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A B S T R A C T   

The accumulation of floating debris is one of the main challenges of water conservancy projects, which may 
pollute the vulnerable ecosystem of the reservoir area and impose significant risks on waterway transportation 
and dam operations. Due to the dynamicity and uncertainty caused by water flow, the collection of floating 
debris is much more complicated than on-land waste collection. In this paper, we propose a two-stage decision- 
support system to optimize the task allocation and routing decisions for floating debris collection in the reservoir 
area, where the first stage is proactive planning based on historical/observed data and the second stage is 
reactive planning based on real-time data. The primary objective is to minimize the total collection cost while 
simultaneously ensuring the accumulation areas with high risks are prioritized in the daily collection plan, and 
both genetic algorithm and simulated annealing algorithm are used to solve the optimization problems. The 
proposed method is validated with a real-world case study at Wushan County in the Three Gorges Reservoir area. 
The computational results show that the level of time-dependent penalty cost on service priority, the types of 
collection ships, and the number and locations of unloading points are important influencing factors to the cost 
and responsiveness. Furthermore, the proposed two-stage decision-support system can help effectively optimize 
the operational planning of floating debris collection in reservoir areas.   

1. Introduction 

Floating debris is a pervasive issue across almost all types of water 
bodies, i.e., streams, rivers, reservoirs, and oceans, though the severity 
and impact of this problem may vary drastically (Park et al., 2021). 
Floating debris consists usually of a large variety of substances, e.g., 
straw, branches, foam, plastics, etc., and they can be found in various 
locations of the water body. In the case of reservoirs, this problem is 
mainly caused by the hydrological changes that occur after impound
ment, say, the conversion of a natural river channel into a slow-flowing 
reservoir with a large backwater area results in the accumulation of 
floating debris that cannot pass through the dam (Zhang et al., 2015). 
On the Yangtze River, the accelerated accumulation of floating debris 
has become one of the most significant challenges since the operations of 
several large water conservancy projects, e.g., Three Gorges Dam and 
Gezhouba Dam. For instance, the average annual collection volume of 

floating debris in front of the Three Gorges Dam exceeds 100,000 cubic 
meters since the impoundment, and the number has dramatically 
increased to 377,000 cubic meters in 2020.1 

The floating debris in reservoirs consists of two main sources. One is 
plant wastes, e.g., plants and straw, and the other is domestic wastes, 
among which most of them are biodegradable and can thus be value 
recovered through different recycling processes.2 During the flood sea
son, a large amount of floating debris can be rapidly accumulated in a 
very short time, which may not only impose significant risks on 
waterway transportation but also cause damage to the power generator 
and dam operations (Wan et al., 2018). Furthermore, the accumulation 
of floating debris may harm the vulnerable ecosystem and the scenery of 
the reservoir areas as some of them have become popular tourist desti
nations, e.g., the Three Gorges Dam. Therefore, the floating debris in the 
reservoirs needs to be collected and properly treated in a timely and 
highly responsive way in order to minimize the risks and environmental 
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impacts. 
Broadly speaking, the management of floating debris has similar 

procedures as traditional waste management, which involves waste 
collection, transportation, processing, recycling, and/or disposal (Akh
tar et al. 2017). Waste collection is the initial but costly step of a waste 
management system (Hoang Lan et al., 2020), and significant research 
effort has been given to improve waste collection and transportation 
(Das and Bhattacharyya, 2015; Tirkolaee et al., 2020a; Mahdavi et al., 
2022). Even though the other stages for transportation and treatment 
are similar, the collection of floating debris in reservoir areas differs, 
however, dramatically from on-land waste collection. First, the changes 
in water flow and water level over different seasons of the year result in 
significant dynamicity and uncertainty of the number and locations of 
the accumulation areas of floating debris. Second, due to the water flow 
and the weather change of the upper reach, new accumulation areas 
may appear during the collection, which makes the effective collection 
of floating debris much more complicated. To tackle this challenge, 
current research efforts have focused predominantly on providing a 
better understanding of the characteristics of floating debris and 
improving the collection equipment and monitoring facilities along the 
river. However, from the operational planning perspective, no research 
has been conducted to provide a decision-support system to optimize the 
use of resources for floating debris collection in reservoir areas under a 
highly dynamic and uncertain environment. 

Therefore, to fill the literature gap, we propose a two-stage decision- 
support system to optimize the task allocation and routing decisions for 
floating debris collection in this paper. In the first stage, historical data 
and/or observed data are used to formulate a proactive plan to assign 
tasks to collection ships. In the second stage, real-time data collected by 
the monitoring stations are used to generate reactive planning to deal 
with new accumulation areas of floating debris in an effective and 
efficient way. Based on the impact of the floating debris on waterway 
transportation and dam operations, a time-dependent penalty cost is 
introduced as a measure to prioritize the collection of some accumula
tion areas in the daily collection plan. In addition, fuel costs, fixed 
operating costs of collection ships, and unloading costs are also 
considered in the model. Furthermore, we incorporate the flow char
acteristics of the floating debris into the model and set a time window for 
the collection of different accumulation areas, and the newly emerged 
accumulation areas during the collection are also considered. The model 
is derived from a multi-trip dynamic vehicle routing problem with time 
windows, where a genetic algorithm is used to yield the proactive 
planning decisions and a simulated annealing algorithm is used for 
reactive re-optimization. The proposed method is validated with a real- 
world case study at Wushan County in the Three Gorges Reservoir area 
to show its applicability and effectiveness. 

The remainder of the paper is organized as follows. Section 2 reviews 
the relevant research and identifies the contributions of the current 
research. Section 3 introduces the problem and develops the two-stage 
decision-support system for floating debris collection in reservoir 
areas. The solution methods are described in Section 4. Section 5 pre
sents a real-world case study, computational results, and discussions. 
Finally, Section 6 summarizes the paper and gives suggestions for future 
research. 

2. Literature review 

In this section, the related research works are reviewed from two 
aspects: (1) floating debris management in reservoir areas and (2) waste 
and debris collection problems. Finally, the literature gaps and the 
contributions of the current research are highlighted. 

2.1. Floating debris management in reservoir areas 

Floating debris entering reservoirs poses significant environmental 
challenges and operational risks that require the attention of water 

resource management worldwide. Its presence may have adverse effects 
on ecosystems and lead to economic losses (Wan et al., 2018). Previous 
research has provided comprehensive and valuable insights into the 
characteristics of floating debris, which laid the foundation for the 
collection and treatment. For example, based on the analysis of the 
nature of the floating debris in front of the Three Gorges Dam, Zhang 
et al. (2020) suggested that, through the proper setup of collection 
points and the optimized arrangement of reservoir operations, the 
floating debris collection in reservoir areas can be effectively improved. 
Park et al. (2021) observed the recurrent distribution of floating debris 
in numerous artificial lakes within temperate regions during the rainy 
season, which evaluated the influence of hydrological and meteorolog
ical factors, e.g., rainfall and flood characteristics on the distribution of 
floating debris. Furthermore, Liu et al. (2022) investigated the hori
zontal and vertical distribution characteristics of microplastics in the 
Guanyingyan reservoir since the impoundment, which revealed the 
impact of free-floating plant residues on the distribution of 
microplastics. 

Several studies have been given to adopt new technologies and 
develop improved equipment and systems for floating debris collection 
in reservoir areas. For example, Jang et al. (2014) utilized a small 
tracking buoy equipped with a satellite positioning transmitter to 
monitor the movement of floating debris in rivers. Gasperi et al. (2014) 
investigated the quantity and quality of floating plastic debris in the 
Seine River by employing an extensive network of floating debris 
retention grids. This approach facilitated the initial assessment of plastic 
inputs transported by rivers. Qiao et al. (2022) introduced a novel and 
effective method for detecting floating debris based on YOLOv5 
considering the challenges posed by complex lighting conditions, sig
nificant scale differences between nearby and distant objects, and the 
abundance of small-scale floating debris. In summary, existing research 
predominantly focuses on improving floating debris management effi
ciency through the investigation of debris properties and the adoption of 
new technologies in tracking and monitoring the movement of floating 
debris. However, no research has been conducted to optimize the 
operational planning of floating debris collection in reservoir areas. 

2.2. Waste and debris collection problems 

Broadly speaking, the floating debris collection shares many simi
larities with a vehicle routing problem (VRP), especially for a waste 
collection system. Considering the dynamicity within the planning ho
rizon, VRP can be categorized into two types, say, static VRP and dy
namic VRP (DVRP). In the latter case, the routing decisions are 
dynamically adjusted. Different variants of VRP have been extensively 
used for modeling both waste and debris collection problems, which can 
help generate effective collection planning decisions. For modeling land- 
based waste collection, e.g., municipal solid waste collection, static 
optimization models with exact inputs have been widely used in liter
ature (Pillac et al., 2013). For instance, under the smart city concept, 
Akhtar et al. (2017) investigated a capacitated vehicle routing problem 
(CVRP) to minimize the overall driving distance in a waste collection 
system with smart bins. Expósito-Márquez et al. (2019) proposed a 
waste collection optimization model that aims at maximizing the total 
amount of collected recyclables, e.g., paper, plastics, etc., in order to 
minimize adverse environmental impacts. Moreover, several studies 
took into account the parameter uncertainty, e.g., waste generation 
(Singh, 2019), and formulated optimization problems with uncertain 
inputs. For example, Tirkolaee et al. (2020a) developed a robust mixed- 
integer linear programming (MILP) for municipal solid waste manage
ment under demand uncertainty. Bavaghar Zaeimi and Abbas Rassafi 
(2021) investigated a fuzzy chance-constrained programming model 
under epistemic uncertainty, say, incomplete data (Tirkolaee et al., 
2020b). Hoverer, the major difference between land-based waste 
collection and the collection of floating debris is related to uncertainty 
and dynamicity. For the operational planning of urban waste collection, 

P. Gao et al.                                                                                                                                                                                                                                     



Computers & Industrial Engineering 185 (2023) 109685

3

the number and locations of the waste collection points are known 
before the route is planned, and no collection points will emerge during 
the collection process, so this problem is usually modeled as a static 
problem. 

Debris collection has been explored for both land-based and water- 
based waste. The focus of the former type is given to the effective 
collection and management of debris caused by natural disasters 
(Nickdoost et al., 2022). The primary aim is to ensure smooth humani
tarian operations by minimizing the collection time while maintaining 
economic effectiveness (Lorca et al., 2017). However, the characteristics 
of water-based debris are by no means identical. Water-based debris is 
dynamic, drifting over time due to wind, tides, and currents, and 
effective collection planning becomes complex. To tackle this challenge, 
Duan et al. (2020) proposed a route optimization model to minimize the 
total cost of marine debris collection. Tao et al. (2021) investigated a 
marine debris collection problem using a heterogeneous collection fleet 
with different fuels. Duan et al. (2021) combined a wolf pack algorithm 
with a large neighborhood search to improve the routing optimization 
for marine debris collection. Using flow characteristics, GNOME was 
used to predict the movement trajectory of marine debris. These prob
lems were formulated as static VRPs based on the assumption that the 
locations of the initial debris accumulation areas would remain un
changed if they could be collected within a hard time window. However, 
in practice, due to changes in water flow, new accumulation areas may 
dynamically emerge during the collection, Thus, there is a need for new 
models and decision-support systems that can be used to improve the 
operational planning of floating debris collection in reservoir areas. 

2.3. Literature gaps and contributions of the research 

Table 1 presents a vis-à-vis comparison of relevant papers with 
respect to the type of waste modeled, the planning stages involved, and 
the uncertainty and dynamicity considered in the planning horizon. As 
shown in the table, there are three major gaps. First, most previous 
research focuses either on the characteristics/collection equipment of 
the debris or on the collection planning of land-based waste or debris, 
but only a few studies address the challenges of the planning of water- 
based debris collection. Second, the existing optimization models for 
water-based debris collection are static and ignore the emergence of new 
accumulation areas during the collection. However, as dynamicity is one 
of the most significant features of floating debris, only using the pre
dictive data to determine a fixed collection plan may result in those 
newly emerged accumulation areas remaining uncollected. Third, 

previous research primarily addresses marine debris collection planning 
problems, neglecting the collection of floating debris in river channels 
and reservoirs. The latter is more sensitive to timeliness and respon
siveness. For example, while ships in the ocean can opt for alternative 
routes to avoid potential collisions with floating debris, such maneu
verability is restricted in river channels and reservoirs. The emergence 
of new debris accumulation zones in these areas poses significantly 
higher risks. In this regard, the existing optimization models cannot 
address this challenge to effectively collect the new debris accumulation 
areas. 

To fill the literature gaps, we propose a two-stage decision-support 
system taking into account the features of floating debris collection in 
reservoir areas. This two-stage structure is inspired by a data-driven 
smart logistics management system that has been used in, for 
example, express delivery (Liu, 2019), where real-time data can be used 
for re-routing and rescheduling the delivery vehicles for emerging de
mands under updated time windows. First, proactive planning can be 
made based on predictive data. During the collection of floating debris, 
real-time data is used for reactive planning in the second stage, where 
newly emerged accumulation areas will be dynamically inserted into 
existing routes in a way that minimizes cost while simultaneously 
ensuring the updated time windows are met. By adopting this two-stage 
framework, the aforementioned problems of existing optimization 
models can be effectively resolved, and the new floating debris accu
mulation areas that emerged can be collected in an efficient, resource- 
effective, and responsive manner. Our paper is the first research that 
uses a two-stage structure to optimize the operational planning of 
floating debris collection in reservoir areas under a highly dynamic 
environment. Thus, we aim at making the following contributions:  

1. We propose a new two-stage methodological framework that can 
help with both proactive planning and real-time reactive planning 
for floating debris collection in reservoir areas.  

2. We formulate a new mathematical model that minimizes total 
collection cost while simultaneously prioritizing the collection of the 
accumulation areas with higher impact. 

3. We validate the proposed decision-support system in real-life sce
narios to obtain several generic managerial implications. 

3. Methodological development 

In this section, the methodological framework of the two-stage de
cision-support system is first introduced, and a mathematical 

Table 1 
Comparison of the relevant literature.  

Literature Research focus Type of waste/debris Decision support Uncertainty 

Debris 
features 

Collection 
equipment 

Collection 
planning 

Land-based waste/ 
debris 

Water-based 
debris 

Static Dynamic  

Wan et al. (2018) √    √ (River)    
Zhang et al. (2020) √    √ (River)    
Park et al. (2021) √    √ (River)    
Liu et al. (2022) √    √ (River)    
Jang et al. (2014)  √   √ (River)    
Gasperi et al. (2014)  √   √ (River)    
Qiao et al. (2022)  √   √ (River)    
Akhtar et al. (2017)   √ √  √   
Expósito-Márquez et al. (2019)   √ √  √   
Singh (2019)   √ √  √   
Tirkolaee et al. (2020a)   √ √  √  √ 
Bavaghar Zaeimi and Abbas Rassafi 

(2021)   
√ √  √  √ 

Nickdoost et al. (2022)   √ √  √   
Lorca et al. (2017)   √ √  √   
Duan et al. (2020)   √  √ (Marine) √   
Tao et al. (2021)   √  √ (Marine) √   
Duan et al. (2021)   √  √ (Marine) √   
Our paper   √  √ (River)  √ √  
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optimization model is then formulated. 

3.1. Methodological framework and assumptions 

Due to the dynamicity and uncertainty caused by the changes in 
water flow and water level, the collection of floating debris is much 
more complicated than that of urban waste. Furthermore, compared 
with the floating debris collection in streams and rivers, the collection in 
reservoirs has its characteristics due to the slow flow velocity (Park 
et al., 2021). Consequently, the accumulation of floating debris follows a 
certain regularity, which is typically divided into two types, namely, 
fixed accumulation areas (static) and flow accumulation areas (dy
namic). Most floating debris will be carried by the water flow and will 
eventually accumulate in the stagnation zone, forming a large accu
mulation area that needs to be collected in a timely and highly 
responsive way to minimize the risks to waterway transport and dam 
operations. In contrast, a small number of accumulation areas will 
remain in a flow state, which forms belts of floating debris and needs to 
be collected within a flexible time window. To optimize the collection of 
floating debris in reservoirs, we propose a two-stage decision-support 
system including a proactive planning stage and a reactive planning 
stage, as shown in Fig. 1. 

In the first stage, proactive planning is made based on the historical 
data and the observed data from the monitoring facilities, which forms 
the daily collection plan for the fixed accumulation areas by determining 
the optimal task allocation and ship routing. This process aims at 
minimizing the collection cost and prioritizing the collection of the 
accumulation areas with a high impact, which helps reduce the risks 
caused by floating debris accumulation in reservoirs. In the second 
stage, as new floating debris accumulation areas may emerge during the 
collection process, reactive planning is made using real-time informa
tion. These new floating debris accumulation areas may be due to blind 
monitoring spots caused by limited capacities or due to the short-term 
change in water level and water flow. If these floating debris form 
belts and accumulate near the main channel of waterway transportation, 
they may yield safety issues and impose significant risks. Thus, the 

second-stage reactive planning aims at tackling this challenge by re- 
optimizing the task allocation and ship routing dynamically and effec
tively with real-time data. 

To optimize the floating debris collection plan, we further develop a 
mathematical model based on a dynamic VRP with time windows, 
which takes into account the re-optimization of newly emerged accu
mulation areas during the collection process. In this problem, we 
consider a fleet with homogeneous collection ships that are dispatched 
from the depot to a set of floating debris accumulation areas. The trip 
will start and end at the same deport within the predetermined daily 
working hours. During the collection process, each collection ship may 
take multiple tours, and a tour is completed upon the reach of the ship’s 
capacity or upon the completion of the daily collection tasks. The 
collection ships will upload the floating debris at the nearest unloading 
points along the river before starting a new tour. In addition, considering 
effective reactive planning, the ships may need to adapt to changing 
information, i.e., task assignment and routing, and meet the updated 
requirement within specified time windows. The objective of the plan
ning is to minimize the total collection cost including the fixed operating 
cost of the collection ships, fuel consumption cost, and unloading cost, 
while simultaneously ensuring the effectiveness and responsiveness to 
collect the floating debris of the accumulation areas with higher priority. 

To formulate the mathematical optimization model, the main as
sumptions of the problem are as follows:  

• The fixed floating debris accumulation areas can be determined by 
historical data and observed data by monitoring facilities.  

• During the collection process, the change in the state of the fixed 
floating debris accumulation areas is negligible and is not taken into 
account.  

• The time windows for each floating debris accumulation area are 
considered hard constraints.  

• The locations of the depot and the unloading points along the river 
are known.  

• The types, the number, and other relevant parameters of collection 
ships are known or can be estimated. 

Fig. 1. The collection system of floating debris in reservoir areas.  

P. Gao et al.                                                                                                                                                                                                                                     



Computers & Industrial Engineering 185 (2023) 109685

5

• A floating debris accumulation area can only be collected by one 
ship.  

• Euclidean distance is used to calculate the distance matrix. 

3.2. Fuel consumption of the collection ships 

In this paper, we consider a real-world case study of floating debris 
collection at the Three Gorges Reservoir on the Yangtze River, where 
two types of collection ships are used, namely, mechanical collection 
ships and manual collection ships. The mechanical collection ships are 
used for large accumulation areas, which can transport the floating 
debris on the river surface to the back cabin using front-end crawlers, as 
illustrated in Fig. 2(A). The manual collection ships are used for narrow 
areas such as docks, which rely on the cargo net by collection staff to 
collect floating debris, as illustrated in Fig. 2(B). 

The collection process can be divided into three phases including 1) 
travel between different locations; 2) collection of floating debris; and 3) 
unloading operations. During the first phase, the ship moves from one 
location to another at a certain speed. The speed of the ship determines 
the amount of fuel consumed per unit of time, with higher speeds 
leading to increased fuel consumption. In the collection phase, the ship 
arrives at an accumulation area and collects the floating debris at a low 
speed. To maintain this low-speed state, the ship requires a certain 
amount of fuel consumption. Finally, the ship will transport the 
collected floating debris to the nearest unloading point, where the ship is 
in a non-working state with little fuel consumption. According to Olmer 
et al. (2017) and Duan et al. (2020), the fuel consumption during the 
cruising phase and the collection phases can be estimated by Eq. (1) and 
Eq. (2), respectively. 

Fuel consumption per hour during the cruising phase =

(
actual velocity

maximun velocity

)3

×(the fuel consumption per hour at maximum velocity)

(1) 

In the collection phase, a low speed needs to be maintained. In this 
paper, to simplify the calculation, Eq. (2) is adopted from Duan et al. 
(2020), which is used to estimate the carbon emissions of ships in the 
static state. Notably, the numerator of the first part of the equation may 
be replaced by the actual speed of collection ships during these 
operations. 

Fuel consumption per hour during the collection phase =

(
1

maximun velocity

)3

×(the fuel consumption per hour at maximum velocity)

(2)  

3.3. Service priority 

In the daily collection at the Three Gorges Reservoir, the accumu
lation areas of floating debris are categorized into four levels of service 
priorities based on their impact. The first priority is given to areas that 
yield a significant impact on the quality of domestic water, e.g., the 
water source for residential areas. The second priority is given to loca
tions that have a significant impact on the navigation safety of reservoir 
areas, e.g., ports and main channels of waterway transport. The third 
priority is given to areas that affect the ecosystem and scenery of the 
reservoir area, and the least priority is given to the other areas. 

Fig. 2. Collection ship for floating debris at the Three Gorges Reservoir.  

Table 2 
The sets, parameters, and variables of the mathematical model.    

Description 

Sets G = (V,
A)

Network of floating debris collection system with 
nodes V and arcs A 

V Set of nodes; here, 1 represents the depot,V = {1} ∩
N ∩ F 

A Set of arcs from node i to node j 
N Set of floating debris accumulation areas,N = Ns ∩

Nd 
Ns Set of initial (static) accumulation areas 
Nd Set of new (dynamic) accumulation areas 
F Set of unloading stations 
K Set of drifting ships 
R Set of trips 
S An arbitrary set of nodes 

Parameters Vi Volume of floating debris accumulation area i 
ρi Density of floating debris accumulation area i 
wi The weight of the class priority of floating debris 

accumulation area i 
ti Collection time of debris area i or unloading time in 

the unloading station i 
(ei, li) Time window of debris area i 
distij Length of arc (i, j) ∈ A 
cfk Fixed operating cost of collection ship k 
Vk The volume capacity of collection ship k 
Wk The weight capacity of collection ship k 
Tk Maximum daily working time for collection ship k 
vk Cruising speed of collection ship k 
vmax

k Maximum speed of collection ship k 
bk Fuel assumption per hour of collection ship k at 

maximum speed 
fk Unit fuel consumption cost of collection ship k 
fdi Unloading cost in unloading station i 
fri Fixed facility cost in unloading station i 
M A very large number 

Decision 
variables 

xijkr 1 if node j is visited after node i by ship k in trip r;0 
otherwise 

yk 1 if ship k is used in the day;0 otherwise 
zi 1 if unloading station i is used in the day;0 otherwise 

Auxiliary 
variable 

ATi Arrival time at floating debris accumulation area i  
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To model the impact of different levels of service priority, we use a 
time-dependent penalty cost in this paper. Specifically, we introduce a 
penalty cost function for each accumulation area, as shown in Eq. (3), 
which is directly proportional to both the weight of service priority wi 
and the service start time ATi. Furthermore,Xi is introduced to monetize 
and convert the product of wi and ATi into a penalty cost. The weight of 
each point is determined by its service priority level, with higher levels 
assigned higher weights. This prioritization ensures that areas with the 
highest service priority are collected first. To determine the weights of 
each service priority level, we use the method derived from Perrier et al. 
(2007) and Ahabchane et al. (2021). Besides, the pairwise comparison is 
used to allocate weight to each service priority level, and as argued by 
many, this method can provide a relatively accurate trade-off compar
ison among different criteria. The proposed time-dependent penalty cost 

provides a practical approach to incorporate the service priority into the 
collection planning of floating debris in a way that minimizes the risks 
and impact. 

Γ(i) = XiATiwi (3)  

3.4. Set, parameters, and variables 

The sets, parameters, and variables used in the model formulation 
are first given in Table 2. 

3.5. Mathematical model 

The objective function is given in Eq. (4), which minimizes the total 
cost of floating debris collection in reservoir areas. The first part is the 
fixed operating costs of collection ships, and the second and third parts 
calculate the fuel consumption costs in different stages. The fourth and 
fifth part is the unloading and fixed facility costs of unloading stations, 
and the last part is the time-dependent penalty cost of service priority.   

S.t. 
∑

j∈N
xijkr =

∑

j∈N
xjikr ∀i ∈ V; i ∕= j, k ∈ K, r ∈ R (5)  

Fig.3. Two-stage solution strategy.  

minimize Z =
∑

k∈K
ykcfk +

∑

i∈V

∑

j∈V

∑

k∈K

∑

r∈R

fkbkdistij
(
vmax

k

)3 (vk)
2xijkr +

∑

i∈N

∑

j∈N

∑

k∈K

∑

r∈R

fkbkti
(
vmax

k

)3xijkr +
∑

j∈V

∑

i∈F
xjikrf di

+
∑

i∈F
zif ri +

∑

i∈V
XiATiwi

(4)   
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∑

i∈V

∑

r∈R

∑

k∈K
xijkr = 1 ∀j ∈ N; i ∕= j (6)  

∑

i∈V

∑

j∈N
Vjxijkr ≤ Vk∀k ∈ K, r ∈ R (7)  

∑

i∈V

∑

j∈N
ρjVjxijkr ≤ Wk∀k ∈ K, r ∈ R (8)  

∑

i∈V

∑

j∈V

∑

r∈R

disij

vk
xijkr +

∑

j∈N∩F

∑

r∈R
tjxijkr ≤ Tk ∀k ∈ K (9)  

ATj −
∑

i∈V

∑

k∈K

∑

r∈R
M
(
1 − xijkr

)
≤

∑

i∈V

∑

k∈K
ATi + ti +

disij

vk
≤ ATj 

+
∑

i∈V

∑

k∈K

∑

r∈R
M
(
1 − xijkr

)
∀j ∈ N (10)  

AT1 = 0 (11)  

ei ≤ ATi ≤ li, i ∈ N (12)  

∑

j∈N
x1jk1 = yk ∀k ∈ K (13)  

∑

j∈N

∑

i∈F
xjik1 = yk ∀k ∈ K (14)  

∑

i∈F

∑

j∈N
xijkr ≤ yk ∀k ∈ K, r ∈ R{1} (15)  

∑

j∈N

∑

i∈F
xjikr ≤ yk ∀k ∈ K, r ∈ R\{1} (16)  

∑

i∈F

∑

r∈R
xi1kr = yk , ∀k ∈ K (17)  

∑

i∈S

∑

j∈S i∕=j

xijkr ≤ |S| − 1 ∀S ∈ V\{1} ∪ F; S ∕= ∅, k ∈ K, r ∈ R (18)  

xijkr, yk ∈ {0, 1} ,∀i, j ∈ N, k ∈ K, r ∈ R (19)  

zi ∈ {0, 1} ,∀i ∈ F (20)  

ATi ≥ 0, ∀i ∈ V (21) 

The model is restricted by constraints (5–21). Eq. (5) is the flow 
balance constraint for each accumulation area. Eq. (6) guarantees that 
each accumulation area will be served by only one collection ship. These 
two equations require that all the floating debris accumulation areas in 
the reservoir area will be collected. Constraints (7) and (8) are capacity 
constraints, which ensure the volume and weight limitations of the 
collection ship cannot be exceeded on each tour. Constraint (9) sets up 
the upper limits of working time for the collection ships. Constraints 
(10) and (11) calculate the service start time of each accumulation area. 
Constraint (12) sets up the time window for each accumulation area. 
Constraints (13) and (14) require that a collection ship starts the first 
tour from the deport and completes it at an unloading point along the 
river. Besides, they also ensure that a tour can be performed by collec
tion ship k only when it is selected. Constraints (15) and (16) indicate 
that a collection ship may perform another tour when completing the 
first tour. Constraint (17) guarantees that all the selected collection ships 
will complete their last tour and return to the depot. Constraint (18) 
eliminates any possible sub-tours. Constraints (19)-(21) set the domains 
of variables. 

4. Solution approach 

To solve the optimization problem, we propose a two-stage solution 

strategy for optimizing the task allocation and route of a collection ship. 
The first stage is pre-optimization based on the historical/observed data 
of the floating debris accumulation area, where a genetic algorithm (GA) 
is used to solve the collection ship routing problem and to yield the 
initial collection plan. In the second stage, real-time reactive optimiza
tion is performed to better deal with the dynamic demand. There are two 
types of real-time optimization approaches, namely, periodic re- 
optimization and continuous re-optimization (Pillac et al., 2013). 
Based on the characteristics of the problem, continuous re-optimization 
is chosen, which can help effectively and efficiently insert new accu
mulation areas into the appropriate paths. Specifically, we use the 
moment of appearance of new accumulation areas for insertion and for 
replanning the collection path using the simulated annealing algorithm 
(SAA), as illustrated in Fig. 3.  

(1) GA for pre-optimization 

Step 1: Chromosome representation 
Given the specific structure of the collection ship routing problem, 

we use the natural sequence as the coding of the chromosome. The 
chromosome coding n+m+1 corresponds to the network of n floating 
debris accumulation areas that need to be collected by m ships. 

Step 2: Population initialization 
After completing the chromosome coding, we generate an initial 

population by randomly selecting n collection areas and adding 1 to the 
starting and ending depots (represented as 1), e.g., (1, i1, i2, ⋅⋅⋅ie,1). With 
the load constraints, 

∑e
i− 1qi is calculated. If 

∑e
i− 1qi ≤ Q and 

∑e+1
i− 1 qi > Q, 

0 is inserted between the ie area and the ie + 1 area. Otherwise, moving a 
region forward or backward for a new insertion. For collection ships 
with time windows, ti is calculated. If ETi ≤ ti ≤ LTi, insert 0 into the ii 
region. Otherwise, a new insertion is needed. This is repeated until 
enough racial groups are produced. This process is repeated until 
enough individuals are generated. 

Step 3: Fitness evaluation 
The fitness function is determined by the objective function, with 

which the fitness value of the individual population can be calculated. 
Since the objective function of this paper is for minimum cost, we 
evaluate the fitness of each individual in the population using the 
reciprocal of Eq. (4). The optimization goal is to select the chromosome 
with the highest fitness value. 

Step 4: Selection 
To select individuals from the population for the next generation, we 

employ the ’roulette’ method, which involves assigning a selection 
probability to each individual proportional to its fitness value. This al
lows individuals with higher fitness values to have a greater chance of 
being selected for reproduction and ensures that the population evolves 
towards better fitness values over time. 

Step 5: Crossover and mutation 
Crossover and mutation operations are performed on the selected 

individuals to generate new subpopulations. We use the Position-Based 
Crossover (PBX) method to exchange partial genes of paired individuals, 
and the exchange variation method to swap two randomly selected 
clients’ positions. 

Step 6: Stopping condition 
In this paper, the maximum number of iterations is used as the 

stopping criterion. When the number of iterations reaches the preset 
limit, the iteration is terminated to output the optimal solution obtained. 
Otherwise, we return to Step 4. 

(2) SAA for re-optimization 
Step 1: Determine the dynamic accumulation areas during the 

collection. 
The pre-optimization determines the initial resource allocation and 

routing for floating debris collection. However, new accumulation areas 
may be generated during the collection, whose information can be 
collected by the real-time monitoring system. The time and location of 
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the new accumulation areas provide information for the re-optimization 
based on the existing collection plan and resource availability. 

Step 2: Initial Solution. 
At the initial temperature, a random initial feasible solution S1 is 

generated, and the objective value is calculated as f(S1). 
Step 3: Solution transformation. 
A new solution is generated by transforming the current solution. In 

this case, a random number is used to select two accumulation areas to 
be exchanged. The two-neighborhood change method is used to 
generate a new feasible solution S2, and the objective function value is 
then calculated as f(S2). 

Step 4: Metropolis rule. 
The difference between the two obtained solutions can be calculated 

by df = f(S2) − f(S1), and the Metropolis criterion is then given as: P =
⎧
⎪⎨

⎪⎩

1, df < 0

exp
(

−
df
T

)

, df ≥ 0
. If df < 0, S2 is accepted with the probability of 

1 as the new feasible solution. Otherwise, the acceptance probability of 
S2 is calculated by generating a random number from a uniform distri

bution interval (0, 1). If exp
(
−

df
T

)
> rand, S2 is accepted as a new 

feasible solution. Otherwise, the current solution S1 is kept. 
Step 5: Cooling down. 
The cooling rate q is used to reduce the temperature, say T = qT. If T 

is less than the end temperature, the iteration stops and the current 
optimal result obtained is outputted for the re-optimization plan. 
Otherwise, the iteration continues. 

5. Computational experiment and case study 

In this section, we perform a computational experiment to verify the 
method and a real-world case study at the Three Gorges Reservoir area 
to validate and to show the effectiveness and applicability of the pro
posed two-stage decision-support system. 

5.1. Computation performance of the DSS 

To verify the performance of the solution approach applied, we test 
the algorithm with three small-scale problem instances and compare the 
results with that obtained by a commercial optimization solver Gurobi. 
We randomly generated the parameters for three test cases with 10 
accumulation areas. The computations are performed with both Gurobi 
and MATLAB 2019a on a computer with Inter Core i5-7200U CPU and 4 
GB RAM. The parameters of both GA and SAA were initially set up based 
on Moon et al. (2012), Bae and Moon (2016), and Tirkolaee et al. (2019). 
Then, we systematically compared and evaluated these test parameters 
in order to select the best combinations for our experiment. The evalu
ations of both GA and SAA are provided in Appendix A (Tables A1 and 
A2). Based on the evaluation result, the parameters for GA were set as 
follows: NP = 80,Pc = 0.9,Pm = 0.1, and maxgen = 800. The parame
ters for SAA were set as follows:q = 0.98,T = 1000,Tend = 0.00001, and 
L = 5. Table 3 shows the optimality gap and computational comparison. 
As can be seen, for the three test cases, the computational time can be 
reduced by 94.76 %, 95.83 %, and 96.54 %, respectively, compared with 
that using Gurobi. Thus, the proposed solution can obtain highly 
confident solutions with much shorter computational times required. 

5.2. Case study of three gorges reservoir area 

To show the applicability and effectiveness of the proposed DSS, we 
then performed a case study at the Three Gorges Reservoir area. Since 
the commencement of water storage and power generation of the Three 
Gorges Dam in 2003, the management of floating debris in the reservoir 
area has become a significant challenge. To tackle this issue, several 
collection points have been set up by the counties and municipalities 
along the Yangtze River, as shown in Fig. 4. The Three Gorges Reservoir 
area spans across Hubei and Chongqing. Based on the existing collection 
points and facilities, a monitoring network has been established along 

Table 3 
Optimality gaps and computational performance.  

Case Optimality 
gap 

Computational performance   

Solution time 
Gurobi (s) 

Solution time DSS 
(s) 

Gap 

1  0.15 %  79.61  4.17  94.76 % 
2  0.25 %  103.07  4.30  95.83 % 
3  0.34 %  129.88  4.49  96.54 % 
Average  0.25 %  104.19  4.32  95.85 %  

Fig.4. Collection points of floating debris along the Yangtze River.  
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the mainstream of the Yangtze River, which effectively covers a 660 km 
water surface between Jiangjin and the Three Gorges Dam. The moni
toring network enables the timely and accurate identification of the 
location and movement of floating debris on the water surface, which 
provides essential information to guide the collection of floating debris 
at each location. 

Located at the end of the Yangtze River in Chongqing, Wushan 
County serves as the last collection point of floating debris in this region. 
Wushang County is responsible for managing the collection of 183.45 
km of water surface in the mainstream and tributaries of the Yangtze 
River. This makes Wushan County a critical line of defense against 
floating debris entering the downstream Three Gorges Reservoir area. 
Given its important geographical location, it is imperative to improve 
the effectiveness and efficiency of floating debris collection in Wushan 
County. Therefore, in this paper, the proposed two-stage decision-sup
port system is used to optimize and improve the planning of collection 
operations of floating debris in Wushan County. 

5.3. Data and parameters 

With support from the Three Gorges Group, the Hydrological Bureau, 
and the local governments of the relevant counties in Chongqing, our 
research group conducted fieldwork on the collection points located in 
front of the Three Gorges Dam and in Wushan and Fengdu Counties in 
2021. During this fieldwork, real-world data and information associated 
with collection ships and floating debris accumulation areas were 
collected, based on which the two-stage decision-support system is 
tested and validated. 

Data on floating debris accumulation areas were collected in October 
2021 during the water storage period of the Three Gorges Reservoir. At 
this time, the water level was high at 175 m, resulting in mostly still 
water with a low flow rate of around 0.3 m/s. The distribution of floating 
debris was significantly impacted by wind, resulting in several clustered 
floating debris accumulation areas dispersed across the main channel of 
the Yangtze River. The density of floating debris ranged from 0.16 to 
0.26 g/cm3. As a key monitoring point of floating debris in the Three 
Gorges Reservoir Area, 360-degree rotating ’Global Eye’ HD cameras are 
used in Wushan County to provide both fixed-point observation and 
dynamic inspection. The distribution of initial accumulation areas is 
shown in Fig. 5, with detailed information provided in Table 4. In 
addition, in order to test the performance of the decision-support sys
tem, five new accumulation areas are randomly generated for the 
reactive planning stage, whose information is provided in Table 5. 

Limited by the water level conditions, only three locations in this 
section of the Yangtze River can be used as unloading points during the 
experimental period, which are 34, 35, and 36 in Table 6. In addition, it 

is noteworthy that 34 is also the deport of collection ships, as shown in 
Fig. 5. Table 7 summarizes the parameters of the collection ships, which 
were obtained from literature research or from the shipbuilders’ web
sites. In this case study, we only considered the use of mechanical 
collection ships. In the Three Gorges Reservoir Area, all mechanical 
collection ships are powered by diesel. The average diesel price in 
Chongqing during the study period (8.53 CNY/L) was thus used in our 
experiment. Given the particularity of the floating debris collection and 
to reduce safety risks for the staff working on the river, a working time 
limit of 6.5 h per day was imposed for all the collection ships, say,Tk =

6 .5(k ∈ K)

5.4. Experimental results 

Based on the given data and information, the daily collection plan of 
floating debris is optimized. As can be seen, five collection ships are 
selected, whose routes, collection weights and volume, and total travel 
distance and working time in both the proactive stage and the reactive 
stage are given in Table 8. When solving this problem with a single-stage 
model based only on predictive data, these new accumulation areas may 
remain uncollected. Otherwise, more resources may be allocated to 
ensure timely debris removal. For comparison purposes, we also solved 
the same problem with a static single-stage approach. When new accu
mulation areas emerge, the GA is run to generate additional routes for 
collecting the floating debris in these points. In comparison to the 
optimal solution derived from the two-stage decision-support system, 
the overall collection cost rises by 1.26 %, necessitating an additional 
collection ship. 

5.5. Sensitivity analysis 

In this section, we conduct sensitivity analysis by varying the weight 
of service priority, the type of collection ship, and the number of 
unloading stations. 

5.5.1. The level of penalty cost on service priority 
In this paper, in order to prioritize the accumulation areas that may 

yield significant impacts, a time-dependent penalty cost is formulated, 
where Xi is used to convert the weighted priority level into a penalty cost 
in the objective function. Thus, the value of Xi determines the impact of 
the priority level in the daily collection planning. In the numerical ex
periments, we evaluated five different scenarios to better understand the 
impact of the changing level of penalty cost on decision-making, where 
Xi = 0, Xi = 10, Xi = 100, Xi = 1000, and Xi = 10000 were implemented. 

Fig. 6 shows the change of the starting time of collection at different 
priority groups. As the level of penalty cost on service priority increases, 

Fig.5. The collection area of floating debris in Wushan County.  
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all accumulation areas in priority class 1 and most accumulation areas in 
priority class 2 (except 30 and 32) are assigned to earlier time slots for 
floating debris collection. In contrast, the starting times of floating 
debris collection at several accumulation areas in priority groups 3 and 4 
need to be adjusted and delayed accordingly with respect to the overall 
capacity limitation. When the priority level is not taken into account in 
the optimization model (Xi=0), the collection of all the floating debris 
accumulation areas in priority class 1 is completed at 11:41. However, 
when Xi increases, the completion time of floating debris collection in 
this group becomes progressively earlier, e.g., at 8:31whenXi = 100, and 
it can be further improved to 7:53 whenXi = 10000. This result explicitly 
shows the impact of the changing level of penalty cost on the planning of 
floating debris collections. 

On the other hand, when a higher level of penalty cost on service 
priority is imposed, both collection cost and total travel distance are 

increased, as shown in Fig. 7. WhenXi = 0, the optimization primarily 
focuses on efficiency by minimizing the overall collection cost, but the 
responsiveness to the accumulation areas with high priority (2, 3, and 4) 
becomes however very low, which may lead to significant risks related 
to navigation safety and ecological system at the Three Gorges Reservoir 
area. When the penalty cost on service priority is considered, the opti
mization model balances the trade-off between the overall collection 
cost and the responsiveness to the accumulation areas with high prior
ity. For example, whenXi = 100, the completion time of collecting all 
floating debris areas in priority group 1 can be reduced by 2.17 h, but the 
collection cost and total travel distance will be increased by 1.7 % and 
2.68 %, respectively. Therefore, our experimental results suggest that an 
appropriate level of penalty cost on service priority needs to be deter
mined considering the trade-off between the cost and the 
responsiveness. 

Table 4 
Initial accumulation areas of floating debris based on observed data.  

Debris 
No. 

Latitude 
(N) 

Longitude 
(E) 

Volume 
(m3) 

Weight 
(ton) 

Window times Collection time (h) Service priority 

1  109.8984  31.0897      
2  109.7798  31.0492  28.8742  6.6411 [7:00AM,13:30AM]  0.40 A 
3  109.9072  31.0913  25.4628  5.8564 [7:00AM,13:30AM]  0.45 A 
4  109.8334  31.0406  15.0286  3.3063 [7:00AM,13:30AM]  0.65 B 
5  109.9013  31.0828  22.8594  5.0291 [7:00AM,9:00AM]  0.50 B 
6  109.8016  31.0447  24.5411  5.3990 [7:00AM,9:00AM]  0.55 B 
7  109.8912  31.0878  17.9137  3.9410 [7:00AM,13:30AM]  0.60 B 
8  109.8864  31.0734  14.8792  3.1246 [7:00AM,13:30AM]  0.70 B 
9  109.8760  31.0665  16.6231  3.8233 [7:00AM,13:30AM]  0.65 C 
10  109.8684  31.0641  21.0405  4.8393 [7:00AM,13:30AM]  0.45 C 
11  109.9270  31.0760  32.0342  6.7272 [7:00AM,13:30AM]  0.55 C 
12  109.8966  31.0997  28.1882  5.9195 [7:00AM,9:30AM]  0.40 C 
13  109.8612  31.0642  41.8243  10.0378 [7:00AM,13:30AM]  0.80 C 
14  109.9192  31.0918  48.5277  11.6467 [7:00AM,13:30AM]  0.75 C 
15  109.8517  31.0629  31.5265  7.2511 [7:00AM,13:30AM]  0.30 D 
16  109.8469  31.0593  42.1197  9.2663 [7:00AM,13:30AM]  0.35 D 
17  109.9352  31.0912  39.1896  8.2298 [7:00AM,9:00AM]  0.40 D 
18  109.9563  31.0640  13.9231  3.0631 [7:00AM,13:30AM]  0.45 D 
19  109.9307  31.0621  22.8231  5.2493 [7:00AM,13:30AM]  0.55 D 
20  109.9130  31.0972  13.0246  2.9957 [7:00AM,13:30AM]  0.35 D 
21  109.9084  31.0744  21.8285  5.0206 [7:00AM,13:30AM]  0.30 D 
22  109.8580  31.0620  27.4284  6.3085 [7:00AM,13:30AM]  0.40 D 
23  109.8318  31.0528  19.8552  4.3681 [7:00AM,13:30AM]  0.35 D 
24  109.8252  31.0561  18.2925  4.2073 [7:00AM,13:30AM]  0.30 D 
25  109.7486  31.0287  17.5487  3.8607 [7:00AM,13:30AM]  0.40 D 
26  109.7870  31.0371  21.8749  4.8125 [7:00AM,13:30AM]  0.40 D 
27  109.7629  31.0132  18.7759  4.1307 [7:00AM,13:30AM]  0.25 D 
28  109.8628  31.0541  19.6874  4.1344 [7:00AM,9:00AM]  0.45 D  

Table 5 
New accumulation areas of floating debris in the experiment.  

Debris 
No. 

Latitude 
(N) 

Longitude 
(E) 

Volume 
(m3) 

Weight 
(ton) 

Window times Collection time (h) Service priority 

29  109.8628  31.0541  11.5222  2.6501 [9:00AM,11:00AM]  0.15 B 
30  109.8046  31.0447  17.2896  3.6308 [10:00AM,12:00AM]  0.30 D 
31  109.9174  31.0597  13.6511  3.0032 [10:30AM,12:30AM]  0.25 D 
32  109.9034  31.0866  15.7115  3.6136 [11:00AM,13:00AM]  0.30 B 
33  109.8836  31.0639  9.4847  1.9918 [11:30AM,13:30AM]  0.15 D  

Table 6 
Unloading points.  

Debris 
No. 

Latitude 
(N) 

Longitude 
(E) 

Unloading 
time 
(h) 

Unloading cost/ 
gate fee (CNY/ 
time) 

Fixed 
facility 
cost 
(CNY/ 
day) 

34  109.8984  31.0897  0.3 100 0 
35  109.8766  31.0667  0.3 100 100 
36  109.8497  31.0564  0.3 100 200 
37  109.8224  31.0515  0.3 100 300  

Table 7 
Parameters of the mechanical collection ship.  

parameter value 

Weight capacity 39.6 ton 
Volume capacity 98 m3 

Maximum velocity 30 km/h 
Cruising velocity 25 km/h 
Working time limit 6.5 h/day 
Fixed operating cost 1800 CNY 
Fuel consumption at max velocity 120 L/h  
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5.5.2. The type of collection ships 
Our numerical experiment focuses on optimizing the collection of 

floating debris in the Three Gorges Reservoir areas using a homogeneous 
fleet, meaning that all ships have the same capacity. While different 
types of ships may be used to perform this task, selecting appropriate 
types of collection ships becomes thus important to minimize the total 
cost. For instance, a larger ship may be able to collect more accumula
tion areas within the time window, but a higher fixed operating cost will 
usually be incurred as well. Therefore, in this section, we compare 8 
different types of collection ships in order to better understand the 
impact of using different types of collection ships on floating debris 
collection at the Three Gorges Reservoir area. The detailed information 

is given in Table 9, where B4 was used in the previous numerical 
experiments. 

When the floating debris is collected by B1 and B2, a minimum of 6 
ships are required due to their small capacities. While using the other 
types of collection ships, only 5 are needed to complete the same tasks. 
However, it is noteworthy that the number of unloading operations 
decreases from 14 to 9 with the increase of ship capacity from B1 to B8. 
Fig. 8 depicts the change in the collection cost and the time-dependent 
penalty cost by using different collection ships. The results demon
strate that, as the ship capacity increases, the collection cost initially 
decreases before reaching the minimum value at B5 and then increases. 
The lowest collection cost is 14865.31 CNY, representing an 8.9 % 

Table 8 
Summary of initial collection routes and updated collection routes of collection ships.   

Ship 
No 

Collection route Collection volume 
(m3) 

Collection weight 
(t) 

Collection distance 
(km) 

Collection 
time 
(h) 

Initial collection route 1 1-2-12-19-18-34-22-34-1  121.237  27.182  48.432  4.737 
2 1-10-20-28-27-34-25-14-34-1  138.605  31.607  77.924  6.367 
3 1-3-21-5-7-34-11-24-26-34-1  160.266  35.594  35.111  5.104 
4 1-17-8-9-34-16-15-34-23-34-1  164.193  36.063  40.187  5.257 
5 1-4-6-13-34-1  81.394  18.743  21.933  3.177 

Updated collection route 1 1-2-12-19-18-34-14-34-33-34-1  151.821  34.511  48.957  5.558 
2 1-10-20-28-27-26-34-31-32-34-1  123.766  27.529  50.258  5.060 
3 1-3-21-5-7-34-15-16-25-34-1  179.259  40.225  37.446  4.998 
4 1-17-8-9-34-11-22-23-34-1  150.010  32.582  33.286  4.981 
5 1-4-6-13-34-29-30-24-34-1  128.498  29.231  43.033  5.071  

Fig. 6. The change of the starting time of collection at different priority groups.  
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reduction compared to the highest cost observed for ship type B1. On the 
other hand, the analysis shows that the time-dependent penalty cost 
decreases as the ship capacity increases, where using ship type B8 shows 
a 1.59 % reduction compared with that of ship type B1. The underlying 
reason is that increasing the ship capacity does not change the collection 
sequence of the accumulation areas with the highest priority. However, 
the collection time of accumulation areas with lower priority becomes 
earlier due to the reduced trips to unloading points, which results in a 
reduction of the time-dependent penalty cost. 

Finally, the experimental results indicate that using larger collection 
ships may help reduce the total collection time and minimize the 
number of unloading operations, but a higher cost will likely be 
incurred. However, on the other hand, using collection ships with 
insufficient capacity, e.g., B1 and B2 in this case, will not only increase 
the unloading operations and the total collection time but also yield a 
high cost. Due to these reasons, our experimental results suggest that 
selecting the appropriate types of collection ships is of significant 
importance for floating debris collection in reservoir areas. 

5.5.3. The number of unloading points 
The collection area for floating debris in reservoir areas is usually 

characterized by a long and narrow river surface with a long river bank. 
Apart from the main unloading point located at the depot, several ports 
along the river can serve as temporary unloading stations, in which case 
an additional gate fee may be incurred for their use. The information 

related to these unloading points has been given previously in Table 4, 
where using a temporary unloading point will incur a higher cost than 
using the deport. The selection of temporary unloading points may 
drastically affect the cost, working time, and travel distance of floating 
debris collection. To better understand this impact, we analyze 8 sce
narios with the different combinations of unloading points, as shown in 
Table 10. 

It can be seen from Fig. 9(A) that, in general, increasing the number 
of unloading points can help reduce the total travel distance of the 
collection ships. From Fig. 9(B), it is also noteworthy that using more 
unloading points will help improve the responsiveness of the floating 
debris collection, which is measured by the time-dependent penalty 
cost. Furthermore, the location of the unloading points plays a crucial 
role in the travel distance, the total collection cost, and the respon
siveness, as shown in Fig. 9. For instance, when two unloading points are 
used, the total travel distance, the total collection cost, and the 
responsiveness can be improved in scenarios S2 and S3 compared with 
that of the one unloading point scenario (S1). This is because collection 
ships can find a closer location to upload the floating debris in these two 
scenarios. However, when unloading points 34 and 37 are used in sce
nario S4, an increase in both total travel distance and total collection 
cost can be observed. This is mainly due to the remote location of 
unloading point 37. In the optimal solution, which balances the trade-off 
between both cost and responsiveness, this location is used in several 
tours to ensure the responsiveness of the floating debris collection, say, 
maintaining a lower time-dependent penalty cost in the objective 
function. However, this will increase the total travel distance and total 
collection cost. A similar phenomenon is also observed in scenarios S6, 
S7, and S8 when unloading point 7 is used. In scenario S8, it is obvious 
that the responsiveness is maximized when four unloading points are 
used, but the total travel distance is increased. This leads to the highest 
total collection cost among all scenarios. Besides, the increasing fixed 
facility cost when more unloading points are used may also be an 
explanation for the cost increments in this scenario. Our experimental 
results suggest that selecting the appropriate number and location of 
unloading points may yield a significant impact on the total travel dis
tance, total cost, and responsiveness of the optimal planning of floating 
debris collection. 

Fig 7. The impact of the changing level of penalty cost on the collection cost and total travel distance.  

Table 9 
Different types of mechanical collection ships.  

Type Volume 
capacity 
(m3) 

Weight 
capacity 
(t) 

Fixed operating cost (CNY) 

B1 83  33.4 1500 
B2 88  35.3 1600 
B3 93  37.3 1700 
B4 

(Base case) 
98  39.6 1800 

B5 103  41.2 1900 
B6 108  42.1 2000 
B7 113  45.1 2100 
B8 118  47.7 2200  
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6. Conclusions 

One of the main challenges led by water conservancy projects is the 
accumulation of floating debris in the reservoir area. On the one hand, 
floating debris is considered a type of waterborne waste that has a high 

recycling value. On the other hand, however, if the floating debris 
cannot be collected in an effective and timely manner, a significant 
threat will be posed to waterway transportation, dam operations, and 
the water environment and overall ecological system in the reservoir 
area. Consequently, the influx of floating debris into reservoirs has 
emerged as a crucial environmental concern requiring global attention 
in water resources management. In this paper, we propose a two-stage 
decision-support system for floating debris collection in reservoir 
areas, which optimizes both proactive planning and reactive planning in 
respective stages. A new mathematical model is formulated to minimize 
the total collection cost of floating debris collection within a given 
planning horizon while, at the same time, prioritizing the collection of 
accumulation areas that may yield more significant environmental and 
safety impacts. To model and deal with the dynamicity and uncertainty 
of the floating debris accumulation, the planning is dynamically updated 
when new accumulation areas emerge. The proposed method is vali
dated with a set of numerical experiments based on a real-world case 

Fig. 8. Change of collection cost and time-dependent penalty cost with different types of collection ship.  

Table 10 
Different combinations of unloading points.  

Number of unloading points Scenarios Uploading points used 

1 S1 
(Base case) 

34 

2 S2 34.35 
S3 34.36 
S4 34.37 

3 S5 34.35.36 
S6 34.35.37 
S7 34.36.37 

4 S8 34.35.36.37  

Fig. 9. The impact of changing combinations of unloading points on (A) total travel distance; (B) collection and time-dependent penalty cost.  
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study at Wushan County in the Three Gorges Reservoir area. Based on 
the experimental results, three generic managerial implications can be 
summarized as follows:  

1. The time-dependent penalty cost will help drastically improve the 
collection planning to favor the responsiveness to the accumulation 
areas with higher priority, e.g., priority classes 1 and 2 in the case, 
but it may increase the total collection cost. Thus, the level of penalty 
cost should be properly set up considering the trade-off between cost 
and service priority.  

2. Using different types of collection ships may yield significant impacts 
on operational planning. For instance, using larger collection ships 
may help reduce the total collection time and minimize the number 
of unloading operations, but a higher cost may be incurred. On the 
other hand, a smaller collection ship with insufficient capacity may 
further worsen the system’s performance. Therefore, choosing the 
appropriate types of collection ships is important for improving both 
the cost-effectiveness and operational efficiency of floating debris 
collection in reservoir areas.  

3. The number and locations of the unloading points have a significant 
impact on the total travel distance, total cost, and responsiveness to 
accumulation points with higher priority. Increasing the number of 
unloading points may not lead to a uniform change on all three in
dicators. Thus, when contracting with the unloading points, the 
decision-makers may need to consider the balance between cost- 
effectiveness and responsiveness.  

4. The proposed two-stage decision-support framework offers dynamic 
adjustments and re-routing to the initial predication-based collection 
plan in response to emerging debris accumulation areas. By effec
tively inserting these new accumulation areas into existing routes, 
our experiments indicate a 1.24 % cost saving compared to the 
single-stage counterpart. Furthermore, there is a reduction of one 
collection ship needed. 

Finally, two suggestions are given for further improvement of the 
current research. First, taking into account the water level, flow rate as 
well as other factors, the uncertainty issue should be comprehensively 
considered, mathematically modeled, and properly treated in the pro
active stage with, for example, stochastic or fuzzy approaches (Yu and 

Solvang, 2020). Second, the performance of the floating debris collec
tion system in the reactive stage needs to be tested in a much more 
comprehensive fashion with, for instance, Monte Carlo simulation and/ 
or discrete event simulation (Andoh & Yu, 2023). 
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Appendix 

Tables A1 and A2. 

Table A1 
Test of parameter values in the GA.  

NP Pm Pc Maxgen Gap NP Pm Pc Maxgen Gap NP Pm Pc Maxgen Gap 

80  0.9  0.1 800  0.00 % 50  0.9  0.1 800  1.53 % 100  0.9  0.1 800  0.63 % 
80  0.9  0.2 800  0.66 % 50  0.9  0.2 800  1.21 % 100  0.9  0.2 800  0.85 % 
80  0.9  0.3 800  1.32 % 50  0.9  0.3 800  0.60 % 100  0.9  0.3 800  0.04 % 
80  0.8  0.1 800  0.63 % 50  0.8  0.1 800  1.13 % 100  0.8  0.1 800  1.99 % 
80  0.8  0.2 800  2.60 % 50  0.8  0.2 800  0.68 % 100  0.8  0.2 800  1.10 % 
80  0.8  0.3 800  0.59 % 50  0.8  0.3 800  0.59 % 100  0.8  0.3 800  0.90 % 
80  0.5  0.1 800  1.03 % 50  0.5  0.1 800  4.68 % 100  0.5  0.1 800  0.78 % 
80  0.5  0.2 800  0.76 % 50  0.5  0.2 800  1.40 % 100  0.5  0.2 800  0.91 % 
80  0.5  0.3 800  0.85 % 50  0.5  0.3 800  0.16 % 100  0.5  0.3 800  0.47 % 
80  0.9  0.1 500  0.49 % 50  0.9  0.1 500  2.93 % 100  0.9  0.1 500  2.94 % 
80  0.9  0.2 500  1.63 % 50  0.9  0.2 500  0.65 % 100  0.9  0.2 500  1.65 % 
80  0.9  0.3 500  0.88 % 50  0.9  0.3 500  0.66 % 100  0.9  0.3 500  1.60 % 
80  0.8  0.1 500  4.38 % 50  0.8  0.1 500  4.85 % 100  0.8  0.1 500  1.15 % 
80  0.8  0.2 500  0.75 % 50  0.8  0.2 500  0.64 % 100  0.8  0.2 500  2.12 % 
80  0.8  0.3 500  0.83 % 50  0.8  0.3 500  1.06 % 100  0.8  0.3 500  0.60 % 
80  0.5  0.1 500  2.00 % 50  0.5  0.1 500  4.91 % 100  0.5  0.1 500  0.96 % 
80  0.5  0.2 500  3.00 % 50  0.5  0.2 500  4.10 % 100  0.5  0.2 500  2.14 % 
80  0.5  0.3 500  0.93 % 50  0.5  0.3 500  1.18 % 100  0.5  0.3 500  2.95 % 
80  0.9  0.1 200  1.62 % 50  0.9  0.1 200  3.93 % 100  0.9  0.1 200  4.01 % 
80  0.9  0.2 200  4.47 % 50  0.9  0.2 200  5.42 % 100  0.9  0.2 200  1.46 % 
80  0.9  0.3 200  1.36 % 50  0.9  0.3 200  1.92 % 100  0.9  0.3 200  1.64 % 
80  0.8  0.1 200  7.76 % 50  0.8  0.1 200  7.72 % 100  0.8  0.1 200  4.50 % 
80  0.8  0.2 200  3.52 % 50  0.8  0.2 200  2.86 % 100  0.8  0.2 200  6.81 % 
80  0.8  0.3 200  3.67 % 50  0.8  0.3 200  0.86 % 100  0.8  0.3 200  2.76 % 
80  0.5  0.1 200  3.63 % 50  0.5  0.1 200  6.03 % 100  0.5  0.1 200  7.40 % 
80  0.5  0.2 200  1.50 % 50  0.5  0.2 200  3.65 % 100  0.5  0.2 200  4.18 % 
80  0.5  0.3 200  2.11 % 50  0.5  0.3 200  5.99 % 100  0.5  0.3 200  3.27 %  
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Table A2 
Test of parameter values in the SAA.  

q T Tend L Gap q T Tend L Gap q T Tend L Gap  

0.98 1000 0.00001 5  0.0000 %  0.98 1000 0.00001 2  0.2380 %  0.98 1000 0.00001 1  0.0672 %  
0.98 200 0.00001 5  0.0426 %  0.98 200 0.00001 2  0.1274 %  0.98 200 0.00001 1  0.1611 %  
0.98 500 0.00001 5  0.0300 %  0.98 500 0.00001 2  0.2096 %  0.98 500 0.00001 1  0.0277 %  
0.98 1000 0.01 5  0.1284 %  0.98 1000 0.01 2  0.1213 %  0.98 1000 0.01 1  0.3384 %  
0.98 200 0.01 5  0.3095 %  0.98 200 0.01 2  0.0282 %  0.98 200 0.01 1  0.2600 %  
0.98 500 0.01 5  0.0718 %  0.98 500 0.01 2  0.1780 %  0.98 500 0.01 1  0.3056 %  
0.98 1000 1 5  0.2993 %  0.98 1000 1 2  0.0992 %  0.98 1000 1 1  0.3243 %  
0.98 200 1 5  0.2129 %  0.98 200 1 2  0.1580 %  0.98 200 1 1  0.3269 %  
0.98 500 1 5  0.1141 %  0.98 500 1 2  0.2260 %  0.98 500 1 1  0.2167 %  
0.99 1000 0.00001 5  0.1264 %  0.99 1000 0.00001 2  0.1279 %  0.99 1000 0.00001 1  0.3240 %  
0.99 200 0.00001 5  0.1577 %  0.99 200 0.00001 2  0.1265 %  0.99 200 0.00001 1  0.4021 %  
0.99 500 0.00001 5  0.0812 %  0.99 500 0.00001 2  0.2096 %  0.99 500 0.00001 1  0.1078 %  
0.99 1000 0.01 5  0.2629 %  0.99 1000 0.01 2  0.0239 %  0.99 1000 0.01 1  0.1345 %  
0.99 200 0.01 5  0.1581 %  0.99 200 0.01 2  0.1673 %  0.99 200 0.01 1  0.0206 %  
0.99 500 0.01 5  0.0577 %  0.99 500 0.01 2  0.2993 %  0.99 500 0.01 1  0.1443 %  
0.99 1000 1 5  0.2380 %  0.99 1000 1 2  0.0052 %  0.99 1000 1 1  0.2743 %  
0.99 200 1 5  0.0491 %  0.99 200 1 2  0.2096 %  0.99 200 1 1  0.1651 %  
0.99 500 1 5  0.2129 %  0.99 500 1 2  0.1578 %  0.99 500 1 1  0.3515 %  
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