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Abstract: Value at risk is a statistic used to anticipate the largest possible losses over a specific
time frame and within some level of confidence, usually 95% or 99%. For risk management and
regulators, it offers a solution for trustworthy quantitative risk management tools. VaR has become
the most widely used and accepted indicator of downside risk. Today, commercial banks and financial
institutions utilize it as a tool to estimate the size and probability of upcoming losses in portfolios
and, as a result, to estimate and manage the degree of risk exposure. The goal is to obtain the average
number of VaR “failures” or “breaches” (losses that are more than the VaR) as near to the target rate
as possible. It is also desired that the losses be evenly distributed as possible. VaR can be modeled in
a variety of ways. The simplest method is to estimate volatility based on prior returns according to
the assumption that volatility is constant. Otherwise, the volatility process can be modeled using the
GARCH model. Machine learning techniques have been used in recent years to carry out stock market
forecasts based on historical time series. A machine learning system is often trained on an in-sample
dataset, where it can adjust and improve specific hyperparameters in accordance with the underlying
metric. The trained model is tested on an out-of-sample dataset. We compared the baselines for the
VaR estimation of a day (d) according to different metrics (i) to their respective variants that included
stock return forecast information of d and stock return data of the days before d and (ii) to a GARCH
model that included return prediction information of d and stock return data of the days before
d. Various strategies such as ARIMA and a proposed ensemble of regressors have been employed
to predict stock returns. We observed that the versions of the univariate techniques and GARCH
integrated with return predictions outperformed the baselines in four different marketplaces.

Keywords: VaR estimation; machine learning; return prediction; walking forward optimization

1. Introduction

Value at risk (VaR), dubbed the “new science of risk management”, is a metric used to
forecast the most significant potential losses over a given period. It represents a solution
for reliable quantitative risk management used by risk managers and regulators. The need
for risk metrics became apparent after events such as the market crash in October 1987, the
following crises in emerging markets, and catastrophic losses brought on by the trading
activities of institutions like Orange County, Long-Term Capital Management (LTCM), and
Metallgesellschaft [1].

VaR is defined as the maximum loss within some level of confidence, usually 95 or
99%. Hence, if for example, VaR is −20 at 95% confidence, it means that in 95% of the days,
if there is a loss, it will be less than 20. VaR can be calculated both in terms of amounts and
relative returns.

VaR has become the industry standard and the most well-known measure of downside
risk. It is currently a tool used by commercial banks and financial institutions to gauge the
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size and likelihood of future losses in portfolios and, therefore, to gauge and manage the
degree of risk exposure.

The optimal scenario for risk managers or regulators is a VaR that also works per-
fectly in retrospect; that is, if the desired confidence interval is 95%, then in retrospect,
the actual loss should exceed VaR exactly 5% of the time. However, that is difficult to
accomplish. Managers typically monitor the VaR, and if the agent takes more risk than
agree or the market suddenly becomes riskier, the manager orders the agent to wind down
his/her exposure.

If a normal distribution is assumed, the VaR is simply the volatility times the inverse
of the standard normal distribution at the desired level of confidence. Given volatility, this
is straightforward to calculate. However, since volatility is not constant, estimating it is far
from trivial. Historical volatility is often chosen, but since volatility in financial markets
greatly varies, historical volatility is usually very inaccurate.

It is well known that returns in financial markets are far from normally distributed
because volatility varies. Most financial markets show “fat tails” of the return distribution,
indicating that extreme results are far more likely than what the normal distribution implies.
These extreme movements also tend to be clustered over time. The most likely and widely
accepted explanation for this is that volatility is not constant but a process.

Hence, in retrospect, a regulator or risk manager rarely gets VaR exactly right. There-
fore, the desired outcome is that the number of VaR “failures” or “breaches” (losses exceed-
ing the VaR) is as close as possible to the desired rate, on average. In addition, it is preferred
that the losses be as unclustered as possible. Evaluating this is called “back testing”.

From the perspective of a regulator or risk manager, a breach event typically triggers
some kind of risk management action, whereby risk exposure is reduced. The objective is
to minimize the probability of disasters. For example, during the 2007–2008 financial crisis,
we saw breaches multiple times, and in many cases, emergency actions were not triggered
before it was too late. If the objective is to handle a potential crisis as early as possible, the
optimal solution would, in principle, be to set a low absolute VaR so that breach events are
triggered often.

However, for a regulated bank or entity, a low VaR has a cost. A higher VaR means
that less capital can be allocated to activities with higher risks and returns, so a conservative
VaR reduces revenue. This is often referred to as the capital charge of VaR. Both limiting
the probability of disaster and, at the same time, inflicting minimum capital charge on
the regulated entity is achieved by selecting the most precise failure rate, with as little
clustering as possible.

There are several approaches to modeling VaR, the most rudimentary of which is to
assume constant volatility and estimate VaR based on past returns. This method is called
the normal method, as it assumes constant volatility and a normal distribution.

If we acknowledge that volatility is not constant, we can handle this by either assuming
a distribution that is not normal, by modeling the volatility process itself, or both.

If we take the alternative distribution approach, the natural choice is to use the actual
historical empirical distribution. This also happens to be the most frequently used approach
in the industry [2], probably because it is both simple and intuitive. We call this method
the historical simulation method, which is the term commonly used in the literature.

An alternative to empirical distribution is to use a mathematically formulated distri-
bution, such as the extreme value or hyperbolic distribution. However, by definition, the
empirical distribution always perfectly fits the data, so there is rarely the need to abstract
to a less precise mathematically formulated distribution.

The third option is to model the volatility process itself. The state-of-the-art accepted
solution for this is the generalized autoregressive conditional heteroskedasticity (GARCH)
model [3]. An application of this model in the regulatory framework is called exponential
weighted moving average (EWMA), a GARCH method with fixed parameters usually
determined by regulatory authorities.
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However, a GARCH model where the parameters are set to maximize the model’s fit to
the data is even more likely to predict future variance correctly. A more precise estimation
of future variance yields a more precise VaR estimate.

In recent years, machine learning systems have been employed to execute stock
market forecasts on the basis of historical time series. Usually, a machine learning system is
trained on an in-sample dataset, where it might tune and optimize certain hyperparameters
according to the underlying metric. Then, the trained model is tested on an out-of-sample
dataset. It is important to quantify the influence of predictions on the economic level,
in addition to simply evaluating the percentage of accurate predictions (i.e., accuracy).
For instance, if we suffered significant financial losses for portions of a five-year period
(for instance, two consecutive years), any further investment would have been stopped
in a real-world scenario, and the measurement of good accuracy in the predictions for
that period is not significant. For this reason, in addition to the accuracy metric, other
metrics are taken into account, including maximum drawdown, coverage, and return over
maximum drawdown.

The biggest problem with VaR is that it is not possible to know tomorrow’s risk with
certainty. Hence, there will always be a risk that the unwinding comes too late. The use
of predictive methods such as machine learning and GARCH is a way of mitigating this
problem. VaR essentially depends on the level of risk, so it is actually just a functional
transformation of volatility. VaR is used instead of volatility because many people consider
the maximum expected loss to be easier to understand.

Therefore, inspired by the recent success of machine and deep learning methods for
return prediction, in this paper, we investigated the employment of predicted returns for a
certain day (d) (performed by machine learning methods) to compute a VaR estimate of d.
We used different approaches to stock return prediction, which we integrated within the
univariate strategy for VaR estimation. To the best of our knowledge and in contrast to past
works in the literature, this is the first attempt to combine market returns and predicted
returns for VaR estimation. One more approach we tested is to add stock return predictions
of a certain day (d) and stock returns of the days before d to the GARCH model to compute
a VaR estimate of d. We developed the Python 3.9.12 package Paneltime to do this. As
far as we know, this is the only Python package that can take additional regressors into
consideration in the GARCH model. The Paneltime package analytically calculates the
Hessian matrix, in addition to the gradient. This makes it more likely to find parameters
close to the real optimal parameters. In addition, Paneltime can be used to analyze the
GARCH process in panels, which is novel. For this particular study, this function was not
utilized, but it is a possible extension for future papers.

We compared the baselines (univariate strategies) against their respective versions
integrated with stock return prediction information for the day for which the VaR was being
estimated and the previous market returns and against a GARCH model integrated with
the same information according to several metrics for VaR prediction. Different approaches
for stock return prediction have been used (ARIMA, an ensemble of regressors we first
introduced for statistical arbitrage and that we adapted for stock return prediction in
this context [4]). We noticed how the integrated versions of the univariate strategies and
GARCH provide benefits within several tested markets over the baselines, proving the
validity of the provision of predicted return information for VaR estimation.

The remainder of this paper is organized as follows. Section 2 discusses related work
on return prediction and VaR estimation using machine and deep learning strategies.
Section 3 formulates the task we want to solve and provides information about the baseline
machine learning approaches we used and the walking-forward mechanism. Section 4
describes the datasets we employed. The proposed approach for predicting returns is
depicted in Section 5. The performance evaluation we carried out, the baselines for VaR
estimations, the relative metrics we used, and the results for the adopted markets are
discussed in Section 6. Finally, Section 7 ends the paper with conclusions and suggestions
for future directions in research.



Data 2023, 8, 133 4 of 22

2. Related Works

In this section, we discuss a list of works involving VAR prediction using machine and
deep learning. For this reason, we separate the literature review into two sections: one for
machine learning and the other for deep learning. The final section details the differences
between our approach and the state-of-the-art methods, highlighting the innovations of
our method.

2.1. Machine Learning Approaches

The work performed by the authors of [5] showed that using an exponentially weighted
quantile regression via support vector machine (SVM) can forecast the multiperiod VaR
with better accuracy than competing methods. In the same direction, employing the Tokyo
Stock Exchange (Nikkei 225 index), the authors of [6] struggled to obtain results for different
models to estimating VaR using realized volatility, non-linear support vector machines,
and ARCH-type models. The goal was to find the best-performing model for computing
one-day-ahead VaR. The authors found that the hybrid SVM–HAR–ARCH-type model
performed better when 15 min intraday returns were used. In another study, the authors
introduced a novel classification approach known as extended robust support vector ma-
chine (ER-SVM), which aims to minimize an intermediate risk measure positioned between
conditional value at risk and VaR [7]. The objective of this method was to develop a model
that exhibits reduced sensitivity to outliers present in the distribution’s tail, thereby offering
enhanced utility in the field of financial risk management. To evaluate the predictive perfor-
mance of ER-SVM, they conducted numerical experiments and compared their outcomes
with other classification methods, namely robust SVM, ν-SVM, and Eν-SVM. The findings
of their analysis indicate that ER-SVM surpasses the performance of the alternative meth-
ods in scenarios involving outliers, thereby establishing its superiority in handling such
instances. In a study conducted in 2015, the authors utilized SVR to forecast and estimate
the volatility and VaR of the Belex 15 index [8]. The output of their SVR-based model con-
sisted of a 5-day observed VaR. They compared their findings against the VaR estimations
derived from the Markov regime switching model and a feed-forward neural network VaR.
Their analysis demonstrated that the SVR tool provided superior VaR estimations when
compared to the alternative methods. Other authors proposed an innovative non-linear and
non-parametric framework for forecasting VaR that addresses the limitations of parametric
models by adopting a fully data-driven approach [9]. In their approach, they employed
SVR to model the mean and volatility, drawing inspiration from the standard GARCH
formulation. To derive VaR, they used kernel density estimation (KDE). The effectiveness
of the proposed framework was assessed through a comparative analysis with standard
GARCH models, encompassing exponential and threshold GARCH models employing
diverse error distributions. The results obtained from their study demonstrate that the
SVR–GARCH–KDE hybrid model outperformed conventional linear and parametric mod-
els in terms of accuracy in forecasting the VaR. Others presented their research on portfolio
optimization using a hybrid SVR–GARCH–KDE model [10]. Specifically, they focused on
estimating the VaR for the LQ45 portfolio, which is a stock index in Indonesia. They found
that their model was able to provide flexible return distribution characteristics, which is
important for investors in managing risk. Last but not least, the authors of [2] analyzed
revisions under Base1 III for market risks that allow for the conservative combination of
short- and long-period VaRs. It was found that the combination of short and long histor-
ical observation periods improved the performance in regulatory backtests, resulting in
lower penalties.

2.2. Deep Learning Approaches

By using three different daily stock market datasets, like Brent Oil, Gold, and Copper,
the authors of [11] attempted to forecast one-day-ahead VaR with three different neural
network models: a multilayer perceptron (MLP) model, a recurrent neural network (RNN),
and a higher-order neural network (HONN). In their work, RiskMetrics volatility and the
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ARMA–GARCH (1,1) model were used as benchmark models to compare the achieved
results. The final results demonstrated the fact that neural networks provided the best
VaR predictions.

Furthermore, the authors of [12] utilized Psi Sigma neural networks to predict one-day-
ahead VaR for Brent oil and gold bullion series. To benchmark their results, they used VaR
forecasts from two different neural networks and genetic programming algorithms; some
traditional techniques like the ARMA-Glosten, Jagannathan, and Runkle (1, 1) models;
and the RiskMetrics volatility model. According to the results, their proposed model
outperformed the baselines in estimating VaR with 5% and 1% levels of confidence.

The authors of [13] introduced a new model called a quantile autoregression neural
network (QARNN),which is a combination of an artificial neural network (ANN) structure
with the quantile autoregression (QAR) method. To evaluate its performance, they used
Hong Kong Hang Seng Index (HSI), the US S&P500 Index (S&P500), and the Financial
Times Stock Exchange 100 Index (FTSE100) time series. They used Monte Carlo simulation
and empirical analyses of different real stock indices. The final results showed that QARNN
generally outperformed other classical models in terms of the accuracy of VaR evaluation.

GELM is a non-linear random mapping model proposed by the authors of [14] that
is a combination of the GARCH model and the extreme learning machine (ELM) used to
compute the VaR. Its performance and precision have proven to be better those of other
traditional models, like GARCH, SVM, and ELM.

In 2018, the authors of [15] introduced the EMD-DBN ensemble model for estimating
VaR by associating the deep belief network ensemble model with the empirical mode de-
composition (EMD) technique. The proposed model could identify more optimal ensemble
weights and better integrate the partial information from extracted risk estimates. The
authors used a forex market dataset to analyze and test their proposed model. The results
illustrated that by employing this model, financial institutions and users of this model
could obtain better insights, supporting the estimation of risk with accurate results.

Reinforcement learning has also been employed for VAR prediction. For example, the
authors of [16] explored a deep reinforcement learning approach to minimize capital charge
and improve risk models. Their work sought to establish a link between dynamic program-
ming and reinforcement learning. The results showed that the deep reinforcement learning
approach is capable of solving financial optimization problems characterized by a complex
Markov decision process. In [17], a model-based deep reinforcement learning architecture
was presented to solve the dynamic portfolio optimization problem. The goal was to
develop an automatic trading system that could achieve a profitable and risk-sensitive
portfolio using historical real financial market data. The proposed architecture consisted of
an infused prediction module (IPM), a generative adversarial data augmentation module,
and a behavior-cloning module. The authors observed that the use of IPM drastically
improved the Sharpe and Sortino ratios. In [18], researchers introduced a mean-VaR-based
deep reinforcement learning framework for practical algorithmic trading that outperformed
other benchmark strategies on an ETF portfolio.

A hybrid and semiparametric model based on asymmetric Laplace (AL) quasi-likelihood
and employing long short-term memory (LSTM) was proposed by the authors of [19].
Known as LSTM-AL, the proposed model was able to forecast and efficiently capture the
underlying dynamics of VaR and expected shortfall (ES) in the financial sector.

In the same year, other researchers presented a novel model for measuring market risk
based on variational autoencoders (VAEs) called encoded VaR [20]. The authors utilized
VAE to produce a dataset similar to the real-world dataset, which allowed them to obtain a
variance of return in a non-parametric way and, thus, approximate the VaR.

The authors of [21] constructed and simulated a market risk warning model based on
LSTM-VaR. They used a dataset of stock market data that was preprocessed and standard-
ized before being fed to the LSTM-VaR model. They selected 15 indicators to predict the
standard deviation of stock returns. The probability distribution of the return rate under
the conditional distribution was obtained according to the predicted results, and the VaR
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was then determined. The results indicate a better VaR estimation of their proposed model
compared to traditional prediction models.

Recently, the authors of [22] proposed a semiparametric, parsimonious VaR forecasting
model based on quantile regression and machine learning methods combined with readily
available market prices of option contracts from the over-the-counter foreign exchange rate
interbank market. They employed ensemble methods and neural networks.

2.3. Differences with Respect to State-of-the-Art Approaches

In this paper, we target the problem of estimating VaR. In contrast to previously
proposed approaches, we provide the contributions and innovations:

• We leverage machine learning methods to predict the return for the day (d) for which
VaR is being estimated, then integrate the obtained information with past returns to
find the VaR estimate for d using univariate strategies and GARCH;

• To predict returns for the day for which the VaR is being estimated, we use two approaches:
ARIMA and an ensemble of regressors successfully employed for statistical arbitrage [4];

• We also developed a Python package called PanelTime, which implements a GARCH
model that can integrate the predicted return for the underlying day (d) with the
returns of past days. PanelTime can simultaneously estimate panels with fixed/ran-
dom effects and time series with GARCH/ARIMA. As far as we know, it is the only
package that does this simultaneously. Unlike alternative Python packages, Paneltime
also allows for the specification of additional regressors in the GARCH model and cal-
culates the Hessian matrix analytically, which makes it more likely to obtain estimates
close to the true parameters.

3. Background

In this section, we detail the tools, approaches, and strategies that we employed in
this paper.

3.1. VAR Prediction

VaR was employed for the first time by companies in the late 1980s [23], and since
then, it has attracted considerable attention among researchers. VaR indicates the maximum
amount of investment that can be lost by a financial institution or company over a specified
time horizon under normal market conditions within a certain confidence level [24]. It is a
widely used measure in risk management to approximate potential losses. In this method,
historical data and statistical models are used to predict potential losses in the future [25].

More formally, for a certain time horizon and probability (p), the p VaR is defined
as the largest possible loss during that time after excluding all worse outcomes whose
combined probability is at most p. For instance, if a portfolio of equities has a one-day 95%
VaR of $1 million, it has a 0.05 likelihood of losing more than $1 million in value over the
course of a single day if there is no trading. On average, this portfolio is predicted to lose
$1 million or more on 1 out of every 20 days (based on a 5% probability).

Investors and risk managers utilize VaR estimations to make informed decisions,
manage their exposure to risk, and allocate resources effectively. Daily returns are computed
according to the following formula:

xt = log(
Pt

Pt−1
) (1)

where Pt is the value of stock at t, Pt−1 is the value of stock on the previous day, and X
represents the distribution of these returns. Then, VaR is calculated as:

VaRα(X) = sup{x ∈ R : FX(x) < α} = F−1
X (α) (2)

where FX is the cumulative distribution function of X, and VaRα(X) is the VaR at confidence
level α for the random variable (X).
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3.2. ARIMA

The autoregressive integrated moving average (ARIMA) predicts future values based
on past values. It consists of three distinct elements, namely autoregressive (AR), integrated
(I), and moving average (MA) models [26].

• Autoregressive (AR) model: An Autoregressive model [27] with p, which represents
the number of lagged observations, can be defined as:

Y = c + a1yt−1 + a2yt−2 + ... + apyt−p (3)

where Y represents the current value of the time series that we are attempting to
predict, c is the constant term or the intercept, a1, a2, . . . , ap are the coefficients for the
autoregressive terms, and yt−1, yt−2, . . . , yt−p are the lagged values of the time series.
Here, the model relies on past values, and the objective is to derive estimates for the
coefficients (ai). In other words, the current observation depends on past observations,
as it is assumed that the current value of a variable is related to its previous values.

• Integrated (I) model: To deal with non-stationary time series data, an integrated
part of ARIMA called differencing is used to transform the data to remove trends or
cycles that change over time, thereby making them stationary. In a stationary time
series, the mean and variance are constant over time. It is easier to predict values
when the time series is stationary. Differencing is denoted by d in the ARIMA model
and illustrates the number of differencing iterations needed to make the time series
stationary. According to [28], if we define our original time series as Yt, where Y is the
observation at time t, for general differencing of order d, the operation is defined as:

∇Yt = Yt −Yt−1 (4)

• Moving average (MA) model: The moving average is expressed in [29] as:

yt = µ + µt + θ1µt−1 + θ2µt−2 + . . . + θq (5)

where yt represents the current value of the time series to be predicted, µ is the
mean value of the time series, µt refers to the error term (or residual) at time t, and θi
represents the coefficients for the moving average terms. The forecasting process of the
moving average model involves estimating the coefficients (θi) through the utilization
of past errors, as evident in Equation (5). It assumes that the current value of a variable
is related to the errors made in previous forecasts, and it captures the influence of
past forecast errors on the current observation. The order of the moving average
component, as denoted by the parameter q, represents the number of considered
lagged forecast errors.

3.3. Walk-Forward Mechanism

Walk-forward optimization is a bipartite method that separates a dataset into in-
sample and out-of-sample portions. During each phase of the walk, different segments of
the dataset are used for training and testing. This strategy employs a rolling method, where
the out-of-sample set is progressively moved forward based on a predetermined window
interval to become part of the in-sample dataset in the subsequent phase. It determines a
trading strategy’s ideal trading parameters over a predetermined time period (referred to
as the in-sample or training data) and evaluates their performance over a subsequent time
period (referred to as the out-of-sample or testing data). The steps to run this strategy are
summarized as follows:

• Obtain all relevant data;
• Divide the data into several parts;
• Run an optimization on the first dataset (first in-sample) to determine the best settings;
• Apply those criteria to the second dataset (first out-of-sample);
• Run an optimization on the upcoming in-sample data to obtain the optimum settings;
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• Apply those criteria to the following out-of-sample data;
• Continue until all the data parts have been covered;
• Merge the results of all out-of-sample data.

Figure 1 illustrates an example of walk-forward optimization with six walks. In-
sample portions are double the out-of-sample portions (e.g., in-sample can be 1 year
whereas out-of-sample can be 6 months). The rolling window is usually chosen as the size
of the out-of-sample data.

Figure 1. Walk-forward optimization chart with double the amount of in-sample data as out-of-
sample data.

4. The Used Datasets

This section outlines the datasets employed to test our VaR prediction methodology.
To present and interpret the outcomes of our proposed model, we adopted several distinct
datasets from Yahoo Finance1, a widely recognized and frequented financial website among
traders and business professionals. Yahoo Finance offers an extensive array of financial
data and services. It provides live stock quotations, financial market data, and charts for
an array of financial instruments, like stocks, bonds, commodities, currencies, and indices.
Four historical daily datasets from Yahoo Finance were used: ‘S&P500’, ‘Crude Oil’, ‘Silver’,
and ‘Gold’. They are described in the following sections.

4.1. Standard and Poor’s 500

The Standard and Poor’s 500 or S&P 5002 depicts the cumulative performance of
500 large U.S. companies. It serves as a benchmark for assessing the overall vitality and
trend of the U.S. financial market and is a primary indicator for investment in the U.S.
financial market. Consequently, this index was included in our model. The dataset we
considered comprises 2837 daily observations of S&P stock prices (including close prices)
from January 2012 to the middle of April 2023. Figure 2 shows the considered dataset.

4.2. Crude Oil

This index represents the global market price of crude oil3, a major contributor in
the energy market. Spanning from January 2012 to the middle of April 2023, this dataset
contains 2830 samples representing the closing prices. Its propensity to significantly change
in a short time frame makes it a challenging candidate for VaR prediction. Figure 3 shows
the considered dataset.



Data 2023, 8, 133 9 of 22

Figure 2. S&P 500 stock market returns in USD for the period under analysis.

Figure 3. Oil stock market returns in USD for the period under analysis.

4.3. Silver

This index represents the price of silver4 stocks across financial platforms. The silver
stock market typically refers to the trading of shares of companies engaged in the silver
industry. Covering the period from January 2012 to the middle of April 2023, the dataset
consists of 2827 daily closing prices. The peculiarity of these daily closing prices consists
of prominent market fluctuations over time, which are crucial for accurate VaR prediction.
Figure 4 shows the considered dataset.
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Figure 4. Silver stock market returns in USD for the period under analysis.

4.4. Gold

This index supplies data related to the global gold5 price, enabling market participants
to trade a specified quantity of gold. It is frequently traded on various financial markets,
such as the New York Mercantile Exchange (NYMEX)6 or the Chicago Mercantile Exchange
(CME)7. In this study, we utilized the daily closing prices of gold spanning from January
2012 to the middle of April 2023, consisting of 2824 daily data points. Figure 5 shows the
considered dataset.

Figure 5. Gold Stock market returns in USD for the period under analysis.

5. The Proposed Ensemble for Stock Return Prediction

In this section, we provide details our proposed approach to predict market returns.
As previously mentioned, we forecast the return for the day (d) for which the VaR is being
estimated. Then, we use the past real returns and the predicted return for d to compute
the VaR estimation for d using an extended version of the baseline strategies or a GARCH
model. Then, by using a walk-forward strategy, we compute the VaR estimation for all the
data in the OOS dataset. The machine learning approach we leverage takes inspiration
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from [30], although it performs a regression task rather than classification. It consists of an
ensemble of a set of regressors that are generated automatically after two sets of parameters
(hyperparameters and intrinsic parameters) are optimized.

Intrinsic parameters consist of values related to the specific regressor, whereas hyper-
parameters consist of values related to the dataset, such as the size of the window of the
walk-forward strategy.

Hyperparameters are transferred to the training portion of early past data, which
we refer to as out-of-sample (OOS) data, once they have been optimized in in-sample (IS)
late past data. In order to update the ensemble of regressors to more recent data, these
hyperparameters assist in identifying a different set of parameters, referred to as intrinsic
parameters, that are optimized. Then, the ensemble is ready to perform the predictions.

Through the proposed two-step ensemble, two sets of parameters are optimized such
that the final ensemble can provide a predicted return for any market. First, using late past
data from an IS dataset, we improve the hyperparameters while taking minimum square
error (MSE) into account. These hyperparameters are then transferred to create ensembles
for an early past (OOS) dataset. The validation portion of the current data updates the
intrinsic parameters of each individual regressor before the final ensemble is constructed.

In the IS data and some of the OOS data, we use the non-anchored walk-forward
approach to discover the optimum ensemble hyperparameters.

We used three regressors: gradient boosting, support vector machine, and random
forest. The intrinsic parameters we had to find were chosen from the list shown in Table 1,
whereas the hyperparameters to identify were chosen from the list shown in Table 2.

Table 1. Intrinsic parameter grid.

Algorithm Parameter Values Description

Gradient boosting
n_estimators
learning_rate
max_depth

10, 25, 50, 100
0.0001, 0.001, 0.01, 0.1
2, 4, 6, 8, 10

Boosting stages to perform
Contribution of each tree
Maximum depth of each estimator

Support vector
machines

max_iter
tol
C
gamma

20, 50, 100
0.0001, 0.001, 0.01, 0.1
1, 10, 20, 50
0.0001, 0.001, 0.01, 0.1

Hard limit of iterations within solver
Tolerance for stopping criterion
Penalty of the error term
Coefficient for the used kernel

Random forests
n_estimators
max_depth
min_samples_split

20, 50, 100
1, 5, 10, 50
0.2, 0.4, 0.8, 1.0

Trees in the forest
Max depth of the tree
Min samples to split a node

Table 2. Hyperparameter grid.

Parameter Values Description

window_size 100, 150, 200, 250, 300 Days used for the training set

train_size 60, 65, 70, 75, 80 Percentage of window_size used for the training set

lags 1, 3, 5, 7, 9 Previous days to use in order to predict the return

The usefulness of ensemble techniques that use various algorithms is supported by
numerous literature reports [31,32]. In many famous machine learning competitions (such
as Kaggle, the Netflix Competition, KDD, and others), ensemble techniques typically
produce the best results [33].

As a result, we used an ensemble learning approach, in which the final prediction
is produced by merging the outputs of individual algorithms within the ensemble. An
ensemble process like this can function independently or dependently. Since we take the
independent framework approach, each classifier decision may be viewed as a separate vote
from the others. We applied this scheme to the three algorithms we used (gradient boosting,
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support vector machines, and random forests), with their ensemble hyperparameters
initially found in the IS data and whose individual intrinsic parameters were found in the
OOS data. Any other regressor can be added to our initial list. We chose them because they
have already been successfully applied in the literature for return predictions [34–36].

The aggregation criterion we employed in our ensemble is the simple average.
To provide a quality assessment, we tested the proposed machine learning approach

for return prediction in the four markets illustrated in Section 4 by using 1 year for the IS
data and 1 month for OOS and compared the results against ARIMA (12,0,12). We computed
the MSE between the predicted returns and the real returns. The MSE is computed as:

MSE =
1
n ∑

i=1
n(Yi − Ŷi)

where n is the number of data points, Y is the vector of the real returns, and Ŷi is the vector
of the predicted returns.

Table 3 shows the obtained results (averaged along all elements in the OOS dataset),
where we can notice how our proposed ensemble approach outperforms ARIMA for the
four illustrated markets.

Table 3. Results in terms of MSE of stock market prediction.

Market ARIMA Ensemble

S&P stock market 0.00653 0.00589

Oil stock market 0.00712 0.00601

Silver stock market 0.00815 0.00612

Gold stock market 0.01247 0.00901

6. Performance Evaluation

This section presents a comprehensive evaluation of the approaches we propose
for VaR estimation and a comparison against the baselines according to a set of metrics
established in the literature.

6.1. Baselines

As mentioned in Section 1, we considered the three following baselines for VaR
estimation: normal distribution, historical simulation, and EWMA.

6.1.1. Normal Distribution

Normal distribution is a parametric method that relies on specific rules or parameters
to estimate VaR. It is particularly suited for portfolios with linear positions and assumes
that asset returns adhere to a normal distribution. This assumption is largely derived from
the central limit theorem, suggesting that the aggregate of numerous independent and
identically distributed random variables approximates a normal distribution. In order to
calculate the VaR, this method uses a historical dataset to obtain the mean and the standard
deviation, which are computed within a designated time period. Once we have the mean
and standard deviation, we can compute the VaR. A unique feature of this approach is
that volatility is quantified in terms of standard deviation. One significant advantage of
this technique is its capacity to deliver precise results [37] by leveraging just these two
quantities. The following formula is used to calculate the VaR at a confidence level of α
using the normal distribution approach:

VaRα = µ + σZ (6)

where Z represents the z score or standard normal deviation for the given confidence level
(α). This is directly tied to the reliance of the normal distribution method on the normal



Data 2023, 8, 133 13 of 22

distribution assumption. In other words, Z is a value from the standard normal distribution
corresponding to the desired confidence level. The Z value can also be calculated according
to the following equation:

Z=
VaRα − µ

σ
(7)

where µ and σ are the mean and standard deviation, respectively. The equation indicates
that the Z score is the number of standard deviations that the VaR is away from the mean.
This interpretation further illustrates the emphasis of the normal distribution method on
using standard deviation as a measure of risk and volatility.

Nonetheless, this method has its limitations. It assumes that returns are normally
distributed, which may not always be true. Furthermore, due to its reliance on the left tail
of the portfolio’s normal distribution, the normal distribution tends to underestimate the
exact VaR and the proportion of outliers. It may also underestimate the VaR when a high
confidence level is applied [38]. Despite these limitations, it performs rather well when
there is a linear association between portfolio positions and risk [39].

6.1.2. Historical Simulation

Classified under non-parametric methods, the historical simulation approach employs
empirical distribution and historical data for VaR estimation [40]. Essentially, it ranks the
previous returns, and based on the target probability, it identifies the corresponding quantile
of the distribution. The underlying assumption here is that current market conditions mimic
future scenarios, resulting in similar outcomes [41]. A significant advantage of historical
simulation is its simplicity [42]. It conveys that any change in the portfolio provides all
the necessary information for computing VaR, eliminating the need to calculate variance
and covariance. Capable of handling non-linear and non-normal portfolio distribution,
it does not depend on any specific assumption. Historical simulation is comparable to
an equally weighted moving average, assigning equal weights to each data point [39].
Unlike normal distribution, there is no need to assume that data are normally distributed.
However, it has certain limitations, such as the need for a lot of observations. Historical
simulation delivers accurate results, particularly under high confidence levels [38], but the
premise that past market conditions accurately reflect future situations can sometimes be
flawed. Although it is simpler and more reliable than the normal distribution method, it
is more time-consuming [43]. To compute VaR using historical simulation, the following
mathematical formula can be used [41]:

Rp
t =

n

∑
i=1

WiRi,t t = 0, ..., T (8)

where Rp
t represents the return of the portfolio at time t. The term (t) refers to a specific

time period in the dataset that ranges from 0 to T, where T represents the total number
of time periods within the dataset. Ri,t represents the return of asset i at time t. Wi is
the weight attributed to asset i in the portfolio, and n denotes the number of assets in
the portfolio. After computing the possible future return values for all time periods, an
empirical distribution of potential portfolio returns is constructed. By ranking these returns
from the lowest to the highest, it is possible to find the VaR at a specific confidence level.
For instance, to calculate the 1-day VaR at a 95% confidence level, the fifth percentile of the
ranked distribution of Rp

t is identified. This means that based on the historical data, the
portfolio is expect to return to be at or below this VaR value 5% of the time.

6.1.3. EWMA

The EWMA model was introduced in [44] and assumes that the returns follow a
normal distribution. Unlike equal weightage methods, EWMA assigns varying weights
to observations depending on their relative recency and position within a given period.
It prioritizes recent observations in the calculation of VaR, attributing more weight to



Data 2023, 8, 133 14 of 22

recent returns than older ones. This weighting scheme is based on the rationale that
recent returns and market trends are likely to resemble future market conditions more
closely. Furthermore, uncommon volatility in a given period could influence volatility in
subsequent periods; hence, such periods are given higher weightage. This translates to
recent observations having a greater impact on the VaR calculation in the EWMA method.
The formula for the EWMA method introduced in [44], is defined as:

σ2
t = λσ2

t−1 + (1− λ)r2
t−1 (9)

In this formula, σt−1 and rt−1 denote the volatility of returns and returns at time t− 1,
respectively. As per this formula, the volatility on day t− 1 is employed to forecast the
volatility for the day ahead, while λ (0 < λ < 1) represents the decay factor, which plays a
crucial role in the EWMA method by assigning different weights to past returns depending
on how recent they are. The more recent the return, the more weight it carries in the
calculation of future volatility.

Despite its simplicity, the EWMA model has been found to perform remarkably well
when compared to more complex conditional volatility models in VaR calculations [45–47].
By allocating higher weights to more recent data, it overcomes the limitation of assigning
equal weight to all observations, a problem inherent in simple historical simulation methods.
The EWMA model is adept at quickly adjusting to changes in market conditions, thanks to
its sensitivity to recent returns. However, similar to the normal distribution method, it may
also undertake extreme losses.

6.2. Used Metrics

Backtesting is a procedure utilized to assess the proficiency and precision of VaR
estimation methodologies prior to the deployment of actual capital. Backtesting offers
crucial insights into the strengths and shortcomings of VaR estimation methods, enhancing
risk management practices by quantifying the number of failures. Failure or exception
in backtesting methods means that the actual losses have exceeded the predicted losses,
indicating a prediction shortfall. The objective of backtesting lies in the verification of
the alignment between the method and the model’s assumptions. The Basel Accords8

mandated banks to appraise the performance of VaR estimators through the application of
diverse backtesting methodologies.

Time between failures (TBF) is an advanced backtesting methodology deployed in
financial risk management specifically to gauge the accuracy of VaR estimators. TBF is
a combination of two tests: the time between failures independence test (TBFI) and the
probability of failure test (POF). TBFI tests for time independence: a high test statistic is
associated with clustered violations. POF tests whether the overall frequency of failures is
close to the reciprocal of the VaR confidence interval. The TBF is therefore a combined test
of frequency and clustering. POF is a likelihood ratio test measuring whether the overall
empirical probability matches the anticipated probability. Its test statistic is:

LRatioPOF = −2 log

(
pVarx(1− pVaR)N−x(

x
N

)x(
1− x

N

)N−x

)
(10)

where x is the total number of failures, and N is the total number of observations. This is
essentially a test of whether the observed confidence level (pVaR) is close to the intended
level. The LRatioPOF is also chi-square distributed with 1 degree of freedom.

TBFI is an extension of the Kupiec TUFF test [48] and was proposed by Haas in
2001 [49]. The null hypothesis in this method postulates that exceptions are independent
of each other. It measures the time until the first failure or exception and also calculates
the time between subsequent failures. It builds upon Christoffersen’s ideas [50] and
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incorporates them into a more powerful metric. TBFI is a likelihood ratio test defined
in [51] as:

LRatioTBFI = −2
x

∑
i=1

log

(
p(1− p)ni−1(

1
ni

)(
1− 1

ni

)ni−1

)
(11)

where x is the number of failures, ni represents the time between the i-th failure and
the (i − 1)-th failure, and p is the reciprocal of the VaR confidence level (pVaR) so that
p = 1− pVaR. TBFI is a test of whether the statistic exceeds some critical level given by a
chi-square distribution with degrees of freedom equal to the number of failures. Hence,
the higher the LRatioTBFI, the more clustered the failures and the less useful the tested
method is for predicting VaR.

The methods with lower LRatioTBFI values generally exhibit less clustering and an
acceptable frequency of failures and should therefore be preferred. Therefore, we score the
methods using LRatioTBFI, and the best methods will have lower LRatioTBFI values.

Besides LRatioTBFI, in our experiments, we report the number of failures, TBFMin,
TBFQ1, TBFQ2, TBFQ3, and TBFMax. They are statistical measures related to the observed
intervals between failures. They stand for the minimum value, first quartile, second quartile,
third quartile, and maximum value of these observed intervals, respectively.

6.3. VaR Estimation

This section shows the results we obtained in our study. To obtain the prediction
of returns for the considered datasets, we used the ARIMA (12, 0, 12) technique and the
ensemble proposed in Section 5 with the walk-forward mechanism mentioned in Section 3.
For VaR estimation, we employed the walk-forward strategy with windows corresponding
to 250 days for the IS and 1 day for the OOS.

Let us remark that, as mentioned in Section 4, the four used datasets included 2837,
2830, 2827, and 2824 samples for the S&P 500, oil, silver, and gold, respectively, with a final
number of walks of 2586, 2579, 2576, and 2573, respectively.

The baselines (normal, historical, and EWMA) are referred to as NameO f Baseline_Con-
f idenceValue.

The predicted returns were integrated into all the baselines to compute the VaR,
obtaining three new methods (in the following, referred to as NameO f Baseline_Con f i-
denceValue_PredictionMethod, where NameO f Baseline is normal, historical, or EWMA;
Con f idenceValue is either 95 or 99; and PredictionMethod is either ARIMA or ENSEMBLE).
To compute the VaR estimation for a day (d) we compute the predicted return for d, then
feed one of the algorithms the predicted return and the real returns of the days before
d. Then, we repeat the process for day d + 1 and so on. More specifically, the proposed
approaches leverages the predicted returns of day i in their calculation of the VaR for day
i. In such cases, for each walk, the 250 values of each IS consisted of the returns from day
i− 249 to day i− 1 plus the predicted return for day i. Basically, the return of the first day
of each walk is discarded.

The other approach we propose, which exploits PanelTime, uses the same walks and
the same data (predicted return of d and real returns of days before d) and combines them
using the GARCH model.

All the experiments were run for two levels of confidence: 95% and 99%.
We also assessed the EWMA method (and our proposed version that takes the pre-

dicted returns) with distinct values for the decay factor (λ). We confirmed its best value as
0.94, as mentioned in [52]. In the results shown in the tables below, the decay value of the
EWMA method is expressed at the end of the name in the Used Method column.
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6.4. Results

Table 4 illustrates the results pertaining to the S&P 500 stock market sorted by increas-
ing values of the LRatioTBFI metric (the results for TBFMin, TBFQ1, TBFQ2, TBFQ3, and
TBFMAX for this and the other markets were rounded to the closest integer).

Table 4. LRatioTBFI backtest results for the S&P 500 stock market.

Used Method LRatioTBFI Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax

Paneltime_99_ENSEMBLE 40.120 21 1 1 7 31 164

Paneltime_99_ARIMA 41.813 23 1 1 8 32 170

Historical_99_ENSEMBLE 149.932 43 1 2 17 68 430

Historical_99_ARIMA 149.932 43 1 2 17 68 430

Historical_99 197.898 53 1 2 7 48 547

Paneltime_95_ENSEMBLE 222.193 63 1 2 6 39 316

Paneltime_95_ARIMA 244.809 65 1 2 7 40 320

Normal_99_ENSEMBLE 277.689 72 1 2 7 43 324

Normal_99_ARIMA 280.258 76 1 2 8 45 327

Normal_99 343.423 90 1 2 7 35 351

Historical_95_ENSEMBLE 344.921 119 1 2 4 23 133

Historical_95_ARIMA 344.109 139 1 2 5 25 134

Normal_95_ENSEMBLE 350.790 143 1 2 5 17 166

Normal_95_ARIMA 355.022 150 1 2 5 18 172

Historical_95 419.061 176 1 2 5 14 169

Normal_95 420.112 175 1 2 5 14 169

EWMA_99_0.94 530.177 157 1 4 10 25 66

EWMA_95_0.94 565.432 282 1 2 6 13 61

EWMA_99_0.3 968.365 268 1 4 8 13 39

EWMA_99_0.2 1088.338 289 1 4 7 12 39

EWMA_99_0.1 1198.688 308 1 4 7 11 31

EWMA_95_ENSEMBLE_0.94 1306.871 440 1 1 3 6 110

EWMA_95_ARIMA_0.94 1316.012 452 1 1 3 6 114

EWMA_99_ENSEMBLE_0.94 1615.671 340 1 2 3 7 116

EWMA_99_ARIMA_0.94 1900.344 342 1 2 3 7 118

For both the confidence values (95% and 99%), the best approaches are the PanelTime
and historical approaches with predicted returns. In fact, for the confidence value of
99% PanelTime is the best method with either the ensemble or ARIMA, followed by the
historical method with either the ensemble or ARIMA, the first baseline, i.e., the historical
method. For a confidence value of 95%, we noticed a similar trend: PanelTime (either with
the ensemble or ARIMA) achieves the best performance, followed by the historical method
(either with the ensemble or ARIMA), the historical method, and the normal method. The
normal method combined with the predicted returns (either ensemble or ARIMA) performs
well and better than its baseline counterparts for both confidence values. Neither return
prediction method (ARIMA and ensemble) seems to produce good results when combined
with the EWMA method. In general and for all the methods, the predictions returned by
the ensemble seem to result in better VaR estimates than those returned by ARIMA.

Table 5 show the results pertaining to the crude oil sorted by increasing values of LRa-
tioTBFI metric. Even in this case, our proposed approaches (predicted returns integrated
with PanelTime, historical, or normal methods) beat the baselines. In particular, for the
confidence value equal to 99%, PanelTime (either with the ensemble or ARIMA) achieves



Data 2023, 8, 133 17 of 22

the best performance, followed by the historical method integrated with the predicted
returns (either with the ensemble or ARIMA) and the normal method integrated with the
predicted returns (with either the ensemble or ARIMA). The first baseline is the historical
method. For the confidence value of 95%, PanelTime confirms its superiority, followed
by the normal method integrated with the predicted returns and the historical method
integrated with the predicted returns. The first baseline for such a confidence value is the
normal method. Furthermore, for the oil stock market, in all cases except when using the
normal method for the confidence value equal to 99%, the ensemble approach provides
better VaR estimation than ARIMA.

Table 5. LRatioTBFI backtest results for the oil stock market.

Used Method LRatioTBFI Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax

Paneltime_99_ENSEMBLE 45.310 2 1 1 3 50 430

Paneltime_99_ARIMA 47.663 3 1 2 4 52 429

Historical_99_ENSEMBLE 145.110 43 1 3 8 56 367

Historical_99_ARIMA 151.813 46 1 4 11 63 379

Normal_99_ARIMA 208.652 57 1 3 9 34 442

Normal_99_ENSEMBLE 209.167 55 1 3 8 35 448

Paneltime_95_ENSEMBLE 209.259 3 1 2 3 61 390

Paneltime_95_ARIMA 209.578 3 1 2 4 43 378

Historical_99 295.018 68 1 2 5 16 693

Normal_95_ENSEMBLE 303.610 113 1 3 5 11 309

Normal_95_ARIMA 310.868 140 1 3 6 15 312

Historical_95_ENSEMBLE 319.671 142 1 3 5 17 275

Historical_95_ARIMA 324.145 148 1 3 5 16 269

Normal_99 363.302 81 1 2 5 12 419

Normal_95 386.712 151 1 2 5 10 367

Historical_95 465.254 205 1 2 5 11 223

EWMA_99_0.94 516.944 159 1 4 11 20 99

EWMA_95_0.94 550.936 308 1 3 6 11 75

EWMA_99_0.3 1209.963 300 1 4 6 11 65

EWMA_95_ENSEMBLE_0.94 1268.127 309 1 5 6 11 78

EWMA_99_0.2 1274.892 313 1 4 6 10 65

EWMA_95_ARIMA_0.94 1395.281 446 1 1 3 5 147

EWMA_99_ENSEMBLE_0.94 1399.112 301 1 1 3 5 157

EWMA_99_0.1 1405.215 333 1 3 6 9 65

EWMA_99_ARIMA_0.94 1822.801 316 1 1 3 5 163

The results for the silver stock market sorted by increasing values of the LRatioTBFI
metric are displayed in Table 6. The proposed PanelTime method (with either the ensemble
or ARIMA) is confirmed to outperform the baselines for the confidence value of 99%. For
this market, the historical method performs better than its integrated version with the
predicted returns. The presence of several fluctuations in the silver stock market is the
likely reason for this behavior. On the other hand, the normal approach integrated with
predicted returns beats its baseline version. For the confidence value of 95%, the normal
method integrated with the predicted returns (either the ensemble or ARIMA) is the best
approach for VaR estimation, followed by its baseline version. Similarly, the historical
method integrated with the predicted returns beats its baseline counterpart.
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Table 6. LRatioTBFI backtest results for the silver stock market.

Used Method LRatioTBFI Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax

Paneltime_99_ENSEMBLE 38.750 26 1 2 14 60 395

Paneltime_99_ARIMA 41.813 30 1 2 15 65 410

Historical_99 149.932 43 1 2 17 68 430

Historical_99_ARIMA 156.359 44 1 2 14 67 428

Historical_99_ENSEMBLE 167.119 49 1 2 17 68 431

Normal_99_ENSEMBLE 237.014 52 1 2 5 32 297

Normal_99_ARIMA 244.809 59 1 2 6 39 301

Normal_99 304.284 81 1 2 7 43 327

Normal_95_ENSEMBLE 335.097 86 1 2 5 30 248

Normal_95_ARIMA 343.423 90 1 2 7 35 351

Normal_95 355.022 150 1 2 5 18 172

Historical_95_ENSEMBLE 359.230 135 1 2 4 20 130

Historical_95_ARIMA 362.303 144 1 2 5 21 134

Historical_95 419.061 176 1 2 5 14 169

Paneltime_95_ENSEMBLE 420.010 174 1 2 5 13 169

Paneltime_95_ARIMA 420.112 175 1 2 5 14 169

EWMA_95 530.177 157 1 4 10 26 66

EWMA_99 565.432 282 1 2 6 13 61

EWMA_95_ENSEMBLE_0.94 798.012 243 1 3 6 11 41

EWMA_99_0.3 968.365 268 1 4 8 13 39

EWMA_99_ENSEMBLE_0.94 1043.797 276 1 3 4 10 43

EWMA_99_0.2 1088.338 289 1 4 7 12 39

EWMA_95_ARIMA_0.94 1198.688 308 1 4 7 11 31

EWMA_99_0.1 1346.119 457 1 1 3 6 114

EWMA_99_ARIMA_0.94 1900.344 342 1 2 3 7 118

Finally, the results for the gold stock market sorted by increasing values of the LRa-
tioTBFI metric are displayed in Table 7. As previously seen in the other markets, PanelTime
(either with the ensemble or ARIMA) is the best method for the confidence value of 99%,
followed by the historical approach with the predicted returns (with either the ensemble or
ARIMA) and its baseline version. For a confidence value equal to 95%, the normal approach
integrated with predicted returns (with either the ensemble or ARIMA) and the historical
approach integrated with predicted returns (with either the ensemble or ARIMA) are the
best methods, followed by their baseline counterparts, as in the previous market using
PanelTime (with the Ensemble and ARIMA). In this market, the ensemble seems to provide
better values than ARIMA when used to predict returns.

Different Python libraries such as Scikit-learn9, Numpy10, Pandas11, Statsmodels12,
Scipy13, and Matplotlib14 were used to develop the ARIMA and ensemble approaches
and calculate the metrics used for the backtest methodology for VaR estimation. We
also leveraged the Risk Management Toolbox15 of MatLab for all the metrics related to
VaR estimation.
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Table 7. LRatioTBFI backtest results for the Gold stock market.

Used Method LRatioTBFI Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax

Paneltime_99_ENSEMBLE 30.091 24 1 7 30 87 312

Paneltime_99_ARIMA 41.813 28 1 13 40 94 389

Historical_99_ENSEMBLE 54.185 30 1 13 40 97 397

Historical_99_ARIMA 61.681 31 1 15 45 101 401

Historical_99 64.585 21 1 8 35 70 817

Normal_99 81.221 33 1 9 34 59 700

Normal_99_ENSEMBLE 82.917 38 1 12 37 68 209

Normal_99_ARIMA 83.000 46 1 14 40 73 217

Normal_95_ENSEMBLE 139.290 117 1 6 14 29 101

Normal_95_ARIMA 158.421 129 1 6 14 30 107

Historical_95_ENSEMBLE 160.109 131 1 5 13 28 91

Historical_95_ARIMA 162.279 138 1 5 14 29 95

Historical_95 181.480 130 1 5 13 29 156

Normal_95 185.255 103 1 5 12 32 261

Paneltime_95_ENSEMBLE 212.475 98 1 4 8 13 82

Paneltime_95_ARIMA 244.809 103 1 4 8 13 87

EWMA_95 394.123 274 1 4 7 14 45

EWMA_99 428.975 147 1 6 14 26 80

EWMA_99_0.3 1352.436 327 1 3 6 11 36

EWMA_99_0.2 1484.849 351 1 3 6 10 34

EWMA_95_ENSEMBLE_0.94 1509.104 513 1 2 3 5 71

EWMA_95_ARIMA_0.94 1587.327 555 1 2 3 5 76

EWMA_99_0.1 1657.845 375 1 3 5 10 31

EWMA_99_ENSEMBLE_0.94 2168.110 409 1 2 3 7 95

EWMA_99_ARIMA_0.94 2200.140 415 1 2 3 7 97

7. Conclusions and Future Directions

In this paper, we considered the problem of VaR estimation. VaR modeling determines
the potential for loss in the entity being analyzed, as well as the likelihood that the specified
loss will occur. Using VaR in risk measurement has a number of benefits. It is a single
number that can be easily understood, is frequently used by experts in the financial sector,
and can be stated as a percentage or in price units. VaR calculations can be compared across
a variety of asset classes or portfolios, including shares, bonds, derivatives, currencies,
and more. VaR is frequently featured and calculated in different financial software tools
due to its popularity. We discussed the baseline approaches usually used to calculate VaR
for different confidence values. Then, we presented different machine learning regressors
to predict stock market returns and indicated how to benefit from the combination of
predicted returns and real returns by extending the baselines or using a GARCH model.
One regressor that we employed is the well-known ARIMA, and another regressor that
we proposed in this paper is an ensemble of different machine learning approaches that
operates in two steps: the first step is used to tune hyperparameters on an IS set of data.
Then, the identified hyperparameters are transferred to create ensembles for an early past
OOS dataset. The validation portion of this set updates the intrinsic parameters of each
individual regressor before the final ensemble is built. For each baseline used to estimate
the VaR, we created an extended version that integrates the predicted return (using either
ARIMA or the ensemble of regressors) for day (d) for which the VaR was being estimated
with the real returns of the days before d. We also proposed PanelTime, which, to the best of
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our knowledge, is the only Python package that can take additional regressors into account
in the GARCH model and combine them with stock returns to compute VaR estimations.
The experiments that we carried out indicate, according to the proposed metrics, that our
proposed methods are always superior to the baselines; therefore, the predicted return
information is useful for a more precise VaR computation. In future work, we would
like to extend the ensemble with more regressors consisting of deep learning approaches.
Moreover, an analysis of the best deep learning approaches (e.g., transformer-based) will
be carried out in order to identify the most promising approaches that can work well in
financial markets.
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