ∈ ℝ୒౨×୒౥ (𝑁௢ are number of nodes in the output layer). The output 
weights are applied to the sum of the current state h[t] and the bias vector 𝒃𝒐 ∈ ℝே೚  [5].  

2.2. Long Short-Term Memory (LSTM) 
The LSTM network are essentially build in a similar way as the ERNN architecture. 

The main difference between LSTM and ERNN is in the composition of the inner module, 
where the LSTM implements a more advanced internal processing unit, a cell [5,7].   

The LSTM network has the same output and input as the original ERNN. However, 
internally it implements a gated system that controls the neural information. The key fea-
ture of the gated networks, which makes the LSTM as a widely used neural network, is 
the ability to try to solve the vanishing gradient problem by not imposing any bias to-
wards recent observations. This provides the ability that the LSTM can maintain its inter-
nal memory unaltered for long time intervals [5,7].  

2.3. Gated Recurrent Units (GRU) 
The GRU networks are a simplified version of LSTM. The difference between GRU 

and LSTM network, is that in GRU, the forget and input gates are combined and merged 
into a single update. This controls how much each hidden unit can remember or forget. 
Therefore, the GRU network ends up having two gates compared to LSTM that has three 
gates [5,7]. Several works shows that GRUs can perform comparably to LSTM, but gener-
ally train faster due to lighter computation [8,9]. 

2.4. Convolutional Neural Network (CNN) 
CNNs are a class of neural networks designed to work with data that can be struc-

tured in a grid-like topology [7,10]. CNNs has been widely used for image recognition 
and classification, but are also suitable for forecasting univariate time-series. The CNNs 
are based on a discrete convolution operator, consisting of an input vector x, kernel w, 
and an output f. The convolution operator produces the output by sliding the kernel over 
the input vector. Each element in the output feature is obtained by summing up the result 
of the element-wise multiplication between the input patch and the kernel. The number 
of kernels used in the convolutional layer determines the depth of the output volume. In 
this study, the CNN are applied on a univariate energy demand time-series 𝐱 ∈ ℝ୬౐, with 
a one-dimensional kernel 𝐰 ∈ ℝச. The output feature of the 1D CNN is: 𝑓ሺi) = ሺ𝐱 × 𝐰)ሺ𝐢) = ෍ xሺi − j)୩ିଵ

୨ୀ଴ wሺj), ሺ4) 

where i represents the i୲୦ element of the convolution between x and w [7]. To better 
handle historical data, the original CNN are dilated to be able to learn long-term depend-
encies in the time-series. The dilated CNN proposed first time by the authors in [11], 
which named the dilated CNNs as Temporal Convolutional Network (TCN). In this study, 
three CNN layers are dilated by a dilation factor d, growing from d=1, d=2 and d=4. In 
each layer the kernel size is k=3.  

The output from the TCN using the dilation factor d is: 
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fሺi) = ሺ𝐱𝐝 × 𝐰)ሺ𝐢) = ෍ xሺi − dj)୩ିଵ
୨ୀ଴ wሺj), ሺ5) 

All neural networks considered here (ERNN, LSTM, GRU and CNN) have been im-
plemented with Python in Keras [12], with Tensorflow as backend [13]. 
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2.5. Echo State Network (ESN) 
The ESN consists of a large and untrained recurrent layer of nonlinear units in addi-

tion to a linear memory-less read-out layer. The full explanation of the underlying mech-
anisms for all components in the ESN architecture are explained in details in review paper 
by Bianchi et.al. [5].  

To optimize predictions with ESN, the hyperparameter configuration must be tuned 
in order to maximize the prediction accuracy. Hyperparameters control the structure and 
the capacity of the model, determines how the network is trained, and must be specified 
before the ESN is trained to solve the prediction task [14]. In order for proper selection of 
hyperparameters to achieve accurate prediction results, the dataset analyzed are divided 
into three parts; training, validation and testing part [15,16].  

The training set is used to fit the trainable parameters of the ESN, which are the 
weights of the readout. The generalization capability of the trained model, measured as 
the prediction accuracy obtained on future time steps of the energy load time series, is 
first evaluated on the validation set [15]. Since the weights of the ESN are not trained, the 
ESN performance is particularly sensitive to the choice of the hyperparameters. 

Hyperparameters are selected to yield the highest mean accuracy on the validation 
set. Different strategies can be used to search for the optimal hyperparameters. Here, we 
tune the hyperparameters by performing a grid search over a large number of configura-
tions (768), over 8 different hyperparameters. The hyperparameters that are optimized 
with cross-validation are; number of neurons in the reservoir (N୰), spectral radius (ρ), the 
regression parameters (C), noise in the state update (ξ), connectivity (Rୡ), and finally the 
scaling of the input, teaching and feedback weights (ω୧, ω୭, ω୤).  

When implementing and predicting the time series with ESN in this study, a modi-
fied version of the Python implementation provided by Løkse et al. is used [17]. 

3. Advantages and disadvantages of the statistical models and neural networks 
A disadvantage of a model-based prediction approach such as the neural networks 

is that it is more difficult to interpret the results and understand the decision-process of 
the model. On the other hand, these models are easier to use for a practitioner and less 
domain-knowledge is required to use the models and obtain good results in terms of pre-
diction.  Statistical models are easier to interpret than the more advanced neural networks, 
and the user has more control on the procedure that generates the result. As a downside, 
a careful tuning that implies pre-analyses and a discrete amount of knowledge on the 
problem is required to achieve prediction results with high accuracy. This is in contrast to 
the neural networks, where no additional work except from careful tuning the hyperpa-
rameters is required when making predictions. 

4. The household time series in location 1 
This part of the supplementary chapter provides the same methodology as for the 

industry sector, this time for the aggregated household sector during workdays.  
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Figure S1. Energy demand for the aggregated household sector. 

From Figure S1, the cyclic pattern is no longer easy to identify as for the industry 
sector. There is no strong weekly consumption pattern, and the consumption is much 
more frequent than every week as for the industry sector.  During the summer period, the 
consumption is low as the weather is warm. The running mean average shows that the 
energy use evolves from high consumption early in July towards lower consumption in 
August. In the end of August, the consumption seems to increase again (from timestamp 
3000 to 4000). The representation of main consumption pattern together with the ACF and 
PACF functions for the household sector are shown in Figure S2.  

 
Figure S2. ACF and PACF plots for the energy consumption in households’ sector. The correlation 
outside the standard deviations are correlations and not a statistical fluke. 

The autocorrelation and partial autocorrelation show strong correlations outside the 
95% confidence interval at approximately 12, 24 and 48 hours. 

The Fourier transformation shows likewise a main seasonality at 24 hours. However, 
there is no longer a strong seasonality at 165 hours as for the industry sector. The con-
sumption pattern is strongly driven by the daytime consumption pattern occurring every 
12 hours, which in turn correlates well with the typical household daily life with routines 
as breakfast every morning and dinner every afternoon.  The seasonality of the time series 
was again removed with seasonal differencing and thereafter the short-term correlation 
was removed by first order differencing and the ACF and PACF functions were plotted 
again, indicated by red colors in Figure S2.   

5. Hyperparameter configurations and training of the models 
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For each model, the optimal hyperparameter configuration is searched on the vali-
dation set. In particular, we select as the optimal model the one yielding the highest pre-
diction accuracy on the validation set. Then, the performance of the optimal model is eval-
uated on the test set. 
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5.1. ARIMA 
To perform predictions with the ARIMA model, the time series need to be stationary. 

The seasonality of the time series is removed with seasonal differencing and thereafter the 
short-term correlation was removed by first order differencing. To check if the time series 
become stationary after differentiation, the ACF and PACF functions are plotted again, 
and they are depicted in red in Figure S2. As there are no longer strong correlations in the 
ACF and PACF plot (all values are almost zero in the red figure), we can assume that the 
time series are now stationary and ARIMA model can be applied. As the PACF function 
has no correlations, it is possible to use an ARIMA (1,0,1) predictive model.  

In addition to selecting the ARIMA orders by interpreting the ACF and PACF plots, 
a grid search of different ARIMA orders was performed to identify the configuration that 
yields the highest prediction accuracy. The different ARIMA orders searched are provided 
in Table S1. Even according to this second optimization scheme, we found that the ARIMA 
(1,0,1) model achieved the highest prediction accuracy in terms of NRMSE.  

Table S1. Each hyperparameter is searched in the interval [min,max]. The parameters in Table S1 
are the following: Order of the autoregressive term (p), order of differentiation (d), and order of 
moving average term (p). The optimum hyperparameter configurations for each sector are se-
lected as the one yielding the highest prediction accuracy on the validation set. The ARIMA(1,0,1) 
configuration are the model providing highest prediction accuracy for both industry and house-
hold sector. 

ARIMA (p,d,q) p d q 
min 0 0 0 
max 2 2 2 

Optimal 1 0 1 
To check for stationarity, the ACF and PACF are given for the residual errors (pre-

dicted value subtracted from the actual value). The ACF and PACF plots for the residual 
errors are provided in Figure S3.  

 

 

. 

Figure S3. ACF and PACF plots for the residuals after predictions with the ARIMA(1,0,1) model. 

The ACF and PACF of the residuals does not show any significant correlations. This 
suggests that the ARIMA (1,0,1) model is able to predict the time series.  
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5.2. Prophet 
When making predictions with the open-source Prophet library, only the default con-

figurations were used. The GitHub repository for making forecasts with Prophet could be 
found here [18]. The Prophet prediction method are developed and explained in detail in 
[2]. 

5.3. Trainable RNNs 
The trainable RNNs (LSTM, GRU and Elman) are trained over several epochs on a 

set of configurations, where the epoch resulting in the highest accuracy on the validation 
set are selected for predictions on the test set. The hyperparameter configurations for the 
trainable RNNs are specified in Table S2.  

Table S2. The hyperparameter configuration for the trainable RNNs are specified as: Number of 
layers (L), number of units per layer (𝑛). The hyperparameter configuration are trained over 50 
epochs. 

 LSTM GRU ERNN 
L 1 1 1 𝐧 32 32 32 

optimizer adam adam adam 
Learning rate 0.001 0.001 0.001 

epochs 50 50 50 

5.4. CNN 
The CNN are trained in a similar way as for the trainable RNNs. However, inspired 

by the authors behind the Temporal Convolutional Network [11], we dilate the CNN to 
make the model able to learn long-term dependencies in the time-series. In this study, 
three CNN layers are dilated by a dilation factor d, growing from d=1, d=2 and d=4. In 
each layer, the kernel size is k=3. The hyperparameter configuration for the CNN are given 
in Table S3.  

Table S3. The hyperparameter configuration for the CNN are: Number of layers (L), number of 
units per layer (n), the convolutional kernel size (k). The dilation rate d୰, specifies how each con-
volutional layer L, are dilated with a factor a factor 2୧. Here i are the specific layer of the network. 
The hyperparameter configuration are trained over 50 epochs. 

 L 𝐧 k 𝐝𝐫(L1,L2,L3) optimizer Learning 
rate epochs 

CNN con-
figurations 3 32 3 1,2,4 adam 0.001 50 

5.5. ESN 
When performing the predictions with ESN, the optimal hyperparameter configura-

tion was selected with a grid search. Each hyperparameter was searched in the range spec-
ified in Table S4. 

Table S4. Each hyperparameter is searched in the interval [min,max]. The parameters in the table 
are the following: Neurons in the reservoir (𝑁௥), connectivity (𝑅௖), noise in the state uptdate (𝜉), 
spectral radius (𝜌), the scaling of input, teaching and feedback weights (𝜔௜,𝜔௢,𝜔௙), and regression 
parameter C. The optimum hyperparameter configurations for each sector are selected as the one 
yielding the highest prediction accuracy on the validation set. 

Hyperpa-
rameters 

𝑵𝒓 𝑹𝒄 𝝃 𝝆 𝝎𝒊 𝝎𝒐 𝝎𝒇 𝑪 
min 300 0.15 0.0 0.5 0.1 0.25 0.0 0.001 
max 500 0.45 0.01 1.0 0.4 1.0 0.1 1.0 
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Optimum 
industry 

location 1 
300 0.15 0.0 0.9 0.1 1.0 0.0 0.001 

Optimum 
household 
location 1 

500 0.15 0.0 1.0 0.1 1.0 0.0 0.001 

To optimize predictions with the trainable RNNs and the CNN, the optimal hyperpa-
rameter configuration could be selected by performing a grid search as for the ARIMA 
and ESN model. However, since we use a small number of units (32 vs the 300-500 used 
in the ESN model), the models are not prone to overfitting and, therefore, regularization 
is not required. 

Additionally, since the parameters are optimized with gradient descent, the sensitiv-
ity on the hyperparameters is lower than for the ESN. Indeed, the ESN trade the precision 
of the gradient descent optimization with the redundancy of a large random reservoir 
that, inevitably, makes the model more sensitive to hyperparameters configuration. 

For this reason, we can expect good performance from ERNN, LSTM, GRU, and CNN 
by using a fixed hyperparameters configuration. 
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ABSTRACT Unscheduled power disturbances cause severe consequences both for customers and grid
operators. To defend against such events, it is necessary to identify the causes of interruptions in the power
distribution network. In this work, we focus on the power grid of a Norwegian community in the Arctic
that experiences several faults whose sources are unknown. First, we construct a data set consisting of
relevant meteorological data and information about the current power quality logged by power-quality
meters. Then, we adopt machine-learning techniques to predict the occurrence of faults. Experimental results
show that both linear and non-linear classifiers achieve good classification performance. This indicates that
the considered power quality and weather variables explain well the power disturbances. Interpreting the
decision process of the classifiers provides valuable insights to understand the main causes of disturbances.
Traditional features selection methods can only indicate which are the variables that, on average, mostly
explain the fault occurrences in the dataset. Besides providing such a global interpretation, it is also important
to identify the specific set of variables that explain each individual fault. To address this challenge, we adopt
a recent technique to interpret the decision process of a deep learning model, called Integrated Gradients. The
proposed approach allows gaining detailed insights on the occurrence of a specific fault, which are valuable
for the distribution system operators to implement strategies to prevent and mitigate power disturbances.

INDEX TERMS Energy analytics, machine learning interpretability, power quality disturbances.

I. INTRODUCTION
Unscheduled power disturbances cause problems for cus-
tomers and grid operators as they affect all customers con-
nected to the power network, from single households to large
industries [1]–[4]. Power failures might have complex and
adverse socio-economic consequences in communities that
are heavily reliant on the electricity supply [5], [6]. The
distribution system operator (DSO) is contractually obliged to
provide a reliable power supply and to compensate customers
affected by power interruptions [7]. To meet the expected
energy demand, the DSOs must implement management
plans that account for the underlying infrastructure.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nagesh Prabhu .

In this study, we focus on disturbances on a power grid
in an Arctic region in Northern Norway, where the energy
demand from local food industries has increased greatly. The
growth in energy demand has resulted inmore frequent power
disturbances, as the current power grid is operating close to
its maximum capacity. One way to improve the reliability of
the power supply is to build a new distribution grid that can
handle larger power demand. However, this is costly, time-
consuming, has a huge environmental impact, and contradicts
the vision of better utilizing the current electricity grid infras-
tructure∗ [8]. An alternative solution is to limit the failures
and strengthen only the most vulnerable parts of the grid, but
this requires first identifying the factors that trigger power
disturbances.

∗https://www.miljodirektoratet.no/publikasjoner/2020/januar-
2020/klimakur2030/
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The identification of causing factors of faults in the power
grid has proven to be a major challenge for the DSO [4].
However, the increased availability of energy-related data
makes it possible to exploit advanced data analytics tech-
niques to support the development of strategies for improving
the reliability of the power grid [9]–[15]. Recent studies based
on statistical data analysis and machine learning (ML), indi-
cated that extreme weather conditions are often an important
cause of faults in power grids [16]–[21]. However, other
factors besides weather could likely affect the power quality.

In this work, we explore a wide spectrum of potential
causing factors for power failures. We consider explanatory
variables relative both to weather and high-resolution power-
quality data. We adopt ML techniques to detect the power
disturbances and to identify the factors that mostly explain
the power disturbances.

This paper extends our previous study, which analyzed
fault data in the Arctic power grid during the year 2020 [22].
There were important shortcomings in the data used in our
previous work:

1) The machines of the local industries connected to the
power grid are so sensitive to the power quality that
they experience failures that are not registered in the
failure-reporting system of the DSO.

2) The resolution of data in 2020 was too low (1-hour) to
understand how power consumption truly affects power
quality.

To address these issues, new power quality meters were
installed on 19 February 2021 in the power grid under anal-
ysis. These meters log data every minute and register every
small voltage variation. In addition, they provide detailed
information about the power quality in the grid, such as the
specific phase where the fault is registered, the magnitude of
voltage variation, frequency imbalance, and the amount of
flicker.
Contributions: First, we build a power faults classification

dataset in collaboration with the DSO, by collecting variables
that are considered as most relevant in explaining power
disturbances. Then, we train different classifiers, including
linear classifiers and a deep learning architecture, to detect
an incoming fault from the weather and power-quality vari-
ables, registered one minute before the specific fault occurs.
As shown in the experimental results, the classifiers man-
age to detect most of the power disturbances before their
onset, demonstrating that high-resolution data from power
quality meters in conjunction with weather data are highly
informative.

To gain a better understanding of the relationships between
the different variables and the power disturbances, we analyze
the decision process of the classifiers. First, we consider
traditional features selection methods, which identify which
are the most important variables in the dataset that explain
the fault occurrence. While such an approach gives a global
overview of the variables that are, on average, the most
informative in the dataset, it does not allow to reason about
specific cases.

To address this challenge, we adopt a recent technique
to interpret the decision process of a deep learning model,
called Integrated Gradients (IG). For each individual sample,
IG assigns to each feature a score, whose magnitude indicates
how much the value of such feature contributes to determine
the class of the sample. The proposed methodology shows
that the classifiers focus on heterogeneous sets of features
when processing different samples. This indicates that the
occurrence of faults can be explained by multiple different
patterns in the weather and power-quality variables. Our find-
ings are valuable to the DSO for implementing strategies to
prevent and mitigate power disturbances.

II. RELATED WORK AND STUDIES
There exist a vast amount of literature about the detection of
different classes of power quality disturbances, such as devi-
ation in voltage, current, and frequency signals. For example,
Ref. [23] provides a comprehensive review of more than
150 research studies between 1986 and 2014 on detection and
classification of power quality disturbances. In another com-
prehensive and more recent survey, [24] reviewed 242 papers
on Power Quality and Classification (PQD&C) techniques
based on digital signal processing and ML. The survey per-
formed a comparative assessment on various PQD&C tech-
niques by considering several criteria, such as type of data
used, type of PQ disturbance, and classification accuracy.

However, fault detection and classification is a reactive
process where models try to classify the fault after it has
occurred. On the other hand, it is often interesting to identify
the causing factors and predict the onset of a power fault.
A fault prediction model should be able to quantify the like-
lihood of observing a fault in the next period given a set
of conditions described by the explanatory variables in the
model. Additionally, the identification of causing factors for
faults will help the DSO to implement strategies to prevent
and mitigate incoming faults.

There exist some prior relevant work on identifying caus-
ing factors for faults in the power grid. The causing factors are
often divided into two different categories: i) weather condi-
tions, and ii) other factors such as human-related activities
(energy consumption).

A. WEATHER-RELATED FAULTS
Harsh and severe weather events are considered to be an
important source of faults, and several studies have been
conducted to address the impact of such events on power
quality.

Owerko et al. predicted power faults in New York City by
monitoring weather conditions [21]. The authors deployed
a Graph Neural Network to model the spatial relation-
ships between weather stations and improve the prediction
performance.

The impact of seasonal weather on forecasting power dis-
turbances was investigated in [25]. The authors tested the
performance of the proposed models by using two different
training sets: seasonal or all-year data. It was shown that,
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in some cases, the prediction performance of the models
improved when the training data is limited to a subset cor-
responding to a particular meteorological season.

The impact of weather variations and extreme weather
events on the resilience of energy systems was investigated
in [16]. The authors developed a stochastic-robust optimiza-
tion method to consider both low impact variations and
extreme events. The method was applied on 30 cities in
Sweden. The results indicated that 16% drop in power supply
reliability is due to extreme weather events.

Other examples of relevant work on weather-related faults
can be found in Refs. [17]–[20]. In addition, several risk
assessment studies on the impacts of extremeweather hazards
such as earthquakes, thunderstorms, and hurricanes can be
found in Refs. [26]–[32].

The works mentioned so far consider only severe weather
events and disregard other factors, such as heavy energy
load caused by human-related activities. Additionally, many
methodologies are tested on synthetic data or on public
benchmark datasets, which limits the scope of the evaluation
and poses constraints on the data acquisition procedure.

B. ALTERNATIVE APPROACHES FOR FAULT DETECTION
A methodology to predict power faults by analyzing
advanced measurement equipment such as Power Quality
Analyzers (PQAs) and Phasor Measurement Units (PMUs.)
has been proposed in [33]. The study used real-world mea-
surements from nine PQA nodes in the Norwegian grid to
predict incipient interruptions, voltage dips, and earth faults.
The authors find incipient interruptions easiest to predict,
while earth faults and voltage dips are more challenging to
predict.

The authors in [34], compared several ML methods to
predict power disturbance events such as voltage dips, ground
faults, rapid voltage changes, and power interruptions. The
Random Forest models achieved the highest performance
and the results indicated that voltage dips and rapid voltage
changes were the easiest to predict.

The challenge of detecting back-fed ground-faults has been
recently addressed in [35]. The authors show that faults can be
detected by integrating advancedmetering infrastructure with
a distribution management system. However, the proposed
solution is relevant only for DSOs that adopt the OpenDSS
software.

The study in [36] investigated the possibility of predicting
voltage anomalies minutes in advance by using an ML model
trained on historical power quality analyzers (PQA) data. The
voltage data were collected from 49 measuring locations in
the Norwegian power grid. The model attempted to predict
voltage anomalies 10 minutes in advance based on the pres-
ence of early warning signs in the preceding 50 minutes.
It was found that the time passed since the previous fault is
a major factor that affects the probability of a new imminent
fault.

In [37], the application of clustering and dimension-
ality reductions techniques to predict unscheduled events

was investigated. First, the authors used several techniques
to reduce the dimensionality of the data and to cluster events
based on analytical features. Then, the fault events were
separated from the normal operating conditions. The findings
show promising results when using balanced datasets, while
the predictive capability is significantly reduced in unbal-
anced datasets that, however, often appear in real-world case
studies.

Other relevant work on fault detection based on ML tech-
niques can be found in Refs. [38]–[43]. In addition, there
is some relevant work that adopts novel ML techniques
for detecting and localizing faults in the power distribution
network [9]–[12].

This section presented several relevant works in predicting
faults by assessing either weather effects or human activities.
One of the goals of our work is to consider, at the same
time, a larger amount of weather variables and electricity-
related measures as potential causes of power disturbances.
A close collaboration with the local DSO has provided us
with valuable insights about the relevant variables that should
be monitored to construct a new classification dataset. More
importantly, none of the previous work has focused on inter-
preting the decision process of the classifier, which is key to
understanding the causes of faults and can provide valuable
information to improve the power grid reliability.

III. POWER FAULTS DATASET
In this study, we focus on a power grid with a radial structure
located in the Arctic. A detailed description of the grid con-
figuration is deferred to Sect. A in the Appendix. The grid is
subject to frequent power faults, which could be caused by
weather factors or by the strain of the infrastructure from a
local industry, which dominates the load consumption in the
power grid.

We prepared a classification dataset where each sample
refers to a period when the grid is operating in normal con-
ditions or to a period preceding a fault, respectively. Each
sample is associated with a feature vector x ∈ R12 and a label
y ∈ {0, 1}, indicating the normal condition or the imminent
fault, respectively. The feature vector consists of 6 different
energy-related variables and 6 different weather variables,
summarized in Tab. 1. A fault is registered when there is
at least a 10% drop in voltage magnitude. Further details
about faults measurement, what the weather and power vari-
ables represent, and how they are collected, are described in
Sect. B in the Appendix.

The dataset contains 90 samples representing reported
faults (y = 1), which occurred in the period between
19.02.2021 to 30.04.2021. Naturally, the amount of samples
associated with normal operating conditions is much larger.
In addition, in normal operating conditions the values x from
neighboring hours are very similar to each other. To limit the
amount of class imbalance in the dataset and the redundancy
in the over-represented class, we arbitrarily subsampled the
non-fault class (y = 0) by taking 1 sample every 60. In the
final dataset, there are 90 samples representing a reported
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TABLE 1. Variables analyzed to detect faults in the power grid.

fault and 1, 647 samples representing normal operating con-
ditions without any power disturbance.

IV. METHODOLOGY
Our approach consists of two steps. First, we train a clas-
sifier to predict the onset of power faults given the value
of the electricity and weather variables. If we obtain a high
classification accuracy, we can conclude that there are strong
relationships between the variables, x, and the occurrence of
faults, y. Then, we use two different techniques to highlight
the most informative features identified by the classifiers to
solve the task.

In Sect. IV-A and IV-B, we describe which classifiers
are considered in this study. In Sect. IV-C, we present an
approach for interpreting the decision process of a neural
network classifier.

A. LINEAR CLASSIFIERS
We consider three different linear classifiers. The first is a
Ridge regression classifier, which first converts the target
values into {1, 1} and then treats the problem as a regression
task [44]. The second model is Logistic regression, which
uses a logistic function to approximate the probability of
binary classification variable [44]. The third model is the Lin-
ear Support Vector Classification model (LinearSVC), which
is a type of Support Vector Machine (SVM) [45] endowed
with a linear kernel.

Due to the strong class imbalance, we configure each
model to assign a class weight that is inversely proportional
to the number of samples in each class. In this way, errors
on the underrepresented class (faults, y = 1) are penal-
ized much more than errors on the larger class (nominal
condition, y = 0).

One advantage of using linear classifiers is that they con-
struct a decision boundary directly in the input space, which
allows to easily interpreting the decision process of the classi-
fier. In particular, the linear models assign a weightwi to each
feature xi in the input space: the higherwi, the more the values
of xi impact the classification outcome. Therefore, looking
at the magnitude of the weights wi is a simple strategy to

estimate the average importance of the features in the dataset
for the classification task.

B. NON-LINEAR CLASSIFIERS
We consider two non-linear classifiers. The first is a non-
linear SVC classifier equipped with a radial basis function
kernel (RBFSVC). As for the linear models, also in this case
we used class weights inversely proportional to the class
frequency.

The second non-linear classifier considered is a Multi-
Layer Perceptron (MLP) [46]. The MLP consists of an input
layer that takes input vectors x ∈ R12, L hidden blocks,
an output layer that generates a 2-dimensional output o ∈ R2,
and a softmax activation that gives the vector of class proba-
bilities y. Each block l consists of a dense layer with nl units,
a Batch Normalization layer [47], a non-linear activation
function, and a Dropout layer [48] with dropout probability p.
All trainable weights in the MLP, except the biases, are reg-
ularized with L2-norm penalty with strength λ. Fig. 1 depicts
the MLP architecture.

FIGURE 1. Architecture of the MLP.

The MLP is trained by minimizing a cross-entropy loss,
using batches of size b, and the Adam optimization algo-
rithm [49] with initial learning rate r . Due to the strong class
imbalance in the dataset, we initially trained the MLP by
weighting the loss of each sample with a value inversely
proportional to the class frequency, as we did for the other
classifiers. However, we found out that the MLP achieved
better performance by re-sampling the minority class during
training. This allows achieving class balance at the expense
of introducing redundancy, by re-proposing the same samples
multiple times. We also tried to achieve class balance by
subsampling the majority class but, due to the small number
of samples in the fault class, the total number of inputs in
each training epoch was too small and the samples from the
majority class were shown too few times during training.

C. INTERPRETATION OF THE MLP RESULTS WITH
INTEGRATED GRADIENTS
In the following, we introduce the technique adopted to
interpret the decision process of the MLP. A short review
of important approaches for interpretability in deep learning,
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which have been proposed over the past few years (and briefly
mentioned hereafter), is deferred to Sect. C in the Appendix.

Integrated Gradients (IG) [50] is a technique proposed to
satisfy two axioms, which are not jointly enforced by other
existing attribution schemes (see Sect. C for details). Accord-
ing to the first axiom, sensitivity, if the input and an uninfor-
mative baseline differ in exactly one feature, such a feature
should be given non-zero attribution. While interpretability
approaches such as LRP [51] and DeepLiFT [52] ensure
sensitivity due to the conservation of total relevance, gradient-
based methods [53]–[56] do not guarantee the sensitivity
axiom because the saturation at ReLU or MaxPool makes
the score function locally ‘‘flat’’ with respect to some input
features.

The second axiom, implementation invariance, states that
when two models are functionally equivalent, they must have
identical attributions to input features. While implementation
invariance is mathematically guaranteed by vanilla gradient
approaches, the coarse approximation to gradients in LRP and
DeepLiFT might break this assumption.

The attribution to feature i given by IG is

IGi(x) ::= (xi − x ′i )×
∫ 1

α=0

∂F
(
x ′ + α × (x − x ′)

)
∂xi

dα, (1)

where i is an input feature, x is a sample in the dataset, x ′ is
the uninformative baseline, and α is an interpolation constant
used to perturb the features of the input sample. The above
definition ensures both the desirable assumptions:

• By the Fundamental Theorem of Calculus, IGs sum
up to the difference in feature scores and, thus, follow
sensitivity;

• Since the IG attribution is completely defined in terms
of gradients, it ensures implementation invariance.

IG has become a popular interpretability technique due to
its broad applicability to any differentiable neural network
model, ease of implementation, theoretical justifications, and
computational efficiency.
Implementation: IG is a post-hoc explanatory technique

that works with any differentiable model, F(·), regardless of
its implementation. In this paper, we let F(·) be the MLP
model described in Section IV-B that takes as input tensor the
feature vector x ∈ R12 and generates an output prediction ten-
sor, o = F(x), called logit. In our case, o ∈ R2 and softmax(o)
gives the probability of x being ‘‘fault’’ and ‘‘non-fault’’.

The baseline x ′ in (1) is an uninformative input used as
a starting point to compute the IG attributions. The base-
line is essential to interpret the IG attributions as a func-
tion of individual input features. It is important to choose
a baseline that encodes as much as possible the lack of
information about the target class c. In a classification task
with multiple classes, we want softmax[F(x ′)]c ≈ 0. In a
binary classification task, like in our case, we can chose a
baseline that gives equal probability of belonging to both
classes, i.e., softmax[F(x ′)]0 ≈ softmax[F(x ′)]1 ≈ 0.5.
In computer vision tasks, a black image (all pixels at 0) is

FIGURE 2. Class probabilities for different baselines on the power-faults
dataset.

commonly used as a baseline. However, in our dataset, the
value 0 might actually be informative because the absence
of some specific features can increase the probability of
belonging to a specific class (e.g., in the absence of wind
it is less likely to observe a fault). Fig. 2(left) shows that
the MLP assigns with high confidence the zero-baseline x ′z
to class 0 (non-fault). Therefore, different alternatives should
be considered as the baseline. One option is to cast the binary
classification problem into a 3-classes problem and re-train
the two that assign a vector of zeros to a third, dummy class.
In this way, when using the zero-baseline x ′z, we would get
softmax[F(x ′z)]0 ≈ softmax[F(x ′z)]1 ≈ 0. Other alternatives
are to use a mean-baseline, x ′m, which is a vector computed
as a weighted average of the features across the two classes
or to use, or a random baseline x ′r . In the latter case, the final
result is given by averaging the IG attributions computed from
several random baselines. As shown in Figure 2, the mean
baseline gives almost the same probability to classes 0 and 1,
while the random baseline has the tendency to assign a strong
probability to one of the two classes. Therefore, we used the
mean baseline in all our experiments.

The default path used by the integral in (1) is a straight
line in the feature space from baseline to the actual input.
Since the choice of path is inconsequential with respect to
the above axioms, we use the straight-line path that has the
desirable property of being symmetric with respect to both
x and x ′. The numerical computation of a definite integral
is often not tractable and is necessary to resort to numerical
approximations. The Riemann trapezoidal sums offer a good
trade-off between accuracy and convergence and changes (1)
into:

IGapprox
i (x) ::= (xi−x ′i )×

m∑
k=1

∂F
(
x ′+ k

m×(x − x
′)
)

∂xi
×

1
m
,

(2)

where m is the number of finite steps used to approximate
the integral and α ≈ k/m. The m samples X = {x ′ + k

m ×

(x − x ′)}mk=1 represent the linear interpolation between the
baseline and the input. Fig. 3 depicts such an interpolation
path from the mean-baseline to a specific sample of class
‘‘fault’’ in our dataset.

After generating the set of interpolated samples X , we can
compute the gradients ∂F(X )

∂xi
that quantify the relationship
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between the changes in the input features and the changes
in the predictions of the MLP F . Important features will have
gradients with steep local slopes with respect to the probabil-
ity predicted by the model for the target class. Interestingly,
the largest gradient magnitudes generally occur during the
first interpolation steps. This happens because the neural
network can saturate, meaning that the magnitude of the local
feature gradients can become extremely small and go toward
zero resulting in important features having a small gradient.
Saturation can result in discontinuous feature importances
and important features can be missed. This is the key motiva-
tion why rather than simply using the gradients of the actual
input, ∂F(X )

∂xi
, IG sums all the gradients accumulated during

the whole interpolation path. This concept is exemplified in
Fig. 4(left), showing that the model prediction quickly con-
verges to the correct class in the beginning and then flattens
out. There could still be less relevant features that the model
relies on for correct prediction that differs from the baseline,
but the magnitudes of those feature gradients become really
small, as shown in Fig. 4(right). The Figure is obtained using
the same data of Fig. 3.

V. EXPERIMENTAL EVALUATION
After introducing the experimental setting, in Sect. V-A we
compare the classification performance of the different clas-
sifiers on our dataset. Then, in Sect. V-B we first analyze
the specific samples of class ‘‘fault’’ that are missed by the
classifiers and, then, we consider two techniques to interpret
the decision process of the classifiers.
Model Selection and Performance Evaluation: The linear

and the SVM classifiers are implemented with the scikit-
learn library,† while the MLP is implemented in Tensorflow.‡

To evaluate the model performance we first shuffle the data
and then perform a stratified k-fold, with k = 5. In each fold,
80% of the data are used as a training set, and the remaining
20% is used as a test set. The training is further divided into
two parts: 80% is used to fit the model’s coefficients and 20%
is used as a validation set to find the optimal hyperparameters.

The hyperparameters of the linear models and the SVM
are optimized with a grid search. In particular, we optimize
the regularization strength in the Ridge regression classifier,
Logistic regression, and LinearSVC. For the non-linear SVM
classifier, we also optimize the width of the radial basis
function.

For the MLP, due to the higher amount of hyperparameters
and the longer training time, we used the Bayesian optimiza-
tion strategy implemented in Keras Tuner§ and evaluated a
total of 5,000 configurations. In particular, we optimized the
number of layers L, the number of units nl in each layer,
the L2 regularization coefficient λ, the dropout probability p,
the learning rate r , and the type of activation function (ReLU,
tanh, or ELU). We used a fixed batch size b = 32, an early

†https://scikit-learn.org/
‡https://www.tensorflow.org/
§https://keras.io/keras_tuner/

stopping with patience of 30 epochs, and we reduced the
initial learning rate by a factor of 1/2 when the validation
loss was not decreasing for 10 epochs.

Before training the models, the input values x are normal-
ized feature-wise by subtracting the mean and dividing by the
standard deviation computed on the training set. The overall
performance of each classification model is the average per-
formance obtained on each test set of the 5 folds.
Performance Measures: The classification performance is

measured by looking at the confusion matrix, which reports
the following quantities: True Negatives (TN) – correctly
identified non-faults, False Positives (FN) – non-faults pre-
dicted as faults, False Negatives (FN) – faults missed, and
True Positives (TP) – faults correctly identified. To quantify
the performance with a single value we use the F1 score:

F1 = 2 ·
precision · recall
precision+ recall

=
TP

TP+ FP+FN
2

. (3)

Due to the strong class imbalance in the dataset, we com-
pute a weighted F1 score, i.e., we weight the F1-score
obtained for each class by the number of samples in that class
and then we compute the average:

F1weighted =
(nfaults · F1faults)+ (nnon-faults · F1non-faults)

nfaults + nnon-faults
,

(4)

where n_ and F1_ indicate the number of samples and clas-
sification scores for each class, respectively.
Selecting the Number of Interpolation Steps in IG: The

result of the IG attribution depends on the number of steps
m (see Eq. 2). One of the properties of IG is completeness,
meaning that feature attributions encompass the entire pre-
diction of the model. As a consequence, the importance score
should capture the individual contribution of each feature to
the prediction. Therefore, by adding together all the impor-
tance scores is it possible to recover the entire prediction
value for a given sample x. In particular, we have that the
variation in classification score (e.g., the probability of being
a fault) is

δ =
∑
i

IGi(x)−
(
F(x)c − F(x ′)c

)
where F(x)c and F(x ′)c are the prediction scores for class c
when the model takes as input x and x ′, respectively. Since
we want the

∑
i IGi(x) to explain the whole difference in the

class attributions, the number of integration stepsm should be
increased until when δ becomes as close as possible to zero.
Following this principle, we foundm = 100 to be sufficiently
large for our experiments as it gives δ < 1e− 2.

A. CLASSIFICATION PERFORMANCE OF THE
DIFFERENT METHODS
Here, we compare the classification performance obtained by
the linear methods, SVM classifier, and the MLP. The clas-
sification performance of each model is reported in Tab. 2 in
terms of average Weighted F1 score and the average number
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FIGURE 3. Top row: linear interpolation from the mean-baseline (left) to an actual sample of class fault (right). Bottom row: classification
probabilities assigned by the MLP at each step of the interpolation.

FIGURE 4. Left: target class predicted probability over α. Right: average
feature gradients (normalized) over α.

TABLE 2. Classification score for different models.

of TN, FP, FN, and TP obtained across the 5 folds. Note that
the TN, FP, FN, and TP are rounded to the closest integer.

The MLP classifier achieves top performance with a
weighted F1 score of 0.803, followed by the Ridge Classi-
fier and the SVC with RBF kernel that achieves weighted
F1 scores 0.785 and 0.771, respectively. In our case study,
is important to miss as few faults as possible, meaning that
solutions with very few FN (missed detection) are acceptable
even if the number of FP (false alarms) is significant. The
MLP and Ridge Classifier provides the most promising result
with 4 FN and 14 TP on average.

Finally, it is interesting to notice that linear and non-linear
models achieve similar performance. This suggests that the
two classes are almost linearly separable, i.e., most of the

data samples can be separated reasonably well by an hyper-
plane in the input features space. On the other hand, the
data samples that are misclassified are very entangled, and
is difficult to find a decision boundary, even if is non-linear,
that can correctly separate them. The good performance of
the classification models motivates the feature interpretation
procedure discussed in the next section.

B. ANALYSIS AND INTERPRETATION OF THE RESULTS
For the next analysis, we generate a fixed random train/
validation/test split and used the same fold for each model.
This allows us to analyze in detail the solution obtained by the
different methods on a single test set, which contains 18 faults
and 330 non-faults. Interestingly, all models fail to correctly
classify as faults the same 5 data samples. A closer manual
investigation on such 5 samples shows the following:

1) 2021-02-22 at 19:29:00: is an empty measurement,
2) 2021-02-22 at 21:55:00: is a phase-to-ground fault;
3) 2021-02-22 at 22:12:00: is a phase-to-ground fault;
4) 2021-02-26 at 11:58:00: is an actual fault that was

missed by the classifiers;
5) 2021-03-02 at 09:29:00: is a fault with an unusual long

duration.
The first FN could have been caused by some type

of error, such as a calibration error, in the measurement
instruments.

In the case of a ground fault, the electrical transformers
connected to the grid break, and the power that flows through
the transformer flows to the ground. When the end of the
electrical transformer station that contacts the ground level
is on the downstream side, a ground fault occurs [35]. The
ground fault is detected as a reduction of only one of the
three-phase voltages. Fig. 5 depicts the phase voltages when
the first ground fault occurred: it is possible to see that

150692 VOLUME 9, 2021



O. Foldvik Eikeland et al.: Detecting and Interpreting Faults in Vulnerable Power Grids With Machine Learning

FIGURE 5. The phases in a phase-to-ground fault incident. The ground
fault occurs on Phase A which is decreasing significantly (voltage drop),
while the other two in the three-phase system have a minor decrease
from nominal voltage level.

Phase A decreases significantly, while the other two stay
above the nominal voltage value. It is difficult to explicitly
detect ground faults from only weather and electricity load
measures considered as input variables, and therefore it is
reasonable that the models miss the faults number 2 and 3.

Similar to the ground faults, the 4th FN could be caused by
a factor not described in the weather and electricity variables.
For example, it could have been caused by vegetation or
animals interacting with the power lines.

Finally, the 5th FN is a fault that lasts for 200 seconds,
while the usual duration of the faults is approximately
25-30 secs. This suggests that the fault is an anomaly that is
not well represented in the dataset and, therefore, is difficult
to be classified accurately.

To identify the most important variables that explain the
faults, we try to interpret the decision process of the differ-
ent models. First, we analyze the coefficients of the linear
models, which give a ‘‘global’’ interpretation of the variables
importance. Then, we use the IG technique for a ‘‘local’’
interpretability of the features that explain the class of a
specific data sample.

1) GLOBAL INTERPRETABILITY
As discussed in Sect. IV-A, when using linear models we can
interpret the magnitude of the weights assigned to the input
features as the global importance of the features for the classi-
fication problem. Fig. 6 reports the feature weights learned by
the three different classifiers. We observe that in each model
the Wind speed of gust variable is always associated with
a weight with a large magnitude. The Linear SVC and the
Logistic Regression classifiers attribute large importance also
to the Flicker variable, while the Ridge Regression classifiers
weight the other features more uniformly and assign weights
to Temperature and Humidity that are slightly larger than the
weight assigned to Flicker.

This analysis suggests that both the industrial activity and
the weather effects are important in discriminating between
the fault and non-fault classes. According to the linear
models, the most important among the power-related vari-
ables seems to be Flicker, while the Wind speed of gust is
consistently the most explanatory weather-related variable.

FIGURE 6. Coefficients’ magnitude assigned to each feature by different
linear models. High magnitude indicates that the corresponding feature is
important.

These observations are aligned with the experiences of the
DSO and the local customers, as more faults seem to occur
when there is high activity at the industries and the machines
operates at full load. In addition, it has been noted that faults
are more likely to occur when there is a strong wind, which
could create collisions in the cables of the power lines.

2) LOCAL INTERPRETABILITY
The faults correctly classified by the different models are
reported in Tab. 3, together with the confidence score of the
MLP classifier. The confidence score can be interpreted as
the probability that the MLP believes a sample is a fault.
The MLP correctly classifies with high confidence most fault
samples and assigns a probability greater than 90% to 5 out
of 13 samples. As a side note, the faults do not appear to be
clustered around specific days or periods, but they seem to be
uniformly distributed over time.

We focus on the samples 52, 140, 227, 304, and 316 in
Tab. 3, which are those classified with the highest confidence,
and we use IG to identify which are the variables that are most
important for the MLP to determine the correct fault class.
The results are reported in Fig. 7. The top-left plot depicts
the uninformative baseline, which corresponds to what an
‘‘average’’ sample in the dataset looks like. The blue bar
plots represent the value of the 12 features in the 5 selected
samples. Finally, the green and red bar plots are the output of
the IG procedure.

The green bars indicate that a feature is important for the
classification result. The higher the i-th green bar, the more
the feature value xi in the sample (blue bar) explains the
classification result, compared to the value x ′i in the baseline
(black bar). For example, in Sample 227, the value of Flicker
is much greater than in the baseline. IG assigns a high score
(tall green bar) to this difference, meaning that theMLP found
important the increment in Flicker compared to the baseline
level for deciding that Sample 227 is a fault. Similarly, the
MLP found important the decrement in Minimum Power
Factor compared to the baseline level, to classify Sample 227
as a fault.

A red bar, instead, indicates that a value xi decreases the
confidence in the classifier that the sample is actually a fault,
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FIGURE 7. The green bars denote that a feature is important for the classification result. The higher the green
bar, the more the feature value in the sample (blue bar) explains the classification result, compared to the
value in the baseline (black bar). The red bars means that the value of the features in the sample decrease the
confidence of the classifier that the sample is actually a fault.

TABLE 3. True positives and confidence score assigned by the MLP
classifier.

compared to having a baseline value x ′i . For example, the
MLP would have been even more confident that Sample 52
and Sample 140 are faults if their Difference in Frequency
values would have been as in the baseline. In other words, for
these two samples, the increment of Difference in Frequency
is something that decreases the confidence of the classifier
that they are faults.

This analysis shows that each sample has different features
that are found important by the MLP for the classification.

For example, Sample 227 is classified as a fault mainly
because of the above-average value in Flicker; Sample 52 is
a fault due to the high value of Wind speed of gust and low
value inMinimum Power Factor; for Sample 304 is important
that the Difference in Reactive Power is higher than average.

The Minimum Power Factor and Reactive Power are
important variables that contribute to explaining the current
power quality in a power grid. The Power Factor is the ratio of
the working power over the apparent power and quantifies the
energy efficiency: the lower the power factor, the less efficient
is the power usage of the end-customer. TheReactive Power is
the amount of power dissipated in the system. A high amount
of reactive power in the system could affect the power quality
negatively as there will be less amount of available active
power that can be used by the end-customer [57]. Therefore,
it is reasonable to observe a relationship between the low
value in the Minimum Power factor, and the high Difference
in Reactive Power for the fault samples 52 and 304.

Interestingly, theMinimumPower Factor andDifference in
Reactive Power were not emerging as important features with
the global interpretability approach, which is based on the
weights magnitude of the linear models. Indeed, an approach
that averages the contribution of the different factors across
the whole dataset is likely to conceal the importance of
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configurations in the features value that appears only in a
few samples. On the other hand, by analyzing samples indi-
vidually, IG can reveal new patterns in the data and allow to
gain deeper insights about the true causes underlying specific
faults.

VI. CONCLUSION
In this work, we tackled the problem of detecting unscheduled
faults in the power grid, which have major consequences for
customers, such industries, relying on a stable power supply.
In collaboration with the DSO, we built a data set consisting
of meteorological and power data variables, which monitor
potentially relevant factors to cause power faults. Once the
dataset was constructed, we trained different classifiers to
detect imminent faults from the value of meteorological and
power variables.

The classification performance was compared in terms of
F1 score and the MLP classifier achieved the top perfor-
mance, followed by the Ridge Classifier. The good classi-
fication results motivated the interpretation of the decision
process learned by the model, as a tool to identify the
variables that mostly explain the onset of power faults.
We explored two different interpretability techniques. First,
we considered the magnitude of the coefficient of the linear
models to quantify the importance that, on average, the dif-
ferent features have to determine if a sample in the dataset
is a fault. The results indicated that the amount of Flicker
and Wind speed of gust are the most important variables
in explaining the power disturbances. Such a global inter-
pretability approach averages the contribution of the different
factors across the whole dataset and, therefore, might fail
to show interesting configurations in the features value that
appear only in a few samples.

As a second interpretability technique, we used the Inte-
grated Gradients to interpret the decision process taken by the
MLP classifier on individual samples. This second approach
allowed us to understand what features were considered
important to classify a specific sample as a fault. Interestingly,
some samples were classified as faults not only for having
high values in Flicker and Wind speed of gust. In fact, the IG
technique showed that the MLP classified as faults samples
where the Minimum Power Factor was below average or
where the Difference in Reactive Power was higher than
average.

The proposed interpretability techniques revealed impor-
tant patterns in the data, which allow us to gain deeper
insights into the underlying causes of power faults. This
type of knowledge will help the DSO to give more reliable
warnings to its customers (both producers and consumers)
that there is an enhanced risk for grid failure when certain
meteorological and power flow conditions are met. With this
information, the customers can take preemptive actions to
reduce the negative consequences occurring when a fault
strikes.

By understanding the major factors causing the faults, the
DSOwill also be able to better plan how to strengthen the grid

FIGURE 8. The SVAN22LY1 power grid. The power is distributed towards
the north from the south. Each green dot represents a unique position of
a utility pole.

to withstand incoming faults. Typical actions to improve the
grid stability are: i) make changes in grid topology, such as
optimizing coupling to make the grid stronger, isolating parts
of the grid more likely to fail, running island mode whenever
possible; ii) optimizing or even increasing the local produc-
tion by introducing new power sources, including renewable
ones; iii) reduce or adjust power flows by controlling flexible
loads.

These kinds of strategies to mitigate incoming grid faults
are currently being developed by the DSO operating the
grid in our study. In particular, the local power company is
installing a large battery system that should be activated right
before an incoming power fault, to provide additional power
and avoid instability in the power supply. Understanding
which variable should be monitored to detect an incoming
power fault is, therefore, fundamental to plan the installation
and management of the batteries.

APPENDIX A
THE INVESTIGATED POWER GRID
The power grid analyzed in this study is a radial distribution
system serving an Arctic community located approximately
at (69.257◦N, 17.589◦E). Arva Power Company, the DSO of
the power grid, has named this specific grid as SVAN22LY1.
Fig. 8 shows an overview of the whole SVAN22LY1 grid,
indicated by green dots. The SVAN22LY1 grid spans over
60 kilometers from the south to the northernmost point and
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has several branches to various communities towards the
north. There are 978 unique utility poles (marked by green
dots in Fig. 8) that support the power lines. The black boxes
in Fig. 8 represent the electric transformer stations connected
to the power grids. The red lines represent a power grid
with an operating voltage of 66 kV, while the blue lines
represent a power grid with an operating voltage of 22 kV.
The SVAN22LY1 radial grid covered by green dots has an
operating voltage of 22 kV. The largest customers connected
to the SVAN22LY1 grid are located at the end of the north-
ernmost point of the radial.

The total energy demand in the SVAN22LY1 grid is dom-
inated by the load consumption of the local industry. The
industry performs fish processing activities that are highly
seasonal and uses many electrical machines in the production
line that require stable power quality. Even minor power
disturbances in the power supply trigger significantly long
interruptions since the automated production line needs to
be reset. In particular, for every short-term power interrup-
tion that occurs, is necessary to wait from 40 minutes to
1 hour before resuming the production. The consequences
of the power disturbances are exacerbated by the topology
of the power grid, which has a radial distribution with no
alternative power supply in periods with disturbances.

APPENDIX B
DATASET CONSTRUCTION
A. FAULT REPORTS
The reported faults used in this study are logged by a
power-quality (PQ) metering system, which was installed
in February 2021 in the proximity of the local industries to
continuously measure the power quality.

The PQ meter installed by the DSO is Dranetz HDPQ-DN,
and is a monitoring instrument that is used for continuous
monitoring of power systems. Such PQ meters are valuable
tools to get better insight and knowledge about the actual
power quality. More technical details about the PQ meter
are provided in [58]. The PQ metering system reports all
incidents with a voltage variation of ±10% from the nom-
inal values on each phase of a three-phase system with
phases A, B, C. According to the standard definition, all
variations of ±10% from normal conditions are defined as
a voltage variation, and a drop larger than 10% is referred to
as a voltage dip [59]. Voltage dips could provoke tripping of
sensitive components such as industrial machines.

B. WEATHER MEASUREMENTS
The weather variables that are considered relevant in causing
power faults are: wind speed of gust, wind direction, tem-
perature, pressure, humidity, and precipitation. The weather
data are collected from areas that are more exposed to harsh
weather conditions, such as hills and cliffs near the sea coast.
To collect the weather data in the Arctic region of interest,
we used the AROME-Arctic weather model .¶ This model is

¶https://www.met.no/en/projects/The-weather-model-AROME-Arctic

developed by the meteorological institute of Norway (MET)
and provides a reanalysis of historical weather data since
November 2015 with a spatial resolution of 2.5 kilometers
and a temporal resolution of 1 hour.

To collect the weather variables, the geographical coordi-
nates from the weather-exposed areas in the power grid are
used as inputs to the AROME-Arctic model. The output from
the AROME-Arctic model is a dataset of 6 weather variables
from the weather-exposed areas that are analyzed.

C. ELECTRICITY LOAD MEASUREMENTS
It is reasonable to assume that some types of fault are not
caused by weather phenomena but originate from external
factors that influence the power flows on the grid. To capture
these effects, 6 different power-related variables from the
largest industry connected to SVAN22LY1 are collected. The
variables selected as relevant to explain power faults are:
difference in frequency, voltage imbalance, the difference
in active and reactive power, minimum power factor, and,
finally, the amount of flicker in the system. All variables are
metered on three different phases (phases A, B, and C).

A change in power frequency could be caused if there is
an imbalance between energy production and consumption
in the system. If there is a change in the power frequency
(50 Hz is the normal frequency), the imbalance could cause
power disturbances for the end-use customers.
Voltage imbalance is a voltage variation in the power

system in which the voltage magnitudes or the phase angle
between the different phases are not equal. It is believed that
rapid changes (big changes within seconds/minutes) in power
consumption at large industries could affect the power qual-
ity. Therefore, the difference in active and reactive power for
each phase within each minute is computed. If the difference
is large, there is a high activity at the industries, which are
reported by the locals to result in a larger probability for
faults.

The minimum power factor represents the relationship
between the amount of active and reactive power in the
system. If the minimum power factor is low, there is an
increased amount of reactive power in the system. In the end,
the amount of flicker in the system is collected.
Flicker is considered as a phenomenon in the power system

and is closely connected to voltage fluctuations over a certain
time frame [60]. A voltage fluctuation is a regular change in
voltage that happens when the machinery that requires a high
load is starting. In addition, rapid changes in load demand
could cause voltage fluctuations. If there are several start-up
situations, or the load varies significantly during a given time
frame, it will be measured a high amount of flicker in the
system. The amount of flicker is particularly relevant in the
industry considered in this study, as they have several large
machines that require high loads and have a cyclical varying
load pattern. In this study, the time frame of the flicker is
10-minutes, which is the standard for measuring the short-
term flicker [7].

150696 VOLUME 9, 2021



O. Foldvik Eikeland et al.: Detecting and Interpreting Faults in Vulnerable Power Grids With Machine Learning

The PQ metering system has a 1-minute resolution, while
the weather data have a 1-hour resolution. To align the
temporal resolution of the different types of variables, the
power consumption data are sub-sampled by taking one
sample every 60. As an alternative sub-sampling technique,
we tested taking the average of the values within each batch
of 60 consecutive samples of power measurements. However,
the results did not change significantly and, therefore, the
former sub-sampling method was adopted.

APPENDIX C
A BRIEF HISTORY OF EXPLAINABILITY
IN DEEP LEARNING
Due to the presence of many non-linear transformations, it is
difficult to interpret the decision process of a neural network.
During the last decade, considerable research effort has been
devoted towards developing insights into what a neural net-
work learns and how it makes its decisions. While most of
the explanatory techniques were originally developed in the
field of computer vision, some of them can be applied also to
neural networks that process sequential or vectorial data.

Gradient-based approaches aim at identifying which inputs
have the most influence on the model scoring function for
a given class. The pioneering work of Simonyan at al. [53]
proposed to compute a saliency map by taking the gradient
of the class activation score (usually, the input to the last
softmax) with respect to each input feature. The visualization
of the saliency maps was successively improved by using
tricks such as clipping the gradients, averaging the gradients
after adding Gaussian noise to the original images, and taking
the absolute value of the gradients [54].

In [55], the authors propose a method to project the activa-
tions of an intermediate hidden layer back to the input space.
The procedure consists in approximately inverting the oper-
ations of a CNN (affine transformations, ReLU activations,
MaxPooling) from the hidden layer to the input layer. The
result gives an insight into which details the hidden layer has
captured from the input image.

The Guided Back Propagation approach performs the
standard gradient back-propagation but, when a ReLU is
encountered, the gradient is back-propagated only if both the
gradient and the ReLU activation in the forward pass are
positive [56].

As a drawback, gradient-based methods attribute zero con-
tribution to inputs that saturate the ReLU orMaxPool. To cap-
ture such shortcomings, a formal notion of explainability
(or relevance) was introduced in [51]. In particular, the
authors introduced an axiom on the conservation of total
relevance, which states that the sum of the relevance of all
pixels must equal the class score of the model. The authors
propose to distribute the total relevance of the class score to
the input features with a method called Layer-wise Relevance
Propagation (LRP). The class score is computed as the dif-
ference between the score obtained by the actual input and
the score obtained by an uninformative input, called baseline.
Each time the relevance is passed down from a neuron to the

contributing neurons in the layer below, the total relevance of
contributing neurons is preserved. All incoming relevances to
a neuron from the layer above are collected and summed up
before passing down further. By doing this recursively from
layer to layer, the input layer is eventually reached, which
gives the relevance of each input feature. The relevance of a
neuron to its contributing inputs can be distributed based on
the magnitude of the weights of the neural network layers.

While LRP followed the conservation axiom, it did not
formalize how to distribute the relevance among the input
features. To address this problem DeepLiFT [52] enforces an
additional axiom on how to propagate the relevance down,
by following the chain rule like gradients.
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A B S T R A C T   

The energy market relies on forecasting capabilities of both demand and power generation that need to be kept in 
dynamic balance. Nowadays, contracts and auctions of renewable energy in a liberalized electricity market 
heavily rely on forecasting future power generation. The highly intermittent nature of renewable energy sources 
increases the uncertainty about future power generation. Since point forecast does not account for such un
certainties, it is necessary to rely on probabilistic forecasts. 

This work first introduces probabilistic forecasts with deep learning. Then, we show how deep learning models 
can be used to make probabilistic forecasts of day-ahead power generation from a wind power plant located in 
Northern Norway. The performance, in terms of the quality of the prediction intervals, is compared to different 
deep learning models and sets of covariates. 

The findings show that the accuracy of the predictions improves by 37% when historical data on measured 
weather and numerical weather predictions (NWPs) were included as exogenous variables. In particular, his
torical data allows the model to auto-correct systematic biases in the NWPs. Finally, we observe that when using 
only NWPs or only measured weather as exogenous variables, worse performances are obtained. The work shows 
the importance of understanding which variables must be included to improve the prediction performance, 
which is of fundamental value for the energy market that relies on accurate forecasting capabilities.   

1. Introduction 

Making accurate predictions is of fundamental importance in the 
energy market where decisions are based on expectations about the 
future. Today, when it comes to renewable energy generation, such 
decisions are increasingly made in a liberalized electricity market 
environment, where future power generation must be offered through 
contracts and auction mechanisms, hence based on forecasts [1–3]. 
Since renewable energy sources (RES) are to eventually participate in 
market mechanisms under the same rules as conventional fossil-fuel- 
based generators, mismatches between contracted generation and 
actual deliveries may induce financial penalties [4]. Indeed, the energy 
production from RES can be predicted with limited accuracy. This, in 
addition to uncertainties in market prices, yield uncertain market 
returns. However, in market environments under such high levels of 

uncertainty, the relevant stakeholders may make better decisions if they 
are given the best possible estimates about the future. 

Forecasts in their most common form are to predict the next value 
that is most likely to occur. Forecasts in such form are called a point 
forecast. The main objective of making point forecasts is to train a model 
to predict a certain point in the future, and hopefully, the actual value 
will eventually be the same (i.e., a perfect prediction). However, it is not 
reasonable to expect that a model can perform 100% accurate pre
dictions. The models will therefore predict the most likely value based 
on what it has learned through the information that is given. However, 
when predicting the most likely value (or point) in the future, one does 
not consider the uncertainties in this forecast (how sure are we that this 
will be the next value). For the stakeholders that work in the energy 
market with a high degree of uncertainty, it is of interest to measure the 
uncertainty in a given forecast. For instance, the power production from 
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solar photovoltaic (PV) or wind power is highly intermittent and 
dependent on multiple features with a complex and non-linear nature 
(weather, power market, human activity) [5–7,1]. Making accurate 
point predictions from these technologies is almost impossible, espe
cially when considering short-term forecasts that range from 12-h to 36- 
h ahead, which is the day-ahead market the energy trading companies 
must relate to [6,8]. Therefore, it is of fundamental importance to be 
able to predict the distribution of the expected outcome to find a certain 
interval of possible outcomes. Probabilistic forecasts predict such dis
tributions where the interval of possible outcomes creates a prediction 
interval (PI). Probabilistic forecasts will allow market participants to 
consider the uncertainties in a given prediction. 

The increased share of RES technologies with fluctuating generation 
in the electricity market, and the rapid development within machine 
learning (ML), have motivated the development of research concerning 
probabilistic forecasts in energy applications with deep learning. Efforts 
have been done to construct deep learning models that create probabi
listic forecasts of expected generation from technologies such as PV and 
wind power [2,9,7,10,11]. 

In works by Sadeghi, Saleh, et al. [12,13] a novel deep learning- 
based approach to model the uncertainty in a virtual power plant 
(VPP) concept was proposed. The VPP concept is used to address the 
challenges related to the increased penetration of RES and electric ve
hicles in the electricity system, which has highly intermittent nature in 
generation and consumption [14]. 

Similar approaches have been used to make probabilistic forecasts of 
expected weather (such as wind speed), traffic, energy load, and spot 
prices in the electricity market [15–17,6]. 

The majority of former works have used different deep learning ar
chitectures such as Convolutional Neural Networks (CNNs) or Recurrent 
Neural Networks (RNNs) where different loss functions are optimized to 
compute predicted distributions. In addition, some works are proposing 
methodologies where original Neural Networks (NNs) are modified for a 
specific task to make probabilistic forecasts [18,8,10]. In [19] the au
thors compared deep learning models to make probabilistic forecasts on 
different datasets and showed that wind power generation was the most 
challenging one to predict with high accuracy due to the highly non- 
linear feature and randomness in power generation. Despite a large 
number of works on probabilistic forecasts with deep learning tech
niques in energy applications, there is a lack of research comparing the 
effect of using exogenous variables to obtain the best prediction per
formance of wind power generation. 

The electricity generation from wind power systems is directly 
affected by the amount of wind that hits the turbines, where the amount 
of power that is generated follows a wind-to-power conversion process, 
or the power curve [20]. Therefore, the majority of work uses numerical 
weather predictions (NWPs) as inputs to forecast the expected wind 
power generation in the short-term range (6–72 h ahead) [21–24]. When 
predicting wind power generation, a large part of the forecast error will 
therefore directly come from the NWPs. Predicting short-term weather 
(especially wind speed) is a complex task due to its non-linear and 
fluctuating nature [25–27]. Consequently, this gives large sources of 
error for making accurate short-term predictions of wind power gener
ation. The wind power case study considered in this work is in a region 
with complex terrain where it is large weather variations within small 
distances, making it increasingly difficult to have accurate NWPs 
available. In this work, we address the issue of inaccurate NWPs by 
constructing different configurations of datasets that could account for 
such failure sources. We perform prediction experiments using different 
sets of exogenous variables are compared to make probabilistic forecasts 
of wind power generation with deep learning models. The exogenous 
variables considered are the NWP (wind speed  + wind direction) and 
measured weather (wind speed  + wind direction) from instruments 
installed locally in the wind power plant. The wind power plant studied 
in this work lies in a region with a complex topography in Arctic weather 
conditions that potentially have a larger source for failure in the NWPs 

compared to other regions. Therefore it is a motivation in this work to 
use deep learning models that are trained to account for possible failure 
sources in weather predictions by using the measured weather to correct 
for such failures. In the end, we compare the accuracy of the probabi
listic forecasts for different sets of covariates and discover the variables 
that should be included to compute high-quality PIs. 

This paper is structured as follows. In Section 2, an introduction to 
the field of probabilistic forecasts is provided. Section 3 presents a re
view of relevant research in the field of probabilistic forecast within 
energy analytics. In Section 4, the wind power plant case study is pre
sented. Section 5 presents the methodology for making probabilistic 
forecasts. In Section 6 the results are presented in terms of the obtained 
quality of the PIs. Conclusions are given in Section 7. 

2. The concept of prediction intervals 

Although the field of probabilistic forecasts is based on well-known 
concepts in statistics, and there exists a vast amount of existing 
research on this field, some concepts have been shown to be confused 
and misused [28]. To avoid this, we start by defining and explaining 
some relevant concepts that will be used through the study. 

When making probabilistic forecasts, the goal is to make a PI that 
considers the uncertainties in the predictions. The PI is an estimate of an 
interval in which the future observation will fall with a certain proba
bility. For instance, for a 95% PI, there should be a 95% probability that 
the next value will fall within the lower and upper bounds. 

The generic form for computing the upper and lower bound of PIs is 

P(Yn ∈ C(Xn))⩾1 − α, (1)  

where Yn is the response variable, C(Xn) is the confidence interval 
centered on the covariate Xn, and α is the significance level. For a 95% 
PI, α is 0.05. 

PIs can either be of low quality, or of high quality. A high-quality PI 
will be sharp and well-calibrated (the PI contains the desired proportion 
of the samples 1 − α). A low-quality PI is too wide or is miscalibrated (the 
empirical quantiles do not match the theoretical ones). 

Examples of high-quality and low-quality PIs is given in Fig. 1. 
Here, we see an example of a point-and probabilistic forecast. The 

red dots represent the observed values, the blue dots are the point pre
dictions. The yellow line represents the PI, which in this case is the 95% 
prediction interval. Here, it is clear that the high-quality PI (uppermost 
Figure) fulfills two important criteria when computing PIs. Sharpness 
and calibration. The boundaries of the PI should be sharp to convey 
useful information about the uncertainity in the predictions. In addition, 
the PI should be calibrated, which means that for a 95% PI, 95% of the 
observed values should fall within the PI. Here, the PI contains exactly 
95% of the observed values, and hence we can trust that there is a 95% 
probability that the observed values will fall within this PI. 

The middle and lowermost examples on contrary, show examples of 
low-quality PIs. The example in the middle shows a PI with high 
sharpness, but it is not calibrated as it only contains 80% of the observed 
values, which is not adequate in a 95% PI. The lowermost exampled 
shows a calibrated PI as it contains 95% of the observed values. How
ever, it is not sharp, and PIs that are too wide do not convey any useful 
information about the variation in the observed values. 

3. Related works on probabilistic forecasting with deep learning 

There exists a vast amount of former research on probabilistic fore
cast in different applications, and it is outside the scope to review all of 
them in this work. Therefore, former works that have particularly 
focused on the application of probabilistic forecast with deep learning 
within energy applications are reviewed here. In the following, a few 
examples of some former popular reviews that have high relevance for 
energy applications is provided. 
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In [28], a comprehensive review on probabilistic forecast of the 
electric load was conducted. The authors offered a tutorial review of 
probabilistic forecasting and presented a brief introduction to common 
prediction horizon categories which are used in several works consid
ering forecasting within energy applications [20,21]. The typical 
forecast-horizons range from very short (second to minutes), short 
(hours to days), medium (days to weeks), and long term (weeks to 
years). Very short-term predictions are often used for power wind tur
bine control, and for such applications, only historical measurement 
data has shown to be sufficient to make accurate predictions. Short-term 
predictions are popular to use for intraday and day-ahead electricity 
market purposes. Here, information from NWPs are required to improve 
the forecast accuracy [20]. Medium and long-term predictions are often 
used for maintenance scheduling, power system planning, and resource 
(solar or wind) assessment. In addition, the authors presented some 
notable techniques, methodologies, and evaluation methods that could 
be valuable for researchers and practitioners in the area of probabilistic 
load forecasting. To improve the field of probabilistic forecasts, they 
underlined the need to invest in additional research, and they state the 
importance of considering emerging technologies and energy policies in 
the probabilistic forecasting process. 

Another relevant review was performed by [20]. The authors discuss 
the challenge of making accurate predictions of the highly intermittent 
electricity generation from wind power. They discuss the value of 
probabilistic forecasts in such tasks as it could provide additional 
quantitative information on the uncertainty. For actors that work with 
decision-making in an uncertain environment (for instance power 
traders), information about uncertainties in decisions is of interest. In 
this work, the authors presented a review of state-of-the-art methods and 
new developments within wind power probabilistic forecasting. They 
discuss different forecast methods and classified them into different 
categories in terms of uncertainty representation. Finally, they sum
marized requirements and the overall framework of uncertainty fore
casting evaluation. 

Notably, both these two famous reviews are quite mature (2016 and 

2014), and the field of probabilistic forecasting with deep learning in 
energy analytics has vastly developed in recent years. A recent review 
and comparison study was performed by Mashlakov et al. [19]. Here, the 
recent developments in the field of probabilistic forecasting, multivar
iate models, and multi-horizon time series forecasting were reviewed. 
The authors empirically evaluate the performance of novel deep 
learning models for predicting wind power, solar power, electricity load, 
and wholesale electricity price for intraday and day-ahead time hori
zons. They reviewed the performances of both point and probabilistic 
forecast approaches. This comprehensive comparison work could serve 
as a reference point for the quantitative evaluation of deep learning 
models for probabilistic multivariate energy forecasting in power 
systems. 

In addition to the above-mentioned reviews, Table 1 present an 
overview of some recent research works which have contributed to 
developing the field of probabilistic forecasting with deep learning in 
energy applications. 

The works in Tab.1 are grouped according to which model they use 
to make either point-or probabilistic forecasts. The most common 
methodologies involve using either Convolutional Neural Networks 
(CNNs) or Recurrent Neural Networks (RNNs). 

The authors in [9] addressed the challenge of making accurate pre
dictions of electric generation from intermittent photovoltaics. They 
proposed a two-step methodology where the first step was to use wavelet 
transform to decompose the signal into several frequencies, where each 
frequency has better behavior and outlines. Then, a deep convolutional 
neural network was employed to extract the nonlinear features and 
invariant structures exhibited in each frequency. The point of the hybrid 
approach is that the final decomposed signal is easier to predict than the 
original time series and should result in better prediction accuracy. To 
perform predictions, the deterministic method and a spline quantile 
regression were developed to evaluate the probabilistic forecasts. The 
proposed deterministic and probabilistic methods were applied to real- 
world datasets from PV farms in Belgium, and the results demonstrated 
improvement compared to more conventional forecasting methods. In 

Fig. 1. Examples of PI with high (uppermost figure) and low quality. The red dots represent the observed values, the blue dots is the point predictions. The yellow 
line represent the PI, which in this case is the 95% prediction interval. 
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[29], a probabilistic forecasting framework were proposed. The frame
work is based on CNNs and can be applied to estimate the probability 
density under both parametric and non-parametric settings. The loss 
function in the non-parametric framework is obtained by quantile 
regression, while for the parametric approach, the negative log- 
likelihood function is constructed as the loss function. The authors 
stack residual blocs based on dilated causal convolutional nets to cap
ture the temporal dependencies of the time series, which creates a 
temporal convolutional neural network. The framework is able to learn 
latent correlations among series and should handle complex real-world 
patterns such as seasonality and holidays. The proposed method shows a 
high degree of flexibility and could include exogenous covariates such as 

weather forecasts. The authors demonstrate the framework on several 
real-world datasets and show that the results outperformed the state-of- 
the-art in both point and probabilistic forecasting. In [2], a two-stage 
training strategy is proposed to optimize the training procedure of 
quantile CNN (QCNN). The approach is developed with the aim to tackle 
the challenging task of making accurate probabilistic forecasts of PV 
power generation which has a high degree of variability. The two-step 
approach is as follows: First, the QCNN constructs a feature extraction 
network based on CNNs to mine the deep features of the PV power in
fluence factors. Thereafter, quantile regression is employed to generate 
the PV power probability distribution based on the extracted features. 
To tackle a common training problem of the QCNN, a CNN is trained 
using a deterministic forecasting method, and a QR is trained using a 
linear-programming method. This two-stage process ensures that the 
training problem of QCNN could be avoided. They demonstrate the 
method on a real-world PV power plant in Australia and show promising 
results compared to other forecasting methods. 

Instead of using CNNs, some authors used RNNs to make probabi
listic forecasts. In [30] they propose a flexible method for probabilistic 
modeling with conditional quantile functions using monotonic regres
sion splines. They parameterize the shape of the spline using a neural 
network. The parameters in the neural network are learned by mini
mizing the CRPS. By following this approach, they propose a method for 
probabilistic time series forecasting by combining the modeling capacity 
of RNNs with a spline-based representation of the output distribution. In 
addition, by minimizing the CRPS, they avoid the quantile crossing 
problem. Finally, the proposed approach does not require the parametric 
assumptions made on the output distribution and the observed data. The 
vast majority of techniques assume Gaussian distribution, which is often 
not adequate in real-world datasets. The authors in [16] proposed a 
method for making probabilistic forecasts with autoregressive recurrent 
neural networks (DeepAR). The proposed method learns a global model 
from historical data of all the time series in the dataset and produces 
probabilistic forecasts. The main contribution of the proposed DeepAR 
was twofold. First, they proposed an RNN architecture for probabilistic 
forecasting by incorporating a Negative Binomial likelihood for count 
data as well as special treatment for the case when the magnitudes of the 
time series vary widely. Second, they demonstrate the results empiri
cally on several real-world data sets and showed that this model pro
duces accurate probabilistic forecasts across a wide range of input 
characteristics. In [31], the challenging task of probabilistic forecasts of 
high dimensional multivariate time series is tackled. They introduce a 
novel temporal latent auto-encoder method that enables nonlinear 
factorization of multivariate time series. This method offers an efficient 
combination between flexible non-linear autoencoder mapping and 
inherent latent temporal dynamics modeled by a Long Short Term 
Memory (LSTM) RNN. This method is learned end-to-end with a tem
poral deep learning latent space forecast model. By imposing a proba
bilistic latent space model, complex distributions of the input time series 
are modeled via the decoder. They demonstrate through several exper
iments that their proposed model achieved state-of-the-art performance 
on many popular multivariate datasets. 

Besides the CNN and RNN architectures, several works have pro
posed approaches using Bi-directional LSTM or Bi-directional GRU 
models with promising results [8,15,38]. In addition, several works have 
proposed methodologies where original Neural Networks have been 
modified for the specific probabilistic forecasting task. We refer to the 
works that are listed in the “Modified NNs” section in Tab.1 for more 
detailed descriptions. Most works listed in Tab.1 have applied the fre
quentist approach where the main aim is to optimize a cost function 
(such as the quantile loss), but some works have also proposed a 
Bayesian approach to make probabilistic forecasts with deep learning 
(see the “Bayesian methods” section for more detailed descriptions). 

The final approach for making probabilistic forecasts that are listed 
in Tab.1 is the ensemble method. Ensemble techniques are a method 
where multiple learning algorithms are combined to obtain better 

Table 1 
Overview of different works.  

Model Year Network Forecasts Metrics Dataset 

CNNs 
[9] 2019 CNN Point, 

Prob. 
MAPE, RMSE 
QL 

PV power 

[29] 2020 TCN Prob, 
Point 

QL, NRMSE Retailers 

[2] 2020 CNN Prob. RMSE, MAPE 
PCIP, PINAW 

PV power  

RNNs 
[30] 2019 RNN Prob QL, NRMSE demand, traffic 

finance 
[16] 2020 RNN Prob. QL, NRMSE demand, traffic, 

electricity 
[31] 2021 RNN Prob CRPS, MSE traffic, energy 
[32] 2020 NN library Prob QL energy, PV  

Modified NNs 
[8] 2018 Bi-LSTM Prob RMSE, QL Power market 
[15] 2020 BiGRU Point, 

Prob. 
RMSE, QL Wind speed 

[7] 2020 IDMDN Prob NRMSE Wind power 
[18] 2020 GRU +

CNN 
Point, 
Prob 

RMSE, CRPS Wind speed 

[17] 2018 iQRNN Prob. QL, WS Energy load 
[33] 2020 sDAEs +

ANN 
Point RMSE, MAPE 

MAE, R2 
Wind speed 

[34] 2021 PCFM Point, 
Prob 

RMSE, MAE 
PINAW, PCIP 

Wind speed 

[35] 2019 WT + CNN Point, 
Prob 

RMSE, MAE, 
MAPE PINAW, 
PCIP, CWC 

Wind speed 

[36] 2018 NARX Point, 
Prob 

RMSE, MAE 
PINAW, PCIP 

Wind speed 

[37] 2019 LSTM +
GPR 

Point, 
Prob 

RMSE, MAE, 
CRPS 

Wind speed 

[38] 2021 MC + Bi- 
LSTM 

Point MAE, MAPE, 
RMSE 

Load demand 
Electricity price 
Wind speed 

[38] 2020 SDAEs +
SR-NNs 

Point MAE, MAPE, 
RMSE 

Wind speed  

Bayesian methods 
[6] 2019 Bayesian Prob. RMSE, MAPE 

CRPS 
Energy prices 

[1] 2020 STNN Point, 
Prob. 

RMSE, CRPS Wind speed 

[39] 2020 Bayesian 
NNs 

Point, 
Prob 

RMSE, CPRS Energy load 

[40] 2019 Calibrated Prob. MAPE, QL UCI datasets  

Ensemble methods 
[10] 2017 WT + CNN Prob RMSE, PICP Wind power 
[5] 2016 7 ML 

models 
Prob RMSE, MAE 

QL 
Solar power 

[11] 2021 SEFMGPR Prob RMSE, R2 Wind power 
[41] 2020 EPS Prob CRPS Solar irradiance 
[42] 2020 MDE Prob QL Wind power  
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prediction performance than could be obtained from a single learning 
algorithm alone. For instance, the authors in [5] tackled the challenging 
task of predicting electric power generation from PVs using seven 
different ML models that are ensembled together to compute probabi
listic forecasts. The findings show the ensemble methods outperformed 
the individual ML models. 

All works in Tab.1 have tested the performance of their proposed 
methodology on energy-related datasets, and the prediction perfor
mances are presented with popular probabilistic metrics such as the QL, 
CRPS, PCIP, and PINAW (some of these metrics are defined and used in 
the result section in this work). Noteworthy, among all works, there is no 
specific model or method that seems to consistently achieve the best 
results, apart from the DeepAR model which has shown promising re
sults in several works [19,16,32]. 

In a recent review and comparison work by [19], the authors 

highlighted the need of testing more automated deep learning models to 
progress the research within the field of probabilistic forecasts in energy 
applications. The authors suggested using open source libraries for 
modeling, such as the GluonTS toolkit [32]. The aim of the GluonTS 
library developed by [32] is to provide a flexible tool for probabilistic 
time series modeling with deep learning-based models. Motivated by the 
suggestion in [19], we implement deep learning models from the 
GluonTS library to make probabilistic forecasts of wind power 
generation. 

4. Wind power plant case study 

4.1. The wind power plant located in Northern Norway 

In this work, the power generation from a wind farm in the region of 

Fig. 2. Altitude map where the different colors indicate the altitude level. Green color is altitudes between 75 and 230 MASL. The highest mountains around in the 
region close to the wind park is up to 1032 MASL. The 18 turbines in the wind farm are marked in red dots. 
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Northern Norway is predicted. This wind farm consists of 18 turbines 
with a maximum power generation capacity of 3 MW, giving a 
maximum capacity of 54 MW for this power plant. In Fig. 2, an altitude 
map is created for the region of the wind power plant. 

The different colors in the altitude map indicate the interval in Meter 
Above Sea Level (MASL). Here, the green color is all altitudes between 
75 and 230 MASL. The highest elevation in the mountains to the right 
has an altitude between 632 and 1,032 MASL. The red dots are the 
geographical positions of the different turbines. Most of the turbines are 
approximately at the same altitude below 230 MASL. The two turbines 
at the rightmost positions are slightly below an altitude of 75 MASL. 

Such a complex topography where the altitude varies from 0 to above 
1000 MASL within small regions, is a typical phenomenon for the terrain 
in Northern Norway. This terrain has a huge impact on the local weather 
variation, and this particular wind power plant is highly affected by 
local variations in the wind. The owner of this wind power plant re
ported that the leftmost turbine produced 25% less energy than the 
rightmost turbine during the year 2020. The reason is that the turbines 
located to the left are shielded by the large mountains (indicated by the 
white color in the altitude map) which reduce the amount of wind that 
hits the turbine. On the other hand, the turbines located to the right are 
close to the ocean where there are few objectives that could reduce the 
wind. This power plant is a perfect example of where it can be large 
differences in production between the turbines. This can increase the 
difficulties in making predictions for the whole park, as the total power 
output from the park will be even more fluctuating compared to wind 
farms in flat regions where the weather conditions are more equal 
throughout the whole farm. 

4.2. Dataset and and technical properties of wind turbines 

The data available from the wind park is the historical measured 
power generation, wind speed, and wind direction measured on each 
turbine from the year 2020. The measured wind speed and wind di
rection variables are collected from the weather stations mounted on the 
nacelle on the turbine that is located in the middle of the wind park. The 
data are in a 1-h resolution and are received from the Troms Kraft Power 
company, the owner of the wind power plant. This gives a dataset of 
totally 8,784 samples. In addition to measured data, the NWP from the 
AROME-Arctic model is collected. This model is developed by the 
meteorological institute of Norway (MET) and provides weather fore
casts with a spatial resolution of 2.5 km and a temporal resolution of 1 h. 
Similar to the weather measurements, the predicted wind speed and 
wind direction variables are collected from the AROME-Arctic model. 
Using only wind speed and wind direction as additional input variables 
to the prediction experiments has been shown to provide the most ac
curate forecasts in former wind power forecast literature [21]. This is 
due to the fact that wind power generation is directly affected by the 
amount of wind that hits the turbine blades. Hereafter, the weather data 
is referred to the wind speed and wind direction. Fig. 3 illustrate a map 
with the AROME-Arctic simulated wind speed for a randomly selected 
hour on the 1st of March in 2020. The colors in the map represent the 
simulated wind speed in each cell (spatial resolution of 2.5 km). It is 
clear that the turbines in the wind power park are distributed over two 
different cells, and there are differences in the wind speed for the two 
cells. 

Fig. 3 show large differences in wind speed within a few kilometers, 
ranging from zero wind (blue color in southernmost part) to almost 30 
m/s wind (red color in northernmost part). The AROME-Arctic weather 
forecast for this particular example shows that the rightmost part of the 
wind power plant has a wind of 5.5 m/s, and the leftmost part has a wind 
of 4.9 m/s. To consider possible local differences in wind speed and wind 
direction, the weather data from both cells in the AROME-Arctic 
weather simulation map is included as exogenous variables. 

Before proceeding to the prediction methodology, some technical 
features of wind power generation must be highlighted. Wind power 

generation is a (RES) technology that has a highly intermittent power 
generation due to the strong dependency on weather conditions. In 
addition, the power generation from the wind turbines is dependent on 
the power curve. The power curve from one of the turbines in the wind 
farm analyzed here is given in Fig. 4. 

As seen in Fig. 4, the wind turbine has zero production between 0 m/ 
s to 3/4 m/s. At the cut-in wind speed around 4 m/s, the power gener
ation increases towards a wind speed of 12–13 m/s. At this wind speed, 
the power production reaches the maximum limit (or the rated power) of 
3 MW around and produces at maximum it suddenly drops towards zero 
in the cut-off interval around 25 m/s. The reason for this drop is due to 
safety. If the blades at the turbine rotate too quickly, it can damage the 
equipment. Therefore, the turbines are forced to stop. 

5. Methodology 

5.1. Dataset configuration, preliminary analyses and deep learning 
models 

In this work, the aim is to predict the day-ahead wind power gen
eration. The day-ahead market closes at 12:00 where the market par
ticipants must submit their final bids to the electricity market about the 
expected amount of power generation the next day. Therefore, in this 
work, the forecast horizon is 36 h to consider all hours in the next day 
(12 h  + 24 h). 

First, in order to identify the time varying patterns in the time series, 
some statistical analyses are performed by computing the autocorrela
tion function (ACF) and the partial autocorrelation function (PACF). 
Fig. 5 shows the ACF and PACF graphs for the time series of the wind 
power generation and wind speed in the year of 2020. The ACF and 
PACF plots show no repetitive patterns, which indicate lack of season
ality in the time series. Interestingly, the time series show short-term 

Fig. 3. The Arome Arctic weather simulation map where the red dots represent 
the position of each wind power turbine. Each square represent the spatial 
resolution of 2.5× 2.5 km. 12 turbines and 6 turbines are located in the left
most and rightmost cell, respectively. 
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dependencies as the ACF show correlations outside the 95% confidence 
interval for all time lags (depicted as a blue area in Fig. 5). The values 
outside of the blue cone are very likely actual correlations. The PACF 
plots do not show any strong correlations except from the first three lags, 
and the correlations in the ACF plot after lag 3, are indirect correlations 
that can be explained by the first three time steps. Noteworthy, the ACF 
and PACF plots capture only linear dependencies in the wind power 
generation and wind speed, but there could be non-linear dependencies 
in the time series in addition. The deep learning models used in this work 
provide the capability to capture such non-linear relationships. 

The correlation in the ACF and PACF plots shows that historical data 
on wind power generation should be used as input to the deep learning 
models to make predictions of the expected power generation. In addi
tion, as wind power generation is directly affected by the amount of 

wind that hits the turbines, it is of interest to investigate which variables 
should be included (or excluded) as covariates to potentially improve 
the prediction performance. The exogenous variables included in addi
tion to the historical data on wind power generation are the historical 
measurement data on weather conditions and the NWP from the 
AROME-Arctic model. The measured weather is included as input due to 
the complex terrain in the region of the wind farm, and the weather 
model with a spatial resolution of 2.5 km might be too coarse to capture 
local variations in the wind. Therefore, the information from measured 
wind from the nacelle could provide important additional information. 

The prediction experiments are summarized as; 1) Use historical 
measurement data on power generation with historical measurement 
data on weather, and the 36 h ahead NWP as exogenous variables to 
predict the future power generation. 2) Use historical measurement data 

Fig. 4. Power curve from a wind turbine in the wind farm studied in this work with the cut-in, rated and cut-off wind speed marked. The zero production above 4 and 
below 25 m/s wind represent periods where the turbine is shut down due to turbine failure or maintenance. 

Fig. 5. ACF and PACF of the time series on wind power generation and wind speed in the year of 2020. The correlation outside the standard deviations are cor
relations and not a statistical fluke. 
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on power generation, where only measured weather data is used as 
exogenous variables. 3) Use historical measurement data on power 
generation, where only the 36-h ahead NWP data is used as exogenous 
variables. 

In Fig. 6 the example on the first prediction experiment where both 
measured weather (MW) and predicted weather (PW) is used as addi
tional inputs to predict the future power generation is illustrated. In 
prediction experiments 2) or 3), either PW or MW is removed as input. 

To make predictions with the different covariates, the DeepAR model 
proposed by [16] is selected as it has outperformed other models in 
several recent works on probabilistic forecasts with deep learning 
[19,16,32]. The inputs to the DeepAR models are the time series values 
(historical wind power generation) until t − 1 and potential covariates 
(such as measured and predicted weather) at time t. The covariates and 
the time series values are thereafter concatenated before being fed into 
the internal units, which can either be LSTM or GRU layers. The output 
from the internal units is fed into two different linear layers. One for 
computing the mean, and one for computing the standard deviation. 
When computing the standard deviation, the linear layer is fed into a 
SoftPlus layer to ensure positive values. In the end, the computed mean 
and standard deviation are used as input to a Gaussian likelihood model 
where predictive samples are generated. During training, the model 
learns by maximizing a Gaussian log-likelihood function and is opti
mized via stochastic gradient descent with respect to the model pa
rameters. The DeepAR model is described more in detail in Section 4 in 
[16]. 

In former works the default DeepAR configuration with internal 
LSTM units has been used [16,19,32]. In this work, the DeepAR model is 
tested with Gated Recurrent Units (GRU) [43] in addition to LSTM as 
internal units. A graphical illustration of the DeepAR model are pre
sented in Fig. 7. 

In this work, three models are selected to serve as benchmark 
models. The Auto-regressive Integrated Moving Average (ARIMA) 
model and two versions of a persistence model. The ARIMA (p,d,q) 
model can be used to define a large class of statistical models. The 
parameter p indicates the order of the auto-regressive component, 
d represents the initial differencing of the time series, and q the order of 
the moving average component. In addition, two versions of a persis
tence model are served as benchmarks for the DeepAR model. The 
persistence model assumes that the wind power generation at a certain 
future time will be the same as it is when the forecast is made (for 
instance, if the generation is 50 MW when the prediction is made, the 
persistence model assumes that the generation the next hour also is 50 
MW). The persistence model has been a popular model to use as a 
benchmark as it is a simple method to implement, and are often a 
difficult method to outperform, especially in the range of 1-6 h ahead 
[21]. In addition, a modified version of the persistence model is served 
as a benchmark model in this work. The authors in [44] proposed a 
modified persistence model for predicting wind power generation. This 
model is a combination of the mean of the time series, where the future 
value is weighted as a function of the correlation between the current 
and average power, respectively. In prediction experiments with a 
forecast horizon above 3 h, the modified persistence model has been 
shown to outperform the original one [44]. 

5.2. Prediction strategy 

To train and evaluate the models, the time series is split into a 
training set (85%) and a test set (15%). The training set is further 
divided into training (80%) and validation (20%). The training set is 
used to fit the model parameters by minimizing the prediction loss, and 
the validation set is used to find the optimal configuration of the 
hyperparameters. Each model is set to train on 500 epochs, and to avoid 
potential overfitting during training, an early stopping rate is 
introduced. 

5.3. Hyperparameter optimization with cross-validation 

In this work, to find the optimal hyperparameter configuration for 
the DeepAR model a grid search in the hyperparameter space was per
formed. The searched hyperparameters include the length of the rolling 
window, which is the number of time points that the model gets to see 
before making the prediction, the number of hidden units, the number of 
layers, the dropout rate, and the learning rate. The search space for the 
selected hyperparameters and the optimum configuration for each 

Fig. 6. The historical data on wind power generation (P) together with historical data on measured weather (MW) and predicted weather (PW) to predict the future 
wind power generation (target prediction). 

Fig. 7. Graphical illustration of the DeepAR structure. The time series values 
and the Covariates are concatenated (CAT) together before being fed into either 
the LSTM or GRU units. The block of internal units can vary between 1 and n 
layers depending on which configuration gives the highest prediction accuracy. 
The output is fed into different linear layers, one for computing the mean and 
one for the standard deviation (with a SoftPlus layer to ensure positive values). 
The output mean and standard deviation are used as input to a Gaussian like
lihood model where the predictive samples are generated. 
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model is detailed in Table 2. The configuration that resulted in the 
highest accuracy on the validation set is selected. 

In order to determine the optimal order of the benchmark ARIMA 
model, a grid search of the different parameters was performed, and the 
model resulted in the best accuracy on the validation set in terms of the 
Akaike Information Criterion (AIC) was selected. For the time series of 
wind power generation, the ARIMA (2,0,1) configuration is the model 
providing the highest prediction performance. 

6. Experimental evaluation and results 

6.1. Evaluation metrics 

When making point predictions, the main aim is to minimize the 
discrepancy between the predicted and true output, respectively. For the 
purpose of probabilistic forecasts, it is more complicated. Here one 
wants to minimize the loss between the predicted and true value for a 
specific quantile level (or percentile which are the upper and lower 
bound of the PI), but at the same time, one wants to have a PI that 
contains the true outcome. In addition, one does not want to have a PI 
that is too wide as it will contain no useful information, so the PI should 
be as sharp as possible, but still contain the true values. In the following, 
some popular metrics that will be used in the result section to provide 
the skill score of both point-and probabilistic forecasts are described. 

A widely used metric to evaluate the performance of point forecasts is 
the root mean squared error (RMSE) and the Normalized RMSE 
(NRMSE). The RMSE is defined as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ŷi − yi)

2

√

, (2)  

where ̂y and y are the predicted and true values. The RMSE measures the 
discrepancy between the predicted values and observed values at time i, 
over n number of observations. The NRMSE relates the RMSE to the 
observed average value in the observation period and is defined as: 

NRMSE =
RMSE

y
, (3)  

where y is the average of the observed values in the time series. 
Another popular method to evaluate the accuracy of point forecasts 

are the mean absolute percentage error (MAPE). MAPE is defined as: 

MAPE =
100

n

∑n

i=1

⃒
⃒
⃒
⃒
⃒

yi − ŷi

yi

⃒
⃒
⃒
⃒
⃒
, (4) 

The common feature of all these metrics (RMSE, NRMSE, and MAPE) 
is that the lower value, the higher accuracy. 

The purpose of probabilistic forecasts is to have a PI that fulfills the 
calibration and sharpness criteria. In this section, some common metrics 
that are used to describe the performance of the PIs in terms of the 
sharpness and calibration criteria are presented. 

The pinball-loss (PL), or the quantile-loss (QL) function is a common 
metric to measure the performance of the PI. For each quantile level, the 
PL function returns a value that can be interpreted as the accuracy of a 

quantile forecasting model. Let q be the target quantile, y the real value, 
and ŷ the quantile forecast, then the PL for quantile q can be written as: 

PLq

(

y, ŷ
)

=

{
(y − ŷ)q y⩾ŷ
(ŷ − y)(1 − q) ŷ > y 

The PL function penalizes the forecast if the model is over or under- 
predicting depending on the quantile level that is computed. The large 
quantile level will be more penalized for under-predicting than a low 
quantile level. Similarly, a low quantile level will be more penalized for 
over-predicting than a large quantile level. This makes sense as in the 
high quantile level case, one expects most of the observed values to be 
smaller than the predictions, and at the low quantile level one expects 
most of the values to be above the predicted values. Similar to the point 
forecast metrics, the lower PL, the more accurate the quantile forecast is. 
If computing the PL over a set of different quantiles levels, the final 
quantile loss result will be the average of all levels (often denoted as 
QLm). 

In [16], the authors evaluated the sharpness, or the quantile risk for 
different quantile levels by considering the normalized sum, wQL of 
quantile losses. The wQL for a quantile q is computed as all pinball losses 
divided by the sum of true output: 

wQLq

⎛

⎝y, ŷ

⎞

⎠ = 2

∑

i
PLq

(

yi, ŷi

)

∑

i
yi

(5) 

A low wQL indicate a sharper PI. 
Besides sharpness, it is important to compute how calibrated the PI 

is. A popular calibration metric for probabilistic forecasts is the Pre
diction Interval Coverage Probability (PICP) [2]. The PICP is employed 
to compute the probability that the true outcome is within the PIs. The 
PCIP is defined as 

PCIP =
1
n
∑n

i=1
ui, (6)  

where n is the total number of samples. When the true output is within 
the upper and lower bound, ui = 1, otherwise ui = 0. To obtain a well- 
calibrated PI, the coverage should be close as possible to the PI that is 
specified. For instance, for a 95% PI, the PCIP should be 0.95. 

The final metric that is used to measure the quality of the PIs is the 
Mean Scaled Interval Score (MSIS). This metric was used as the preferred 
one in the M4 forecasting competition, where 100,000 time series and 
61 forecasting methods were compared [45]. The MSIS score was pro
posed by [46] and evaluate the performances of the generated PIs as 

MSIS =
1
h

×

∑n+h

t=n+1

(

Ut − Lt

)

+ 2
α

(

Lt − Yt

)

1Yt < Lt +
2
α

(

Yt − Ut

)

1Yt > Ut

1
n− m

∑n

t=m+1

⃒
⃒
⃒
⃒Y − Yt− m

⃒
⃒
⃒
⃒

,

(7)  

where the lower and upper bounds of the PI are denoted by Lt and Ut, 
respectively. Yt is the future observed values, h is the forecast horizon, 
and 1 is the indicator function (1 if Yt is within the PI and 0 otherwise). 
Here α is the significance level, and for a 95% PI, α is set to 0.05. The 
MSIS metric deals with the sharpness and calibration criteria. It both 
penalize wide PIs (since Ut and Lt will be large), and penalize non- 
coverage. Here, a lower MSIS score indicates a better PI in terms of 
sharpness and calibration. 

6.2. Results and discussion 

In Table 3 the results are given. In this work, the 95% PI is computed 
as it is a widely used choice for economic, financial, and energy-related 

Table 2 
Details of the hyperparameter search space and optimal configurations for 
different models.  

Parameter Search space Optimal 
DeepARGRU 

Optimal 
DeepARLSTM 

Rolling window 
length 

36, 72 36 36 

Layers 1, 2, 3 2 2 
Hidden units 32, 64 32 64 
Dropout rate 0.0, 0.1, 0.2 0.0 0.2 
Learning rate 10− 4,10− 3,10− 2 10− 2 10− 3  
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forecasting applications [45]. The point prediction scores for predicting 
the 36-h ahead power generation is given in terms of NRMSE and MAPE 
(Eq. (3) and (4)). For probabilistic forecasts, the scores are given in terms 
of MSIS, PCIP, and the wQL (Eq. (5)–(7). In Table 3, the mean wQL for 
quantile level 0.025 and 0.975 is computed. 

Table 3 shows that the DeepAR model with LSTM units resulted in 
the best accuracy for all experiments. As a downside, the training time 
for this model was significantly larger than the DeepAR model with GRU 
units. The training time per epoch was approximately 17–18 s and 
39–40 s with GRU and LSTM units, respectively. To obtain the optimized 
models, the models were trained for approximately 230 epochs. This 
results in a total training time of 65 and 150 min with GRU and LSTM 
units, respectively. The models were trained on a NIVIDA Tesla K80 
hardware. Among the benchmark models, the ARIMA model obtained 
the best prediction performance, but is less accurate than the DeepAR 
model. The Persistence models obtained the worst prediction perfor
mance for all experiments. The probabilistic scores are not reported for 
the persistence models as they do not provide the capability to make 
probabilistic forecasts. 

The best performance was obtained with the dataset configuration 
where both measured and predicted weather was included as exogenous 
variables. With this configuration, the DeepARLSTM model computed the 
sharpest PI as the mean wQL and the MSIS are low. In addition, this 
model computed a PI that is well-calibrated as the PCIP is close to the 
quantile levels that are specified. For instance, for PCIP2.5, the computed 
PI resulted in a PCIP of 2.7%, which indicates that it is a probability of 
2.7% that the true outcome is below this quantile level. The PCIP for the 
upper boundary is also close to the specified quantile level. 

Using only measured weather as exogenous variables resulted in the 
worst prediction performance for both models. The computed PI for this 
configuration is neither sharp nor calibrated, as the MSIS and wQL are 
large and the PCIP97.5 value is 0.55. This shows that the true outcome is 
below the upper PI boundaries only 55% of the time, which is not 
adequate in a 95% PI interval. 

When the NWP is used as the only exogenous variable, acceptable 
prediction performances were obtained for the day-ahead predictions. 
However, indicated by the MSIS and wQL scores, the PI is less sharp in 
this case. In addition, the PI is not fully calibrated for both models as 
there is zero probability that the true outcome is below the lower PI 
boundary. 

The results indicate that combining historical measurement data and 
NWPs helps improve the day-ahead prediction of wind power genera
tion. This shows that adding historical data on measured weather allows 
the DeepAR model to auto-correct systematic biases in the NWPs. 

In Fig. 8 the 36-h ahead predictions with the best DeepARLSTM model 
in terms of calibration and sharpness is provided (configuration 1 with 
measurements and NWPs combined). In addition, the DeepARLSTM for 
configuration 2 and 3 is shown. These are two examples of PI results that 
are miscalibrated and have low sharpness. In the following illustration, 
the 50% PI and the median prediction are included. 

The red line represents observed values, while the green line repre
sents the median value (or point forecast) of the probabilistic forecast. It 
is seldom a perfect match between the predicted point forecast and the 
actual value. This is not surprising as making accurate point forecasts of 
the day-ahead wind power generation is a very difficult problem. The 
green nuances in the graphs represent the different PIs. The uppermost 
graph in Fig. 8 show the resulting prediction with the DeepARLSTM 
model using configuration 1. In this prediction, the 95% PI indicated by 
the bright green color shows that the actual measurements fall within 
the interval approximately 95% of the time and therefore show a well- 
calibrated PI. The observed values fall outside the interval at some 
points in the period between 12:00 and 18:00 the 30-Dec. This is 
acceptable, as given by the 95% requirement, some values may fall 
outside the range. The rest of the time the observed values are within the 
95% PI. The graph also shows that the model is more confident at the 
beginning of the prediction period as the PI boundaries are very sharp, 
but the uncertainties increase as longer ahead in the future the pre
dictions are made. 

On contrary, the graph in the middle shows the DeepARLSTM model 
for the configuration using only measured wind. This shows a low de
gree of sharpness and is not calibrated as several observations are 
outside the PI boundaries. The lowermost graph shows the result from 
the DeepARLSTM model where only the predicted wind is used as exog
enous variables. This result shows a well-calibrated PI as most obser
vations are within the boundaries, but the PI is less informative as is it 
wide and consequently provides less useful information about the var
iations in output. 

Due to technical limitations, the wind power plant can maximum 
produce 54 MW (18 turbines × 3 MW). However, all models in Fig. 8 
compute a PI that has upper boundaries that exceed this value. This is 
not possible due to the theoretical maximum of 54 MW, and one can be 
sure that there is zero probability that the total wind power generation 
will exceed this value. Therefore, all values above 54 MW in the upper 
boundary of the computed 95% PIs can be replaced by the theoretical 
maximum power generation. In Fig. 9 the modified 95% PI of the 
DeepARLSTM with the best prediction performance is provided. Here all 
values above the theoretical maximum are replaced by the theoretical 
maximum of 54 MW. 

Fig. 9 show that replacing the upper PI boundaries with the theo
retical maximum power output from the wind farm generates a PI that is 
much sharper and is very accurate at several time steps. This indicates 
that when making a probabilistic forecast of power output from wind 
farms, knowledge regarding technical limitations could contribute to 
achieving even more accurate PIs. The scores of the original and 
adjusted 95% PI for the DeepARLSTM for configuration 1 is given in 
Table 4. 

From Table 4 the MSIS and mean wQL show that the adjusted PI is 
sharper than the original PI. The PCIP for the upper and lower bound
aries are the same for both PIs and are not reported. 

7. Conclusions 

In this work, we investigated the performance of deep learning 
methods for probabilistic forecasting of wind power production, which 
is characterized by a highly intermittent nature. We focused on one day- 
ahead forecast with the DeepAR model, which has achieved state-of-the- 
art performances in several time series forecasting tasks. 

Our experiments focused on evaluating which covariates that are 
useful for the prediction performance and we investigated the impor
tance of including historical measurements of wind and power 

Table 3 
36-h ahead prediction scores with different dataset configurations.  

Model NRMSE MAPE MSIS PCIP2.5 PCIP97.5 Mean 
wQL 

Configuration 1: Measured and predicted weather (wind speed + wind direction) 
DeepARGRU 0.17 0.16 3.56 0.00 1.00 0.028 
DeepARLSTM 0.16 0.15 2.53 0.027 0.972 0.020  

Configuration 2: Measured weather (wind speed + wind direction) 
DeepARGRU 0.45 0.41 10.73 0.00 0.55 0.084 
DeepARLSTM 0.40 0.35 10.16 0.00 0.55 0.080  

Configuration 3: Predicted weather (wind speed + wind direction) 
DeepARGRU 0.24 0.21 5.32 0.00 1.00 0.042 
DeepARLSTM 0.29 0.25 4.03 0.00 0.972 0.032  

Benchmark models 
ARIMA 0.52 0.44 4.34 0.00 1.00 0.037 
Persistence 1.06 6.17 – – – – 
Modified 

Persistence 
0.79 5.09 – – – –  
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generation. We tested two different Recurrent Neural Network layers in 
the DeepAR model, namely LSTM and GRU, and evaluated the quality of 
the PI generated by the model. We also compared against ARIMA and 
two baseline models, commonly used to perform wind power fore
casting, which do not leverage historical information. The DeepAR 
model with LSTM units obtained the most accurate prediction perfor
mance for all experiments and outperformed the baseline models. 

Among the different configurations, the best performance in terms of 

sharpness and calibration was obtained when both historical data on 
measured weather and the NWPs were used as exogenous variables, 
resulting in an MSIS of 2.53. When using only the predicted weather as 
exogenous variables, worse results were obtained with an MSIS of 4.03 
and 10.16, respectively. This could be due to the highly complex 
topography of the region where the wind farm is located, which makes it 
increasingly difficult to make accurate weather forecasts. We hypothe
size that using the historical measured wind allows the deep learning 

Fig. 8. 36 h ahead predictions of wind power generation. The uppermost Figure show the DeepARLSTM model for configuration 1, the Figure in the middle shows the 
DeepARLSTM model for configuration 2, and the lowermost Figure shows the result from the DeepARLSTM model for configuration 3. 
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model to correct systematic biases, which are common in the NWP of 
certain regions as RES technologies are directly affected by the current 
weather. Using historical weather measurements as input allows the 
prediction model to compensate for the errors in weather predictions, 
which is something that could improve the forecast of power generation. 
In addition, knowledge of the physical properties and the technical 
limitations of the wind power plant is extremely important to calibrate 
and correct the output of a machine learning model. Remarkably, we 
adjusted the upper limit of the PI, based on the maximum power output 
of a turbine, and obtained a much sharper PI. 

The results from our study can serve as a reference for both the 
research community and industry, as it shows the importance of care
fully selecting the factors to be considered when training a machine 
learning model for energy analytics applications. 
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H I G H L I G H T S  

• The power availability from photovoltaics and thermal battery was investigated. 
• Novel thermal battery technologies can improve renewable energy dispatchability. 
• The power availability vastly improves if CO2 emissions are reduced.  

A R T I C L E  I N F O   
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A B S T R A C T   

As variable renewable energy sources comprise a growing share of total electricity generation, energy storage 
technologies are becoming increasingly critical for balancing energy generation and demand. 

In this study, a real-world electricity system was modeled rather than modeling hypothetical future electric 
power systems where the existing electricity infrastructure are neglected. In addition, instead of modeling the 
general requirements of storage in terms of cost and performance, an existing thermal energy storage concept 
with estimated capital cost that are sufficiently low to enable large-scale deployment in the electric power system 
were modeled. The storage unit is coupled with a photovoltaic (PV) system and were modeled with different 
storage capacities, whereas each storage unit had various discharge capacities. 

The modeling was performed under a baseline case with no emission constraints and under hypothetical 
scenarios in which CO2 emissions were reduced. The results show that power availability increases with 
increasing storage size and vastly increases in the hypothetical CO2 reduction scenarios, as the storage unit is 
utilized differently. When CO2 emissions are reduced, the power system must be less dependent on fossil fuel 
technologies that currently serve the grid, and thus rely more on the power that is served from the PV + storage 
unit. 

The proposed approach can provide increased knowledge to power system planners regarding how adding PV 
+ storage systems to existing grids can contribute to the efficient stepwise decarbonization of electric power 
systems.   

1. Introduction 

The use of variable renewable energy (VRE) resources, such as wind 
power and solar photovoltaics (PV), is expanding rapidly as a share of 
total power generation and is critical to the decarbonization of electrical 

power systems [1–3]. The weather-dependent intermittency of VRE 
sources complicates the planning and management of power systems as 
the electric power generation can no longer be directly modulated to 
match the electricity demand. Energy storage will therefore be an 
increasingly critical component of future energy systems with high 
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penetrations of VRE sources. Energy storage can charge excess elec
tricity in periods with high generation and low demand, and then 
discharge the electricity in periods with low generation from the VRE 
sources to match the load in periods with high electricity demand [4,5]. 
In addition, energy storage stabilizes the grid by providing additional 
electricity supply when there is a surge in electricity demand or a sudden 
drop in supply from the VRE sources. Energy storage also enables cost 
reduction of the grid by allowing for an increased share of cheap VRE 
technologies in the electricity supply portfolio [6], and reduces potential 
curtailment of the electricity generation from VRE sources during pe
riods when the generation exceeds the demand [7]. 

The need for inexpensive storage over periods with different lengths, 
from seconds to days and even seasonal storage, has accelerated in 
accordance with the increasing share of VRE technologies in electric 
power systems [6,8]. Pumped hydropower storage (PHS) and com
pressed air energy storage (CAES) are well-established technologies for 
large-scale energy storage, although they are only applicable in a few 
geographic areas. Hydrogen storage is thought to be a promising long- 
term storage solution. However, due to the high capital cost of 
charging and discharging, it has the greatest potential in the seasonal 
storage regime for getting sufficient low energy storage capital cost [9]. 

Lithium-ion batteries have been the state-of-the-art technology for 
short-term storage. However, capital costs between US$80 and US$100 
kWh− 1 make them unaffordable for the multi-day storage objectives 
required to completely decarbonize the grid [4,5,10]. Concentrated 
solar power with thermal energy storage (CSP-TES) has been seen as a 
promising option, but major projects around the world have been 
plagued by delays, cost overruns and mechanical issues, and interest has 
waned in recent years [11,12]. Studies suggest that achieving cost- 
efficient multi-day storage requires a capital cost reduction to US 
$3–30 kWh− 1 [5,13]. Resolving this issue could enable more rapid 
decarbonization of the power system, resulting in a 25% reduction in 
global GHG emissions [14,15]. Therefore, one of the most significant 
issues that needs to be resolved to achieve the GHG emission reduction 
targets is to enable cost-effective pathways for increasingly imple
menting energy storage technologies into the electricity system. 

A storage concept based on Thermal Energy Storage (TES) has shown 
promising potential to achieve sufficiently low capital cost in the multi- 
day storage regime. TES stores the electricity as heat rather than elec
trochemically, and then converts it back to electricity when needed 
[16]. The Thermal Energy Grid Storage (TEGS) concept, detailed in 
[17], stores electricity as sensible heat in graphite storage blocks and 
uses thermophotovoltaics (TPV) to convert heat back to electricity on 
demand [17,18]. While the conversion of heat to electricity results in 
significant efficiency penalties, storing energy as heat instead of elec
trochemically can be vastly cheaper, and thus the round-trip efficiency 
(RTE) penalty compared to electrochemical batteries (~ 90%) can 
potentially be a worthwhile tradeoff [17]. To maximize the conversion 
efficiency from heat to electricity, the heat is stored at extremely high 
temperatures (~2400 ◦C). In a recent work by [19], the authors 
demonstrated a world-record high conversion efficiency of 41% using 
TPV, and reported a projected conversion efficiency of 50% in the 
future. As such this technology can achieve a projected cost below US$ 
20 kWh− 1 at gigawatt scales. 

In addition to the projected low cost, a unique property of TEGS 
compared to Li-ion battery technology is the fact that, since energy is 
stored as heat in graphite blocks and thereafter converted to electricity 
using TPV, it enables the possibility of fully decoupling the charge and 
discharge capacities of the storage unit. This allows the TEGS to charge 
(i.e., store heat) at a much higher capacity than that required for dis
charging. The benefit of such a mechanism is that a large amount of 
energy can be charged in a short amount of time when generation sur
pluses exist and discharged over a longer period to cover the electricity 
load in periods where demand exceeds supply. The TEGS system also has 
advantages in terms of durability, safety, and replaceability which make 
this technology a promising option to adopt into decarbonized 

electricity systems. In comparison to the state-of-the art Li-ion batteries, 
the TEGS system is more durable due to the construction materials. 
While the lifetime of electrochemical Li-ion batteries is affected by the 
depth of discharge and the number of cycles, the construction materials 
(graphite and tin) have no clear degradation mechanism and enables 
TEGS system to have an expected lifetime of 30 years or more (while li- 
ion are replaced after approximately 10 years). All construction mate
rials of the TEGS system are at thermodynamic equilibrium giving no 
risk for chemical reactions. Additionally, it is housed in an inert envi
ronment with no immediate access to oxygen, preventing fire hazard. In 
terms of replaceability, the TEGS unit consists of separate components 
(Graphite storage blocks for storing heat, and a power block with ther
mal photovoltaics for generating electricity) which can be replaced 
separately if needed. 

The body of existing literature counts several studies that have 
employed different approaches to evaluate the value of using storage to 
increase the dispatchability of VRE sources, and the different studies 
have highlighted the storage requirements (capital cost and storage 
duration) to enable the full decarbonization of the power system. 
Table 1 shows an overview of some relevant studies, where the key 
findings in each work are highlighted. 

The vast number of previous studies on modeling the value of energy 
storage in emerging power systems, mainly focus on modeling hypo
thetical future electric power systems starting from scratch (i.e., 
“greenfield” models) [6,20–25]. However, such studies can, in many 

Table 1 
Overview of relevant work addressing the value of energy storage.  

Ref. Year Key findings 

[21] 2016 Large-scale deployment of available battery technologies requires 
cost reductions 

[24] 2016 Pathways to fully renewable systems are feasible with high cost and 
overgeneration. 

[4] 2016 Cost reduction for storage technologies is required to reach 
widespread profitability. 

[22] 2017 The availability of how low-carbon technologies impact the optimal 
capacity mix and generation patterns were demonstrated. 

[8] 2018 To reliably meet 100% of total annual electricity demand, weeks of 
energy storage are required to support with electricity. 

[20] 2018 The role of energy storage units in power systems with high shares of 
VRE was analyzed. The importance of storage increases with the 
increasing share of renewable-based power technologies. 

[23] 2018 Firm low-carbon resources consistently lower decarbonized 
electricity system costs, and the availability of firm low-carbon 
resources reduces costs 10%–62% in zero-CO2 cases 

[25] 2019 The benefits of hydro power and storage units were analyzed. Three 
decarbonized power systems with distinct grid expansion strategies 
were compared. Cutting transmission volume does not increase the 
total costs. 

[7] 2019 Curtailment of renewable energy generation can be avoided using 
energy storage. 

[5] 2019 Energy storage cost below $20 kWh− 1 can enable cost-competitive 
baseload power. 

[30] 2020 Hydrogen storage with up to 2 weeks of discharge duration is 
expected to be cost-effective in future power systems. 

[31] 2020 Hydrogen storage enable for sector coupling in real-world power 
systems. 

[32] 2020 Electricity triangle assures a consistent framework for the energy 
transition. 

[10] 2020 Current Li-ion capital cost exceed storage value in many instances. 
[26] 2020 Decarbonization is less expensive with Energy Storage Systems, 

given sufficient low-cost assumptions 
[6] 2021 Energy capacity costs must be ≤US$20/kWh to reduce the 

electricity price by ≥10%. 
[33] 2021 Power systems with 100% RE is possible using existing technologies. 
[34] 2021 There is a need for analytic tool development to model how to 

achieve a power system that are 100% decarbonized. 
[35] 2021 Clean firm resources are cost-effective in decarbonizing the grid 
[9] 2022 Green hydrogen cost between $0.79/kg and $1.94/kg in 2030 can 

be achieved 
[27] 2022 The demand for power capacity will drive future adoption of higher 

battery power capacity  
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cases, lead to vague results as this requires a complete change of the 
current electricity mix. This is in many cases challenging to implement 
due to policy considerations. In addition, by modeling greenfield cases, 
infrastructure that already exists is neglected. 

Another approach to modeling the electric power system is by 
studying scenarios using the current electricity infrastructure (i.e., 
“brownfield studies). The benefit of such studies compared to greenfield 
studies is that this enables insight into how the existing electricity sys
tem can transform towards decarbonization from the current electricity 
infrastructure and hence give insight into which measures that must be 
taken to decarbonize the current electricity system. 

Some former literature has applied a brownfield modeling approach 
when studying decarbonization pathways but lacks in modeling the 
potential value of using specific storage technologies [5,10,26–28]. 
These studies model the storage requirements in general, whereas all 
studies show that the capital cost must be below US $20 kWh− 1. No 
previous work has modeled the potential of using an emerging storage 
concept based on TES that already exists on a lab scale [17,18]. 

In this study, a framework for addressing the value of using TEGS 
that has sufficiently low capital cost to be economically used in an 
electric grid is proposed. Using a Capacity Expansion Model (CEM) [29], 
a hypothetical PV + TEGS system that is interconnected to an existing 
real-world grid in the Northeastern US is considered. The TEGS unit 
charges excess electricity from PV during periods of surplus generation. 
When the grid demands electricity and the PV plant cannot deliver 
sufficient power due to a lack of solar availability, the stored energy is 
discharged. Different storage sizes with varying discharge capacities 
connected to the PV plant are modeled to optimize power availability. 
To investigate how emission constraints affect the energy availability of 
PV + storage systems, a hypothetical future scenario is modeled for the 
existing power system where CO2 emissions are reduced. 

The main contributions of this study are: Rather than modeling the 
power system as a greenfield case study, an abstract representation of an 
existing grid, i.e., a “brownfield” model is analyzed to address how 
adding a PV + storage system can contribute to decarbonizing the grid. 
Instead of modeling general requirements of storage to enable the full 
decarbonization of the power system, a TES unit that currently exists at 
lab-scale and has promising cost projections that are well-documented in 
the literature is modeled [17]. This study can provide increased 
knowledge to power system planners on how coupling emerging storage 
technologies and PV systems to existing grids can contribute to stepwise 
decarbonizing of the grid in a more short-term horizon. 

2. Methods 

2.1. Modeled electric power system 

In this study, an idealized single node representing the electric grid 
region in the New England power system in North America is modeled. 
This system considers one grid zone that represents a simplified power 
system topology of the states of Massachusetts, New Hampshire, and 
Rhode Island. The electricity demand, capital cost and performance data 
for the different generation technologies in these regions were collected 
from the NREL annual technology baseline (ATB) and the U.S. Energy 
Information Administration (EIA). The Github library PowerGenome1 

was used to collect the input data and shape them to the required format 
for the CEM. The weather data used to construct the hourly generation 
profiles for solar and wind resources are collected from Vibrant Clean 
Energy (without any usage restrictions) using PowerGenome. The data 
from Vibrant Clean Energy is obtained from the National Oceanic and 

Atmospheric Administration (NOAA) High-Resolution Rapid Refresh 
(HRRR) weather forecast model. The weather forecast model is run 
every hour over a 3-km horizontal resolution that covers the United 
States. The weather year for modeling VRE availability in this study was 
the year of 2020. 

The average annualized electricity demand for the modeled grid is 
9.4 GWh, with a peak load of 16.7 GWh. Fig. 1 illustrates the hourly 
electricity demand in the modeled power system. 

The blue graph shows the electricity demand with an hourly reso
lution, while the black graph shows the running average electricity de
mand with a weekly resolution. Clearly, the electricity demand is 
highest during summer due to increased usage of air conditions in high- 
temperature periods, and the lowest electricity usage is during the 
spring and autumn period when there is little need for heating and 
cooling. 

At the supply side, the total installed generation capacity for the 
modeled grid zone is 15 gigawatts (GW). Fig. 2 shows the share of 
installed capacity for the different technologies. Natural Gas (NG) is the 
dominant power supply technology, accounting for 59% of the installed 
capacity. In the existing power grid, VRE sources such as wind and solar 
PV represent a smaller share (14%) of the overall electricity generation 
mix. 

The hypothetical PV + storage power system is connected to the 
existing power system through a transmission grid network. The trans
mission grid network has a maximum capacity of 200 MW. Fig. 2 shows 
how the hypothetical system is connected to the existing grid, where the 
combined system can fully participate in the power system by 
exchanging electricity on demand. In this study, the storage unit were 
chosen to be modeled in conjunction with a PV plant, which is believed 
to be the most dominant source of electricity generation in the future 
power market [1,2,36]. In addition, the normal profile of the daily 
generation from PV plants is believed to be a good match with storage 
technologies, as it can store electricity when the PV plant power gen
erates a large amount of electricity during mid-day (and the demand is 
often low during mid-day) and discharge the stored electricity when the 
sun is set (during early morning and afternoon/evening). 

In this study, PV plants with installed peak power capacities of 100 
MW and 1 GW were analyzed (see the Supplementary material for the 
GW scale modeling), which is represents the range of typical sizes of 
utility-scale solar energy farms in the U.S. [37].The storage unit was 
modeled with different energy storage capacities and are specified in the 
storage modeling Section 2.2.2. The modeled system does not influence 
the overall electricity price in the grid and is therefore considered a price 
taker. 

2.1.1. Thermal energy grid storage (TEGS) 
To charge the TEGS unit, excess electricity is used to fuel resistive 

heating materials (graphite), transforming the electricity into heat at a 
temperature exceeding 2500 degrees Celsius. Then, the energy is 
transferred to graphite conduits via thermal radiation. Inside the con
duits, liquid tin is used as the heat transfer fluid. The tin is heated from 
1900 ◦C to 2400 ◦C, transforming the energy input into sensible heat and 
increasing its enthalpy. The liquid tin is continuously pumped through 
the conduits and then conveyed to the graphite blocks in the storage 
unit. When the 2400 ◦C tin is pumped through the graphite blocks via 
conduits, it heats the graphite blocks from 1900 ◦C to 2400 ◦C via 
thermal radiation. Consequently, this cools the tin back to 1900 ◦C. The 
tin is then reheated by being pumped back through the resistance 
heaters. This process constitutes the charging process until the graphite 
blocks are heated back to peak temperature. The storage unit should 
have a sufficiently large thermal mass to enable storage unit to be 
charged for long periods with low heat loss. 

The operating temperature and heat loss of the TEGS system is 
crucial design parameters, as lower temperatures result in lower capital 
cost per energy (CPE) due to reduced insulation requirements, while 
higher temperatures lead to higher capital costs per power (CPP) due to 

1 The PowerGenome Github library collects source data from EIA, NREL, and 
EPA and formats the input files for the CEM model. The GitHub library could 
with associated documentation could be found here: https://github.com/Powe 
rGenome/PowerGenome 
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the need for more Thermophotovoltaic equipment. The Supplementary 
material section 1.3 presents an optimization procedure of the TEGS unit 
to identify the most cost-effective design when operating in the electric 
power system representing New England. It was found that optimizing 
the TEGS design with a daily heat loss of 1–3% and an operating tem
perature of 2400 ◦C proves to be the most cost-effective engineering 
design. Therefore, in this study, the modeled TEGS system has a daily 
heat loss of 1% and a temperature of 2400 ◦C. 

During discharging, liquid tin is pumped through the graphite stor
age to a power block. The power block consists of graphite conduits with 
unit cells. Each unit cell of piping creates a rectangular cavity lined with 
tungsten foil. This is a diffusion barrier to prevent graphite deposition 
onto the TPV cells. Inside each cavity, the TPV cells can be lowered into 
the unit cell cavity. Here the TPV cells will be illuminated with the light 
emitted by the tungsten foil, which is heated by the light emitted by the 
graphite conduit carrying the tin. This net transfer of energy converts a 
large fraction (> 50%) of the energy to electricity, which causes the tin’s 

temperature to decrease to 1900 ◦C before being pumped back to the 
graphite storage unit, where the tin is reheated again during the 
charging phase. 

In this way, the TEGS is a rechargeable grid-scale thermal battery 
that can store energy as heat and supply electricity to the grid on de
mand, with an estimated RTE of 50%. The TPV conversion efficiency (i. 
e., the discharge efficiency from heat to electricity) entirely determines 
the RTE [17,18] . The charging efficiency (from heat to electricity) is 
assumed to be 100%. 

2.2. Capacity expansion model (CEM) configuration and storage 
modeling 

2.2.1. Capacity expansion model (CEM) 
The analysis utilizes GenX [26], an electric power system CEM that 

evaluates a cost-optimal portfolio of electricity generation technologies, 
storage, and transmission to serve a given electricity demand. A detailed 

Fig. 1. Hourly electricity demand for the modeled power system.  

Fig. 2. The modeled New England grid zone is interconnected with a hypothetical PV + storage system. The existing power system is dominated by electricity 
generation from the NG. Solar and wind power represent a smaller share of electric power systems. 
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description of all features the GenX model is described in Jenkins et al. 
[26]. The GenX CEM modeling procedure is subject to operational 
(electricity demand and generation) and policy (CO2 emission) 
constraints. 

In this study, the operational constraints that are activated in the 
CEM are (1) the thermal generators’ commitment on start-up/shut- 
down decisions, minimum and maximum up/down times (6 h), as 
well as hourly ramping limits for thermal generators (0.64, indicating 
the maximum increase and decrease in power output as a faction of the 
nameplate capacity), (2) transmission capacity limits between the 
existing electric grid and the hypothetical PV + TEGS system, (3) TEGS 
storage constraints on maximum hourly charge/discharge capacities 
and efficiency, stored energy, and daily heat loss, (4) Maximum capacity 
of the hypothetical PV plant that are coupled with the TEGS storage unit. 
The policy constraint activated in GenX in this study was the maximum 
limit on the allowed CO2 emissions in the grid. Here, the power system 
was modeled with a baseline scenario without any CO2 constraints (i.e., 
the model finds the cost-optimized electricity mix regardless of CO2 
emissions) and with a scenario where the CO2 emissions are reduced by 
50%. When the emissions are constrained by 50%, the electricity system 
must be less dependent on fossil-fuel-based technologies such as NG. 
That is, this requires to retire more of the current NG capacity in the grid 
and install more of the current VRE sources as well as utilize the hy
pothetical PV + TEGS system to a higher degree that has zero emissions 
associated with it. 

To fully capture high-resolution temporal dependencies in the grid, 
the grid operation were modeled for each hour of the year. The resulting 
CEM configuration was solved as a mixed integer linear program (MILP). 
The Gurobi solver was used for the optimization problem in GenX as it 
provides the capability of solving MILP problems computationally effi
ciently [36]. The Gurobi optimization solver was applied using 16 cores 
with 128 GB RAM. All model scenarios were terminated with a 1% or 
lower optimality gap. 

The objective function of the GenX model in this study is computed 
as the power system cost (PSC) grouped into the costs associated with 
the operation cost of the existing generators and cost associated with 
adding the hypothetical PV + TEGS system. The objective function in 
GenX is computed as 

PSC = (Fix.CostVRE + Fix.CostTHERM + Var.Cost + Start.CostTHERM)

+Inv.CostTRANS + Inv.CostPV + Inv.CostTEGS
(1)  

here the Fix.CostVRE and Fix.CostTHERM is the investment and Fixed O&M 
cost of the existing VRE and thermal capacity. The Var.Cost is the var
iable cost of generator dispatch, cost of non-served energy (periods 
where the electricity demand is not met), and cost of violating operating 
reserve requirements. The Start.CostTHERM is the cost for startup and 
shutdowns for thermal power plants (NG). The Inv.CostTRANS,Inv.CostPV, 
and Inv.CostTEGS is the investment cost of adding the hypothetical system 
to the existing power grid. 

2.2.2. Storage modeling 
Three different TEGS sizes coupled with the 100 MW PV plant were 

modeled. The modeled energy storage capacities were as follows: 1) 400 
MWh, 2) 600 MWh, and 3) 800 MWh. The sizes reflect the minimum 
TEGS storage capacity required to obtain the sufficient low capital cost 
of < U.S. $ 20/kWh for long-duration energy storage [17,18]. For each 
storage size, the charging capacity (i.e., the amount of energy that can be 

charged within one hour) is 100 MW, and the discharging capacity is in 

the range of [5, 100] MW. The storage unit is modeled to have a daily 
heat loss of 1%. As for other CEM studies evaluating storage [10], the 
storage capacity degradation or dynamic operation range (efficiency 
and capacity) is not modeled as it will significantly decrease the 
computational efficiency. 

The storage configurations were modeled under the baseline case 
(with no CO2 reduction constraint) and 50% CO2 reduction scenarios. In 
total, 66 scenarios were modeled to address PV + TEGS energy avail
ability with different storage sizes, discharge capacities, and CO2 
constraints. 

Since it is of interest to model the potential of utilizing TEGS to 
decarbonize future electric power systems, which are increasingly 
dependent on VRE technologies, the TEGS system is assumed to have a 
50% RTE. 

3. Experimental evaluations 

In this study, it is of interest to assess the amount of time the hypo
thetical PV + TEGS system is available to the grid on demand. The Power 
availability factor (PAF) was computed to describe power availability. 
The PAF is computed as the percentage of time during the year the 
modeled PV + storage system can deliver at least a minimum quantity of 
power requested by the grid. Moreover, PAF allows the examination of 
the power availability of the combined power plant, as it measures how 
often it can supply a minimum amount of power to the grid. A power 
plant with a 100% PAF can always provide a given minimum amount of 
power to the grid. 

In the case of solar PV, the electricity generation suddenly drops 
when the sun no longer shines (owing to cloud cover or when the sun 
sets). This sudden drop in electricity generation reduces the PAF because 
the PV plant no longer generates at the rated power. Here, storage units 
can be used to charge whenever there is a low net demand for power in 
the grid and to discharge when there is a higher demand for power. 
Fig. 3 illustrates an example of how the storage unit can be used to shape 
the output to provide constant baseload power. Once the PV plant starts 
generating electricity over derated power (e.g., 20 MW), excess elec
tricity is used to charge the storage unit. When the solar plant generates 
less electricity than the derated power, the storage unit starts dis
charging to satisfy the demand for electricity. 

Fig. 3 illustrates how the combined PV and storage system can pro
vide constant baseload power, disregarding the electricity demand in the 
grid. However, when the system is connected to an electricity grid, it 
becomes significantly more complex. The system should not provide 
constant baseload power to the grid but should be able to supply the 
requested power to the grid system operator. 

In this study, the periods where the hypothetical PV + storage system 
cannot provide the requested electricity to the grid on demand are 
detected. 

The grid is requesting electricity from the hypothetical PV + storage 
system in all periods when there is no excess electricity in the grid that 
can be used to charge the TEGS unit (i.e., no export from the grid to 
charge the TEGS unit). The unwanted periods when the electricity grid 
request (i.e., no excess electricity that can be exported from the grid to 
the PV + storage system) power arise for the following reasons: 1) The 
PV system does not deliver the required power, and 2) The TEGS system 
cannot discharge the requested power as the State of Charge (SOC) is 
already zero. Such critical periods can be calculated as:  

Percentage Not Available =
When

( (
PVgen + TEGSdischarge < Derated power

)
+ (SOC = 0)

)

8760 hours
× 100 (1)   
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The system Percentage Not Available (PNA) gives information about 
the percentage of time during a full year the system cannot provide the 
requested electricity to the grid. On contrary, the PAF will be calculated 
as: 

PAF = 1 − PNA (2)  

4. Results and discussions 

The resulting yearly PAF of the hypothetical PV + TEGS system as a 
function of different discharge powers is provided in Fig. 4. Here, the 
yearly PAF is computed from Eq. (1) and Eq. (2) using the resulting data 
from the GenX optimization schedule of the New England electric grid 

region. The more the system is derated, the more often it can deliver the 
required power. This is reasonable because the more the system is 
derated, the more the storage system can discharge at a lower-rated 
output for a longer period. The PV + TEGS system can contribute 5 
MW to the grid for about 95% of the hours throughout the year if the 
storage system has a discharge capacity of 5 MW. 

For the 600 MWh storage unit, the PV + TEGS system can contribute 
5 MW to the grid for about 95% of the hours throughout the year if the 
storage system has a discharge capacity of 5 MW. The results for the 
other storage sizes are similar, with a PAF of 94% and 96% for the 400 
MWh and 800 MWh units, respectively. If the discharge capacity is 100 
MW, the PV + TEGS system can deliver 100 MW to the grid approxi
mately 55–60% of the hours during the year for all storage sizes (400 
MWh, 600 MWh, and 800 MWh). 

Fig. 3. Example illustration where storage is used to provide a constant baseload power to the grid by charging when there is excess electricity and discharging when 
the PV plant does not generate electricity. 

Fig. 4. Percentage of time during the year when the hypothetical system can deliver the requested power to the grid.  
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Interestingly, there is a large difference between the scenarios with 
and without CO2 reduction constraints. The electric power system dy
namics change completely once CO2 emissions were reduced by 50%. In 
this case, the increased retirement of the NG makes the grid more 
dependent on the hypothetical PV + TEGS system, which results in the 
system supplying the necessary power 100% of the time for a derated 
power between 5 MW and 20 MW for the TEGS unit with a storage ca
pacity of 600 MWh and 800 MWh. This is remarkably higher than the 
baseline case, where the system cannot deliver the required power 
5–15% of the time for such derated powers. When modeling the PAF for 
the PV + TEGS system at the GW scale (see the Supplementary material), 
similar results are obtained. The PAF increases when lowering the 
derated power in both the baseline and the CO2 reduction scenarios. In 
addition, the PAF is significantly higher when modeling the CO2 
reduction scenario compared to the baseline scenario. 

The large (30% higher PAF on average in the 50% CO2 reduction 
scenario) difference between the CO2 reduction scenarios indicates that 
the electric power system dynamic changes significantly if the grid must 
be less dependent on NG. 

Now the hypothetical PV + storage system plays a more important 
role in the grid because it does not emit any CO2, and as such, the cost- 
minimization schedule of the CEM optimizes the grid to ensure that the 
PV + storage system can deliver the requested power to the grid more 
often during the year. 

Fig. 5 selects one derate level from Fig. 4 to investigate how the PAF 
changes with different CO2 reduction scenarios. More specifically, Fig. 5 
illustrates how the PAF changes with decreased CO2 emissions for a 
storage unit of 600 MWh that discharges 20 MW to the grid. Clearly, 
reducing CO2 emissions results in a higher PAF. The maximum PAF was 
achieved at 50% CO2 reduction. Reducing CO2 emissions requires the 
power system to be less dependent on fossil fuel technologies, such as 
NG, and thus must rely more on the power served by the PV + storage 
system. 

Modeling scenarios with >50% CO2 reduction results in an infea
sible solution with the CEM optimization. That is, the objective function 
of the GenX model to cost-optimize the portfolio of electric power 
generation to serve the demand for electricity is not fullfilled. Therefore, 
to enable the possibility of further reducing the CO2 emissions in the 
modeled grid, the existing portfolio of electric generation technologies 
must be expanded and include more emission-free technologies that can 
serve the demand for electricity. 

Fig. 6 shows how the hypothetical system operates in the different 
emissions scenarios (baseline and 50% CO2 reduction). Here, an 
example of the 600 MWh storage unit with a 20 MW discharge capacity 
that has a yearly PAF of 79% (baseline) and 100 (50% CO2 reduction) 
from Fig. 4 is illustrated. The weekly examples show the hourly opera
tion of the hypothetical system during a typical winter week in January. 
The uppermost and lowermost Figure show how the system operates in 
scenarios with and without constraining CO2 emissions. From both 
graphs, TEGS is used frequently to discharge power to the grid whenever 
there is low electricity generation from the solar PV, which reduces the 
intermittency problem of PVs by increasing the number of hours the 
hypothetical system can deliver the required power to the grid. In 
addition, TEGS also charges power from the grid whenever there is a 
drop in the demand to increase the SOC, which illustrates the benefit of 
using storage units that are coupled with VRE resources. 

The yellow area highlights a critical period in the uppermost graph. 
The critical period is defined as the incidents where the grid has an 
increasing net load (blue line), but the system cannot deliver the 
requested power because there is no generation from the PV system, and 
the storage unit cannot discharge the required power to the grid because 
the SOC is already zero. The net load is given as the total electricity 
demand subtracted by the electricity generation from solar and wind 
power. 

However, considering the 50% CO2 reduction scenario, the system 
interacts differently with the grid, and it is clear that the CEM optimizes 
the hypothetical system to have more energy available at more times 
because the grid now is more dependent on the hypothetical system 
(because the grid can use less NG). For the particular example week, the 
PV + storage system can deliver the requested power to the grid at all 
times for the 50% CO2 reduction scenario. 

Like the winter week example shown in Figs. 6, 7 shows how the 
hypothetical system operates with the grid during a typical summer 
week. Here, thanks to the higher solar availability, the system can 
deliver most of the required power to the grid using only the PV plant, 
and the storage system is used less frequently. However, for the baseline 
case, there are several periods in which the grid requests energy and the 
storage unit cannot provide sufficient power to the grid because the SOC 
is already zero. This is because the grid is mainly dependent on NG, 
which can supply power whenever there is low solar availability, and the 
TEGS system is only used to provide additional peak power when the 
demand suddenly increases. 

Fig. 5. Percentage of time the hypothetical system can deliver the requested 20 MW power to the grid as a function of CO2 reduction scenarios.  
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Under the 50% CO2 reduction scenario, the grid is much more 
dependent on the power from the storage unit whenever there is no PV 
generation. It is clear that instead of providing peak power to the grid, 
the PV system is used to charge the TEGS unit to a higher degree to 
ensure that the SOC is never zero and thus can discharge the derated 
power to the grid at all times when the PV system does not generate 
electricity. 

5. Conclusion 

In this study, the potential of using energy storage to tackle the 
intermittency problem of VRE sources by increasing the dispatchability 
of a hypothetical PV plant were analyzed. An existing electricity grid 
region in North America were modeled using a CEM and investigated 

how different storage configurations can reduce the number of periods 
in which a hypothetical PV + storage system cannot provide the 
required power to the grid. 

Because of the high capital cost of electrochemical batteries, a TES 
technology with a projected capital cost that fulfills the requirements (<
US$ 20 kWh− 1) to enable full decarbonization of the grid was consid
ered. The energy availability of the hypothetical system was modeled 
under different storage sizes and discharge capacities. Additionally, the 
optimization schedule was repeated under a hypothetical future sce
nario in which CO2 emissions were constrained to be reduced by 50%. In 
total, 66 different scenarios were modeled. To capture the high- 
resolution dependencies in the electricity generation balance, a full 
year with hourly resolution was optimized using the CEM. 

The results support the added value of using storage to increase the 

Fig. 6. Winter week illustrations for a 100 MW PV plus a 600 MWh TEGS system that can discharge 20 MW. Baseline case without constraining CO2 emissions 
(uppermost graph) and future scenario with reduced emissions lowermost. 
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dispatchability of PV, as it significantly increases the PAF compared to 
PV systems alone. The percentage of time during the year the system 
could deliver the required power to the grid increased when the 
discharge capacity of the system decreased. In addition, increasing the 
storage size increases the energy availability, as more energy can be 
stored and thereafter discharged over a longer period when there is a 
demand for electricity in the grid. The findings were consistent when the 
PV plus TEGS system were evaluated at both the megawatt and gigawatt 
scale. 

Interestingly, there was a significant change in the electricity grid 
generation dynamics when the CO2 emissions were reduced by 50%. 
Here, because the grid can no longer rely on the same share of NG 
technology, the most cost-efficient grid is achieved when the PV + TEGS 
system is utilized to a higher degree, as these technologies do not emit 

any CO2. 
This shows that decreasing the maximum allowed GHG emissions in 

the grid significantly increases the value of using storage to increase the 
dispatchability of PV systems. 

The study findings could provide increased knowledge to power 
system planners regarding how adding PV + storage systems to existing 
grids can contribute to the efficient stepwise decarbonization of power 
systems. 

5.1. Limitations and suggested future research 

This study presented an idealized representation of an existing grid 
(i.e., “brownfield” CEM approach) in the New England grid region. 
However, the authors are fully aware that the grid representation might 

Fig. 7. Illustrations of a typical summer week for a 100 MV PV plus 600 MWh TEGS system that can discharge 20 MW. Baseline case without constraining the CO2 
emissions (uppermost graph), and future scenario with reduced emissions lowermost. 
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not fully capture all details of the existing grid, and there can be dif
ferences (sizes of the power plants, electricity demand on the grid, share 
of the existing generation technologies) between our abstract grid rep
resentation and the current real-world grid that ISO New England 
operates. In addition to the transmission line between the existing grid 
and hypothetical PV + storage system, the current grid were modeled as 
a single-zone grid region without considering transmission losses or 
congestion between generators and demand. 

This study’s major objectives are to evaluate a hypothetical PV +
storage system’s power availability and discuss the significance of 
integrating such technologies to assure a successful step-by-step decar
bonization of the electric grid. Therefore, modeling the transmission 
lines between the existing generators is not considered, as it is outside 
the scope of this study and will significantly increase the computational 
intensity of the CEM. 

The CEM is fully deterministic, assumes perfect foresight in planning 
and operational decisions, and does not account for uncertainty in VRE 
generation [39–42]. Therefore, this study does not aim to be used as a 
power planning tool for ISOs to assess the PAF of PV + storage systems in 
the day-ahead electricity market, but shows how storage, in general, will 
be a valuable technology to address the intermittency issue of VRE. A 
suggested future study is to frame the CEM to account for the uncer
tainty regarding the expected electricity generation from VRE sources. 
This will allow the use of the CEM as a decision-making tool for opti
mizing the management of the electricity grid in the day-ahead market. 
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1. Supplementary material 

1.1. Extended results and discussions 

1.1.1 Hourly grid operations during spring and autumn weeks 
 

To access the performance of the PV + TEGS system in different seasons, two weekly examples of the 

hourly operation for the spring and the autumn season are included in the Supplementary material. 

The weekly examples illustrate the hourly operation of the PV + TEGS system where the PV system 

has a capacity of 100 MW, and the TEGS unit has a 600 MWh storage capacity with a 20 MW 

discharge capacity. Like in the main manuscript, the uppermost and lowermost figure show how the 

system operates in scenarios with and without constraining CO2 emissions.  

Figure 1 shows how the hypothetical system operates during a spring week. Similar to Figure 5 and 

Figure 6 in the main manuscript, the weekly examples show that the hypothetical system operates 

differently when the CO2 emissions are constrained to be reduced by 50%. In the baseline scenario 

with no CO2 emission constraints, there is a critical period where the grid has increased electricity 

demand (blue line), but the PV + TEGS system cannot deliver the requested power to the grid. 

Considering the 50% CO2 reduction scenario, there are no critical periods, and the hypothetical PV + 

TEGS system can always provide the requested power to the grid. 

 

 



 

 

Figure 1: Spring week illustrations for a 100 MW PV plus a 600 MWh TEGS system that can discharge 20 MW. Baseline case 
without constraining CO2 emissions (uppermost graph) and a scenario with reduced emissions lowermost. 

Similar to Figure 1, Figure 2 shows how the hypothetical system operates during an autumn week. 

Clearly, there are several periods during the autumn for the baseline scenario where the PV + TEGS 

system cannot serve the grid with the requested power since the electricity generation from the PV 

system is zero, and the State of Charge (SOC) of the TEGS unit is zero. However, when the CO2 

emissions are constrained by 50%, the CEM optimizes the portfolio of the generation technologies to 

ensure that the grid can always get the requested power from the hypothetical PV + TEGS system.  

 

 



 

Figure 2: Autumn week illustrations for a 100 MW PV plus a 600 MWh TEGS system that can discharge 20 MW. Baseline 
case without constraining CO2 emissions (uppermost graph) and a scenario with reduced emissions lowermost. 

 

 

 

 

 

 

 

 

 



1.1.2 Power availability under low electricity generation from solar PV 
 

To access the performance of the PV + TEGS system under a week with low electricity generation 

from solar energy, Figure 3 illustrates another example week from the winter season is included. 

Interestingly, the PV + TEGS system can serve the requested power from the grid almost at all times 

in the baseline scenario, except for one critical period. This is due to lower electricity demand in the 

grid, which requires less power supply from the hypothetical PV + TEGS system to meet the 

requested demand for electricity. For the 50% CO2 reduction scenario, the PV + TEGS system can 

always meet the requested electricity demand.  

 

 

Figure 3: An example week with low electricity generation from the modeled 100 MW solar PV plant.  

 

 



1.2 Electricity system cost 

Since the CEM evaluates the cost-optimal portfolio of electricity generation technologies to serve a 

demand for electricity, it is of interest to investigate the resulting cost of the electricity system in the 

different CO2 emission scenarios. Figure 4 illustrates the cost of the overall electricity system under 

different levels of CO2 emission reductions.  

 

 

Figure 4: Electricity system cost under different CO2 reduction scenarios.  

Here the fixed cost is the total annualized investment and the fixed operation & maintenance (FOM) 

for the electric power system. The variable cost parameter is the total annual variable costs 

associated with all resources, including fossil fuel costs for thermal power plants. The cost associated 

with Non-Served Energy (NSE) is computed as the number of hours during the year when the 

demand is not met times the value of lost load (VOLL), which is set to be 2000 $/MWh for the 

modeled grid. The lowest cost is obtained when there are no constraints on CO2 emission, as the grid 

can utilize a cheap NG to a high degree. Once the CO2 emission is constrained, the cost of the grid 

increases as it cannot utilize cheap NG to the same degree anymore and must rely on other emission-

free technologies. Noteworthy, the overall cost of the electricity system is adequate for the different 

emission reduction scenarios until it reaches a critical point where the CO2 emission is required to be 

reduced by 40%. In this scenario, the grid should be heavily reliant on emission-free VRE technologies 

that have intermittent electricity generation, and the lack of balancing resources such as energy 

storage results that the grid is experiencing several periods when the electricity generation portfolio 

cannot serve the requested demand for electricity, resulting in a significantly increased cost related 

to NSE. Once the CO2 emissions are required to be reduced by more than 50%, the objective function 

of the CEM model of serving the requested demand for electricity is no longer satisfied, and the 

existing portfolio of electricity generation and storage must be expanded to serve the electricity 

demand at all times. The modeled PV + TEGS system in this study is not sufficiently large to 

contribute to serving the demand at all times for the current portfolio of electricity generation when 

the CO2 emissions are heavily constrained. A suggested future work is to analyze how emerging 

storage technologies based on TES can contribute to cost-effectively reducing the cost of the overall 



power system by investigating the amount of installed capacity that is required to enable full 

decarbonization of the grid.   

1.3 Cost optimizing the engineering design of TEGS 
 

As the TEGS unit stores energy at extremely high temperatures, the working temperature and heat 

loss of the TEGS system is two important design parameters when engineering the TEGS unit. The 

TEGS capital costs are divided into Cost Per Power (CPP) and Cost Per Energy (CPE). CPP ($/kW) 

shows the capital cost for charging and discharging, while the CPE($/kWh) is the capital cost of the 

stored energy. Figure 5 shows how the capital cost of the TEGS unit varies as a function of 

temperature and heat loss. 

 

Figure 5: Different capital cost parameters of TEGS 

The upper-right graph shows that the lowest temperature system (1900°C) has a lower CPE than the 

other designs. This is because of the lower need for system insulation when operating at lower 

temperatures. The CPE cost also reduces as a function of the daily heat loss as less insulation is 

required. However, the CPP is significantly higher when the temperature is lower. This is because of 

the lower power density (higher energy density at higher temperatures). Therefore, more 

Thermophotovoltaic equipment is required to discharge sufficient power to the electric power 

system. Therefore, the CPP was computed as a function of the charge/discharge ratio, which shows 

that the CPP increases linearly with respect to the charge/discharge ratio.  Finally, the lowermost 

figure combines the CPE and CPP costs, showing that the TEGS unit is the cheapest at the highest 

possible temperatures. This motivated the choice of modeling a TEGS system at 2400°C.  

However, the lowest capital cost does not necessarily mean this engineering configuration is the 

cheapest one when operating in a grid. Therefore, another modeling procedure was performed, 

where the TEGS engineering design was optimized with respect to minimizing the cost when 

operating in the grid. The most cost-effective design was found by minimizing the cost of the 

modeled electric power system compared to a baseline scenario where TEGS is replaced by a state-

of-the-art Li-ion battery. Motivated by the results in Figure 5, two critical design parameters are 

modeled for the optimization: daily heat loss and the operating temperature. A matrix is created to 



model various TEGS configurations with heat loss ranging from 1% to 10% and operating 

temperatures between 1900°C and 2400°C. The result is presented as a heat plot in Figure 6, where 

the red color shows the highest cost reduction, and the blue color shows the lowest cost reduction 

compared to a baseline. 

 

Figure 6: Optimized TEGS engineering design operating in an electric power system representing New England.  

From the heat plot, the cost-optimum TEGS has an operating temperature of 2400°C and a daily heat 

loss of 1-3% compared to a baseline where TEGS is replaced by a Li-ion battery. In this case, the 

electric power system becomes approximately 3.5% - 4% cheaper than the baseline scenario. 

1.4 Power availability from PV plus TEGS at Gigawatt scale 
 

The capital cost projections of TEGS decrease with increasing size and are expected to achieve a 

capital cost below US$ 20 kWh-1 at the gigawatt scale [1]. Similarly, Apostoleris et al. [2] highlighted 

the record-low prices that could be achieved for PV plants at the gigawatt scale.  

Motivated by the cost projections that can be achieved at the gigawatt scale for both the PV and 

TEGS, we replicate the modeling by considering a PV plant with an installed peak power capacity of 1 

GW. In addition, the TEGS system had a storage capacity of 6 GWh. The total existing capacity in the 

modeled grid zone is the same as in the main manuscript (15 GW). Owing to the similarity of the 

results between the different storage sizes in the main manuscript, only one storage size is modeled 

in the Supplementary Information. The modeling method remains the same as in the main 

manuscript. 

In Figure 7, the yearly PAF from the hypothetical PV + TEGS system as a function of the discharge 

power is shown. In addition, the PAF modeling results at megawatt and gigawatt scales were 

compared. The results show that the result for each scale is consistent because the PAF increases as 

the system is derated for both cases.  

For the baseline scenario at the gigawatt scale, the PAF was higher than that at the megawatt scale. 

This is arguably due to the higher share of the gigawatt system when connected to the remaining 

grid, and thus, this system plays a more dominant role in supplying electricity demand with sufficient 

power. The PAF was approximately 55% and 65% when the discharging capacities were 100 MW and 

1000 MW for the megawatt and gigawatt-scale systems, respectively. 



Similar to the results at the megawatt scale (see the main manuscript), there was a large difference 

between the scenarios with and without CO2 reduction constraints. The results are consistent for 

both the megawatt and gigawatt scales, whereas the PAF increases the more the system is derated. 

The dynamics of the electric power system change significantly when CO2 emissions are reduced by 

50%. For both scales considered, the increased retirement of NG makes the grid more dependent on 

the hypothetical PV + TEGS system. It is noteworthy that the megawatt-scale system has a slightly 

higher PAF than the gigawatt-scale system for the 50% CO2 reduction scenario when the system is 

required to supply the grid with power between 500 MW and 1000 MW. This is due to changes in the 

electricity generation mix, and for the gigawatt scale, the least-cost CEM optimization results in that 

the PV + TEGS system has a few more periods during the year when the grid cannot receive the 

requested amount of power. However, the small discrepancy in the PAF between the megawatt and 

gigawatt scales shows that the modeling results are consistent at different scales.  

 

 

Figure 7: Percentage of time during the year when the hypothetical system can deliver the requested power to the grid. The 
percentage of time that the grid can receive the requested power increases by lowering the derated power. Here, the PV + 
TEGS system modeled at the megawatt scale delivers power in the interval between 5 MW and 100 MW, whereas the 
system at the gigawatt scale delivers power to the grid in the interval between 50 MW and 1000 MW. 

The differences between the emission scenarios are shown in Figure 8. Here, hourly operation with a 

6 GWh storage unit and 200 MW discharge capacity is shown during a typical winter week in January. 

The uppermost and lowermost figures show how the system operates in scenarios with and without 

constraining the CO2 emissions.  

From both graphs, TEGS is used frequently to discharge power to the grid whenever there is low 

electricity generation from the solar PV. In addition, the TEGS charges power from the grid whenever 

there is a drop in demand to increase the SOC.  

For the gigawatt scale, as for the megawatt scale in the main manuscript, there are one critical 

period where the PV + TEGS system cannot deliver the requested electricity to the grid because the 

SOC is already zero.  



Considering the 50% CO2 reduction scenario, the system interacts differently with the grid, and the 

CEM optimizes the hypothetical system to have more energy available at more times because the 

grid must be less dependent on the electricity generation from NG. 

 

Figure 8: Winter week illustrations for a 1000 MW PV plant plus a 6000 GWh TEGS system that can discharge 200 MW. 
Baseline case without constraining CO2 emissions (uppermost graph) and future scenario with lower emissions (lowermost 
graph). Both cases show no critical period during which the hypothetical system cannot deliver the requested power to the 
grid because the SOC of TEGS is already zero. 

In addition to the winter-week example shown in Figure 8, a typical summer week is illustrated in 

Figure 9. In the summer, the higher solar availability ensures that the system can deliver most of the 

required power to the grid from the PV system, and TEGS is used less frequently.  

Compared to the winter week example, there are now several periods the hypothetical system 

cannot deliver the requested power to the grid because the SOC of TEGS is already zero. This is due 

to the lack of CO2 constraints which ensure that the grid is mainly dependent on NG. Similar to the 

megawatt-scale simulation in the main manuscript, the TEGS system is only used to provide 

additional peak power when the demand suddenly increases for the baseline scenario. 



Under the 50% CO2 reduction scenario, the grid is again more dependent on the discharge power 

from the TEGS unit whenever there is no electricity generation from the PV plant. In this scenario, 

instead of providing peak power to the grid, the PV system is used to charge the TEGS unit to a 

higher degree to ensure that the SOC is never zero. Thus, the derated power can always be 

discharged to the grid when the PV system does not generate electricity.  

 

 

 

Figure 9: Illustrations of a typical summer week for a 1000 MW PV plus 6000 MWh TEGS system that can discharge 200 
MW. There are several periods during which the system cannot deliver the requested power to the grid because the SOC is 
already zero, whereas such periods never occur in the CO2 reduction scenario. 
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SUMMARY

As variable renewable energy sources comprise a growing share of electricity generation, energy
storage is becoming increasingly critical for balancing generation and demand. The high capital
cost of electrochemical batteries limits the integration of renewable energy that can be incorporated
into electric power systems without substantial cost increases. This study models a thermal energy
grid storage unit ("thermal battery") called TEGS with estimated capital cost sufficiently low to
enable large-scale deployment in electric power systems. The findings indicate that optimizing the
engineering design of TEGS can potentially reduce the cost of decarbonization by approximately
4% compared to a baseline scenario without TEGS. Achieving such savings requires constant charge
and discharge capacities and avoiding negative state of charge. We further explore how TEGS
enhances grid resiliency in heavily decarbonized grids by modeling the grid’s resilience under 22
different weather years. The results demonstrate that TEGS significantly improves electric power
grid resilience.
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1 Introduction

To decarbonize electric power systems, variable renewable energy (VRE) resources like wind and solar energy must be
increasingly utilized [1, 2, 3]. The inability to directly modulate the electricity supply to match energy demand due to
VRE sources’ weather dependency makes it more challenging to operate electric power systems. To compensate for
this variability, energy storage is becoming an increasingly important component of future energy systems. Energy
storage can store surplus electricity during high-generation and low-demand periods. During periods of low generation
from VRE sources, the stored electricity can be discharged to ensure adequate supply during periods of high electrical
demand [4, 5].

The growing prevalence of VRE technologies in electric power systems has increased the demand for low-cost storage
over a range of timescales, spanning seconds to days and even seasonal storage [6, 7]. A well-established method for
large-scale energy storage, pumped hydropower storage (PHS) is restricted to certain geographic areas. Concentrated
solar power with thermal energy storage (CSP-TES), has been seen as promising, but projects worldwide have
experienced delays, cost overruns, and mechanical problems, and the interest has recently fallen off[8, 9]. Lithium-ion
batteries, whose production has scaled up dramatically with the widespread adoption of electric vehicles, are currently
not cost-effective for the overnight and multiday storage systems needed to fully decarbonize the grid due to capital
costs of between US$150 and US$300 kWh−1 [10, 4, 5, 11, 12]. Another type of electrochemical storage is Redox-flow
batteries, which are proposed as a promising technology for long-term storage. Still, the relatively high capital cost of
170 kWh−1 has decreased the interest for this storage technology and currently accounts for less than 1.5% of energy
storage systems under development [12]. Studies suggest that capital costs must be reduced to $3-30 kWh−1 to achieve
cost-effective multiday storage [5, 13].

A storage approach based on Thermal Energy Storage (TES) has demonstrated promising potential for obtaining
sufficiently low capital costs for the multiday storage regime. The Thermal Energy Grid Storage (TEGS) technology
described in [14, 15] uses thermophotovoltaic (TPV) cells utilized to convert the energy that is stored as heat in graphite
storage blocks to electricity as needed [16].

From the second law of thermodynamics, converting heat to electricity results in significant efficiency penalties.
However, storing energy as heat instead of electrochemically can be vastly cheaper. Thus the round-trip efficiency (RTE)
penalty compared to electrochemical batteries (∼ 90%) can potentially be a worthwhile tradeoff [14]. Heat is stored
at very high temperatures (∼2400 °C) to enhance the thermal-to-electric conversion efficiency. A world-record high
conversion efficiency of 41 % utilizing TPV was demonstrated by the authors in a recent study [17], which predicted a
conversion efficiency of 50 % in the future. As a result, at gigawatt scales, this technology can achieve a projected cost
of less than US$ 20 kWh−1.

TEGS has the unique ability to decouple the charge and discharge capacities of the storage unit since energy is first stored
as heat in graphite blocks and then converted to electricity using TPV. In contrast to what is needed for discharging, the
TEGS can now charge (i.e., store heat) at a significantly higher capacity. The advantage of having such a property is
that a significant amount of energy can be quickly charged during generation surpluses and discharged over a more
extended period to fulfill the electricity load when demand exceeds supply.

The existing literature includes several studies that have employed different approaches to evaluating the storage
requirements (capital cost and storage duration) to enable cost-effective decarbonization of the electric power system
[7, 12, 18, 4, 19, 20, 21, 22, 23, 5, 11, 24, 25].

Sepulveda et al. [7] addressed the cost requirement of storage to replace firm technologies by analyzing projected cost
assumptions of different storage technologies. The findings show that the storage cost must be below U.S. $20 kWh−1

to reduce the electricity cost by ≥ 10% compared to an electricity system powered by firm low-carbon generation.

A comprehensive analysis of the value of energy storage in decarbonized grids with a high share of VRE technologies[12]
found that a cost-optimal solution is to deploy multiple storage technologies. The technologies with the lowest capital
cost of energy storage capacity are generally best suited for long-term storage in decarbonized power systems.

Braff et al. [4] addressed the value of using energy storage to balance the intermittent generation from renewables by
proposing a framework to compare storage technologies and then set cost improvement targets. The authors concluded
that storage technologies add value to solar and wind energy, but cost reduction is required to reach overall profitability.
The authors also find that the optimal cost trajectory is relatively location invariant, which can inform broad industry
and government technology development strategies.

The authors in [21] investigate the role of using firm low-carbon resources (nuclear, reservoir hydro, geothermal,
bioenergy, and fossil plants capturing CO2) in decarbonizing power generation in combination with VRE, battery energy
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storage, demand flexibility, and long-distance transmission. They evaluated scenarios consider varying CO2 limits,
technological uncertainties, geographical differences in electricity demand, and renewable resources. The findings
show that including firm low-carbon resources reduces the electricity cost by 10% - 62% compared to cases where the
electricity system relies only on wind, solar, and batteries.

In [5], the authors studied the characteristics that most impact renewable electricity costs, including cost features of
proposed storage technologies. To consider VRE resource fluctuations, they analyzed 20 years of data to capture
significant, infrequent events affecting storage requirements. The findings show that the stored energy capacity cost
must be below U.S. $20/kWh to cost-effectively meet a baseload demand for electricity.

The authors in [11] assessed the holistic value of utilizing energy storage in future decarbonized grids with increasing
wind and solar generation. The authors identified significant sources of storage value and their dynamics under different
systems settings and at increasing storage, wind and solar penetration levels. The authors find that increasing VRE
penetration from 40% to 60% improves storage value, but only enough to make storage capacity up to 4% of peak
demand cost-effective at current Lithium-ion capital cost. The authors used a future capital cost of U.S. $ 150/kWh
for 4-hour duration storage. Increasing the storage duration increases the storage value, but the high capital cost of
Lithium-ion often exceeds the storage value.

The former literature agrees that the energy storage capex must reach U.S. $20 kWh−1 in order to suitable for long-
duration applications. However, previous work has yet to model an emerging storage concept based on TES and
optimize the engineering design to match specific market conditions to reduce the overall cost to enable cost-effective
grid decarbonization.

In this study, we propose a modeling framework for cost-optimizing the engineering design of TEGS to operate in
electric power systems. Using a Capacity Expansion Model (CEM) [26], we model two hypothetical grid regions in the
U.S. Northeast (North) and Texas (South) that has different climate conditions to investigate the optimum design under
various market conditions. We find the optimum engineering design of TEGS under different scenarios where the CO2

emissions are constrained. In addition, by comparing to a baseline scenario with no TEGS, we analyze how introducing
such technologies can reduce the cost of decarbonization under different CO2 reduction scenarios. We also assess the
marginal price of adding additional TEGS units into the electric power system to identify the storage size that mostly
contributes to reducing the cost of the electric power system.

Despite much literature addressing the storage requirements to decarbonize electric power systems cost-effectively, fewer
studies combine such studies with addressing how storage contributes to maintaining resiliency. Maintaining resiliency
in decarbonized electric power systems is becoming increasingly difficult due to the intermittent and uncontrollable
electricity generation from VRE sources. Therefore, we explore how optimizing storage design can improve grid
resiliency by computing the annualized non-served energy (NSE) cost. The NSE cost is computed as the number of
hours during one year when the electricity demand is unmet. To assess the grid resiliency in decarbonized electric
power systems using TEGS, we compare the grid resiliency with a baseline scenario with no TEGS available.

The main contribution of this study is: Rather than modeling the general storage requirements in capital cost of energy
storage capacity, we optimize the engineering design of a TEGS unit to investigate the configuration that provides the
most cost-efficient power system decarbonization compared to a baseline scenario. The engineering parameters of the
TEGS unit that are optimized are; the operating temperature, daily heat loss, and the ratio of maximum charging and
discharging capacity. In addition, we compute the annualized NSE cost over 22 different weather years to indicate how
optimized storage units can affect grid resiliency in future electric power systems that are heavily dependent on VRE
technologies.

The remainder of this paper is organized as follows. Section 2 presents the optimized design of the storage unit under
different scenarios. This section also highlights which technologies are used to provide electricity to customers under
the different CO2 reduction scenarios. We also discuss how introducing TEGS can affect grid heterogeneity, indicating
the expected grid resiliency. Finally, we examine whether optimized storage technologies can enable efficient stepwise
decarbonization of the electric power system towards the year 2050. Finally, the conclusions are provided in the last
part of Section 2. Section 3 details the experimental procedures for presenting the electric power system case studies. In
addition, a description of the TEGS engineering optimization method is described.
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2 Results and discussions

2.1 Optimized thermal battery design to reduce overall power system cost

Fig. 1 shows the resulting optimized TEGS under different CO2 scenarios for the New England power system. The red
color in the heatmap indicates the highest values, while the blue colors indicate the lowest values.

Figure 1: Optimized TEGS configurations under different CO2 reduction scenarios

The leftmost contour plot in the uppermost row (99% CO2 reduction scenario) shows the cost reduction compared with
the baseline scenario (i.e., TEGS excluded as an available technology) for each storage configuration. The optimum
configuration results in a 3.5% cost reduction compared to the baseline case and is obtained when the TEGS has an
operating temperature of 2400◦C and a daily heat loss of approximately 3%. The second contour plot to the right
shows that approximately 4000 MW of discharge capacity is required to reduce the overall grid cost by 3.5%. The
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third contour plot to the right computed the ratio between the discharge and charge capacities. Interestingly, it is
clear that the optimum configuration requires TEGS to charge at a higher capacity than discharging. To obtain the
highest possible cost reduction compared with the baseline, the storage unit should have a charging capacity that is
approximately 1.5 times higher than the discharging capacity. This is because when the electricity demand is low, the
storage facility should be able to charge cheap electricity fast and discharge the electricity over a longer period when
the electricity demand is high. The rightmost plot shows that approximately 50 hours of storage is required to obtain
the cost reduction.

The second to fourth rows show the cost reductions for the 95%, 90%, and 80% CO2 reduction scenarios. The results
are similar for all scenarios, where the most cost-optimized TEGS is obtained with a working temperature of 2400◦C
and daily heat loss of approximately 3%. The supplementary material shows that the Electric Reliability Council
of Texas (ERCOT) region has similar trends. Fig.1 in the Supplementary material shows that the optimum TEGS
has a working temperature of 2400◦C and daily heat loss of 3%. Similarly to the New England power grid, the cost
reduction compared to the baseline is approximately 3%. As the ERCOT grid in Texas covers a significantly larger
area, approximately 25000 MW of charging capacity is required for the 99% CO2 reduction scenario. The optimum
charge-discharge capacity is approximately 3.75. This is significantly higher in the New England grid, where the storage
unit should charge with a maximum capacity that is 1.5 times higher than the maximum discharging capacity. The vast
difference in charging requirements for the two different power systems is because the share of solar energy in the
Texas grid is significantly higher than in the New England grid, where wind power dominates. In a solar-heavy power
system, the periodic generation profile of the solar PV systems gives excess electricity during mid-day when the sun is
high but no electricity at all during the night. This requires storage systems to be able to charge at a high rate when
there is excess electricity during mid-day. Then the stored energy can thereafter be discharged over a longer period
when solar generation is low or zero.

The optimal charge-discharge ratio can vary depending on variables such as the availability of renewable energy sources,
electricity demand patterns, and the market pricing structure. TEGS design can address this issue of fluctuating market
conditions by altering the component sizes of the system. By adjusting the relative sizes of heating elements, thermal
storage blocks, and TPV units, the TEGS system can be optimized to meet the unique requirements of a particular
region or market

As discussed in the Experimental Procedures section 3.2, the system’s effective charge and discharge capacity varies as
a function of State of Charge (SOC). In addition, due to the extremely high temperatures when the TEGS unit is fully
discharged, it can still experience heat losses when SOC = 0. Consequently, if not recharged again directly after SOC =
0, the TEGS unit can obtain a negative SOC since the system still has heat losses when fully discharged. Therefore,
we performed another modeling procedure with varying charge and discharge profiles and the possibility of obtaining
a negative SOC if the TEGS unit is fully discharged and is not directly recharged again. . The results are provided
in Fig. 2 and show the optimum engineering design of a TEGS unit considering the effective charge and discharge
capacity changes as a function of the SOC and the possibility of obtaining negative SOC.

The result shows a similar optimum design for the TEGS unit as in Fig. 1, but with an optimum heat loss of 2%
instead of 3%. This is due to the constraint concerning the possibility of obtaining a negative SOC when the TEGS
unit is not immediately recharged after full discharge. As discussed in the Experimental Procedure section 3.2, the
charge-discharge and storage-discharge ratios must be fixed to implement the constraints of effective charge and
discharge capacities into the CEM. Therefore, the charge-discharge and the storage-discharge rations are the same as in
Fig. 1.

However, the cost reduction compared to the baseline scenario is significantly lower for all CO2 reduction scenarios,
with a cost reduction of 0.5% for the 99% reduction scenario. The installed discharge capacity is 1750 MW for the
optimum configuration compared to 4500 MW for the optimum configuration in Fig. 1. The supplementary material
shows that the EROT region has similar trends.

Such a large impact on cost reductions highlights the importance of researching solutions to maintain a constant
capacity during charge and discharge, and avoid periods with negative SOC. However, the results presented in Fig. 2
are considered a worst-case scenario as the system’s true charge and discharge profiles are in between the two results
presented in Fig. 1 and Fig. 2. The TEGS units’ true charge and discharge capacities have non-linear profiles, and
ongoing research is to identify these profiles which can be implemented into the CEM. In addition, obtaining solutions
to avoid periods with negative SOC is suggested as an important study for thermal energy storage technologies. In the
following, as we model future system assumptions, we assume that R&D has enabled the TEGS unit to have constant
charging and discharging capacities with no periods where SOC is negative (i.e., the results in Fig. 1). Therefore, the
following results present the optimum TEGS system with constant discharge and charge capacities.

5



O.F. Eikeland, et al.

Figure 2: Optimized TEGS configuration under different CO2 reduction scenarios considering the effective discharge
and charge capacities as a function of SOC and the possibility of obtaining negative SOC.

2.2 Installed capacity under different scenarios

Investigating how the mix of electricity generation technologies changes for the different CO2 reduction scenarios is
interesting. Fig. 3 shows the optimum portfolio of electricity generation technologies in the New England and ERCOT
power systems under different decarbonization scenarios using the engineering-optimized TEGS unit.

The cyan line indicates the total installed capacities for all decarbonization scenarios. More capacity must be installed
in the New England and ERCOT grid to meet the demand when the CO2 reductions are higher. In heavily decarbonized
grids, the high share of non-dispatchable renewables (i.e., solar and wind power) requires installing a large capacity to
cover peak demand. Consequently, during periods with lower demand, the electric power system has an oversupply of
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Figure 3: Change of installed capacity in the New England and ERCOT power system at different decarbonization
scenarios

electric generation. On the contrary, dispatchable fossil-fuel-based technologies can be sized to cover the electricity
demand in peak periods and periods with a lower need for electricity, thus reducing the need for net installed capacity in
the electric power system.

All technologies with a negative value indicate a reduced installed capacity compared to the baseline case where TEGS
is not included. Clearly, the installed capacity of Li-ion batteries has significantly decreased as TEGS is replacing Li-ion.
For the 99% reduction scenario, TEGS reduces the need to utilize the Biomass and Natural Gas (NG) Combined Cycle
with Carbon Capture and Storage (CCS). On the other hand, introducing TEGS allows for a significantly increased
amount of onshore wind power. In addition, TEGS allows for more installation of PV compared to the baseline case.
In the ERCOT grid, less wind power is installed, but a large amount of solar power is installed due to the large solar
availability compared to the New England grid region.

When the CO2 emissions are less constrained, there is an increased amount of NG with 90% CCS, while there is
a decreased amount of NG with 100% CCS in the New England grid. This is because when the emissions are less
constrained, the optimized grid utilizes NG with 90% CCS instead of 100% CCS as this technology has a lower capital
cost. In the ERCOT grid, the installed capacity NG with 90% CCS is also reduced when the CO2 reductions are less
constrained.

In all reduction scenarios, the installed capacity of onshore wind is similar in the New England grid. Similarly, the
installed solar energy capacity is similar in the ERCOT grid for all reduction scenarios. This indicates that wind power
and solar energy are cost-efficient technologies regardless of CO2 emissions constraints. Overall, introducing TEGS
provides a higher share of renewables and a lower share of fossil-fuel technologies in the New England and ERCOT
grid.

2.3 Shadow prices

In addition to identifying the engineering-optimized TEGS and the portfolio of supply technologies under different
decarbonization scenarios, this section presents the shadow prices of the optimum TEGS design under the 99% reduction
scenario in the New England grid. The Supplementary material shows the shadow prices for the ERCOT grid. The
objective of computing the shadow price is to investigate the marginal value of adding additional TEGS capacity into the
power system. Fig. 4 shows the evolution of the marginal price for the optimum TEGS design with different discharge
capacities.

Since the objective function of the CEM is to minimize the cost of the generation portfolio to meet electricity demand,
negative shadow prices will decrease the objective function and thus further reduce the cost of the electric power system.
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Figure 4: Shadow prices of TEGS

In Fig. 4, the upper left graph shows the shadow price of discharging as a function of the storage-discharge ratio. All
discharge capacities have a positive shadow price below 20 hours of storage, indicating that adding another TEGS
unit with less than 20 hours of storage does not reduce the electric power system costs. Interestingly, for large TEGS
units with a discharge capacity above 5000 MW, adding another TEGS unit does not reduce the cost of the electric
power system. This aligns with the results in Fig. 1, which shows that the optimum size of the TEGS unit should have a
discharge capacity between 4200 MW and 4500 MW. For smaller TEGS units, the shadow price decreases significantly
after 20 hours of storage, indicating that more units of such sizes positively impact the objective function of the CEM to
reduce the overall electric power system cost. The shadow prices of charging are indicated in the upper right graph.
Similarly, the charging shadow price reduces for longer storage durations. The lower graph shows the shadow prices of
adding storage to the electric power system. Interestingly, here all storage sizes (discharge capacity) show negative
values, indicating that adding more storage contributes to reducing the cost of the electric power system. The increase
in shadow price indicates the cost reduction of adding another storage unit to the electric power system decreases with a
larger storage capacity (i.e., hours of storage). Overall, the shadow prices show that adding TEGS to the electric power
system effectively reduces the cost of the electric power system and gives insight into the impact of adding additional
TEGS units with respect to reducing the cost of the electric power system.

2.4 Reliability of decarbonized electricity grids

In this section, we investigate the reliability of the resulting optimized grid under the 99% CO2 reduction scenario
with the optimized TEGS (2400◦C and 3% daily losses). In particular, we model the resulting optimized grid as a
brownfield model (i.e., we start from the resource mix obtained in the 99% CO2 reduction scenario in Fig. 3) and model
the resiliency of the grid when it is exposed to different weather conditions. This allows us to investigate how resilient a
grid that is heavily dependent on VRE sources is under different weather conditions and whether storage units increase
the grid’s resiliency. We compute the resulting annualized non-served energy (NSE) cost to measure resiliency. The
NSE cost is computed as the number of hours during the year when the demand is not met times the value of lost load
(VOLL), estimated to be 2000 $/MWh for the New England power system. In summary, the higher the NSE cost, the
less reliable the grid is, as there are more incidents during the year where the grid cannot meet the demand for electricity.
To test the grid reliability under different VRE availability scenarios, we model 22 weather years from the year 2000 to
2021. Due to the lack of data availability for the ERCOT region, the reliability from the year 2000 to 2021 is computed
for the New England region only. Fig. 5 shows the NSE cost for each year for the baseline scenario and the scenario
with the optimum TEGS configuration under the 99% CO2 reduction scenario.

In Fig. 5, it is clear that the grid has the lowest NSE cost when the wind and solar capacity factor is high (i.e., high
availability of solar and wind power). The NSE cost increases when VRE sources have low availability (2003 and
2008). This is because when the CO2 emissions are heavily constrained, the high dependency on VRE technologies
makes the grid vulnerable to changes in electricity generation from renewable technologies such as solar and wind
power. Interestingly, during the 21 weather years, the solar and wind capacity factor has had minor changes, indicating
that the availability of solar and wind power resources has been consistent for decades. It is also clear that TEGS vastly
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Figure 5: Cost of non-served energy for weather years with different VRE availability

reduces the cost of NSE compared to the baseline case due to the larger amount of available storage technologies that
can serve the grid when there is a lack of solar and wind availability.

This has important implications for decarbonized electric power systems that are heavily dependent on non-dispatchable
electric generation resources such as solar and wind power. Here it is shown that TEGS can cost-effectively store energy
over longer durations and discharge the required power to cover a specific demand for electricity when there is a lack
of availability from renewables (i.e., due to adverse weather conditions), thus ensuring a more reliable decarbonized
electricity system.

2.5 Conclusions

In this study, we analyzed how storage design can be optimized to reduce the overall cost and enable full decarbonization
of electricity systems. Using a capacity expansion model, we modeled two electric power systems in North America,
representing the New England grid in Massachusetts and the Electric Reliability Council of Texas (ERCOT) grid in
Texas. Modeling two different geographical regions allows for investigating how the requirements of energy storage
change as a function of different electricity market conditions.

Because of the high capital cost of electrochemical batteries, a TES technology with a projected capital cost that fulfills
the requirements (< US$ 20 kWh−1) to enable full decarbonization of the grid was considered. Different storage
design parameters were optimized to identify the technology that resulted in the most cost-efficient decarbonized
electricity system. The optimized design parameters were the daily heat loss, operating temperature, and the maximum
discharge-charge capacity ratio. The optimum design for the storage unit in both regions had an operating temperature
of 2400◦C and 3% daily losses. Interestingly, there was a significant difference in the optimum discharge-charge ratio
for the modeled regions. In the New England electric grid, the optimum storage unit had a maximum charging capacity
of 1.5 times higher than the maximum discharging capacity. It was significantly higher in the ERCOT electric grid,
where the maximum charging capacity was 3.75 times the maximum discharging capacity (333 % higher charging
capacity). The reason is that the resulting cost-optimized grid in Texas has a higher share of solar PV installed, while
the resulting grid in Massachusetts has a higher share of wind power. A solar-heavy grid requires storage units that
can charge a large amount of energy during mid-day when there is a large amount of excess electricity from the solar
PV plants and thereafter discharge over a longer period when there is a lack of solar availability. On the other hand,
a wind-heavy electricity system does not require similar storage operation as wind power generates electricity more
frequently through the day and does not have the typical mid-day generation pattern as solar energy. The significant
difference in the optimum discharge-charge ratio indicates the importance of designing storage systems to match the
specific conditions in each electricity market. In addition, we repeated the optimization schedule by incorporating
specific details on the variation of the effective charge and discharge capacities as a function of SOC and the possibility
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of obtaining negative SOC. The findings show that the engineering design was similar to the first design, but the cost
improvement of TEGS compared to the baseline scenario was significantly lower. This motivates the research of
developing solutions to maintain constant charging and discharging capacities as a function of SOC and avoid periods
with negative SOC.

Once the optimum storage design was found, we investigated how TEGS affected the portfolio of supply technologies
under different decarbonization scenarios. The results show that TEGS replaces Li-ion batteries and allows for a higher
share of renewables and a lower share of fossil-fuel technologies in both the New England and ERCOT grid. In addition,
to further assess the benefit of using TEGS to obtain cost-efficient decarbonization of the electric grid, we computed the
shadow prices for different TEGS unit sizes as a function of storage duration. We find that TEGS positively improves
the cost reduction of the electric power systems for all storage durations. In the end, we investigated how TEGS units
can improve reliability in electric grids that are heavily decarbonized by modeling 22 different weather years. We
found that TEGS vastly reduced the NSE cost compared to the baseline scenario for all weather years because of
the increased amount of available power the TEGS unit can discharge to meet the demand when there is a lack of
solar and wind availability. We show that cost-effective storage units have a critical role in maintaining resiliency in
heavily decarbonized grids, which is critical to ensure a successful transition of the electric power system toward full
decarbonization.

The findings show that design-optimized TES units can be essential in obtaining cost-efficient decarbonization of
specific electric power systems while maintaining resiliency.

3 Experimental procedures

3.1 Electric power system modeling case studies

The case studies in this work cover two states in the U.S.: the New England grid in the state of Massachusetts and
the Electric Reliability Council of Texas (ERCOT) grid in the state of Texas. We modeled the different regions as
a "greenfield" system, that is, everything was built from scratch. In addition, we modeled each state as an idealized
single-node system and did not include potential transmission constraints between the regions within each grid area.
We are interested in modeling the potential of achieving fully decarbonized power systems, so we explore the year 2050.
The electricity demand, capital cost, and performance data for the different generation technologies in these regions
were collected from EIA and the National Renewable Energy Laboratory (NREL) using the annual technology baseline
(ATB) with moderate cost assumptions for each technology [27]. The Github library PowerGenome ** was used to
collect the input data and shape them to the required format for the CEM. The weather year for modeling the VRE
availability was 2021.

The reason for modeling the two states is to model the potential for using storage in different settings with different
climates. More specifically, the state of Massachusetts is well known to have a large potential for wind power but
less solar power owing to its high latitude. Conversely, Texas has a significantly larger solar resource, leading to a
significantly different configuration for the cost-optimized future electric grid.

3.2 Optimizing the engineering design of TEGS

In this work, we are interested in investigating how the engineering design of TEGS can be optimized to enable full
decarbonization of the electric power system cost-effectively. From the discussions in Section 1.2.1 in the Supplementary
Material, two design parameters are of main importance for the optimization: daily heat loss and operating temperature.
Here, we model a matrix in which the TEGS system has a daily heat loss between 1% and 10%, and a working
temperature between 1900◦C and 2400◦C.

We want to find a TEGS configuration with the lowest cost when operating in a grid. TEGS costs are divided into Cost
Per Power (CPP) and Cost Per Energy (CPE). CPP ($/kW) shows the capital cost for charging and discharging, while
the CPE($/kWh) is the capital cost of the stored energy. The estimated capital cost of the TEGS unit is obtained from
[15]. However, since TEGS is a technology currently under development, there are large uncertainties regarding the
exact cost when fully integrated into the electric power system, and the capital cost is believed to be updated during the
R&D process of the TEGS unit.

Fig. 6 shows how the cost of the TEGS system varies as a function of the temperature and heat loss.

**The PowerGenome GitHub library collects source data from the EIA, NREL, and EPA, and formats the input files for the CEM
model. The GitHub library with associated documentation is found here https://github.com/PowerGenome/PowerGenome
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Figure 6: Different cost parameters of TEGS

Notably, the lowest temperature system (1900◦C) has a lower CPE than the other designs. This is because of the lower
need for system insulation when operating at lower temperatures. However, the CPP is significantly higher when
the temperature is lower. This is because of the lower power density (higher energy density at higher temperatures).
Therefore, more TPV equipment is required to discharge sufficient power to the electric power system. The lowermost
figure combines the CPE and CPP costs, and the TEGS system is the cheapest at the highest possible temperatures.

From the description of the TEGS system in the Supplementary material, the power capacity of the TEGS system
depends on the temperature during charging and discharging. During charging, the temperature increases (i.e., from
1900◦C to 2400◦C). This temperature increase increases the power density during charging and thus affects the
power input during charging. Similarly, during discharging, the temperature decreases (i.e., from 2400◦C to 1900◦C),
consequently decreasing the power density in the power block and affecting the power output from the TEGS unit
during the discharge process. On the contrary, during charging, the power density increases as the temperature increases.
Fig. 7 illustrate how the effective charge and discharge capacities change as a function of SOC.

Figure 7: Charge and discharge profiles of TEGS as a function of SOC. The results obtained in Fig. 1 assume a constant
charge and discharge profile, while the results obtained in Fig. 2 assume a charge and discharge profile that changes
linearly as a function of SOC
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Therefore, to model the importance of the relationship between the effective charge and discharge power and the SOC,
we perform another modeling scenario where the effective charging and discharging capacities changes as a function
of SOC. This represents that the temperature across the emitted TPV increases during charging, which increases the
effective charging capacity. When discharging, the temperature across the emitted TPV is lower when the TEGS is
depleted, so the effective discharge capacity decreases. We add the following constraints in the CEM to consider the
changes in the effective charge and discharge capacities. The effective discharging capacity is defined as

Effective discharging power
Discharge capacity

≤ Stored energy
Storage capacity

(1)

We implement a linear constraint in the CEM by transforming this equation into the following:

Effective discharging power
Discharge capacity

≤ Stored energy
Discharge capacity * c1

(2)

→ Effective discharge power ∗ c1 ≤ Stored energy (3)

where c1 is a constant representing the discharge-storage ratio of the TEGS unit at different temperatures and heat
losses. The discharge-storage ratio for each temperature and heat loss is obtained from the optimal ratio resulting
from the modeling when assuming constant charging and discharging capacities (i.e., results in Fig. 1). Similarly the
constraint for the effective charging capacity is implemented in the CEM as:

Effective charging power
Charge capacity

≤ 1− Stored energy
Storage capacity

(4)

Effective charging power
Charge capacity

≤ 1− Stored energy
Charging capacity * c2

(5)

Where c2 represents the charge-storage ratio of the optimum TEGS design with constant charge and discharge capacities.
We use this equation to compute the effective charging capacity as a linear constraint:

Effective charging capacity ∗ c2 ≤ Charging capacity * c2 − Stored energy (6)

In addition to incorporating effective charging and discharging capacities into the CEM, we add a third feature of the
TEGS unit. The TEGS units have extremely high temperatures even when SOC = 0 (1900◦C for a system of 2400◦C
when fully charged). Therefore, the TEGS unit will experience heat losses when SOC = 0, and consequently, the TEGS
unit can obtain negative SOC if it is not recharged directly after being fully discharged.

We implement the effective discharge and charge capacities and the possibilities to obtain negative SOC to analyze
these features’ potential impact on the overall cost reduction. This will gain insight into whether these features are
critical to tackle engineering-wise in order to obtain the required cost reduction and, thus, more cost-effectively enable
full decarbonization of the electric power system.

3.3 Capacity Expansion Model (CEM)

The analysis utilizes GenX [26], an electric power system CEM that evaluates the cost-optimal electricity mix of
generation, storage, and transmission infrastructure. Cost optimization is subject to several constraints, such as
operational (electricity demand and generation) and policy (CO2 emissions) constraints. The dominant constraints used
in this study were the different electricity generation technologies available and the maximum limit on the allowed
CO2 emissions in the grid. We modeled different scenarios in which the following technologies were available: VRE
generation (onshore and offshore wind power, and utility-scale solar PV), high-emission dispatchable power (Natural
Gas combustion cycle, and Natural Gas combustion turbine), and low-emission dispatchable power (NG + CCS, and
advanced fission). In addition, Li-ion and TEGS batteries can be used in different scenarios.

Here, the power system was modeled with a scenario without any CO2 constraints (i.e., the model finds the cost-
optimized electricity mix regardless of CO2 emissions) and with scenarios in which the CO2 emissions are reduced by
80%, 90%, 95%, and 99%. Constraining the maximum allowed CO2 emissions in the grid will change the dynamics of
how the power system is operated, as the grid can no longer use fossil-fuel-based technologies at the same scale. For
each CO2 reduction scenario, we modeled a baseline case in which TEGS was excluded from the model, and only Li
ions were available as a storage facility in the grid. This allows for a comparison of how the cost of the grid changes
when different configurations of the TEGS are modeled.

In total, when including modeling the TEGS design configurations with heat loss between 1% and 10% and operating
temperature between 1900◦C and 2400◦C, 448 model runs are performed to obtain the results in this study.
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To fully capture high-resolution temporal dependencies in the grid, we modeled the grid operation for each hour of the
year. All scenarios were evaluated with the Gurobi optimization solver [28] using 16 cores with 128 GB RAM. All
model scenarios were terminated with a 1% or lower optimality gap.
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1 Supplementary material

1.1 Extended results

1.1.1 Optimized TEGS design

Fig. 1 shows the resulting optimized TEGS under different CO2 scenarios for the ERCOT power system. The results are
similar to the New England power system in the main manuscript. The optimum TEGS configuration that achieves the
greatest cost reduction in the Texas region has an operating temperature of 2400◦C and a daily heat loss of approximately
3%. Like the New England grid, the optimum configuration results in approximately 3% cost reduction compared to the
baseline case where TEGS is excluded from the grid. In the third contour plot to the right, the charge-discharge ratio is
approximately 3.75, showing that the TEGS unit should have a charging capacity that is almost 4 times higher than
the discharging capacity. This is significantly higher in the New England grid, where the storage unit should charge
with a maximum capacity that is 2 times higher than the maximum discharging capacity. The difference in charging
requirements for the two different power systems is because the share of solar energy in the ERCOT grid is significantly
higher than in the New England grid, where wind power dominates technology. In a solar-heavy power system, the
periodic generation profile of the solar PV systems gives excess electricity during mid-day when the sun is shining but
less electricity during the morning and afternoon when the sun is below the horizon. This requires storage systems to be
able to charge at an extremely high capacity when there is excess electricity during mid-day. Then the stored energy
can be discharged over a longer period when there is a lack of solar availability. Due to the periodicity of electricity
generation from solar energy, approximately 30 hours of storage are needed in the ERCOT grid instead of 50 hours for
the New England grid.

As in the main manuscript, we performed another modeling procedure considering the effective charge and discharge
capacities and the possibility of obtaining a negative SOC. The results are presented in Fig. 2.

The results show a similar optimum design for the TEGS unit as in Fig. 1. However, considering the effective charge
and discharge capacities and the possibility of obtaining a negative SOC significantly impact the value of using TEGS
in the ERCOT grid. Now there is no longer a cost reduction using TEGS, and the baseline scenario where Li-ion
batteries are the only storage unit available is the preferred solution with respect to cost-effectively decarbonize the
ERCOT grid. Similar to the discussions in the main manuscript concerning the New England grid, the large impact on
the cost reductions highlights the importance of researching solutions to maintain a constant capacity during charge and
discharge and avoid periods with negative SOC.

*These authors contributed equally to this work
**Corresponding authors: mchiesa@mit.edu and ase@mit.edu
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Figure 1: Optimized TEGS configurations under different CO2 reduction scenarios in the ERCOT grid.

1.2 Shadow prices

As for the main manuscript, Fig. 3 shows the evolution of the shadow price for the optimum TEGS design at different
discharge capacities.

The shadow prices show similar results to the New England grid, where at least 20 hours of storage is required to
reduce the costs of the ERCOT grid using TEGS. The shadow prices of charging are indicated in the upper right graph,
showing the same trend as in the main manuscript, as the shadow prices reduce for longer storage durations. The lower
graph shows that adding TEGS units positively impacts the cost reductions of the ERCOT grid for all storage durations
and all discharge capacities.
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Figure 2: Optimized TEGS configurations under different CO2 reduction scenarios in the in the ERCOT grid considering
the effective discharge and charge capacities, and the possibilities of obtaining negative SOC.

1.2.1 Weekly operating examples

This section provides insight into the hourly operation of the New England and ERCOT electricity systems, respectively.
This is useful to better understand how an electric power system operates hour-by-hour and gives insight into how
storage is utilized to cover the electricity demand when the supply from VRE sources is insufficient. Fig. 4 shows the
hourly operation of the modeled grid under the 99% CO2 reduction scenario in the New England grid. The uppermost
Figure shows a winter-week example, while the lowermost figure shows a summer-week example. Wind power and
Natural Gas with CCS is the dominant source of electricity supply to meet demand.
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Figure 3: Shadow prices of TEGS in the ERCOT grid

In Fig. 4, the electricity demand must be covered is illustrated as a dotted blue line, whereas the dotted red line shows
the net generation from renewables (solar + wind) and the discharged power from the Li-ion battery and TEGS. The
stacked colors show how each technology contributes to covering the total electricity demand. Clearly, the dominant
source of electricity generation is land-based wind power in addition to Natural Gas with CCS when there is lower
wind availability. Interestingly, for the winter week example, the electricity demand is 100%, covered by wind power
generation alone in the last two days. In these days, the excess electricity generation from wind power is used to charge
the TEGS storage unit. As CO2 emissions are heavily constrained, there are minor contributions from NG that have
associated emissions. The NG technology that is actively providing power to the grid whenever there is insufficient
wind power is NG with 100% CCS and 90% CCS (NG-CCCCS). Interestingly, when wind power is unavailable, TEGS
significantly covers the demand by discharging large amounts of power. In the supplementary, weekly illustrations for
the Texas grid are provided. Here, it is clear that solar energy is the dominating source of energy supply, and the storage
unit plays a more active role in discharging power when there is a lack of solar availability.

The red dotted line, which shows the net supply from renewables and discharged power from storage, indicates that the
grid receives electricity nearly 100% of the time. This shows the benefits of using storage to improve the dispatchability
of renewables with an intermittent generation profile.

Fig. 5 shows the hourly operation of the modeled grid under the 99% CO2 reduction scenario in the ERCOT grid. In
contradiction to the New England region, where the whole demand could be covered with wind power for some periods
during the winter, the electricity generation from solar PV plants plays a more significant role. However, when the sun
sets, the technology that contributes the most to covering the overall electricity demand is the power discharged from
TEGS. It is clear that NG and biomass play secondary roles in contributing to covering the total demand. A similar
pattern occurs during the summer week example.

1.3 Experimental procedures

1.3.1 Thermal Energy Grid Storage (TEGS)

Fig. 6 illustrates the different components of the TEGS concept [1, 2].

Excess electricity is used to fuel resistive heating materials (graphite) to charge the TEGS unit, transforming the
electricity into heat at a temperature exceeding 2500◦C. Then, the energy is transferred to graphite conduits via thermal
radiation. Inside the pipes, liquid tin is used as the heat transfer fluid. The tin is heated from 1900°C to 2400°C,
transforming the energy input into sensible heat and increasing its enthalpy. The liquid tin is continuously pumped
through the conduits and then conveyed to the graphite blocks in the storage unit. When the 2400◦C tin is pumped
through the graphite blocks via pipes, it heats them from 1900◦C to 2400◦C via thermal radiation. Consequently, this
cools the tin back to 1900◦C. The tin is then reheated by being pumped back through the resistance heaters. This
process constitutes the charging process until the graphite blocks are heated back to peak temperature. The storage
unit should have sufficiently large thermal mass to enable the storage unit to be charged for long periods with low
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Figure 4: One week of hourly operation in the New England grid

heat loss (i.e., < 10%) [1]. Heat loss is a crucial design consideration in finding the most economically advantageous
TEGS unit, and this study models a TEGS unit with heat loss between 1% and 10%. During discharging, liquid tin
is pumped through the graphite storage to a power block. The power block consists of graphite conduits with unit
cells. Each unit cell of piping creates a rectangular cavity lined with tungsten foil. This is a diffusion barrier to prevent
graphite deposition onto the TPV cells. Inside each cavity, the TPV cells can be lowered into the unit cell cavity. Here
the TPV cells will be illuminated with the light emitted by the tungsten foil, which is heated by the light emitted by
the graphite conduit carrying the tin. This net transfer of energy converts a large fraction (> 50%) of the energy to
electricity, which causes the tin’s temperature to decrease to 1900°C before being pumped back to the graphite storage
unit, where the tin is reheated again during the charging phase. The system is heated up to 2400◦C to increase the power
density in the power block during discharge to maximize the discharge capacity of the system. However, achieving such
extreme temperatures is difficult engineering-wise, and investigating the possibility of reducing the required operating
temperature is another crucial design choice modeled in this study.
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Figure 5: One week of hourly operation in the ERCOT grid

However, as the temperature in the power block decreases during discharge (i.e., from 2400◦C to 1900◦C), the power
density consequently decreases. This can affect the effective discharge capacity from the TEGS unit as the power
density in the power block decreases during the discharge process. Similarly, as the temperature in the power block
during charging increases, the effective charging capacity of the TEGS unit increases during the charging process. The
variation of the effective charge and discharge capacities as a function of the State of Charge is an additional design
parameter that is modeled in this study. The TPV conversion efficiency (i.e., the discharge efficiency from heat to
electricity) determines the TEGS unit’s RTE. Recent discoveries in [3] enabled a TPV efficiency of 50%, giving an RTE
of 50%. The charging efficiency (from heat to electricity) is assumed to be 100%. In summary, the TEGS unit is a
rechargeable grid-scale thermal battery that can store energy as heat and supply electricity to the grid on demand with a
projected cost sufficiently low to enable full decarbonization of the electric power system.
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Figure 6: Schematic illustration of TEGS components. Illustration collected from [1]
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