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Summary 
 

The identification of cell type-specific genes, which tend to have key cell type 

specific functions, and their modification under certain conditions is essential for our 

understanding of the human body. Single-cell RNA sequencing (scRNAseq) can be 

used to profile different cell types, but cell removal from tissue and processing can 

introduce artifacts, and some cell types are too fragile to analyze this way. The aim of 

this thesis was to elucidate cell type-specific transcriptomes within human organs, 

using unfractionated bulk RNA sequencing (RNAseq) data, and to use the data 

generated to select a candidate gene for functional analysis in endothelial cells (EC), 

which line the vasculature across tissues.  

We used an integrative correlation-based method to analyze publicly available 

RNAseq data from the Genotype Tissue Expression Project (GTEx). The primary focus 

was on the gastrointestinal tract, where stomach (paper I) and colon (paper II) were 

analyzed. In both cases, we profiled cell-enriched transcriptomes of cell types that are 

absent from the major scRNAseq databases and identified several non-coding genes 

with cell type enriched profiles. A sex-based subset analysis revealed that cell profiles 

were broadly similar in males and females, but in both stomach and colon a small panel 

of genes were identified as cell type enriched in males only. 

We extended our analysis to include 15 human organs (paper III). We identified 

co-enriched genes in related cell types, such as pancreatic alpha and beta cells, and 

stage-specific enrichment signatures during spermatogenesis. A cross-tissue analysis 

revealed common cell type enriched gene signatures between related cell types, such 

as those with motile cilia, or the same cell types found in different tissues, such as EC.  

We subsequently selected one of the most consistently EC enriched genes 

across tissues for further study (paper IV), KN motif and ankyrin repeat domain-

containing protein 3 (KANK3), which currently lacks any reports of function in this cell 

type. We found that KANK3 levels and its cellular distribution was regulated by shear 

stress. EC KANK3 depletion revealed a role in EC migration, and in the regulation of 

tissue factor (TF) expression, which is involved in blood coagulation.   

These studies provide a roadmap for cell type enrichment profiles and 

demonstrate how such data can be used to select genes for functional investigation in 

a cell-type appropriate context. It also highlights the value of using alternative methods 

to extract information from previously published data. 
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1 Introduction 
 

The first part of this thesis (papers I, II and III) uses an in-house developed 

method to extract cell type enrichment signatures from publicly available 

unfractionated bulk RNAseq tissue data, and the second (paper IV) uses this 

information to select a target gene for functional study in endothelial cells. The 

introduction covers methods used for cell profiling, information about the vascular 

endothelium, and a focus on the key organs profiled as part of this thesis. 

1.1 Transcriptomics 

 

Figure 1: Schematic overview of the differences between the genome, transcriptome, 
and proteome as well as genomics, transcriptomics, and proteomics. (1) Genomics is 
focused on the study of the genome – the complete genetic information. (2) Transcriptomics 
is centered around studying all RNA molecules in a sample – the transcriptome. (3) Proteomics 
studies the proteins produced in a sample – the proteome. Illustration created with 
Biorender.com. 

 

The entire human genome is constituted of approximately 20.000 protein-coding 

genes (accounting for approximately 1.5% of the genome), the rest is constituted of 
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non-coding genes  [1–3]. While the genome is fairly constant within each individual (in 

all non-gamete cells), the transcriptome is extremely variable with each cell expressing 

different sets of genes depending on its tissue location, enabling them to perform 

distinct functions. The cellular transcriptome further varies depending on factors such 

as cell cycle state, disease, drug exposure and ageing. The generation of a 

transcriptome is built around the central dogma in which the DNA is transcribed by 

RNA polymerase to create complementary DNA (cDNA), the mature transcripts are 

obtained after intron removal by splicing. The study of the collection of transcripts is 

called transcriptomics. The understanding of the transcriptome is essential for 

interpreting the genome, understanding of cell mechanisms and the development of 

diseases. The transcriptome consists of both protein coding and non-coding RNA 

(earlier often referred to as “junk” DNA [4]), however recognition of the importance of 

the non-coding RNA is growing as recent studies have shown that they can perform 

highly distinct functions without coding for a protein [5,6].  

After the development of automated DNA sequencing in 1980s [7], various 

methods using expressed sequence tags (ESTs) were developed with the possibility 

to rapidly sequence expressed genes (or parts of) [8,9], however cost and technical 

limitations prevented the identification of complete transcriptomes. Various tag-based 

methods, such as Serial Analysis of Gene Expression (SAGE) [10], Cap Analysis of 

Gene Expression (CAGE) [11] and Massively Parallel Signature Sequencing (MPSS) 

[12] were developed as a complement to the EST-approach. Using these methods, 

quantification of unique transcripts on a gene-level was made possible, however cost 

limitations prevented large-scale applications. Large-scale identification of transcripts 

was made possible with the development of hybridization-based microarrays in the late 

1990 to early 2000 [13–15]. The principle behind hybridization-based assay is that 

RNA from a sample of interest is harvested, reversely transcribed, fragmented and 

labelled and allowed to hybridize (bind through Watson and Crick base pairing) to 

known sequence probes that have been fixed onto a microarray [16]. By comparing 

hybridization patterns between different samples one can identify mRNA sequences 

that have different abundances. 

Unlike previous methods, hybridization-based assays made it possible to 

identify the different RNA transcript splicing isoforms [17]. The formation of various 

RNA splicing isoforms occurs during a process called alternative splicing, in which 

exons are combined in different formations and introns are removed. As the method 
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relies on hybridization, the output signal is often noisy as cross-hybridization and 

hybridization strength varies. Furthermore, identification of novel transcripts or 

isoforms is not possible as the hybridization sequence probe is pre-defined [18,19].  

The complete characterization of the RNA transcripts produced by a cell was 

made possible with the development of RNA sequencing methods [20–22], the first 

sequencing method to offer high-throughput quantitative analysis of the complete 

transcriptome [23,24]. Unlike earlier methods, RNA sequencing is not limited to the 

detection of known transcripts, and can capture the entirety of transcribed RNA, which 

enabled the detection of novel transcripts and with the capacity to measure a wider 

range of expression levels with lower background noise.  

Whereas RNA sequencing methods traditionally measure the transcripts from a 

large number of cells (bulk RNA sequencing), single cell sequencing allows for 

measurements of the transcript levels of a single cell [25]. This makes it possible to 

generate complete transcriptomic maps of individual human cells [1], and to 

understand individual cellular response to drugs and drug resistance in cancer 

treatment [26] or to study the differences in the immune cell population in healthy and 

diseased states [27]. However scRNAseq comes with some practical and technical 

challenges such as efficient cell isolation, material amplification, cost and data 

interpretation [28–30]. Additionally, the complex nature of scRNAseq can be very 

sensitive to the act of sample processing itself, and the changes it can cause on 

individual cell transcriptomes [31]. While both bulk and single cell sequencing methods 

are used to study tissue and cell populations on a transcript level, both methods lack 

spatial information. The development of spatial RNA sequencing (spRNAseq) methods 

links transcriptome data with complete spatial information, enabling the localization of 

gene expression events within tissues [32]. 

 

1.1.1 Genomics 

Since the completion of the human genome sequence, efforts have been made 

to fully understand the complete information written in the DNA sequences. Several, 

extensive, genome-wide studies have been conducted to determine gene function, 

products, interactions and potential pathological implications [33–36]. Development of 

genomics approaches have made it possible to detect both coding and non-coding 

variants within the DNA sequences and have contributed to gain further insights into 
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the origin of species [37], the understanding of conserved genes [38] or to gain 

information about the gene function in coding and non-coding regions [39]. 

The applications for genomics-based approaches will not be covered in depth 

in this thesis, but it is mentioned to clarify the distinction from transcriptomics. 

 

1.1.2 Proteomics 

In contrast to genomics and transcriptomics, the proteomics field is focused on 

the functional aspects of gene expression by studying the individual proteins produced 

by a cell, organism, or tissue. It complements genomics and transcriptomics 

approaches by measuring the protein identity, protein structure or function. Proteins 

perform a wide range of intracellular functions within each organism and abnormal 

expression can disturb the normal cellular functions [40]. Studies have shown that 

changes in gene expression on an mRNA or DNA level does not necessarily implicate 

a change in the protein level, and that a change in protein level does not always lead 

to a change in DNA or mRNA level [41,42]. Furthermore, the proteome is under 

constant changes as it adapts to change in external stimuli and post-translational 

modifications [43]. There is a wide application of proteomics approaches in clinical 

settings to identify biomarkers that can distinguish between healthy and diseased 

subjects [44]. Proteomics has also been used to identify possible vaccine targets, for 

instance for the malaria parasite Plasmodium falciparum [45,46]. Proteomics 

approaches are commonly combined with immunohistochemistry (IHC), a technique in 

which antigen-targeting antibodies can be used to determine protein (antigen) 

localization within cells and tissues using microscopy methods [47]. Another example 

is the use of antibody microarrays, in which antigen-targeting antibodies are 

immobilized onto a suitable surface, following a blocking step, the sample is added to 

the array where the immobilized antibodies can bind the target proteins. By using 

fluorescent labelling or by a secondary detection antibody, the results can be 

measured by quantifying the signal intensity [48]. 

Further applications will not be covered in this thesis. 
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1.2 Bulk sequencing 

 

Figure 2: Simplified overview of the experimental steps in a bulk RNA sequencing 
protocol. (1) First a tissue biopsy is obtained containing a mixture of all constituent cell types. 
(2) Mixed RNA sample is isolated and (3) fragmented, followed by (4) generation of 
complementary DNA library (cDNA). Following an (5) amplification step, the cDNA is (6) 
sequenced and (7) mapped against a reference transcriptome or genome. Adapted from “RNA 
sequencing”, by Biorender.com (2023), retrieved from https://app.biorender.com/biorender-
templates. 

 

The first step in a standard RNAseq experiment is extraction and purification of 

the sample RNA e.g., from whole tissue, organism, organoid or cell culture. Bulk RNA 

sequencing analyses a mixture of RNA, meaning that the expression profiles are 

averaged across all cell types present in the sample. The sample RNA is usually 

fragmented, before being converted into a complementary DNA (cDNA) library. The 

cDNA fragments are then ligated with sequencing adapters and amplified, followed by 

analysis by a high-throughput sequencing technique (commonly used platforms are 

Illumina IG [21,22,49], Applied biosystems SOLiD [20] and Roche 454 Life Science 

[50,51]). Lastly, the reads can either be mapped to a reference genome/transcriptome 

or assembled de novo. As an example, the human reference genome is a template 

genome that has been assembled by comparing and combining the DNA of multiple 
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people to which sequencing data can be compared to identify similarities or 

differences. Contrastingly, de novo sequencing is conducted without the aid of a 

reference genome, instead the fragmented sequences are assembled by finding 

common overlapping shared regions until the entire genome is assembled. 

Sequencing strategies for bulk RNA is typically divided into two categories; 

short-read only library (35-6000 bp) and long-read only library (1.000-10.000 bp) [52]. 

The short-read only libraries are often used for the identification and analysis of 

differential gene expression [20,22,53]. The wide use of this method for detection of 

transcriptomes is due to its robustness, cheaper cost and  high-quality data output [54]. 

However, with the increased interest in isoform detection from longer transcripts, it is 

clear that short-read only libraries face difficulties in determining which isoform is 

present when given multiple options [55]. This drawback comes from the lack of 

protocol scalability to whole-transcriptome analysis [56,57]. The wide range of 

computational methods for data analysis of RNAseq data can also lead to bias [58–

61]. To overcome this bias, the method of tagging the cDNA with unique molecular 

identifiers (UMIs) was developed [62,63]. The limitations of short-read libraries can be 

overcome with the use of a whole transcriptome library approach, or long-read cDNA 

sequencing. As long-read sequencing methods commonly deplete the rRNA, the 

method overcomes some of the limitations associated with short-read sequencing; 

such as sequencing mapping ambiguity, possible analysis of longer transcripts and 

reduced fraction of false-positive splice junctions [64]. As the method analyses longer 

transcripts, it makes it possible to confirm earlier gene predictions and to discover 

previously unannotated transcripts [65,66]. However, the method is still biased towards 

sequencing of short transcripts as they diffuse more quickly to the active surface than 

the longer transcripts [54], this can be overcome by modifying the sample loading 

conditions [67] or by the use of long-read direct RNA sequencing [68]. While long-read 

methods overcome the major limitation of short-read methods – namely the read 

length, the method does not offer the same read-depth as short-read methods, it also 

comes with a higher error rate [69]. It is therefore important to factor in whether read-

depth or read-length is the more important factor in the RNA-seq analysis. Read-depth 

refers to the number of times that each base has been sequenced and read-length 

refers to the number of base pairs in the sequenced fragment. 

One of the main advantages of RNA sequencing methods, compared to 

hybridization-based approaches, is the possibility to sequence and analyze novel 
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organisms and genes, which makes it possible to study non-model organisms at the 

gene-level and provide essential information in the field of biomarker discovery. RNA-

seq techniques are frequently used in clinical oncology where the detection of cancer 

biomarkers has been instrumental in the disease diagnosis, prognosis and outcome 

prediction [70–73]. Additional advantages of RNAseq compared to DNA microarrays 

include detection of the precise intron-exon boundaries and single-nucleotide 

polymorphisms, reduced background signal, increased levels of quantification, high 

reproducibility and use of lower sample volumes [23].  

RNAseq does come with several limitations, the first of which is related to library 

construction. Despite the development of long-read library methods, they cannot 

analyze infinite lengths and the fragmentation methods used can introduce transcript 

bias [21,22]. There are additional limitations related to the storage, retrieval and 

processing of the data, which has led to the development of several analytical 

approaches [60]. Another important consideration is the importance of sequence 

coverage, which has an additional cost implication. Sequencing coverage is defined 

as the number of reads that are aligned to a reference and therefore cover a known 

sequence. To detect rare or novel transcripts a higher sequencing coverage is needed, 

which comes with added cost. Lastly, higher coverage is needed to adequately cover 

large and complex transcriptomes. 
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1.3 Single-cell sequencing 

 

Figure 3: Simplified overview of the steps in a single-cell RNA sequencing protocol. 
Following (1) tissue dissection, a (2) mixed cell sample is obtained. After (2) identification of 
markers for constituent cell types, (3) single cell separation can be accomplished by various 
methods, such as FACS. The individual cells are then (4) sequenced, generating (5) unique 
expression profiles for each sequenced cell. (6) Based on expression similarity the cells can 
be clustered and cell types identified. Reprinted from “Single-cell sequencing”, by 
Biorender.com (2023), retrieved from https://app.biorender.com/biorender-templates. 

 

The first instance of single-cell sequencing (scRNAseq) was reported in 2009 

with the isolation and sequencing of individual oocytes [74]. In contrast to bulk 

RNAseq, which focuses on identifying global gene expression from a pool of multiple 

cells, single-cell sequencing investigates the transcriptome of each cell individually. 

While bulk RNAseq revolutionized the biological understanding of tissues, cells and 

organisms, and provided tremendous information about the pathology of diseases, the 

method lacks cellular resolution, and much complex spatial information is unresolved. 

scRNAseq allows for studies of the transcriptome of individual cells, overcoming one 

of the major limitations with bulk RNAseq. Since the first publication in 2009,  further 

development of single-cell methods such as; tagged reverse transcription sequencing 

(STRT-seq) [62], inDrop [75], Drop-seq [76] and the launch of the 10x genomics 
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platform [77] has allowed for a wider adaption of the method and reduced the cost. 

Aspects common to all the methods are that they require solid tissue dissection, 

identification of the cellular composition, separation of the single cells and RNA 

labelling and amplification before sequencing. 

Single cell RNAseq experiments start with dissection of the solid tissue sample 

to prepare the single-cell suspension, commonly with collagenase and DNase to 

produce a high yield of RNA [78]. The individual cells are then separated by various 

methods. The early methods of separation by limiting dilution and micromanipulation 

were time-consuming and very low throughput [79,80]. The development of the now 

popular flow-activated cell sorting (FACS) method enabled specific sorting of distinct 

cell populations at a high-throughput rate and is one of the most common strategies 

[81], however varying the method of sample preparation can yield very different results 

and complicate reproduction of results [82]. Microfluidic technology further 

revolutionized scRNAseq as it allows for low sample consumption, low analysis cost 

and greater fluid control [83]. Microfluidics offer different types of platform for single-

cell isolation such as; capture on microfluidic chips [84], loading into nanowell systems 

[85] or capturing cells into individual droplets using inDrop [75] or Drop-seq [76]. 

Following isolation of single cells is the library preparation starting with cell lysis, 

reverse transcription, and cDNA amplification. One of the main challenges of 

scRNAseq methods is that due to low mRNA capture rates, only a low percentage (10-

20%) of transcripts will be reverse transcribed [62,86]. In-depth analysis of full 

transcriptomes therefore further requires profiling of a large number of cells, increasing 

the method cost. Earlier methods overcame this issue by either focusing on the 5’ or 

3’ transcript end [87,88]. More recently, the incorporation of unique molecular 

identifiers (UMIs) or barcodes (a short random basepair (4-8bp) sequence) in the 

reverse transcription step removed the PCR bias and improved accuracy as each read 

can be assigned to its original cell [76,87,88]. However, the UMI based methods are 

not suited for detection of transcript isoforms as they are limited to sequencing only 

either the 5’ or 3’ transcript end. 

Enormous amounts of data are generated from scRNAseq compared to bulk 

RNA-seq, as thousands of individual cells are sequenced, leading to challenges with 

data handling and processing and the associated hardware and software 

requirements. Open-source software tools have been developed within the scRNAseq 

community to help overcome some of the issues related to data processing [89–91]. 
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However, the issue still remains that scRNAseq data analysis requires complex 

bioinformatics knowledge and techniques [80], posing challenges with data 

interpretation [28,92]. Additional limitations are related to the potential modification of 

cell transcription in profiled cells by removing them from native tissues and exposure 

to the subsequent processing [93–95]. Cost restrictions typically lead to analysis of a 

limited number of biological replicates, further leading to an underestimation of 

biological and cellular variance which increases the likelihood of false discoveries 

[96,97]. 

The development of single-cell sequencing methods has made it possible to 

uncover rare cell populations within tissues, to study the effect of drugs and 

metabolites on individual cell types and study regulatory mechanisms between cell 

types. The application to novel biological questions contributes to rapid advances, 

making recent reviews outdated [98]. The power of scRNAseq to resolve cell-specific 

transcriptomes on a high-throughput basis is driving large-scale cell atlas projects, 

such as The Human Cell Atlas [1] and the NIH Brain Initiative [99]. 
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1.4 Spatial RNA sequencing 

 

 

Figure 4: Simplified overview of the spatial encoding approach used for spatial RNA 
sequencing. (1) The frozen tissue section is overlayed with the oligo-coated bead microarray. 
After (2) cDNA synthesis the (3-4) spatial information can be resolved using the oligo tag 
information. Reprinted from “Spatial transcriptomics”, by Biorender.com (2023), retrieved from 
https://app.biorender.com/biorender-templates. 

 

The recent development of spatial RNA sequencing (spRNAseq) provides 

whole transcriptomic data with spatial information. This is accomplished by combining 

techniques from bulk RNA-seq and in situ hybridization [32]. There are currently two 

different approaches for spRNAseq. First, the ‘spatial encoding’ methods can either 

record the spatial information of transcripts during library preparation by isolating 

spatially restricted cells by laser-capture microdissection (LCM) [100] or by barcoding 

techniques [101,102]. The second approach is built on ‘in situ transcriptomics’ to 

generate sequencing information within tissue sections or by imaging RNA in cells 

[103,104]. 

The use of LCM techniques has been successful in the isolation and profiling of 

individual cells [100]. However, the method requires highly specialized equipment and 
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is difficult to scale. The different barcoding approaches [101,102] capture mRNA 

directly from frozen tissue sections by applying it to a oligo-coated bead microarray. 

The oligo-coated beads correspond to a specific barcode which can uniquely identify 

transcripts and their location. The sequences can then be tracked back to the slide 

coordinates to provide the spatial information. These barcoding methods do not require 

as much specialized equipment as LCM and are easier to scale. However, they can 

only be applied to fresh frozen tissue and the resolution is highly limited by the array 

size and the spacing of the oligo coated beads. 

The alternative approach of ‘in situ transcriptomics’ involves either in situ 

sequencing or imaging of transcripts visualized using single-molecule fluorescence 

hybridization [103,104]. In contrast to the earlier mentioned LCM techniques, this 

approach generates a much narrower transcriptome profile, however it instead allows 

for profiling of low-abundance transcripts [105] and provides subcellular information 

[106]. The limiting factor of these methods is the requirement for high-to-super-

resolution microscopy methods and automated fluidics platforms. 

The methods are still being developed and improvements are being made which 

have made it possibly to apply the technology to clinical samples [107], as well as to 

whole mouse embryo to track transcriptomic expression patterns during 

organogenesis [108]. spRNAseq is very likely to become adapted to the wider 

community if the technical limitations related to cost, resolution and lack of deep 

transcriptome data can be overcome. 
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1.5 Bulk RNAseq deconvolution methods 

 

Figure 5: Simplified overview of the workflow for cellular deconvolution of bulk RNAseq 
data. (1) First tissue samples are obtained, followed by (2) bulk RNAseq and (3) identification 
of constituent cell types. (4) After selection of deconvolution algorithm, (5) a reference matrix 
is defined. (6) Finally, constituent cell type proportions can be identified. Adapted from “Bulk 
RNA sequencing deconvolution”, by Biorender.com (2023), retrieved from 
https://app.biorender.com/biorender-templates. 

 

Most commonly used bulk RNAseq deconvolution methods are designed to 

estimate the proportions of the constituent cell types within samples using bulk 

RNAseq data e.g. CIBERSORT [109]. 

Tissue samples, both from healthy and disease tissue, are typically 

heterogenous as they contain a variable portion of cells and cell types. Moreover, bulk 

RNAseq results in tissue-averaged expression levels of each gene, thus the 

expression contribution of low abundant cell types within the sample can be masked 

as the RNA contribution by the more abundant cell types will be higher [110]. This 

limitation of bulk RNAseq has led to the development of multiple deconvolution 

methods to attempt to infer cell type abundance from bulk RNAseq data [111].  

The mathematical problem that the various deconvolution methods try to solve 

can be defined as;” in a heterogenous sample, the expression of an individual gene 
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can be expressed as the linear combination of the contributing expression values from 

each constituent sample cell type, assuming that all cell types have similar gene 

expression levels across the samples” [111]. This mathematical problem can also be 

expressed using the matrix notation below. 

𝑇 = 𝐶 ∙ 𝑃 

Where T = the measured expression values from a heterogenous sample; C = average 

expression values in the constituent cell types and P = relative composition of cell 

types in sample [111]. 

There are multiple available deconvolution algorithms to solve this problem such 

as; linear least square (LLS) [112], non-negative matrix factorization (NNMF) [113] and 

support vector regression approaches, for instance using CIBERSORT [109]. 

Following selection of a deconvolution algorithm, comes the identification of cell 

type-specific markers or expression profiles to define a reference gene signature 

matrix. A cell type-specific marker is considered as a gene whose expression is 

uniquely restricted to one specific cell type, with a stable expression across replicate 

samples [114]. However, this ideal definition must be modified to solve the 

deconvolution problem, as any given gene is rarely uniquely restricted to one specific 

cell type. The modified definition of a cell type-specific marker is therefore; a gene that 

is to a large extent expressed by a cell type than in others [111]. The selected maker 

genes will form a cell type-specific expression matrix, which will be used in combination 

with the selected deconvolution algorithm to identify the cellular composition of the 

sample. 

There are several advantages of using deconvolution algorithms to resolve bulk 

RNAseq data, of which a major factor is that the methods are capable of taking 

advantage of the numerous large-scale transcriptome studies already available, and 

analyzing them to get cell type-specific resolution, rather than the need to generate 

new RNAseq data themselves [115]. Limitations include possible exclusion of cell 

types, as the methods rely on an assumption of sample constitution, as well as inability 

to identify novel cell types [111]. 
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1.6 Integrative correlation-based analysis 

 

Figure 6: Simplified overview of the method behind integrated correlation-based 
analysis. After (1) obtaining a tissue biopsy sample containing a mixture of cells, the sample 
is (2) sequenced for RNA. By (3) using cell type-specific reference transcripts in combination 
with (4) integrative correlation-based analysis, (5) cell type-enriched transcriptomes can be 
identified. Illustration created with Biorender.com. 

 

The integrative correlation-based method, which uses bulk RNAseq data to 

identify the transcriptomes of tissue specific cell types, was developed in our group 

and an early version was first published in 2016 [116]. Since then, our group has used 

modified versions of the method to identify cell type-enriched transcriptomes within 

individual organs, including the brain [117] and adipose tissue [118], both of which 

contain cell types that difficult to process for scRNAseq – neurons and adipocytes, 

respectively [119–122]. 

As the cells in the analyzed samples have not been removed from the tissue 

prior to sequencing, difficulties associated with the processing and artefacts 

associated with scRNAseq can be avoided [93–95].  

Unlike scRNAseq and spRNAseq the integrated correlation-based analysis 

method does not require advanced bioinformatics expertise to resolve the constituent 
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cell type-enrichment profiles, and can be used on pre-existing RNAseq datasets [116–

118]. In contrast to the aforementioned deconvolution methods, our integrative 

correlation-based method does not aim to calculate cell type proportions. Instead, the 

aim is to identify cell type-enriched transcripts. For more detailed information on 

analysis method see chapter 3.1 and 5.1.1-5.1.4.  

  

1.7 Vascular endothelium 

 

 

Figure 7: Illustration of the human vasculature. Endothelial cells line the innermost surface 
of all the blood vessels in the body. Reprinted from “Systemic blood vessels”, by 
Biorender.com (2023), retrieved from https://app.biorender.com/biorender-templates. 

 

The vascular endothelium consists of a single layer of endothelial cells that 

separates the blood from the surrounding tissues [123]. ECs line all the blood vessels 

in the body where they have roles in several processes, such as regulation of 

hemostasis, thrombosis, and inflammation. They are known to be involved in 

cardiovascular diseases, where some endothelial-specific genes play a significant role, 

such as involvement in the coagulation cascade and thrombosis [116,124]. The 
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endothelial cells are connected to the basal lamina, below which is a layer of 

connective tissue and smooth muscle cells [125]. On the apical (or luminal plasma 

membrane) side of the ECs is the glycocalyx, a complex macromolecule network that 

provides ECs with a framework to interact with and bind plasma proteins [126]. 

 

 

Figure 8: Illustration of a cross-section of the general vascular endothelium structure. 
The endothelial cells that surround the blood vessel sit on top of the basal lamina and smooth 
muscle cells. The glycocalyx, located on the apical side of the endothelial cells, provides a 
macromolecule network for cell and plasma protein interactions. Illustration created with 
Biorender.com. 

 

Under normal conditions the endothelial surface is anti-thrombotic, inhibiting 

platelet attachment via production of nitric oxide and prostaglandins. Vascular injury 

can cause endothelial dysfunction and the vessel surface can become pro-coagulant 

[127], predisposing to thrombotic disease, such as venous thromboembolism (VTE).  
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1.7.1 Endothelial specific functions 

 

 

Figure 9: Summary of endothelial specific functions. Endothelial cells maintain the 
hemostatic balance in the vasculature, such as the ratio of anti- and pro-thrombosis signals 
where excessive pro-thrombotic stimulus can lead to thrombosis. Illustration created with 
Biorender.com. 

 

The endothelium has a crucial function in the maintenance of hemostatic 

balance. The ECs are continuously exposed to the hemodynamic forces of the pulsatile 

blood flow. The cellular surface is mostly affected by shear stress forces, but the 

pulsatile changes create a cyclic strain on the entire vasculature by stretching the 

vessels. ECs change their morphology to adapt to the different hemodynamic forces 

and direction of blood flow. In steady-state blood flow, endothelial cells have an 

elongated morphology that align in the flow direction whereas a disturbed flow leads 

to a rounder shape with non-uniform cell orientation [128]. In addition to changing their 

morphology to adapt to the blood flow, ECs respond by altering their production of 

vasoactive substances. In response to increased shear stress, which contributes to 
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vasodilation, ECs increase the production of nitric oxide (NO) and endothelial nitric 

oxide synthase (eNOS) activity [129]. The increased eNOS activity mediates NO-

driven vasodilation. Shear stress further induces altered expression of PGI2 and ET-1 

[129–132], which are important for regulating the vascular tone, by either inhibiting 

(NO, PGI2) or promoting (ET-1) smooth muscle cell growth [133–135]. Furthermore, 

shear stress in the vessels contributes to the maintenance of the non-thrombogenic 

endothelial surface by stimulating the expression of thrombomodulin [136], heparin 

sulfate proteoglycans [137] and tissue plasminogen activator (tPA) [138]. 

 

 

Figure 10: Diagram of the coagulation cascade. Overview of the proteins involved in 
maintaining the hemostatic balance. The intrinsic and extrinsic pathway converge in the 
activation of FX, part of the common pathway, to generate thrombin as well as cross-linked 
fibrin. 
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The vascular endothelium maintains a non-thrombogenic surface on the inner 

lining of the vessel wall, through the expression of inhibitors of platelet aggregation, 

NO, PGI2, and heparin-like molecules (thrombomodulin, tPA) [139]. However, the 

endothelium can become pro-thrombotic through the expression of various co-factors 

for platelet adhesion, such as von Willebrand factor (vWF), fibronectin and 

thrombospondin, in addition to pro-coagulant factors like factor V [140]. Additionally, 

pathophysiologic stimuli of the endothelium can trigger the expression of EC tissue 

factor (TF), which in turn activates the coagulation cascade (Figure 15) [141,142]. The 

coagulation cascade can be described as three phases. During the first phase, the 

initiation, TF expressed by EC acts as a cofactor for factor (f) fVII and activates it into 

fVIIa which forms a complex with TF (TF/fVIIa). The complex then cleaves fX into its 

active form, fXa, which can then generate more thrombin [127]. During the following 

amplification phase, thrombin activates the adhered platelets to form a thrombus. 

Furthermore, thrombin can cleave fV into fVa, fVIII into fVIIIa, and fXI into fXIa[127]. In 

the third and final phase, the propagation phase, the activated platelet surface 

promotes additional thrombin formation. The prothrombinase complex is formed when 

fVa binds to fXa, and fVIIIa and fIXa form the intrinsic tenase complex. These two 

complexes contribute to increased thrombin, which generate fibrin from fibrinogen 

cleavage. In parallel, thrombin cleaves fXIII into fXIIIa which contributes to the 

formation of the protective fibrin mesh by cross-linking fibrin chains [127]. ECs can 

further reduce the rate of fibrin breakdown through expression of plasminogen activator 

inhibitor-1 (PAI-1), which is an inhibitor of the fibrinolytic pathway [143]. Once the 

vessel is healed, the fibrinolytic pathway will initiate thrombus dissolution by tissue 

plasminogen activator (tPA) or urokinase (uPA) generating plasmin from plasminogen 

on the thrombus surface [144].Thus, the vascular endothelium maintains the 

homeostasis between the pro-coagulant and anti-coagulant state of the blood vessels 

throughout the body. 
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Figure 11: Illustration of leukocyte recruitment to site of inflammation by endothelial 
cells. The free leukocytes present in the circulation are first captured to initiate the rolling and 
slow rolling process. By interaction with different endothelial specific proteins, the leukocytes 
crawl across the vascular surface to finally adhere and extravasate to the inflamed target 
tissue. Adapted from “Neutrophil recruitment pathway”, by Biorender.com (2023), retrieved 
from https://app.biorender.com/biorender-templates. 

 

Endothelial cells are involved in inflammation related processes, in which they 

capture leukocytes from the blood flow, activate and guide them to extravasation sites 

where they can pass through the vessel wall to reach the site of inflammation. 

Inflammation leads to expression of EC E-selectin and release of P-selectin from 

Weibel-Palade bodies, which mediate leukocyte capture [145,146]. The weak 

interaction between the leukocytes and EC selectins, binding to glycosylated 

structures on the leukocyte, allows them to roll along the EC surface. As the leukocytes 

roll across the endothelial surface, slow rolling and firm adhesion is achieved by further 

interactions with intracellular adhesion molecule 1 (ICAM1) and vascular cell adhesion 

molecule 1 (VCAM1) expressed by ECs, both binding to integrins on the leukocytes 

[147]. The leukocytes then transmigrate though the endothelial barrier using either 

paracellular or transcellular diapedesis, extravasation either through the space 

between two neighboring ECs or through the EC body, respectively. Several EC 

adhesion molecules are involved in the transmigration process, such as endothelial 

cell-selective adhesion molecule (ESAM) [148], CD99 [149], junctional adhesion 
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molecules (JAMs) [150] and platelet endothelial cell adhesion molecule 1 (PECAM1) 

[151]. These adhesion molecules are enriched at endothelial cell junction sites. 

Paracellular diapedesis has been confirmed as the major transmigration pathway for 

leukocytes [152,153]. 

Angiogenesis, the formation of blood vessels, occurs in two steps; during 

development angioblasts are differentiated from primitive mesodermal cells, followed 

by the formation of primitive blood vessels from the angioblasts. Angioblasts then 

differentiate into ECs during development. ECs will later cover the inner surface of all 

blood vessels in the body  [154]. In adults, vascular endothelial growth factor (VEGF) 

has several functions in angiogenesis, where it targets ECs. VEGF promotes the 

growth of vascular ECs, acts as a survival factor by preventing EC apoptosis, and can 

induce both vascular leakage and vasodilation [155]. Vascular pruning, a process in 

which the vascular density is adapted to the needs of the tissue, is mediated by VEGF 

and by this process the vascular tone can be adjusted in order to match the supply of 

oxygen, where hyperoxia triggers vessel regression [156]. Hypoxia on the other hand 

induces VEGF leading to activated angiogenesis [157]. Additionally, VEGF controls 

the migration of endothelia at the tip of the angiogenic sprout and also the proliferation 

in the stalk [158]. 

 

1.7.2 Endothelial dysfunction 

The endothelium separates the blood from the surrounding tissue and serves 

many functions, such as regulation of the vascular tone, leukocyte adhesion, 

angiogenesis and coagulation. Under normal conditions, the endothelial cells maintain 

a state of homeostasis in the vessels by producing various molecules that can tip the 

homeostatic balance in opposite directions, including vasodilators and 

vasoconstrictors, pro and anticoagulants, inflammatory and anti-inflammatory, 

oxidizing and antioxidizing and fibrinolytics and antifibrinolytics [159,160]. However, 

endothelial dysfunction can cause disturbance in the homeostasis and thus lead to a 

proinflammatory state, expression of pro-thrombotic peptides and reduced 

vasodilation. There are several potential causes for endothelial dysfunction including 

physical inactivity, smoking, diabetes and hypertension [161]. Endothelial dysfunction 

is associated with various diseases such as chronic heart failure, cancer and most 

forms of cardiovascular diseases [162]. 
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Vasodilation is mostly stimulated by NO release from the EC caused by shear 

stress, and the vasodilation is proportional to the amount of NO released [163]. 

However, both low and high shear stress is associated with endothelial dysfunction, 

where a low shear stress leads to a pro-inflammatory state and high shear stress can 

cause endothelial erosion, plaque rupture and platelet aggregation. When ECs are 

exposed to a state of oxidative stress they produce the NO antagonist, angiotensin-II 

(AII), that has a vasoconstrictive effect in addition to exhibiting a prothrombogenic, 

oxidizing and antifibrinolytic properties and furthermore, AII increases leukocyte 

adhesion by upregulating the expression of adhesion molecules [164]. AII synthesis 

can be triggered either directly by oxidative stress, or by stimulating NF-κB replication 

leading to production of TNFα, IL-1, IL-6 and adhesion molecules [165].  

During oxidative stress, there exists an excess of reactive oxygen species 

(ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (HO) or superoxide anion 

(O2
-) [166]. The low-density lipoprotein (LDL)-cholesterol molecule is normally 

innocuous, but is easily oxidized to LDL-ox in states of oxidative stress which is highly 

immunogenic [167]. LDL-ox is known to activate the endothelium by causing a release 

of phospholipids [168]. Further, it leads to increased production of adhesion molecules, 

supporting leukocyte attraction and platelet aggregation [169]. Additionally, it increases 

the activity of proinflammatory genes, has a cytotoxic effect on the endothelium, 

provokes endothelial dysfunction, favors thrombogenesis and induces endothelial cell 

apoptosis [170,171].  
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Figure 12: Schematic illustration over thrombus formation caused by damaged 
endothelium. (1) Injury to the blood vessel lining triggers the release of clotting factors. (2) 
Thrombin activates the circulating platelets, which will start thrombus formation at the site of 
injury which leads to vasoconstriction. (3) Lastly, fibrin strands will adhere to the formed 
thrombus to create an insoluble clot. Reprinted from “Blood clot formation in broken vessel”, 
by Biorender.com (2023), retrieved from https://app.biorender.com/biorender-templates. 

 

Vascular injury causes endothelial dysfunction whereby cellular and protein 

material can gather at the site of injury, creating a blood clot [124]. Once the 

endothelium becomes inflamed, a two-step process of coagulation activation is 

initiated. Type I activation (stimulation) leads to elevated levels of Ca2+ causing 

increased blood flow and recruitment of leukocytes. Type II activation is mediated by 

tumor-necrosis factor α (TNFα) and interleukin-1 (IL-1) production, which in turn leads 

to an increase in blood flow, vascular leakage of plasma proteins and recruitment of 

leukocytes. Thrombus formation is important in inflammation since it separates the 

infected tissue from healthy tissue and prevents microbes from spreading [172]. 

However, excess coagulation can be detrimental, the regulation of blood coagulation 

is therefore important in the maintenance of a healthy endothelium [124]. 
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1.7.3 Endothelial-enriched transcriptome 

Many of the genes that are critical for the endothelial cell (EC) functions 

described in section 1.7. tend to have EC restricted expression profiles (endothelial-

enriched genes). In earlier work from our group, Butler et al. [116] analyzed bulk 

RNAseq data from 124 unfractionated tissue samples, from 32 human organs, using 

methods as described in (section 1.6), to predict genes with endothelial enriched 

expression across tissue beds.  

 

 

Figure 13: Method overview of the identification of the body-wide endothelial-enriched 
transcriptome by Butler et.al. in 2016 [116]. 
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234 ‘EC-enriched genes’ were identified. 116 of these were previously reported 

as EC-expressed, 88 were not previously reported in EC, and 30 were totally 

uncharacterized. Comparison with RNAseq data from in vitro cultured EC indicated 

that some EC-enriched transcripts were expressed in tissue, but not in cultured cells, 

probably due to environmental changes.  

 

 

 

Figure 14: KANK3 is classified as an uncharacterized endothelial enriched protein. 
Butler et.al. used bulk RNAseq data to identify both known endothelial enriched transcripts as 
well as unknown and uncharacterized transcripts as endothelial enriched [116]. 

 

Whilst this study predicted body-wide EC enriched genes the total analyzed 

number of samples was relatively low (n=2-7 samples per organ) and individual tissue 

types were not analyzed in detail. It is well established that there is clear variability in 

EC gene expression profiles between vascular beds in different tissue types [173,174], 

for example in the gastrointestinal tract where EC has a role in controlling the passage 

of both antigens and commensal bacteria into the blood stream [173,174]. Genes that 

are consistently EC enriched across vascular beds are interesting candidates for 

functional investigation, as they likely have a key role in general EC function. 

 



 

27 

 

1.8 The gastrointestinal tract 

 

 

Figure 15: Schematic overview of the human gastrointestinal system. The large organ 
system is divided into an upper and lower part and has accessory organs that aid in the 
digestive process. Adapted from “Digestive system”, by Biorender.com (2023), retrieved from 
https://app.biorender.com/biorender-templates. 

 

The gastrointestinal tract is a large organ system that can be divided into an 

upper and lower part, the upper part consists of the mouth, esophagus, stomach, and 

small intestine while the large intestine (colon), rectum and anus constitute the lower 

part. The salivary glands, liver, gallbladder and pancreas are accessory organs that 

aid in the digestive processes [175]. The cellular characteristics, ratio and types of 

absorptive and secretory cells, change throughout the organ system, allowing the 

different organs to perform their distinct functions including absorption of nutrients, 

digestion and reabsorption of water [176–179]. These functionally different absorptive 

and secretory cell types constitute the gastrointestinal epithelial lining, forming a 

selective permeable barrier, preventing unwanted agents from entering the body while 

allowing nutrients to pass though [180].  
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1.8.1 Stomach 

The stomach is a hollow muscular organ, located in the upper GI tract, and 

produces an array of acids and gastric enzymes as well as acting as a reservoir for the 

mechanical and chemical digestion of ingested food [181]. The constituent epithelial 

cell types of the stomach include parietal cells, chief cells, gastric mucous cells, gastric 

enteroendocrine cells and mitotic cells [2,182].  

 

 

Figure 16: Illustrated schematic of the stomach epithelial lining. Illustration is complete 
with the unique cell types: epithelial cells, gastric enteroendocrine cells, chief cells, mitotic 
cells, parietal cells and gastric mucous cells, and their location within the stomach villi. 
Illustration created with Biorender.com. 

 

Gastric mucous cells (or foveolar cells) constitute the majority of the gastric 

epithelial mucous lining, the secreted mucous forms a protective barrier against the 

corrosive gastric acid [183]. The gastric chief cells (or zymogenic cells) are located at 

the base of the gastric glands, or crypts, where they are characterised by pepsinogen 

secretion (the inactive form of pepsin) [184,185]. The chief cells also function as a 

reserve stem cell in the gastric epithelium that can be activated upon injury or disturbed 
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homeostasis [186,187]. Chief cells arise through transdifferentiation of mucous cells, 

a process that excludes cell division, and during loss of parietal cells the chief cell can 

further transdifferentiate into a mucous cell metaplasia (called spasmolytic polypeptide 

expressing metaplasia (SPEM)) [188]. Parietal cells (or oxyntic cells) are located in the 

neck (middle) region of the gastric glands, where they are responsible for gastric acid 

secretion, which is important for food digestion and mineral absorption, in addition to 

neutralising harmful food-derived bacteria [189]. The enteroendocrine cells (or 

neuroendocrine cells) are located in the base and neck of the gastric gland and 

classified into subtypes, based on the particular hormone or molecule the cell secretes 

[183,189]. G-cells are responsible for gastrin secretion, which stimulates gastric acid 

production by activating enterochromaffin-like cells (ECL-cell) and parietal cells. ECL- 

cells secrete histamine, after stimulation by gastrin, which stimulates the parietal cells 

to increase gastric acid production. D-cells secrete an inhibitory gastrin molecule, 

somatostatin, and they are activated when the stomach acidity reaches an upper level 

[183]. Additional subtypes include the serotonin secreting enterochromaffin cell, X-

cells that produce ghrelin, and enteroendocrine cells that produce chromogranin A 

[176]. Mitotic cells (transient amplifying cells) constitute a population of undifferentiated 

epithelial cells that are responsible for epithelial cell replacement upon injury, whereby 

they differentiate into the suitable epithelial cell type [190]. 

In contrast to the better studied lower GI tract, descriptions of the cell type-

enriched transcriptional landscape in the stomach are lacking, as the stomach is 

absent from several large scale single cell sequencing (scRNAseq) initiatives, such as 

Tabula Sapiens [191] and the Human Cell Atlas [1]. Where scRNAseq has been used 

to profile gene expression in the adult stomach, studies have typically focused on 

specific cell types, such as the epithelia [192,193], or in pathological states such as 

gastric cancer [194–197]. There are limited existing studies that focus on the gene 

expression profiles of EC in the healthy adult stomach. 
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1.8.2 Colon 

 

 

Figure 17: Schematic illustration of the colon epithelial lining. Illustration is complete with 
the unique cell types: epithelial cells, intestinal endocrine cells, goblet cells, mitotic cells, 
enterocytes and enteric glial cells, and their unique location within the colon villi. Illustration 
created with Biorender.com. 

 

The main function of the colon is to absorb water and salt, and the most 

abundant epithelial cell types in colon are enterocytes and goblet cells [177,198,199]. 

The goblet cells are mainly located in the midcrypt, located between the tip of the villus 

and the crypt, while the enterocytes are located at the villi surface, and the minority 

cell type intestinal endocrine cells are located at the base of the crypt together with 

proliferating mitotic cells [177]. 

The absorptive colonic enterocytes (also sometimes called colonocytes) 

constitute the majority of epithelial cells on the villi [200]. As absorptive cells, the 

enterocytes function in the uptake of various substances in the intestine such as water, 

ions, vitamins, nutrients and unconjugated bile salts [201]. Intestinal endocrine cells 

and goblet cells secret mucous and various hormones and are located both on the villi 

and in the crypts. Through acute notch inhibition and the transcription factor SPDEF, 
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all proliferative epithelial cells can convert into mucous secreting goblet cells [200]. 

There are various subtypes of intestinal endocrine cells, where the classification is 

based on the specific hormone they secrete [202]. Mitotic cells (or transient amplifying 

cells) are undifferentiated epithelial cells located within the crypts, and maintain the 

intestinal homeostasis by providing continuous replacement cells [203]. The mitotic 

cells also have an important role in modulating the ratio of secretory and absorptive 

cells in the intestinal epithelium [204]. Enteric glial cells constitute a specialized 

population of peripheral neuroglia cells that are associated with enteric neurons 

throughout the gastrointestinal system and maintain gastrointestinal homeostasis 

[205]. The enteric glial cells are located closely below the epithelial cell layer and share 

several structural and functional aspects with astrocytes. Enteric glial cells play an 

important role in gut epithelial integrity, mucosal barrier function, protection against 

bacterial invasion and they can regulate the epithelial cell transcriptome to shift 

towards increased cell adhesion and differentiation [206].  

The human colon has been studied extensively in the context of colorectal 

cancer, which is the third most common cancer type worldwide [207]. Bulk sequencing 

studies of colorectal cancer have identified genetic and genomic alterations [208–210], 

however these studies do not identify cell-specific changes. Single-cell studies on 

healthy colon have focused on the epithelium [211] and changes in gene expression 

during inflammation in ulcerative colitis patients [212]. Various studies have focused 

on the involvement of individual cell types in the  pathophysiology of colorectal cancer, 

such as: endothelial cells (ECs) [213–216], T-cells [217] and macrophages [218–220]. 

ECs are the major constituent cell type in the vasculature, and they have an important 

function in the initiation and progression of inflammatory bowel diseases (IBD) [221]. 

Furthermore, ECs provide a gut-vascular barrier that prevents the normal intestinal 

microbes (the microbiota) from entering the bloodstream [222]. However, there are 

limited studies that focus on the gene expression profiles of EC in the healthy adult 

sigmoid colon. 
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2 Aim of the thesis 
 

Overall aim: To profile cell type enriched transcriptomes across human tissues and to 

select an uncharacterized endothelial cell enriched gene for functional investigation. 

 

Aim 1:  

• To generate a stomach cell type enriched protein- and non-coding gene atlas 

o Identification of expression profiles of rarely studied epithelial cell types 

in stomach tissue 

o Identification of sex specific enrichment signatures 

Aim 2:  

• To generate a colon cell type enriched protein- and non-coding gene atlas 

o Identification of expression profiles of cell types present in colon tissue 

▪ Identify expression profiles of cell types constituting the enteric 

nervous system 

o Identification of sex specific enrichment signatures 

Aim 3:  

• To generate multiple organ cell type protein-coding gene atlas   

o Perform cell type comparisons across tissue types to identify core cell 

type signatures, with a specific focus on endothelial cells 

Aim 4:  

• To use the data generated in Aims 1-3 to select a gene with highly endothelial 

specific expression across tissue types. To elucidate the role of this gene in 

endothelial cells by using in vitro cell culture systems to study the effects of gene 

silencing on endothelial cell specialized functions.   
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3 Methods and Methodology 

3.1 Integrative correlation-based analysis 

3.1.1 Dataset population 

In papers I-III, publicly available bulk RNAseq data from the Genotype Tissue 

Expression Project (GTEx) [223] was used. The sequenced transcripts were 

categorized according to the biotype definitions in ENSEMBL, release 102 [224]. 

The GTEx project is a large-scale ongoing project with the aim to provide a 

comprehensive public resource to study human tissue-specific gene expressions and 

regulations. The project has had 4 data releases, in which more tissues and donor 

samples have been incorporated, for project I-III we have used release V8, which in 

total includes 54 distinct tissues and 948 donors. 

Enrollment criteria stipulated that either sex from any ancestry group within the 

age of 21-70 can be included if the tissue sampling started within 24h of death. There 

are several exclusion criteria including diseases such as human immunodeficiency 

virus (HIV), viral hepatitis, metastatic cancer as well as whole-blood transfusion within 

the last 48h and a body mass index (BMI) >35 or <18.5. Specific protocols for tissue 

biopsy provide specific instructions and ensures common procedures between 

hospitals. Following sampling, the tissue biopsy samples were added to a stabilizing 

solution with ethanol and methanol, acetic acid and a fixating agent, however blood, 

brain and full-thickness skin samples remain unfixed. The samples are then sent for 

analysis where a section of each sample was stained for histological analysis – both 

to verify the organ source and for general tissue characterization. Following sample 

quality analysis, the DNA was genotyped for eQTL analysis, which in GTEx V8 was 

performed with whole genome sequencing technology (WGS), and RNAseq using a 

paired-end Illumina TruSeq RNA protocol which results in an average of 50 million 

reads per sample. The read depth of the sequencing was set to capture lowly-

expressed transcripts, but is limited in detection of rare transcripts as well as splice 

variants [225]. 

For project I-III, we analyzed 15 out of the 54 sample sets included in GTEx. 
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3.1.2 Reference transcript selection 

The bulk RNAseq data analyzed in paper I-III contains mixed cell types that are 

present in differing proportions (Fig 18 A). The integrative correlation-based method 

used in papers I-III is based on the selection of 3 cell type specific genes (‘reference 

transcripts´ [Ref.T]) for each constituent cell type found in the tissue, which act as a 

proxy for the proportion of that particular cell type within the sample (Fig 18 B). Ref.T. 

were identified using a mixture of older ‘none-omics’ studies [226], in-house protein 

profiling [2,182], single-cell sequencing data [192,227] or collated databases from 

multiple sources, e.g. Cell Marker [228] and PanglaoDB [229]. Ref.T. within each cell 

type panel were required to have a high correlation with each other (indicating cell type 

co-expression), a low correlation with Ref.T. representing the other cell types 

(indicating cell type specificity) and a normal expression distribution across the 

samples. As cell type expression and constitution varies from tissue to tissue, the 

Ref.T. were selected on a tissue-by-tissue basis. Spearman correlation coefficients 

between the selected Ref.T. and all other sequenced transcripts in the dataset (56200 

total) were calculated in R using the corr.test function from the psych package (v 1.8.4). 

While the proportion of cell types varies between samples, the ratio between cell-

enriched genes should remain relatively constant. Therefore, a high correlation 

coefficient of a given gene with only one Ref.T. panel indicates enrichment of that 

gene(s) in the corresponding cell type (Fig 18 Cii), whilst a lack of correlation indicates 

that the gene is not cell type-enriched (Fig 18 Ci). Genes were classified as cell type 

enriched (Fig 18 E) when the following criteria were fulfilled: (i) a mean correlation 

>0.50 (FDR <0.0001) with the Ref.T. panel representing that cell type and (ii) a 

minimum ´differential correlation´ between this value and the next highest mean 

correlation with any other Ref.T. panel (representing another cell type) >0.15 (Fig 18 

C, D) and (iii) TPM expression <0.1 in over 50% of samples. In the case that the criteria 

were not fulfilled, the transcripts were classified as not cell type-enriched (Fig 18 F).  
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Figure 18: Detailed overview of the analysis methodology used in the integrative 
correlations-based method. (A) Mixed cell types are present in differing proportions. (B) 
Ref.T. were selected as a proxy for cell proportions within sample. (C) Spearman correlation 
coefficients were calculated between Ref.T and all sequenced transcripts, transcripts were 
then classified as (i) not correlated or (ii) correlated. (D) The process was repeated for all Ref.T. 
represented cell types. Based on the results from Spearman correlation and differential 
correlation values, the transcripts were classified as (E) cell type enriched or (F) not cell type 
enriched. 
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3.1.3 Verification using weighted gene correlation network analysis 

As the analysis is based on manual selection of Ref.T. panels it can be subject 

to input bias. To verify results presented in paper I-III, we also used an alternative 

unbiased method that does not require any manual input – weighted gene correlation 

network analysis (WGCNA) [230]. WGCNA calculates correlation values between all 

transcripts across the sample set, before clustering transcripts together into groups, 

based on the degree of expression pattern similarity. Thus, transcripts are clustered 

together based on expression in a common cell type, or involvement in a common 

process. When genes we classified as cell type enriched appeared in the same 

WGCNA clusters it added weight to the accuracy to our classifications. 

The R package WGCNA [230] was used to perform co-expression network 

analysis for gene clustering, on log2 expression TPM values. The analysis was 

performed according to recommended settings in the WGCNA manual. Transcripts 

with too many missing values were excluded using the goodSamplesGenes() function. 

The remaining genes were used to cluster the samples, and obvious outlier samples 

were excluded. 

 

3.1.4 Verification using tissue profiling 

Tissue-profiling for selected proteins expressed by predicted cell type-enriched 

transcripts was used to further verify results presented in papers I-III. Human tissue 

sections were stained, as previously described, as part of the Human Protein Atlas 

project [2,231]. Briefly, formalin fixed and paraffin embedded tissue samples were 

sectioned, de-paraffinised, hydrated and blocked for endogenous peroxidase in 

hydrogen peroxide solution. Antigen retrieval was done using a Decloaking chamber® 

(Biocare Medical, CA).  Following boiling of the slides, primary antibodies and a 

dextran polymer visualization system (UltraVision LP HRP polymer®, Lab Vision) were 

added, and the slides were incubated and were developed using Diaminobenzidine 

(Lab Vision) as the chromogen. Slides were counterstained in Mayers hematoxylin 

(Histolab) and scanned using Scanscope XT (Aperio). 
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3.1.5 Single-cell verification 

We sourced scRNAseq data from Tabula sapiens as an additional means of 

verification of cell type expression profiled for both protein-coding and non-coding 

enriched transcripts [191]. However, Tabula sapiens did not contain scRNAseq data 

for all tissues, in those cases gene expression in general cell type compartments 

(epithelial, endothelial, stromal, and immune) was assessed. scRNAseq data was 

downloaded and UMAP plots created using the Seurat package in R [232]. UMAP plots 

for selected protein-coding and non-coding transcripts were generated on a tissue or 

compartment basis. 

 

3.2 Functional characterization of KANK3 

For full method details, see methods section of paper IV. 

 

3.2.1 Isolation and culture of primary endothelial cells 

Ethical approval for endothelial cell isolation and subsequent experimentation 

was granted by Regionala etikprövningsnämnden i Stockholm (diarienummer 

2015/1294-31/2). 

Human umbilical vein endothelial cells (HUVECs) were isolated from 

anonymized human umbilical cords, collected from Karolinska Hospital (Stockholm, 

Sweden) as previously described [233]. Briefly, the umbilical cord was isolated and a 

glass cannula was inserted into the vein. Following rigorous washing, collagenase type 

II solution was inserted into the vein, after which and the cord was incubated. The cell 

suspension was collected, pelleted, and resuspended in Medium M199+ (M199+).   

HUVEC were cultured in M199+, supplemented with 20 % fetal bovine serum 

(FBS), 10 ml/l Penicillin-Streptomycin, 2.5 mg/l Amphotericin B (all ThermoFisher, 

Gibco), 1 mg/l Hydrocortisone 1 µg/l and human Epidermal Growth Factor (hEGF) 

(both Merck). For some experiments, cells were cultured in 1 % FBS. For some 

experiments, HUVEC were purchased from Merck/Sigma Aldrich.  

 

3.2.2 Gene knockdown and recombinant KANK3 protein expression 

To investigate the function of KANK3, gene knockdown or over expression 

strategies were used. Briefly, KANK3 knockdown was achieved using siRNA 
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(short/small interfering RNA) targeting KANK3. Cells were transfected with siRNA in a 

lipofectamine solution. After incubation with the transfection solution, the cells were 

washed and continued culture in previously described M199+. Transcripts should be 

knocked down after 48-72 h, and knockdown efficiency was evaluated with RT-qPCR 

and Western blot. 

Overexpression was induced by transfection of plasmids in Opti-MEM using 

Lipofectamine 3000 transfection reagent - according to manufacturer instructions. 

Medium was changed to standard cell culture medium after incubation with transfection 

solutions. Transfection efficiency was investigated using Western blot or 

immunofluorescence staining after 48 h. 

 

3.2.3 Western blot 

To evaluate KANK3 knockdown efficiency on protein expression level in 

HUVEC, cell samples were obtained and analyzed for KANK3 by Western blot. Briefly, 

cell lysates from HUVECs, obtained using RIPA buffer, were mixed with Laemmli buffer 

in reducing conditions. The samples were then heated before loading onto the SDS-

PAGE gel. After electrophoreses, proteins were transferred to PVDF membranes. 

Membranes were then blocked and incubated with primary rabbit anti-KANK3 antibody 

overnight. After washing, the secondary antibody solution horseradish peroxidase – 

conjugated goat anti-rabbit antibody was applied. After incubation, the membrane was 

washed and ECL detection solution was added to the membrane and incubated for 5 

min, after which they were imaged using iBright™ 1500 (thermofisher). Similar protocol 

was used to detect recombinant KANK3-eGFP in HEK293T cells. 

 

3.2.4 RT-qPCR 

To confirm KANK3 knockdown efficiency on RNA level RT-qPCR was 

performed according to TaqManTM Fast Cells-to-CTTM Kit provided by Thermofisher 

Scientific [234]. Cultured cells were washed, and lysis solution was added to each 

sample. Following incubation, the samples were collected and added to the stop 

solution. The samples were incubated for 2 min and unless the RT-PCR were 

performed right after, the samples were stored in the freezer. To convert the obtained 

RNA to cDNA, RT-PCR was run. Briefly, the master mix was prepared for each reaction 
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and sample lysate were added to each well and thoroughly mixed. After thermocycler 

run, according to protocol, the cDNA was stored in a freezer at -20 °C. To quantify the 

effect of KANK3 knockdown on various genes, qPCR reactions were run using 

TaqMan target primers. The qPCR master mix were prepared and mixed with diluted 

cDNA. The qPCR was performed using a RealTime PCR Lightcycler 96 ® system 

(Roche Life Sciences), after which the results could be analyzed. 

 

3.2.5 Cytokine stimulation 

Endothelial activity in response to inflammation can be stimulated by addition of 

inflammatory mediators such as lipopolysaccharide (LPS) or tumor necrosis factor α 

(TNFα) at a concentration of 10 ng/ml to the culture media. The added cytokine 

provokes an inflammatory response in the endothelial cells and the response can be 

measured with RT-qPCR or flow cytometry [235]. 

 

3.2.6 Shear stress exposure 

Shear stress exposure assays was used to mimic in vitro conditions on cultured 

HUVECs. HUVECs were cultured in flow chamber slides connected to an Ibidi pump 

system which applied laminar shear stress onto the cells by pumping M199+ at either 

4dyn or 40dyn. The results could later be analyzed by qPCR, Western blot, or 

microscopy. 

 

3.2.7 Microscopy 

To determine the protein location of the gene of interest within cells, or the effect 

of loss of gene expression, several microscopy methods were used in paper IV. 

Cells for confocal microscopy, used to study protein localization, were fixed, 

permeabilized and blocked. Cells were then incubated with KANK3 primary antibody, 

followed by FITC-conjugated anti-rabbit antibody and TRITC-conjugated phalloidin 

(targeting the primary antibody and enables visualization). Images were taken using a 

Leica TP5 SP5 confocal microscope and image analysis was performed in Fiji ImageJ2 

graphics procession software.  

Structure illumination microscopy (SIM), used to get a detailed image of protein 

localization within cells. Cells were plated subconfluently on glass coverslips and 
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cultivated for 1 h (HEK293 cells) or 4 h (HUVECs). Afterwards, cells were fixed, 

washed, permeabilized and blocked. Primary antibodies targeting either the gene of 

interest or potential localization partners were prepared and added to the sample, 

followed by incubation with secondary antibody. Images were taken in an OMX Blaze 

SIM microscope and reconstituted using SoftWoRx software (GE Healthcare). Image 

analysis was performed in Fiji ImageJ2 graphics procession software. 

Live-cell microscopy for gap closing (wound healing assay), used to study the 

effect of KANK3 depletion on living cells, was begun 24 h after siRNA treatment. 

HUVEC were seeded into 24-well plates and cultured for a further 24 h after which 

medium was changed to either 20 % serum or 1 % serum for either model. After 

additional 24 h an artificial wound was created in the center of the wells by scratching 

with a pipette tip. The plate was placed into a stage incubator chamber and analyzed 

with an Olympus IXplore Live microscope in phase/contrast mode in 10x magnification. 

Gap size was measured every 6 h in Fiji using ImageJ2 graphics procession software. 

 

3.2.8 RNA isolation and sequencing 

The RNA isolation and purification were carried out using the RNAeasy mini kit 

by Qiagen and was used to determine the expression ratio of the various gene isoforms 

expressed by ECs. The concentration of RNA was determined with the help of a 

Nanodrop 2000 spectrophotometer, and its integrity was assessed using Agilent 2100 

Bioanalyzer. Library preparation and RNA sequencing were performed by the National 

Genomics Infrastructure Sweden (NGI) using Illumina stranded TruSeq poly-A 

selection kit and Illumina NovaSeq6000S. The sequencing was done with four lanes, 

2x 150bp reads, and included 2Xp kits. The data was processed using demultiplexing, 

and the storage and initial analyses were done using server-sided computation 

provided by the Swedish National Infrastructure for Computing (SNIC). 

 

3.2.9 Calibrated automated thrombinoscope (CAT) assay 

CAT assay was used to investigate the effect of KANK3 on coagulation pathway 

in ECs. HUVECs were seeded into flat-bottom 96 well plates.  After TNFα stimulation, 

medium was removed, and the wells were blocked. Following washing, thrombin 

formation was initiated. As controls, tissue factor mouse monoclonal anti-TF antibody 
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or corn trypsin inhibitor were added 15 min prior adding fluorogenic substrate. 

Thrombin generation was quantified using the Thrombinoscope software package 

(Version 5.0.0.742) that reported means ± SD. 

 

3.2.10 Flow cytometry 

HUVECs were cultured, transfected, and stimulated with TNFα before 

harvesting. The supernatant was collected, and concentrated by centrifugation the 

pellet was then resuspended. Cells were treated with PE-conjugated anti-CD142 

Clone NY2 and isotype-matched control mouse-IgG1 followed by incubation on ice 

and centrifugation, and the pellet resuspended in PBS. Flow cytometry was then 

performed using the Beckman Coulter CytoFLEX Flow Cytometer. Gating and data 

analysis was done using CytExpert for CytoFLEX Acquisition and Analysis Software 

and FlowJo™ v10.7.  
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4 Results 

4.1 Results paper I 

 

Objectives: The stomach is located in the upper gastrointestinal tract and provides an 

acidic environment that contributes to microbial defense and food processing. Despite 

its important functions, detailed descriptions of cell type gene enrichment of stomach 

tissue are absent from major single cell sequencing-based atlases. We aimed to 

identify stomach cell type-enriched transcriptomes of 11 different cell types, including 

endothelial cells. 

 

Methods: We used the integrative correlation-based analysis method (Fig 19 A) to 

analyze unfractionated bulk RNAseq data from 359 human stomach tissue samples. 

Weighted network correlation analysis and protein profiling was used to verify the 

results. Available scRNAseq data from Tabula Sapiens, categorized into broad cell 

type compartments (epithelial, endothelial, immune and stromal), was used to provide 

supportive evidence for gene cell type enrichment classifications. 

 

Results: We profiled the transcriptome of stomach-specific cell types; parietal, chief, 

gastric mucous and gastric enteroendocrine cells as well as core cell-types found in 

multiple tissues; mitotic, endothelial, fibroblast, macrophage, neutrophil, T-cell and 

plasma cells (Fig 19 B, C and D). We identified both protein coding and non-coding 

enriched cell-type specific signatures (Fig 19 D ii and iv), several of which are strongly 

associated with the progression of gastric cancer. Additionally, by conducting a sex-

based subset analysis we identify a small panel of male-only enriched chief-cell genes 

(Fig 19 E). 

 

Conclusions: We provide a transcriptomic atlas of cell-enriched gene signatures of 

the human stomach, which have been absent from major single-cell sequencing-based 

atlases.  
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Figure 19: Summary of Paper I. (A) Bulk RNAseq samples from stomach tissue using (B-C) 
Ref.T was used to identify the transcriptomes of 11 different cell types present in stomach 
tissue. (Di) Cell type-enriched protein coding genes were verified using (ii) protein profiling, (iii) 
enriched GO-terms and (iv) enriched non-coding genes were verified using available 
scRNAseq data. (Ei) Additionally, male enriched chief cell transcripts were identified with (ii) 
enriched expression in male stomach tissue and in (iii) epithelial cells using scRNAseq data. 
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4.2 Results paper II 

 

Objectives: The colon is part of the gastrointestinal tract, where it performs functions 

such as reabsorption of water. The cellular composition of the GI tract varies within the 

system, making it possible for the organs to perform their specific functions. The 

human colon has been studied extensively in the context of colorectal cancer, with 

focus on individual cell types involved in cancer progression or inflammation. We 

aimed to identify cell type-enriched transcriptomes of 12 different cell types, including 

endothelial cells, in healthy sigmoid colon. 

 

Methods: We used the integrative correlation-based analysis method to analyze 

unfractionated bulk RNAseq data from human sigmoid colon tissue (Fig 20 A). 

Weighted network correlation analysis and protein profiling were used to verify the 

results. Available scRNAseq data from human large intestine Tabula Sapiens was 

used to verify tissue enriched cell type-specific non-coding genes. 

 

Results: We identify cell type-specific gene enrichment profiles for 12 different human 

sigmoid colon cell types, including endothelial cells (Figure 20 B), in tissue, with a total 

of over 3000 cell type-enriched transcripts. We identify non-coding enriched cell-

specific signatures (Fig 20 E i) as well as protein coding (Fig 20 E ii), several of which 

have previously been associated with colorectal cancer. We also identify enriched 

transcripts of cell types present in the enteric nervous system, such as enteric glial 

cells (Fig 20 D). Sex-based subset analysis also identified a couple of male-enriched 

genes (Fig 20 F).  

 

Conclusions: Using publicly available bulk RNAseq data, we successfully identify cell-

type specific transcriptome of human sigmoid colon. 
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Figure 20: Summary of Paper II. (A) Bulk RNAseq samples from colon tissue using (ii-iii) 
Ref.T was used to identify 12 cell type transcriptomes. (B) Enriched gene signatures were 
identified for all constituent cell types, including EC. (Ci) Non-coding enriched genes were 
verified using available scRNAseq data and (ii) protein coding enriched genes using protein 
profiling. (D) Enteric glial cell, constituting part of the enteric nervous system, enriched 
transcripts were identified and verified using enriched GO terms (i), expression profiling (ii) and 
protein profiling (iii). (E) Male enriched transcripts were identified (i) with enriched expression 
in male stomach tissue (ii-iii).   
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4.3 Results paper III 

 

Objectives: Single-cell RNA sequencing can be used to identify cellular expression 

on a single cell-level and is commonly used for biomarker discovery and to study the 

changes in expression in health and disease. However, scRNAseq has limitations such 

as artefactual changes of gene expression during cell processing. Furthermore, 

several cell types e.g., adipocytes are absent from major databases due to damaging 

isolation processes. We show in paper I-II, as well as our previous studies 

[117,117,118], that the integrative correlation-based method can be used to 

circumvent limitations related to scRNAseq. Therefore, the objectives were to use 

publicly available bulk RNAseq data to identify cell type-enriched transcriptomes of 

several human organs to generate a tissue-by-tissue enrichment prediction atlas of 

protein-coding transcripts. 

 

Methods: We used the integrative correlation-based analysis method to analyze bulk 

RNAseq data from 15 human tissues (Fig 21 A, B). Weighted network correlation 

analysis, gene ontology (GO) term analysis and protein profiling was used to verify the 

results (Fig 21 C). 

 

Results: We successfully profile all the major constituent cell types of 15 human 

tissues, including several cell types that are difficult to process and not included in 

existing scRNAseq databases. We were able to identify co-enriched gene panels 

between pancreatic alpha and beta cells (Fig 21 E), identify temporal gene changes 

during spermatogenesis (Fig 21 F). Comparing the transcriptome signatures of 

common cell types identified in multiple tissues enabled identification of core cell type 

identity profiles (Fig 21 G). 

 

Conclusions: We provide a cell type gene enrichment atlas that has been generated 

independently of scRNAseq. Providing an additional tool to understand the human 

gene expression across intact tissues. 
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Figure 21: Summary of paper III. (A) 15 human tissues were analyzed using (B) the 
integrative correlations-based approach to generate (C) cell type-enriched transcriptomic 
profiles. (D) Each profiled tissue contained different number of enriched genes. (Ei and iii) 
Cell type-enriched, as well as (ii)co-enriched genes were identified for some cell types. (Fi) In 
testis, the analysis showed distinct transcriptome signatures during spermatogenesis, which 
were verified using (ii) protein profiling and (iii) GO-enriched terms. (Gi) Identification of core-
cell types in which selected transcripts were verified using protein profiling (ii and iii) across 
tissues. 
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4.4 Results paper IV 

 

Objectives: Endothelial cells perform important functions in several vascular 

processes, such as coagulation, inflammation, and angiogenesis. Proteins with 

endothelial restricted expression profiles are known to be important in these 

processes. In papers I-III, we identified KANK3 as an uncharacterized endothelial-

enriched transcript across multiple tissue types. The objective of paper IV was to 

functionally characterize KANK3 in endothelial cells. 

 

Methods: Human umbilical vein endothelial cells (HUVECs) were extracted, cultured, 

and transfected with siRNA targeting KANK3. Functional assays such as inflammatory 

cytokine stimulations, flow cytometry, wound healing assays, thrombin generation and 

culture under static/flow were carried out, and protein localization in HUVECs was 

analyzed using fluorescence microscopy. 

 

Results: KANK3 was verified to be EC enriched by analyzing over-represented gene 

ontology terms for top KANK3-correlating genes (Fig 22 A i), scRNAseq data from 

Tabula Sapiens (Fig 22 A ii) and protein profiling (Fig 22 A iii). HUVEC cell culture 

under static and shear stress conditions showed increased KANK3 expression and 

distribution under shear stress (Fig 22 B). Wound healing assays showed increased 

cell motility in HUVECs after KANK3 knockdown in both high and low serum culture 

conditions (Fig 22 C). KANK3 knockdown increased levels of F3-expression (Fig 22 D 

i). Results were confirmed using flow cytometry (Fig 22 D ii), indicating an involvement 

in coagulation. These results were further verified using thrombin generation assay in 

which KANK3 depletion led to enhanced thrombin formation following TNF stimulation 

(Fig 22D iii). 

 

Conclusions: The protein encoded by KANK3 has an endothelial specific expression 

profile. KANK3 is a shear stress regulated protein. EC KANK3 depletion also revealed 

a role in EC migration, and in regulation of tissue factor (TF) expression, which is 

involved in coagulation.   
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Figure 22: Summary of paper IV. (A) KANK3 is endothelial enriched, where (i) over-
represented Gene Ontology terms of top KANK3-correlating genes are associated with known 
EC functions, (ii) scRNAseq data from Tabula Sapiens [191] shows KANK3 enrichment in EC 
clusters and (iii) protein profiling from HPA [231] shows KANK3 protein expression in EC. (B) 
HUVEC culture under (i) static and (ii) shear stress conditions followed by IHC using antibodies 
targeting KANK3 (magenta), F-actin (yellow) or vimentin (VIM; cyan) shows elevated 
expression under shear stress. (C) Wound healing assay on HUVEC KANK3 depleted cells in 
(i) standard medium and (ii) low serum shows that KANK3 depletion increases EC migration 
in vitro. (D) KANK3 depletion increased F3 expression on (i) mRNA level and (ii) cell surface 
expression. (iii) Calibrated automated thrombogram (CAT) measurement on KANK3 depleted 
HUVEC shows increased thrombin formation.  
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5 Discussion 

5.1 Methodological considerations 

5.1.1 Dataset selection 

Papers I-III use publicly available RNAseq data to extract single-cell 

transcriptome signatures. There are multiple publicly available datasets, but to perform 

the analysis with sufficient statistical power the sample set should be as large as 

possible. GTEx offers over 17,000 samples from over 900 different donors taken from 

54 different healthy tissues making it ideal for this analysis, as opposed to other multi-

tissue datasets, such as The Cancer Genome Atlas program (TCGA) [236] which 

primarily contains cancer samples, with fewer healthy tissue samples. Additional 

criteria for study selection included criteria related to sampling, in which the tissue 

samples should be taken from the same organ location, this is to avoid false 

classifications due to varying sample location. This excluded multiple studies that 

focused on disease mechanisms, for instance Crohn’s disease, as the sample location 

depend on where the disease is expressed, which also determines the location of the 

matching healthy sample [237].  

The GTEx study used in paper I-III fulfills the above-mentioned criteria, and 

while the samples have been obtained at various hospitals, they have all followed the 

same biopsy and processing protocols. However, while the GTEx dataset contains 

hundreds of samples for each of the 54 tissues, there are a few limitations to consider 

while analyzing the data. First, all tissues contain both male and female samples, but 

there are far fewer female samples than male, potentially leading to enrichment 

classifications being driven by the male population. Secondly, the age of the donors 

are predominantly over 50 years of age, leading to enrichment classifications that could 

be limited to a certain age demographic. 

 

5.1.2 Cell-type inclusion 

In papers I-III, bulk RNAseq from GTEx was analyzed and while the dataset 

contains samples from multiple human tissues, the specific biopsy location or tissue 

processing has limited the inclusion of certain cell types [223,225]. In paper II we 

successfully identify several of the epithelial cell subtypes that are present in stomach 

mucosa, such as parietal and chief cells. In contrast, in sigmoid colon tissue (paper III) 
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we were unable to make such specific distinctions, as the mucous layer was removed 

from this tissue before sequencing, and so we could only identify epithelial cells as a 

general group. However, the epithelial cell enriched genes clustered together in the 

WGCNA. This processing limitation did not affect any of the other tissues included in 

paper III, as the tissue biopsies contained a cell type representative sample.  

In paper I we included multiple epithelial cell subtypes in the analysis of tissue 

cell type-enriched genes, while ‘gastric enteroendocrine cell’ functioned as an umbrella 

term for the multiple enteroendocrine subtypes present in stomach tissue. Additionally, 

in paper III we merge basal and suprabasal keratinocytes into one group. Similar 

grouping of cell types into a broader category is frequently observed in scRNAseq 

studies, as cell subtype classification can be based on a higher expression of a limited 

number of specialized proteins or hormones  [227,238–240], rather than expression of 

a large number of highly specific genes. 

A further limitation of the method is the lack of potential to identify novel cell type 

transcriptomes, as input Ref.T. for such cell types would not be included in the 

analysis. Additionally, rare cell types, that only constitute a small percentage of the cell 

population present in the sample, are not included as it is difficult to detect the 

correlation due to background noise levels. 

 

5.1.3 Cell type identification and classification 

In papers I-III we have used our integrative correlation-based analysis method 

to identify cell type-enriched transcriptomes of various healthy human tissues. There 

are currently no other methods to extract such detailed single cell gene enrichment 

data from bulk RNAseq, other than scRNAseq. While it has been stated that bulk 

RNAseq data cannot be used to extract cell type gene enrichment profiles [241,242], 

we show in paper I-III that it is possible. Our analysis method does not require 

advanced level of bioinformatics to perform [111]. Further, the cell types have been 

processed in their natural environment, circumventing the risk of introduction of 

technical artifacts caused by cell extraction or processing related to scRNAseq 

techniques [93–95]. Moreover, this made it possible to profile cell types that would 

have been excluded from scRNAseq due to their sensitive nature [94,121]. 

Additionally, we are able to classify lowly expressed transcripts as cell type-enriched, 

which might only have been detected in a small minority of cells using scRNAseq, 
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possibly due to the method’s limited read depth [243]. Transcriptomic deconvolution 

methods, such as CYBERSORT, might also not detect such lowly expressed genes 

as they classify cell proportions and the expression might be masked by more 

abundant cell types [110].  

 

5.1.4 Input bias and misclassification 

The integrative correlation-based analysis used in papers I-III can be subjected 

to user input bias during Ref.T. selection. This input bias is shared with deconvolution 

methods as they depend on input expression matrices of the cell type reference genes 

[111]. To overcome this potential bias in paper I-III, several criteria were included for 

Ref.T. selection to ensure correct cell type identification and classification. First, to 

prevent selection bias of the ‘virtual markers’ the marker selection process was made 

with multiple researchers working in a collaboration to avoid individual selection bias 

Secondly, the ‘virtual markers’ are selected for each tissue independently as gene 

expression might vary between tissues. Thirdly, genes that are highly expressed by 

multiple cell types were excluded as ‘virtual markers’ as they might correlate with 

multiple cell types. Furthermore, results are verified using multiple approaches, such 

as protein profiling for protein-coding genes [2] and verification using scRNAseq for 

several non-coding genes [191]. 

The method uses enrichment criteria to reduce the risk of false positive 

classifications. By ensuring that the cell type-enriched classified transcripts have the 

highest mean correlation with the corresponding Ref.T. panel, the analysis method 

captures true positive transcripts. Furthermore, false positives are excluded by 

ensuring a minimal differential correlation value between transcripts of >0.15. This 

criterion prevents misclassification by increasing the selectivity by which transcripts 

are classified. However, it is important to note that this criterion could potentially 

exclude true positive transcripts from being classified as cell type-enriched. Further, 

there is a likelihood of false negative classifications in the analysis as high thresholds 

are used for classification of genes as cell type enriched. Therefore, it is likely that 

some cell type enriched genes have been excluded due to not reaching the required 

threshold.  

There is a balance between minimizing both false positives and false negatives 

in each analysis method. The integrative correlations-based method is more focused 
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on minimizing false positives by using high thresholds for differential correlation values. 

As there is a likelihood of false negatives, it is important to consider each enrichment 

classification on a transcript-by-transcript basis. 

 

5.1.5 Primary cells 

Paper IV used primary endothelial cells obtained from the umbilical vein 

(HUVEC) to study the function of an endothelial enriched transcript, and while studying 

an unclassified transcript it is of importance to choose a relevant model. Endothelial 

cells constitute the innermost layer of all blood vessels, making primary HUVECs a 

suitable model. However, primary cells tend to lose some of their characteristics as 

they reach higher passage (reportedly between 4-8 [244–246]) and enter senescence, 

for in vitro experiments it is therefore important to use freshly isolated cells of a low 

passage. In paper IV, HUVECs were used up to passage 4. An alternative to primary 

cells would be immortalized endothelial cell lines, however, studies have shown that 

there are significant differences in the phenotype of primary endothelial cells and 

several established endothelial cell lines [247,248]. Immortalized endothelial cell lines 

showed a lack of PECAM-1 expression, as well as inability to induce VCAM-1 and E-

selectin in response to TNFα stimulation or MHC class II antigens in response to IFNγ 

[247]. Additionally, the immortalized cell lines differed significantly from primary 

endothelial cells in the expression of vWF, CD31 and CD34 as well as ICAM-1, IL-6 

and IL-8, making them a poor substitute for primary endothelial cells, especially in 

regard to functional annotation and inflammatory response [248]. 

It could be noted that in vitro conditions do not necessarily reflect in vivo settings, 

which should be considered when translating and interpreting in vitro findings. For 

example, unlike cultured endothelial cells, in vivo ECs are in constant contact with the 

basement membrane as well as the pulsating blood flow and shear stress. Further,  in 

vitro and in vivo approaches can be combined to provide complementary information 

[249]. For instance, further in vivo studies using animal models with KANK3 depletion 

could provide information about the role of KANK3 in vasculature.  
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5.1.6 Assays related to cell proliferation and migration 

To study the role of KANK3 in cell migration and proliferation we have used one 

of the earliest developed live cell assays, published in 1965, the wound-healing assay 

(also commonly called gap-closing or scratch assay) [250]. The method is based on 

observing cells migrate and closing an artificially made wound in a monolayer of cells. 

It is not an exact replication of wound-healing in vivo (as there is a lack of supporting 

cell types to fully repair vascular damages (e.g., platelets) as well as lacking the 

inflammatory aspect of wound healing). However, the in vitro assay mimics the cell 

migration to the extent that the migration pattern and behavior will be similar [251,252]. 

Additionally, to determine if the cell movement is caused by migration or proliferation, 

we have used serum starvation to reduce cell proliferation [253]. However, we 

observed similar effects of KANK3 in both conditions, indicating that the impact of 

KANK3 depletion is on cell migration. Further, while we have used the assay to 

observe collective cell migration, similar observation techniques can be used to study 

individual cell migration by seeding cells at sub-confluence or by transfection of a 

fluorescent marker [252,253].  

However, while the wound-healing assays gives an understanding of collective 

endothelial cell migration, they also only capture the movement of the cells under static 

conditions rather than mimic the conditions in the blood vessel. Additionally, it does 

not capture the effect of vessel sprouting. Recently there has been development of 

microfluidic assays to monitor endothelial cell migration under flow. For example, one 

microfluidic assay uses a three parallel fluid flow to create a wound inside the closed 

microfluidic channel. Two of the flows contain normal culture media, whereas the third 

flow contains trypsin – the cells that are exposed to this flow will detach and create a 

wound [254]. The same concept can also be combined with studying the effects of 

shear stress on cell migration [255]. However, this method requires access to highly 

specialized equipment, and it does not capture the 3-dimensional nature of vessel 

sprouting.  

In in vivo, the endothelium is characterized by a unique tube-like formation of 

the blood vessels and the cells are in continuous contact with the basement membrane 

to maintain the tube-like structure [256]. Tube formation in endothelial cells can be 

studied by cultivating cells on basement membrane matrix, such as Matrigel[257]. The 

assay measures multiple steps involved in angiogenesis and is simple, quick, gives 

quantitative results and can be operated to generate high-throughput results [258,259]. 
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Other methods include the assay developed by Nehls and Drenckhahn [260], in which 

beads are coated with endothelial cells and then embedded in a fibrin matrix. However,  

the method of generating the fibrin matrix by the use of fibrinogen is a sensitive 

process, the use of Matrigel offers a more stable assay that is more reproducible [261]. 

While the tube formation assays give an insight into the 3-dimensional landscape of 

vessel sprouting, the sprouts do not originate from an accessible parent vessel. To 

overcome some of the potential drawbacks by not mimicking the exact vasculature to 

study angiogenesis there has been a development of several microfluidic based assay 

options [262–264]. An angiogenesis assay studying endothelial cell sprouting and 

vessel formation from a parent vessel was only recently developed in a microfluidic 

concept [265]. The assay allows for observations of sprouting angiogenesis of 

endothelial cells from a quiescent parent vessel triggered by a chemokine gradient, 

mimicking in vivo conditions. 

In the future, additional angiogenesis experiments using 3D-models mentioned 

above, could be used to provide additional information about KANK3 involvement in 

vessel sprouting and tube formation. As indicated by the scratch assay, KANK3 

depletion leads to increased cell migration, in combination with KANK3 localization to 

cell-cell contact sites, it would be of interest to study vessel formation and stability in 

case KANK3 depletion leads to ‘leaky vessels’ caused by increased migration and 

unstable cell-cell interactions. 

 

5.1.7 Assays related to inflammation 

Paper IV used a cytokine stimulation assay to provoke an inflammatory 

response in cultured HUVECs, which was measured both using RT-qPCR and flow 

cytometry, providing complementary information as both mRNA and protein response 

are measured. We show that KANK3 depletion leads to an elevated response of F3 to 

TNFα. However, neither assay studies the functional interaction between leukocytes 

and HUVECs, which is an important factor in adequate immune response.  

Alternative assays to study leukocyte-endothelium interactions include the use 

of specially designed flow perfusion chambers on top of microscopic slides, such as 

Ibidi Chambers [266,267]. Additionally, transmigration of neutrophils can be observed 

by culturing ECs on a layer of hydrated type I collagen [268], or on the upper surface 

of an amniotic stroma sheet [269] and monitored using e.g. phase contrast video 
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microscopy. These transmigration assays are static assays and do not capture some 

of the leukocyte-endothelial interactions that occur under flow [270,271]. Recently, a 

bioinspired assay has been developed which allows leukocyte interactions to be 

monitored in a miniaturized vascular network, mimicking in vivo conditions [272]. The 

assay allows for monitoring of all the steps involved in leukocyte recruitment, namely 

adhesion, rolling and transmigration. However, it requires access to technologies for 

microfluidic device fabrication. 

 

5.1.8 Assays related to coagulation 

Endothelial dysfunction is associated with increased coagulation and, in some 

cases, thrombus formation. As one of the end products of the coagulation cascade 

(and main agonist of a several coagulation feedback loops), thrombin generation is an 

important indicator for coagulation. EC expression of various molecules involved in 

coagulation, such as tissue factor, vWF (pro-coagulant) or TFPI (anti-coagulant), can 

modulate thrombin generation in plasma. In paper IV thrombin generation is measured 

on cultured endothelial cells using a calibrated automated thrombinogram (CAT) 

[273,274]. CAT is a technique commonly used in clinical evaluations to control 

coagulation capacities of the patient plasma. The assay consists of quantifying 

thrombin formation after addition of exogenous coagulation activators, by detecting the 

amount of specific fluorogenic substrate cleaved over time [275]. In our case, thrombin 

formation is trigger by F3 expressed directly by the ECs in the well after cytokine 

stimulation instead of commercial reagent containing recombinant F3, or other 

activators. Alternatively, coagulation can be measured using thromboelastometry 

[276], in which beads are coated with ECs and added to whole blood and the EC/bead 

incorporation into thrombi can be visualized with scanning electron microscopy (SEM). 

An advantage is that the method captures the entire coagulation process as it is 

conducted using whole blood samples, however it studies the incorporation of ECs 

coated beads into thrombi rather than the effect of EC dysfunction on thrombi 

formation. 
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5.2 Discussion of the main results 

5.2.1 Identification of cell type-enriched transcripts  

In paper III we identify a tissue-centric, cell type gene enrichment atlas of 15 

human tissues, while in papers I and II we focus on individual organs of the 

gastrointestinal tract. Descriptions of the cell-enriched transcriptomic composition of 

stomach is commonly lacking from several large scale scRNAseq databases, or has 

been focused on specific cell types rather than complete transcriptomic profile or 

expression changes during pathological states [1,191,192,195]. Here we show in 

paper I that we are able to complement existing data with cell type-enriched 

transcriptomes of stomach tissue. 

In papers I-III, as well as our previous studies [117,118], we show that it is possible to 

identify lowly expressed genes as cell type-enriched, which is a significant limitation of 

other methods, such as scRNAseq in which they might be excluded due to limited read 

depth [243]. We have also included cell types that are known to be difficult to process 

in scRNAseq, such as kidney podocytes [94], as well as epithelial cell subtypes in 

stomach tissue.  

 

5.2.2 Identification of non-coding enriched transcripts 

Paper I-II, as well as our previous study [118], show that it is possible to identify 

and correctly classify both protein coding and non-coding transcripts as cell type-

enriched. This provides new and unique data for both tissues as there is currently no 

dataset of stomach enriched non-coding genes, or one with as much cell type detail in 

colon tissue. Additionally, there is a general lack of information regarding the function 

of non-coding genes in gastrointestinal healthy tissue as the focus has been on their 

involvement in cancer [277–279]. The identification of non-coding transcripts in 

cancerous tissues indicates that they have important functions, and our data could 

provide additional information about their role in healthy tissue or possible disease 

development as we identify their cell type-enriched expression profiles. For example, 

we identify the non-coding genes LINC01133 and FER1L4 as gastric mucous 

enriched, two non-coding genes that have been suggested to act as inhibitors of gastric 

cancer progression [280,281].  

In general, the greatest number of non-coding genes were identified in tissue 

specific cell types, such as gastric mucous cells in stomach (paper I) and enteric glial 
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cells in colon (paper II). The expression values of non-coding genes expressed by cell 

types unique to gastrointestinal tissues, e.g., gastric mucous cells (paper I) and 

epithelial cells (paper II) were generally higher (based on mean TPM values) than in 

other cell types. This likely reflects the proportion of each given cell type within the 

samples, in addition to individual gene regulation. Further, in gastric mucous cells 

(paper I) and epithelial cells (paper II) we identified cell type-enriched antisense 

transcripts corresponding to cell enriched protein coding genes, which could suggest 

a local regulation of gene transcription in these cell types [282], similar to previous 

descriptions in adipose tissue [118].  

The results presented were verified using the limited available non-coding 

scRNAseq data from tabula sapiens [191], which in paper I can only be used on a 

compartment basis (where cell types from all organs are broadly classified as 

endothelial, immune, stromal or epithelial in origin), as organ specific results are 

lacking, and in paper II can be used on 42% of the identified colon cell types. In both 

cases, our cell type-enriched classification corresponds well with the available data. 

 

5.2.3 Identification sex-specific cell type-enriched transcripts 

Despite reported differences in gastrointestinal function between males and 

females, such as gastric emptying [283], motility [284] and in both incidence and 

survival of gastric cancer [285,286], there is a lack of studies on the underlying 

differences in cell type gene expression between the sexes. 

As the large GTEx datasets used in papers I and II contained over hundred 

samples for each sex (male and female), we conducted a sex-split subset analysis in 

both stomach (paper I) and colon tissue (paper II). In concordance with our previous 

study [118], we show that, in both tissues, the expression values are comparable 

between the sexes in all cell types and only identify a small subset of male-enriched 

transcripts. Furthermore, two of the identified male-enriched genes were non-coding 

pseudogenes. While it has often been assumed that pseudogenes lack specific 

functions, there is a recent amount of growing evidence that support a key function of 

pseudogenes, in roles as antisense, interference or competing endogenous transcript 

[287–289]. Our results could indicate that there is an additional role of pseudogenes in 

sex-specific gene expression.  
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The presented results could be used to provide further information about the 

observed gastrointestinal differences between the sexes. However, the genes 

identified as male-enriched in either stomach or colon tissue are lacking in information 

about their specific function, especially in gastrointestinal tissues. Further studies on 

their specific function in combination with our sex-specific cell type-enriched 

classifications could provide useful insights to the differences between the sexes. 

 

5.2.4 Functional characterization of KANK3 

In paper IV we present the functional characterization of the uncharacterized, 

endothelial enriched protein KANK3. KANK3 has previously been identified in vascular 

endothelial cells [290,291], and our results further support the critical role of KANK3 in 

vascular function as well as a potential involvement in thrombosis regulation.  

KANK3 belongs to the KANK family, a protein family with four members in 

humans (KANK1-4), which are defined by their common and unique structure; a small 

N-terminal motif (“KN motif”), C-terminal coiled-coil domains and ankyrin repeats [292–

294]. The KANK protein family is well conserved throughout evolution and has been 

identified as involved in actin cytoskeletal organization[295–297]. KANK1-3 have all 

been described as potential tumor suppression targets that either regulate cell 

migration or cell proliferation of hepatocellular carcinoma and lung adenocarcinoma 

[298,299]. Contrasting to KANK1 and KANK2, which are well studied, KANK3 has 

remained completely undescribed in a vascular context in vertebrates. KANK3 has 

been identified in vascular endothelial cells in a zebrafish homologue, as well as in 

vascular and lymphatic endothelial cells in human tissues (lung, pancreas and testis) 

[290,291].  

Previous studies of the KANK protein family has suggested a role within actin 

cytoskeletal organization as focal adhesion proteins [295–297]. Focal adhesions are 

specialized protein structures that mediate cell-matrix interactions and have important 

role in several cellular functions such as migration, cell signaling and tissue 

development [300–303]. Further, live-cell microscopy studies of KANK3 knockdown 

ECs showed that KANK3 depletion results in an increased cell motility independent of 

cell proliferation. These results indicate an important role of KANK3 in addition to 

thrombosis regulation within modulating cellular migration. The results were further 

supported by immunohistochemistry studies were KANK3 was observed to 
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accumulate in cell-cell interaction sites. Additionally, shear stress studies resulted in 

an upregulation of KANK3, on both mRNA and protein level, indicating a potential role 

in anchoring the cell to the basal membrane. Furthermore, the shear stress studies 

show that KANK3 depletion leads to reduced expression of vimentin. Vimentin has 

important roles in several EC functions, such as cell migration, polarity and 

differentiation  [304–307], as well as a vital role in cell adhesion and EC sprouting 

[308].  

Our results show that, knockdown of KANK3 in ECs resulted in an upregulation 

of the prothrombotic tissue factor (TF/F3). These results indicate that loss of KANK3 

expression can cause a shift towards a prothrombotic state, thereby indicating an 

important role of KANK3 in the maintenance of the balance between the pro- and 

antithrombotic factors. These results are further supported by an enhancement of 

thrombin formation triggered by TF after KANK3 depletion. Thrombin is a crucial 

enzyme involved in the coagulation cascade, thus the accelerated thrombin formation 

as result of KANK3 depletion suggest a potential prothrombotic phenotype. 

Further studies are needed, such as 3D-angiogenesis assays or in vivo models, 

to fully elucidate the intricate function and precise molecular mechanisms of KANK3 

within the vasculature, including its precise localization and its potential role as a 

therapeutic target for thrombotic disorders. 
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6 Conclusion 

 

To shortly summarize the results of papers I-IV, in concordance with our 

previous studies, we have used the integrative correlation-based method on 

unfractionated bulk RNAseq data from multiple tissues to identify individual cell type 

enrichment signatures. Further application of functional assays on transcript with 

previously unidentified function can reveal important involvement in cell specific 

processes both on cell and tissue level. 

 

• In paper I we use the integrative correlation-based method to identify cell 

enriched transcriptomes of stomach tissue, successfully identifying 

transcriptomes of several epithelial cell subtypes. Further, we identified both 

protein-coding and non-coding cell type enriched genes, which were either 

supported by available protein-profiling or scRNAseq data. Lastly, we identified 

a small panel of male-enriched chief cell transcripts. 

• In paper II we use the integrative correlations-based method to identify cell 

enriched transcriptomes of sigmoid colon tissue, additionally we identify 

transcriptomes of two cell types constituting the enteric nervous system. We 

identify both protein-coding and non-coding genes as cell type-enriched, as well 

as a small panel of male-enriched genes.  

• In paper III, we extended the study to incorporate 15 different human tissues. In 

addition to identifying cell-type enriched genes for the constituent cell types for 

all included tissues, we identified gene enrichment signature profiles for cell 

types found in all or most tissue types (referred to as core cell types), including 

endothelial cells. 

• In paper IV, we show that the previously uncharacterized gene, KANK3, that we 

classified as endothelial-enriched in paper I-III, has an important function in 

endothelial cell specific functions such as coagulation and in cell migration. 

Additionally, we show that KANK3 is induced by shear stress and that KANK3 

depletion leads to subcellular redistribution of vimentin. 
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7 Final remarks and future perspectives 
 

The data and results presented in this thesis support the use of in silico methods 

to extract additional data, such as cell type-enriched transcriptomes, from previously 

published, large-scale, bulk RNAseq studies. We successfully identified cell type-

enriched transcriptomes of 15 human tissues, and in the future even more tissues can 

be incorporated.  

As mentioned, a limitation of deconvolution methods is the dependency of 

suitable reference transcripts for the constitutional cell types. However, the method is 

easily adjustable, and as new reference transcripts (that fulfill the criteria) are identified, 

more cell types can be included in the analysis. In paper I and II we analyzed two 

organs that are part of the gastrointestinal tract, in the future, this analysis could be 

expanded to include the additional gastrointestinal organs, such as the small intestine, 

to investigate the large-scale gastrointestinal transcriptome. Both stomach and colon, 

papers I-II, are well studied in the context of gastrointestinal cancer and inflammatory 

bowel disease, with bulk RNAseq data available. This data could be analyzed to 

identify disease specific cell type-enriched transcriptomes, using the integrative 

correlations-based method, which might aid in the disease treatment if a biomarker 

can be identified. In paper I-II, we identified multiple non-coding genes as enriched, 

these results could be expanded further if more data on non-coding genes become 

available. Further, paper III could be expanded to include non-coding genes, as well 

as additional tissues. The results presented in paper I-III could be used to select 

candidate genes for functional studies (in any of the analyzed cell types), highlighted 

by the results presented in paper IV. 

In paper IV, we presented the functional annotation of a previously 

uncharacterized, endothelial-enriched gene KANK3. While the data presented shows 

promising results supporting an important function of KANK3 in endothelial cells, 

several of the experiments need more replicates to strengthen the data. In the near 

future, such validating experiments should be carried out using multiple HUVEC 

donors. It would also be of interest to further investigate the function of KANK3 in 

coagulation by running a fibrin formation assay, which could show if KANK3 has an 

additional role in thrombosis formation by fibrin accumulation on the endothelial 

surface. Additional experiments could include further studies on KANK3 localization 

within ECs, as well as in EC-EC contact sites and during EC migration. 
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SUMMARY 

The identification of cell type-specific genes and their modification under different conditions is 

central to our understanding of human health and disease. The stomach, a hollow organ in the 

upper gastrointestinal tract, provides an acidic environment that contributes to microbial 

defence and facilitates the activity of secreted digestive enzymes to process food and nutrients 

into chyme. In contrast to other sections of the gastrointestinal tract, detailed descriptions of 

cell type gene enrichment profiles in the stomach are absent from the major single cell 

sequencing-based atlases. Here, we use an integrative correlation analysis method to predict 

human stomach cell type transcriptome signatures using unfractionated stomach RNAseq data 

from 359 individuals. We profile parietal, chief, gastric mucous, gastric enteroendocrine, 

mitotic, endothelial, fibroblast, macrophage, neutrophil, T-cell and plasma cells, identifying 

over 1600 cell type-enriched genes. We uncover the cell type expression profile of several 

non-coding genes strongly associated with the progression of gastric cancer and, using a sex-

based subset analysis, uncover a panel of male-only chief cell-enriched genes. This study 

provides a roadmap to further understand human stomach biology.   
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INTRODUCTION 

The gastrointestinal (GI) tract is a multiple organ system which can be divided into upper and 

lower parts, the physical properties and cellular characteristics of which reflect their different 

roles in digestion, absorption of nutrients, and excretion of waste products (de Santa Barbara, 

van den Brink and Roberts, 2003; Choi et al., 2014; Thompson, DeLaForest and Battle, 2018). 

The stomach, a hollow muscular organ in the upper GI tract, produces an array of acids and 

gastric enzymes, acting as a reservoir for the mechanical and chemical digestion of ingested 

food (Kim and Shivdasani, 2016). The constituent cell types of the stomach include parietal 

cells, chief cells, gastric mucous cells, gastric enteroendocrine cells, mitotic cells, endothelial 

cells, fibroblasts, and various immune cells  (Gremel et al., 2015; Uhlen et al., 2015). In contrast 

to lower sections of the GI tract, descriptions of the cellular transcriptional landscape in the 

stomach are lacking, with this organ absent from large scale single cell sequencing 

(scRNAseq) initiatives, such as Tabula Sapiens (Tabula Sapiens et al., 2022) and the Human 

Cell Atlas (Regev et al., 2017). Where scRNAseq has been used to profile gene expression in 

the adult stomach, studies have typically focused on specific cell types, such as the epithelia 

(Busslinger et al., 2021; Tsubosaka et al., 2022), or in pathological states such as gastric 

cancer (P. Zhang et al., 2019; Sathe et al., 2020; Wang et al., 2021; Kim et al., 2022). Whilst 

scRNAseq studies provide high resolution of individual cell (sub)type gene expression profiles, 

challenges remain, including artefactual modification of gene expression due to cell removal 

and processing (O’Flanagan et al., 2019; Denisenko et al., 2020; Massoni-Badosa et al., 2020), 

compromised read depth, and difficulties with data interpretation (Gawad, Koh and Quake, 

2016; Jiang et al., 2022). As a limited number of biological replicates are typically analysed, 

underestimation of biological variance can increase the likelihood of potential false discoveries 

(Squair et al., 2021; Denninger et al., 2022). 

Non-coding RNA is emerging as a novel, important class of molecules, involved in the 

maintenance of healthy stomach tissue, and the development and progression of gastric 

cancer (Gao et al., 2020; Razavi and Katanforosh, 2022), but to date there is no overall 

description of stomach cell type enriched non-coding RNAs. 
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Here, we analysed 359 bulk RNAseq human stomach samples to identify over 1600 genes 

with cell type-enriched expression, using our previously developed integrative correlation 

analysis (Butler et al., 2016; Dusart et al., 2019; Norreen-Thorsen et al., 2022). Gastric mucous 

cells had the highest number of predicted protein-coding and non-coding enriched genes and 

represented the primary site of expression of genes that were tissue enriched in stomach over 

other tissue types. Gastric enteroendocrine cells expressed a panel of non-coding genes that 

are also selectively expressed in pancreatic and intestinal endocrine cells, indicting a common 

function in these cell types. Several of the identified cell type enriched non-coding genes have 

previously been associated with the progression of gastric cancer, but until now the cell type 

site of expression had not been described. Sex subset analysis revealed a high global similarity 

in cell type transcriptomes between males and females, but a panel of chief cell enriched Y-

linked genes were identified. Data is available through the Human Protein Atlas (HPA) portal 

(www.proteinatlas.org/humanproteome/tissue+cell+type/stomach). 

http://www.proteinatlas.org/humanproteome/tissue+cell+type/stomach
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RESULTS 

Identification of cell type transcriptome profiles in stomach 

Cell type reference transcripts correlate across unfractionated RNAseq data 

To identify stomach cell type-enriched transcriptome profiles, we conducted  an analysis based 

on our previously developed method (Butler et al., 2016; Dusart et al., 2019; Norreen-Thorsen 

et al., 2022), using human stomach bulk RNAseq data (N=359) from Genotype-Tissue 

Expression (GTEx) portal V8 (https://gtexportal.org) (Consortium, 2015) (see Figure S1 for 

method overview). Each sample was unfractionated and thus contained a mix of cell types 

(Figure 1 A.i), which contribute differing proportions of transcripts subsequently measured by 

RNAseq (Figure 1 A.ii) (Figure S1 A). For each major constituent stomach cell type, candidate 

cell type specific genes (termed ´reference transcripts´ [Ref.T.]) were selected based on: (i) 

our in-house proteomic profiling of stomach tissue (Gremel et al., 2015; Uhlen et al., 2015), (ii) 

older ´none-omics´ studies (Hassan, Toor and Ahmad, 2010), (iii) scRNAseq data were 

available (Busslinger et al., 2021; Karlsson et al., 2021) or (iv) databases collated from multiple 

sources, e.g. Cell Marker (X. Zhang et al., 2019) and PanglaoDB (Franzen, Gan and 

Bjorkegren, 2019) (Figure 1 B and Figure S1 B). Three markers were selected for each cell 

type, based on the following criteria: (i) A high corr. (>0.85) between Ref.T. within each cell 

type panel (Figure 1 C and Table S1, Tab 1), indicating cell type co-expression: parietal cells 

(PAC) [ATP4B, MFSD4A, ATP4A mean corr. ± STD 0.94±0.013], chief cells (CC) [PGC, LIPF, 

AZGP1, 0.89±0.013], gastric enteroendocrine cells (GEEC) [ST18, INSM1, ARX, 0.89±0.021], 

gastric mucous cells (GMC) [LGALS4, VILL, CAPN8, 0.94±0.008], mitotic cells (MTC) 

[NCAPG, KIFC1, NCAPH, 0.93±0.009], endothelial cells (EC) [PECAM1, CDH5, ERG, 

0.89±0.013], fibroblasts (FB) [PCOLCE, CLEC11A, MMP2, 0.87±0.027], macrophages (MC) 

[C1QB, FCGR3A, ITGB2, 0.86±0.015], neutrophils (NP) [CXCR2, FCGR3B, CXCR1, 

0.86±0.009], T-cells (TC) [CD3E, CD2, CD3G, 0.9±0.019] and plasma cells (PC) [IGKC, 

JCHAIN, IGLC1, 0.97±0.009]. (ii) A low corr. between Ref.T. across the different cell type 

panels (Figure 1 C) (Table S1, Tab 1), indicating cell type specificity (mean inter-panel corr. ± 

https://gtexportal.org/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
https://panglaodb.se/
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STD 0.08 ± 0.14) and (iii) a normal distribution of Ref.T. expression across the samples (Figure 

S2 A).  
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Figure 1. Integrative co-expression analysis can resolve constituent cell type identities 

from unfractionated human stomach tissue RNAseq data. (A) RNAseq data for 359 

unfractionated human stomach samples were retrieved from GTEx V8. Each sample contained 

(i) mixed cell types, which contributed (ii) differing proportions of sequenced mRNA. (B) To 

profile cell type-enriched transcriptomes, constituent cell types were identified and candidate 

marker genes (´reference transcripts´ [Ref.T.]) for virtual tagging of each were selected, based 

on in house tissue protein profiling and/or existing literature and datasets. (C) Matrix of 

correlation coefficients between selected Ref.T. across the sample set. (D) Mean correlation 

coefficients of genes above designated thresholds for classification as cell-type enriched in 

stomach: (i) parietal cells [PC], (ii) chief cells [CC], (iii) gastric enteroendocrine cells [GEEC], 

(iv) gastric mucous cells [GMC], (v) mitotic cells [MTC], (vi) endothelial cells [EC], (vii) 

fibroblasts [FB], (viii) macrophages [MC], (ix) neutrophils [NP], (x) T-cells [TC], (xi) plasma cells 

[PC] with all Ref.T. panels. (E) Over-represented gene ontology terms among genes predicted 

to be: (i) endothelial cell, (ii) fibroblast or (iii) T-cell enriched. (F) Principal component analysis 

of correlation profiles of cell type enriched genes. See also Table S1 Tab 1 and 2 and Figure 

S1 for method overview
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Using reference transcript analysis to identify cell type-enriched genes  

Correlation coefficients (corr.) between each selected Ref.T. and all other sequenced 

transcripts (>56,000) were calculated across stomach RNAseq samples (Figure S1 C). The 

proportion of cell types represented in each sample varies, due to biological and sampling 

variability, but ratios should remain consistent between constitutively expressed cell-enriched 

genes. Thus, a high corr. of a given transcript with all Ref.T. in only one cell type panel is 

consistent with enrichment in the corresponding cell type. For each cell type, a list of enriched 

genes was generated (Figure 1 D.i-xi), with inclusion based on: (i) the gene having a mean 

corr. >0.50 with the Ref.T. panel representing the cell type (Figure S1 C.ii), and (ii) a differential 

correlation between this value and the maximum mean corr. with any other Ref.T. panel >0.15 

(Figure S1 D-E). This excluded genes that were potentially co-enriched in two or more cell 

types, as we previously described (Norreen-Thorsen et al., 2022) (all data in Table S1, Tab 2). 

For certain cell types, enriched genes were less well separated by corr. value that others, e.g., 

those most highly correlating with the fibroblast Ref.T. panel (Figure 1 D.vii) tended to show 

elevated corr. with the Ref.T. panel for endothelial cells, and vice versa (Figure 1 D.vi). 

However, all cell type enriched genes were well separated when the individual gene differential 

correlations vs. other Ref.T. panels were plotted (Figure S2 B) and gene ontology (GO) and 

reactome analysis (Ashburner et al., 2000; Gene Ontology, 2021) revealed over represented 

terms for these cell types were consistent with known functions e.g., for endothelial cells most 

significantly enriched terms included ́ vascular development´ and ́ angiogenesis´ (Figure 1 E.i), 

for fibroblasts ́ extracellular matrix organisation´ and ́ collagen fibril organization´ (Figure 1 E.ii) 

and for T-cells ´T-cell activation´ and ´immune response´ (Figure 1 E.iii) (Table S1, Tab 8, 9 

and 12). Principal component analysis of the corr. values of cell type-enriched genes 

(generated using (https://biit.cs.ut.ee/clustvis/) (Metsalu and Vilo, 2015) revealed the largest 

variance was between stomach specific cell types vs. stromal/vasculature related ones (Figure 

1 F). 

Stomach cell type enriched gene signatures 

The majority of stomach cell type enriched genes are protein coding 
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1694 genes were predicted to be cell type-enriched (Figure 2 A and Table S1, Tab 2). Gastric 

mucous cells, plasma cells and fibroblasts had the highest number of predicted enriched genes 

(n=517, 214 and 186 respectively) (Figure 2 A.i, ii and iii). Of the other cell types found in all, 

or most, tissue types, mitotic cells and macrophages had the most enriched genes (n=171 and 

158, respectively) (Figure 1 A.iv-v). Other stomach specialised cell types, parietal cells, chief 

cells and gastric enteroendocrine cells, had significantly fewer enriched genes (n=123, 103 

and 86, respectively) (Figure 2 A.vi, vii and ix), and T-cells and neutrophils had the fewest 

overall (n=24 and 20, respectively) (Figure 2 A.x and xi). In all cases, the majority of cell type 

enriched genes were classified as protein coding (Yates et al., 2020), with the exception of 

plasma cells, in which immunoglobulin (IG) gene was the most common classification (Figure 

2 A.ii). lncRNA were the most common type of non-coding cell type enriched transcript, with 

the exception of plasma cells, where immunoglobulin (IG) pseudogene was the most common 

non-coding classification (Figure 2 A.ii). 
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Figure 2. Integrative co-expression analysis of unfractionated RNAseq reveals enriched 

genes in human stomach cell types. (A) Total number and proportional representation of 

class for cell type enriched genes in: (i) gastric mucous cells, (ii) plasma cells, (iii) fibroblasts, 

(iv) mitotic cells, (v) macrophages, (vi) parietal cells, (vii) chief cells, (viii) endothelial cells, (ix) 

gastric enteroendocrine cells, (x) T-cells and (xi) neutrophils. (B) RNAseq data for 359 

unfractionated human stomach samples was subject to weighted correlation network analysis 

(WGCNA). (i) Coloured squares indicate cell type Ref.T. positions on resultant dendrogram. 

(ii) Coloured bars show distribution of protein coding genes classified as cell type-enriched 

across dendrogram groups. (C) Human stomach tissue profiling for proteins encoded by genes 

classified as: (i) gastric enteroendocrine cell, (ii) mitotic cell, (iii) parietal cell, (iv) chief cell or 

(v) gastric mucous cell enriched. (D) Over-represented gene ontology terms among genes 

predicted to be (i) gastric enteroendocrine cell, (ii) parietal cell or (iii) gastric mucous cell 

enriched. See also Table S1 Tab 2, 3, 5 and 6.
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Alternative analysis and protein profiling support cell-type classifications 

Unsupervised weighted network correlation analysis is consistent with Ref.T. analysis 

As our analysis is based on manually selected Ref.T. panels, cell-type classification is subject 

to an input bias. As a comparison, we subjected the same GTEx RNAseq dataset to a weighted 

network correlation analysis (WGCNA) (Langfelder and Horvath, 2008), an unbiased method 

that does not require any manual input or marker gene selection. WGNCA generates corr. 

coefficients between all transcripts and subsequently clusters them into related groups, based 

on expression similarity (Figure 2 B). In general, Ref.T. belonging to the same cell type panel 

were found in the same WCGNA cluster (Figure 2 B.i, coloured boxes represent Ref.T. 

locations), e.g., gastric enteroendocrine cells (cluster 58) or adjacent clusters on the same 

branch, e.g., gastric mucous cells (clusters 13 and 24) and macrophages (clusters 45 and 62) 

(Figure 2 B.i). Protein coding genes that we predicted to be cell type enriched were 

predominantly clustered into the same WGCNA group as the corresponding Ref.T., or into 

adjacent groups on the same branch, consistent with our classifications (Figure 2 B.ii). Most 

genes in the Ref.T. panels representing parietal and chief cells appeared in the same large 

group (cluster 3) (Figure 2 B.ii), as were the genes in the respective predicted enriched gene 

lists, despite clear separation in our Ref.T based method (Figure 1 C, D). Despite the lack of 

separation for the enriched gene signatures for parietal and chief cells by WGNCA, each 

contained several well described marker genes for the respective cell type, e.g., GIF, SLC26A7 

(parietal) and PGA4, SLC1A2 (chief cell). Indeed, we have previously shown that Ref.T. based 

analysis can have a higher sensitivity than WGNCA for cell type gene enrichment analysis 

(Dusart et al., 2019). Stomach tissue protein profiling revealed staining consistent with 

expression in the respective cell types for proteins encoded by genes predicted to be gastric 

enteroendocrine cell (Figure 2 C.i), mitotic cell (Figure 2 C.ii), parietal cell (Figure 2 C.iii), chief 

cell (Figure 2 C.iv) or gastric mucous cell (Figure 2 C.v) enriched. GO and reactome analysis 

(Ashburner et al., 2000; Gene Ontology, 2021) revealed over represented terms for predicted 

stomach specialised cell type enriched genes were consistent with known cell functions e.g., 

for gastric enteroendocrine cells ́ enteroendocrine cell differentiation´ (Figure 2 D.i), for parietal 
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cells ´inorganic ion transport across the plasma membrane´ and ´gastric acid secretion´  

(Figure 2 D.ii) and for gastric mucous cells ‘lipid metabolic processes´ (Figure 2 D.iii), (for all 

cell types see Table S1, Tab 3-13). 

Stomach cell type gene enrichment signatures 

Figure 3 shows up to the top 50 most enriched protein coding enriched genes for each cell 

type, ranked by highest corr. with the relevant Ref.T. panel (Figure 3 A.i-K.i), with differential 

corr. values and expression levels in the bulk RNAseq dataset (mean TPM).  Mean TPM levels 

were generally highest for genes predicted to be enriched in parietal cells (Figure 3 A.i), chief 

cells (Figure 3 B.i), gastric mucous cells (Figure 3 D.i), fibroblasts (Figure 3 G.i) and plasma 

cells (Figure 3 K.i), and lowest for those in mitotic cells (Figure 3 E.i), neutrophils (Figure 3 I.i) 

and T-cells (Figure 3 J.i). This likely reflects differing numbers of each given cell type with the 

samples, however, as a range of expression values are observed within each given cell type, 

there is likely also individual gene variation in factors such as regulation and transcript stability. 

The highest differential values, and thus relative uniqueness among the profiled cell types, was 

observed for mitotic cell enriched genes (Figure 3 E.i), most of which have well studied roles 

in the regulation of the cell cycle, such as TOP2A and BUB1B. For all other cell types, top 

enriched genes included both known cell type specific genes, together with those that have 

not been previously reported as such, e.g., PECAM1 and SHE were both predicted to be 

endothelial cell enriched (Figure 3 F.i); PECAM1 is a commonly used marker gene for this cell 

type, whilst there are no existing reports for the selective expression of SHE in this context. 

Tissue profiling for proteins encoded by representative cell type enriched genes showed 

expression consistent with our classifications (Figure 3 A.ii-K.ii).  
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Figure 3. Protein coding gene signatures of human stomach cell types. Cell type-enriched 

protein coding genes in: (A) parietal cells, (B) chief cells, (C) gastric enteroendocrine cells, (D) 

gastric mucous cells, (E) mitotic cells, (F) endothelial cells, (G) fibroblasts, (H) macrophages, 

(I) neutrophils (J) T-cells and (K) plasma cells, showing: (i) correlation coefficient with the cell 

type Ref.T. panel, differential correlation score (correlation with cell type Ref.T., panel minus 

max correlation with any other Ref.T. panel) and mean expression in bulk RNAseq. (ii) Human 

stomach tissue protein profiling for selected cell type enriched genes. See also Table S1 Tab 

2
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Ref.T. analysis can predict source of stomach enriched protein coding genes 

Genes with enriched expression in the human stomach vs. other tissue types can be identified 

by a comparative analysis of unfractionated tissue RNAseq data. We extracted the top 200 

human stomach-enriched genes from the Human Protein Atlas (HPA) (Uhlen et al., 2015) and 

GTEx project (Consortium, 2015), through the Harminozome database (Rouillard et al., 2016) 

(Figure 4). Of the 78 genes classified as stomach-enriched in both datasets, 46/78 (59.0%) 

were classified as cell type enriched in our analysis; 28/46 (61.0%) in gastric mucous cells, 

11/46 (24.0%) in parietal cells, 6/46 (13.0%) in chief cells, and 1/46 (2.2%) in gastric 

enteroendocrine cells (Figure 4 B.i and B.ii, respectively, large symbols). Of those not classified 

as cell type-enriched in our analysis (n=32), 11/32 (34.4%), only narrowly failed to reach one 

of the thresholds for classification as either parietal-, chief- or gastric mucous cell-enriched 

(Figure 4 B.i and B.ii, medium symbols). The majority of the remaining genes most highly 

correlated with Ref.T. panel representing one, or more, of the same cell types; parietal, chief 

or gastric mucous, but were excluded from the cell-type classifications due to shared 

enrichment. None of the stomach-enriched genes were predicted to be enriched in any cell 

type found across multiple tissue types, such as endothelial or immune cells, consistent with 

the lack of specificity of these cell type to the stomach. Thus, our analysis indicates that most 

stomach-tissue enriched genes are primarily expressed in gastric mucous, parietal or chief 

cells.  
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Figure 4. Gastric mucous cells, parietal cells and chief cells are the primary source of 

stomach tissue enriched genes. (A) The top 200 stomach enriched genes (vs. other tissue 

types) in RNAseq data from the GTEx Portal or Human Protein Atlas (HPA) were compared to 

identify genes common to both datasets (n=78). For each, the following was plotted: (B) (i) the 

mean correlation with each cell type Ref.T. panel, and (ii) the differential value vs. the next 

most highly correlating Ref.T. panel (dotted line indicates threshold for classification as cell 

type enriched). Enlarged circles represent genes with predicted cell type enrichment.
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Cell-type enriched non-coding genes in stomach 

A total of 252 non-coding genes were identified as cell-type enriched in the stomach (Figure 5 

A), the greatest number of which were in gastric mucous cells, plasma cells, or fibroblasts 

(n=100, 44 and 30, respectively). When the sample set was analysed by WGNCA (Figure 5 

B.i) non-coding genes that we predicted to be cell type enriched predominantly clustered into 

the same WGCNA group as the corresponding Ref.T., or into adjacent groups on the same 

branch (Figure 5 B.ii). Up to the top 50 non-coding enriched genes in gastric enteroendocrine 

cells (Figure 5 C.i), gastric mucous cells (Figure 5 D.i), endothelial cell (Figure 5 E.i), parietal 

cells (Figure 6 A.i), chief cells (Figure 6 B.i), plasma cells (Figure 6 C.i), and fibroblasts (Figure 

6 D.i), ranked by corr. with the relevant Ref.T panel, are displayed with differential corr. values 

vs. other profiled cell types, expression in the bulk RNAseq data (mean TMP) and transcript 

type. In all cell types, with the exception of plasma cells, where the most common type of 

enriched non-coding gene was IG pseudogene (Figure 6 C.i), long non-coding RNAs made up 

the majority of the predicted enriched genes. Generally, gastric mucous cell (Figure 5 D.i) and 

fibroblast (Figure 6 D.i) enriched non-coding genes were expressed at the highest levels in the 

stomach bulk RNAseq. This likely reflects the differing numbers of each given cell type within 

the samples, but the intra-cell type variation also indicates individual gene regulation.  

There is currently no existing dataset of non-coding enriched genes in stomach cell types that 

could be used to validate our predictions. However, we sourced scRNAseq data from the 

analysis of 24 tissue types in Tabula sapiens (Tabula Sapiens et al., 2022) (data for stomach 

was not available) that had been classified into endothelial, epithelial, immune and stromal cell 

functional compartments (for Tabula sapiens UMAP cell type classifications see Figure S3). 

We generated UMAP plots for each of these compartments to determine expression profiles 

for selected non-coding genes that we predicted to be cell type enriched. The predicted gastric 

enteroendocrine enriched genes MIR7-3HG and RP5-984P4.6 were expressed only in the 

epithelial cell compartment, specifically in the clusters annotated as intestinal enteroendocrine 

and pancreatic alpha and beta cells (Figure 5 C.ii and iii), consistent with a specialised role in 

endocrine cells, not only in the stomach, but also in the pancreas and other parts of the GI 
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tract. The predicted gastric mucous cell enriched genes CTD-2396E7.11 and RP11-27G14.4 

were widely expressed in the epithelial compartment, but not in the endothelial, immune, or 

stromal cell compartments (Figure 5 D.ii and iii). The predicted endothelial cell enriched genes 

GATA2-AS1 and AC007743.1 were expressed predominantly in the endothelial cell 

compartment (Figure 5 E.ii and iii), also consistent with our classifications. Genes predicted to 

be parietal cell enriched, LINC00671 and AC008268.1 (Figure 6 A.ii and iii), and chief cell 

enriched, RP11-526I8.2 and AZGP1P1 (Figure 6 B.ii and iii), were predominantly expressed 

in the epithelial compartment. The type of epithelial cell in which the genes were expressed 

varied, e.g., the chief cell enriched gene AZGP1P1 (Figure 6 B.ii) was expressed 

predominantly in luminal cells of the prostate and hepatocytes; one could speculate that this 

gene indicates a shared secretory function between these specific cell types, whilst RP11-

526I8.2 was more generally expressed in the epithelial compartment (Figure 6 B.iii) perhaps 

indicating a more general role. The predicted plasma cell enriched genes IGLV2-5 and IGLVI-

70 were expressed only in the immune cell compartment (Figure 6 C.ii and iii) in clusters 

annotated as either plasma cells or B-cells. The predicted fibroblast enriched genes 

LINC01140 and AC006007.1 were expressed predominantly in the stromal cell compartment 

(Figure 6 D.ii and iii), also consistent with our classifications. Thus, the Tabula sapiens 

scRNAseq data provides supportive evidence for our cell type classifications, despite the lack 

of stomach cell type analysis in this dataset. 

Of those non-coding genes that we classified as cell type enriched, 17 had relatively high 

expression in the bulk RNAseq stomach samples (mean TPM >10) and were most frequently 

predicted to be gastric mucous cell enriched (Figure 6 E). To determine the expression profile 

of these genes in different organ types, we sourced data from bulk RNAseq of other tissues in 

GTEx (Figure 6 F). The most highly expressed parietal cell enriched non-coding genes, 

LINC00982 and PP7080 (mean TPM 99 and 49, respectively) both had high relative 

expression in stomach tissue (Figure 6 F.i and ii), consistent with a specialised function in this 

organ. IGLC6, the most highly expressed non-coding transcript we predicted to be enriched in 

plasma cells was highly expressed in spleen and salivary gland; tissues that contain high 
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numbers of plasma cells (Figure 6 F.iii). The most highly expressed non-coding genes we 

predicted to be enriched in gastric mucous cells, FER1L4 and RP11-363E7.4, both had high 

relative expression in stomach and bladder (Figure 6 F.iv and v); one could speculate these 

genes have specific functions in the mucous cells found in these tissue types. HSPA7, the 

most highly expressed predicted fibroblast enriched gene had variable expression across 

tissue types (Figure 6 F.vi), consistent with the ubiquitous presence of this cell type across 

organs, whilst the chief cell enriched transcript, C9orf147, had high relative expression only in 

stomach tissue (Figure 6 F.vii). Thus, the most highly expressed non-coding genes predicted 

to be enriched in the stomach specialised cell types were detected at relatively high levels in 

stomach tissue (and in relatively few other tissue types), consistent with a specialised function 

here. Conversely, those predicted to be enriched in less specialised cell types, such as plasma 

cells, were more broadly expressed across tissue types, consistent with a common cell type 

function in multiple organs. All data for non-coding genes can be searched via the web portal 

https://cell-enrichment.shinyapps.io/noncoding_stomach/. 

https://cell-enrichment.shinyapps.io/noncoding_stomach/
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Figure 5. Non-coding gene signatures of human stomach cell types. (A) Heat map of non-coding 

genes predicted to be cell type enriched, showing differential score between mean correlation coefficient 

with the corresponding Ref.T. panel vs. highest mean correlation coefficient amongst the other Ref.T. 

panels. (B) RNAseq data for 359 unfractionated human stomach samples was subject to weighted 

correlation network analysis (WGCNA). (i) Coloured squares indicate cell type Ref.T. positions on resultant 

dendrogram.  (ii) Coloured bars show distribution of non-coding genes classified as cell type-enriched 

across dendrogram groups. Non-coding gene enrichment signatures for: (C) gastric enteroendocrine cells, 

(D) gastric mucous cells and (E) endothelial cells, detailing: (i) up to the top 50 cell type enriched non-

coding genes, showing correlation coefficients with the Ref.T. panel, differential scores (correlation with 

corresponding cell type Ref.T., panel minus max correlation with any other Ref.T. panel), mean expression 

in bulk RNAseq and transcript type. (ii and iii) scRNAseq data from analysis of epithelial, endothelial, 

immune or stromal cell compartments across 24 human tissues was sourced from Tabula Sapiens (Tabula 

Sapiens et al., 2022), and used to generate UMAP plots showing the expression profiles of example cell 

type enriched non-coding genes. The largest plot shows the compartment with the highest expression. 

See also Table S1 Tab 2 and Figure S3 (for all UMAP plot annotations).  
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Figure 6. Core non-coding gene signatures of human stomach cell types and tissue 

distribution patterns. Non-coding gene enrichment signatures for: (A) parietal cells, (B) chief 

cells, (C) plasma cells and (D) endothelial cells, detailing (i) up to the top 50 cell type enriched 

non-coding genes, showing correlation coefficients with the Ref.T. panel, differential scores 

(correlation with corresponding cell type Ref.T., panel minus max correlation with any other 

Ref.T. panel), mean expression in bulk RNAseq and gene type. (ii and iii) scRNAseq data from 

analysis of epithelial, endothelial, immune, or stromal cell compartments across 24 human 

tissues was sourced from Tabula Sapiens (Tabula Sapiens et al., 2022), and used to generate 

UMAP plots showing the expression profiles of example cell type enriched non-coding genes. 

The largest plot shows the compartment with the highest expression. (E) The top 50 most 

highly expressed cell type enriched non-coding genes in stomach bulk RNAseq. (F) 

Expression of genes classified as enriched in parietal cells: (i) LINC00982 and (ii) PP7080, 

plasma cells: (iii) IGLC6, gastric mucous cells: (vi) FER1L4 and (v) RP11-363E7.4, fibroblasts: 

(vi) HSPA7 and chief cells: (vii) C9orf147, in bulk RNAseq of different human organs. Mean 

TMP expression is annotated for selected organs on each plot. See also Table S1 Tab 2 and 

Figure S2 (for all UMAP plot annotations).  
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Comparison of predicted sex-specific stomach cell type enriched genes 

We performed a subset analysis of the stomach RNAseq dataset (male n=227, female n=132,), 

to identify sex-specific cell type enriched genes. Similar to the full dataset, intra-panel cell type 

Ref.T. correlated well in single-sex sample subsets (all >0.84) (Table S2, Tab 1, Table A and 

B). Cell type enriched genes were calculated as for the whole dataset. To compare gene 

enrichment profiles in males and females, the following was calculated for any gene that was 

classified as cell type enriched in either subset: (i) the ‘differential correlation score’, defined 

as the difference between the mean corr. coefficient with the cell type Ref.T, in the male and 

female sample subsets, (ii) the ‘enrichment ranking’, based on the mean corr. value with the 

Ref.T. panel (rank 1 = highest corr.). Cell profiles were mainly comparable between sexes, for 

both stomach specialised cell types (Figure 7 Ai-iv) and others (Figure S4 A-G) (genes 

enriched in both males and females represented by square symbols). For those genes 

classified as enriched only in males or females (represented by differently coloured triangle 

and circle symbols, respectively), most had differential corr. scores close to zero; indicating 

that they fell marginally below the designated threshold for classification as enriched in the 

other sex. A small number of distinct male-only enriched genes were identified in chief cells; 

ARSFP1, TBL1Y and RP11-115H13.1 (Figure 7 A.iv), all of which were Y-linked, with 

expression levels above background level only in male samples (Figure 7 Bi-iii). As described 

above, we sourced scRNAseq data from Tabula sapiens (Tabula Sapiens et al., 2022) for cells 

classified as endothelial, epithelial, immune or stromal (Figure S3). We generated UMAP plots 

(using cell data from male donors only) to show expression profiles of the male-only chief cell 

enriched genes. ARSFP1 was detected only at low levels in the epithelial compartment (Figure 

7 C.i), whilst TBL1Y (Figure 7 C.ii) and RP11-115H13.1 (Figure 7 C.iii) had strikingly similar 

expression profiles, with the highest levels in both cases detected in prostate epithelial cells. 

All 3 male-only chief cell enrichened genes had low/no expression in the endothelial, immune 

or stromal compartments (Figure 7 Ci-iii). To determine the broad expression profile of the 

most highly expressed non-coding enriched genes across organs (from male donors), we 

sourced data from GTEx (Figure 7 D). ARSFP1 had enhanced expression only in the stomach 
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and esophagus (Figure 7 D.i); both of which are tissue types not included in the Tabula sapiens 

dataset, consistent with the low detection observed there. TBL1Y and RP11-115H13.1 had 

similar expression profiles across tissue types, with enhanced expression in thyroid (which 

was also absent from the Tabula Sapiens dataset) followed by prostate; in keeping with the 

high expression observed in prostate epithelial cells in the scRNAseq (Figure 7 D.ii-iii). Thus, 

one could speculate that male-only chief cell enriched gene ARSFP1 has a stomach specific 

function, whilst TBL1Y and RP11-115H13.1 appear to be co-expressed also in cell types 

outside the stomach, suggesting a broader function in multiple cell types. 
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Figure 7. Identification of sex-specific cell-enriched genes in human stomach tissue. (A) 

Human stomach RNAseq data (n=359 individuals) was retrieved from GTEx V8 and divided 

into female (n=132) and male (n=227) subgroups before classification of cell type-enriched 

genes. For genes classified as: (i) parietal, (ii) gastric mucous, (iii) gastric enteroendocrine or 

(vi) chief cell enriched in either sex, the ´sex differential corr. score’ (difference between mean 

corr. with the Ref.T. panel in females vs. males) was plotted vs. ‘enrichment ranking’ (position 

in each respective enriched list, highest corr. = rank 1). On each plot, genes enriched in both 

females and males are represented by common-coloured square symbols, and genes 

classified as enriched only in females or males are represented by differently coloured circle 

and triangle symbols, respectively. (B) Expression in female or male samples for genes 

classified as male-only enriched in chief cells: (i) ARSFP1, (iii) TBL1Y and (iii) RP11-115H13.1. 

(C) scRNAseq data from analysis of epithelial, endothelial, immune or stromal cell 

compartments across human tissues from male donors was sourced from Tabula Sapiens 

(Tabula Sapiens et al., 2022), and used to generate UMAP plots showing the expression 

profiles of: (i) ARSFP1, (iii) TBL1Y and (iii) RP11-115H13.1. (D) Expression of: (i) ARSFP1, 

(iii) TBL1Y and (iii) RP11-115H13.1 in bulk RNAseq of different human organs from male 

donors. The largest plot shows the compartment with the highest expression. Mean expression 

is annotated for selected organs on each plot. See also Table S2 Tab 1, Figure S2 (for all 

UMAP plot annotations) and Figure S3.
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DISCUSSION 

Here, we present a genome wide cell type enriched transcriptome atlas for the human 

stomach, using our previously described method to resolve unfractionated tissue RNAseq data 

to the cell type level (Butler et al., 2016; Dusart et al., 2019; Norreen-Thorsen et al., 2022). Our 

method circumvents some challenges associated with scRNAseq analysis, including issues 

associated with cell isolation, material amplification (Shapiro, Biezuner and Linnarsson, 2013; 

Grün and van Oudenaarden, 2015; Gawad, Koh and Quake, 2016) and induction of expression 

artefacts, due to loss of tissue specific cues or processing (O’Flanagan et al., 2019). Our 

analysis incorporates a high number of biological replicates, reducing the impact of individual 

variation and allowing for well powered subgroup comparisons e.g., female vs. male. As data 

for gene enrichment signatures of stomach cell types are lacking in the existing literature, with 

this organ absent from large scale single cell sequencing (scRNAseq) initiatives, such as 

Tabula Sapiens (Tabula Sapiens et al., 2022) and the Human Cell Atlas (Regev et al., 2017) 

our study provides a useful resource, which can be searched on a gene-by-gene basis on the 

human protein atlas (www.proteinatlas.org/humanproteome/tissue+cell+type/stomach) or 

https://cell-enrichment.shinyapps.io/noncoding_stomach/, for protein coding and non-coding 

genes, respectively. 

Of the 11 cell types we profiled in the stomach, gastric mucous cells had the highest number 

of predicted enriched genes, which included those encoding for proteins with known cell type 

specific functions, such as in mucosal defence, e.g., CAPN8, CAPN9 (Hata et al., 2010), GKN1 

(Choi et al., 2013), MUC13 (Ja et al., 2020), TFF1 and TFF2 (Aihara, Engevik and Montrose, 

2017) and lipid metabolism, e.g., PLPP2 (Hooks, Ragan and Lynch, 1998), PPARG (Kang et 

al., 2015) and PLA2G10 (Hanasaki et al., 2002). In addition, several genes we identified have 

no reported role in this cell type, including FAM83E, CYP2S1 and PLAC8. 

Predicted gastric enteroendocrine enriched genes also included those with known cell type 

function, such as CAMK2B, which is involved in intracellular calcium signalling (Tsakmaki et 

al., 2020), and the neuroendocrine secretory protein CHGA (Goldspink, Reimann and Gribble, 

2018). Other predicted gastric enteroendocrine enriched genes had not been described in 

https://www.proteinatlas.org/humanproteome/tissue+cell+type/stomach
https://cell-enrichment.shinyapps.io/noncoding_stomach/
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gastric enteroendocrine cells previously, such as LHX5, SERPINA10 and KCNH6. LHX5 has 

mainly been studied in the context of neuronal development ( Zhao et al., 1999; Pillai et al., 

2007), but in the GTEx database the only tissue type, outside the brain, where LHX5 had 

elevated expression compared to others was the stomach (Consortium, 2015), thus, one could 

speculate that this gene also has a specific functional role here. SERPINA10 was previously 

identified as a biomarker for gastrointestinal neuroendocrine carcinoma (Leja et al., 2009), and 

KCNH6 has a role in the regulation of insulin secretion in the pancreas (J.-K. Yang et al., 2018); 

both consistent with our prediction that these genes have an endocrine cell enriched profile. 

Many genes we predicted to be parietal cell enriched were well known markers of this cell type, 

such as GIF (Alpers and Russell-Jones, 2013) and SLC26A7 (Petrovic et al., 2003). However, 

others had no reported cell type specific expression or function, such as ACSS1, a 

mitochondrial matrix protein functioning as a catalyst of acetyl-CoA synthesis (Schwer et al., 

2006) and MFSD4, a marker for hepatic metastasis in gastric cancer (Shimizu, Kanda and 

Kodera, 2018). Our classifications were supported by a scRNAseq study that showed elevated 

expression of ACSS1 and MFSD4 in parietal cells vs. other stomach epithelial cells (Busslinger 

et al., 2021). Other predicted enriched genes for which a function in parietal cells has not yet 

been described included SLC12A3, ETNPPL, FNDC10, TUBA3C, TRIM73, TRIM74 and 

CLCNKA. Chief cell enriched genes included BHLHA15, a known chief cell marker (Lennerz 

et al., 2010) and KIAA1324, which is required for chief cell secretory granule maturation (Cho, 

Park and Mills, 2022). Novel predicted chief cell enriched genes included the orphan receptor 

GPR150, a G-protein coupled receptor in which aberrant methylation has been linked to 

ovarian cancer ( Cai et al., 2007), MOGAT1, a monoacylglycerol acyltransferase that functions 

in the absorption of dietary fat in the intestine (Yen et al., 2002) and LIPK, previously identified 

in the epidermis with a function in lipid metabolism (Toulza et al., 2007).  

Whilst there is no existing database of non-coding gene enrichment profiles in the cell types of 

the stomach, and a lack of information regarding the function of any such genes in normal 

tissue, increasing evidence of the involvement of non-coding genes in the development of 

gastric cancer (Li et al., 2014; Gao et al., 2020; Ghafouri-Fard and Taheri, 2020) and 
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associated drug resistance (Wei et al., 2020) indicates that this transcript class has important 

functions in this tissue type. Of the stomach specialised cell types we profiled, gastric mucous 

cells had the highest number of predicted enriched non-coding genes, which included several 

antisense transcripts to corresponding gastric mucous cell enriched protein coding genes, 

such as SOX21-AS1 and TRIM31-AS1, suggesting a local regulation of gene transcription. 

Many gastric mucous cell enriched non-coding genes were expressed at relatively high levels, 

compared to other non-coding genes in the same or other cell types, including LINC01133, 

FER1L4, RP11-363E7.4 and CTD-2396E7.11. LINC01133 and the pseudogene FER1L4 are 

inhibitors of gastric cancer progression, with reduced expression associated with a more 

aggressive tumour phenotype (Xia et al., 2015; X.-Z. Yang et al., 2018). To date, there is a 

single publication on RP11-363E7.4, where a genome wide screen of gastric cancer samples 

identified it as a key regulator of disease progression, with higher expression associated with 

overall survival (Wang et al., 2018). All the aforementioned studies were based on analysis of 

bulk RNAseq cancer samples, and the cell type in which these genes primarily function in 

healthy tissue is not reported; our data strongly indicates that this site is the mucous cell 

compartment. CTD-2396E7.11 has not been described in the context of gastric cancer, but it 

was identified as one of four hub lncRNAs associated with reduced colon adenocarcinoma 

progression (Jiang, Tan and Zhang, 2019). As this tumour type also arises from the mucosa, 

on could speculate CTD-2396E7.11 has a similar expression profile in healthy colon tissue. 

LIN00982, the highest expressed of all classified non-coding genes, was enriched in parietal 

cells and had, similar to those discussed above been shown to have a role in the inhibition of 

gastric cancer progression (Zheng et al., 2021).   

Examples of non-coding genes we predicted to have gastric enteroendocrine cell enriched 

expression included MIR7-3HG and RP5-984P4.6. The selective expression of these genes in 

pancreatic and intestinal endocrine cells (Tabula Sapiens et al., 2022), is consistent with them 

having a conserved endocrine function. MIR7-3HG can act as an autophagy inhibitor (Capizzi 

et al., 2017), but there are no reports of its function in an endocrine context. RP5-984P4.6 is 

currently completely uncharacterised. Other gastric enteroendocrine cell enriched non-coding 
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genes included LHX5-AS1, an antisense transcript to the gastric enteroendocrine cell enriched 

corresponding protein coding gene.  

Despite reported differences in stomach function between males and females, such as in 

speed of gastric emptying (Datz, Christian and Moore, 1987), gastrointestinal motility (Al-

Shboul, 2016), incidence of gastric cancer (Lou et al., 2020) and in gastric cancer survival (Li 

et al., 2020), there are no studies of sex differences between stomach cell-type gene 

enrichment profiles. We found that global cell type gene enrichment signatures were similar 

between sexes, but we did identify 3 male-only chief cell enriched genes - ARSFP1, RP11-

115H13.1 and TBL1Y, all of which were Y-linked (Kirsch et al., 2004; Yan et al., 2005). In the 

GTEx database, the pseudogene ARSFP1 was most highly expressed in male stomach 

samples, compared to the other 53 tissue types profiled from males (Consortium, 2015), 

supportive of a currently unknown sex and tissue specific role, and consistent with our 

predicted enrichment in a stomach-specific cell type in males. Although it is often assumed 

that pseudogenes lack function, recent studies have shown that they can have key roles, 

functioning as antisense, interference or competing endogenous transcripts (Pink et al., 2011; 

Kovalenko and Patrushev, 2018; Cheetham, Faulkner and Dinger, 2020). RP11-115H13.1 was 

one of only eight lncRNAs identified as associated with a high-risk of gastric cancer (Zhao et 

al., 2022), but the dataset analysed in this study contained both male and female samples, 

meaning the prognostic value of RP11-115H13.1 in male patients was likely underestimated. 

To our knowledge, there are no existing reports of the potential cellular function of RP11-

115H13.1 or ARSFP1. TBL1Y has been reported as involved in syndromic hearing loss (Di 

Stazio et al., 2019) and cardiac differentiation (Meyfour et al., 2017), but studies of its function 

in the stomach are lacking. 

There are limitations in our study. We do not profile cell subtypes, such as those included 

under the umbrella term of ´gastric enteroendocrine cells´ including D-cells and G-cells, for 

which it was not possible to identify Ref.T. that fulfilled the required criteria. Our observations 

are consistent with these sub-cell types being typically defined by the expression of a limited 

number of specialised proteins (Sjölund et al., 1983; Engelstoft et al., 2013; Gribble and 
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Reimann, 2016), rather than large distinct gene signature panels. Gene expression in stomach 

can be modified by genetic or environmental factors, such as the individual variation in the 

gastrointestinal microbiome (Nichols and Davenport, 2021). Strongly regulated genes may 

therefore not correlate with the more constitutively expressed Ref.T. selected to represent the 

cell type in which they are primarily expressed, as variation across samples could be 

independent of cell type proportions. Thus, such genes could be false negatives in our 

analysis. Furthermore, we have used high thresholds for the classification of genes as cell 

type-enriched, which could lead to incorrect exclusion. For example, tissue profiling showed 

that proteins encoded by MUC4 and MUC5B are selectively expressed in gastric mucous cells 

(Uhlen et al., 2019), but they fall just below the threshold for classification as such in our 

analysis. In addition, exclusion of lowly expressed genes from the analysis many also result in 

false negative classifications for rarer cell types, for example PAX6, which controls endocrine 

cell differentiation (Beucher et al., 2012), and proglucagon (Hill, Asa and Drucker, 1999) and 

gastric inhibitory polypeptide (Fujita et al., 2008) production, was excluded from classification 

as a gastric enteroendocrine enriched gene only due to expression level below the designated 

cut off. However, in all cases the individual enrichment scores clearly indicate a cell-type 

enriched expression; thus, our classifications should be regarded as a guide, and the data 

should be considered on a gene-by-gene basis.  
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METHODS AND RESOURCES 

LEAD CONTACT  

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact: Dr. Lynn Marie Butler. Email: Lynn.butler@ki.se 

MATERIALS AVALIBILITY 

This study did not generate new unique reagents. 

DATA AND CODE AVAILABILITY 

• This paper analyses existing, publicly available data from the Genotype-Tissue

Expression(GTEx) project with accession number phs000424.v8.p2 (Consortium, 2015) and 

single cell RNAseq data from Tabula Sapiens (Tabula Sapiens et al., 2022) retrieved on 

2022/07/29. 

• All original code has been deposited at GitHub and is publicly available as of the date of

publication, link: https://github.com/PhilipDusart/cell-enrichment. 

• No additional information should be required to reanalyse the data reported in this paper,

but any necessary clarifications or queries can be directed towards the lead contact. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Bulk RNAseq data analysed in this study was obtained from the Genotype-Tissue Expression 

(GTEx) Project (gtexportal.org) (Consortium, 2015) accessed on 2021/04/26 (dbGaP 

Accession phs000424.v8.p2). Transcript types were categorised according to Biotype 

definitions in ENSEMBL release 102 (Yates et al., 2020). Human tissue protein profiling was 

performed in house as part of the Human Protein Atlas (HPA) project (Ponten, Jirstrom and 

Uhlen, 2008; Uhlen et al., 2015, 2017) (www.proteinatlas.org). Human stomach tissue samples 

were obtained from the Department of Pathology, Uppsala University Hospital, Uppsala, 

Sweden, as part of the Uppsala Biobank. Samples were handled in accordance with Swedish 

laws and regulations, with approval from the Uppsala Ethical Review Board (Uhlen et al., 

2015).  

mailto:Lynn.butler@ki.se
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METHOD DETAILS 

Tissue Profiling: Human tissue sections 

Stomach tissue sections were stained, as previously described (Ponten, Jirstrom and Uhlen, 

2008; Uhlen et al., 2015). Briefly, formalin fixed and paraffin embedded tissue samples were 

sectioned, de-paraffinised in xylene, hydrated in graded alcohols and blocked for endogenous 

peroxidase in 0.3% hydrogen peroxide diluted in 95% ethanol. For antigen retrieval, a 

Decloaking chamber® (Biocare Medical, CA) was used. Slides were boiled in Citrate buffer®, 

pH6 (Lab Vision, CA). Primary antibodies and a dextran polymer visualization system 

(UltraVision LP HRP polymer®, Lab Vision) were incubated for 30 min each at room 

temperature and slides were developed for 10 minutes using Diaminobenzidine (Lab Vision) 

as the chromogen. Slides were counterstained in Mayers hematoxylin (Histolab) and scanned 

using Scanscope XT (Aperio). Primary antibodies, source, target and identifier are as follows: 

Atlas Antibodies: ACSS1 (Cat#HPA043228, RRID:AB_2678372), ATP4A (Cat#HPA076684), 

ATP4B (Cat#HPA045400, RRID:AB_2679314), MFSD4A (Cat#055407), SH3GL2 

(Cat#HPA026685, RRID:AB_1856817), SLC9A3 (Cat#HPA036493, RRID:AB_10673353), 

TPCN2 (Cat#HPA027080, RRID:AB_10600917), CEBPA (Cat#HPA065037, 

RRID:AB_2685410), LIPF (Cat#HPA045930, RRID:AB_10959518), SPTBN2 

(Cat#HPA043529, RRID:AB_2678531), BHLHA15 (Cat#HPA047834, RRID:AB_2680172), 

KIAA1324 (Cat#HPA029869, RRID:AB_10794320), PGC (Cat#HPA031717, 

RRID:AB_10670130), CAMK2B (Cat#HPA053973, RRID:AB_2682328), SLC18A1 

(Cat#HPA063797, RRID:AB_2685125), MS4A8 (Cat#HPA007319, RRID:AB_1854138), 

NKX2-2 (Cat#HPA003468, RRID:AB_1079490), TFF2 (Cat#HPA036705, 

RRID:AB_2675263), VILL (Cat#HPA035675, RRID:AB_10671223), CTSE (Cat#HPA012940, 

RRID:AB_2668773), FER1L6 (Cat#HPA054117, RRID:AB_2682387), LGALS4 

(Cat#HPA031186, RRID:AB_2673778), PLAC8 (Cat#HPA040465, RRID:AB_10794875), 

CCNB1 (Cat#HPA061448, RRID:AB_2684522), DLGAP5 (Cat#HPA005546, 

RRID:AB_1078677), TPX2 (Cat#HPA005487, RRID:AB_1858223), PECAM1 

(Cat#HPA004690, RRID:AB_1078462), CD93 (Cat#HPA009300, RRID:AB_1846342), 
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MFAP2 (Cat#HPA007354, RRID:AB_1079365), MFAP4 (Cat#HPA054097, 

RRID:AB_2682378) EMILIN1 (Cat#HPA002822, RRID:AB_1078738), AIF1 (Cat#HPA049234, 

RRID:AB_2680685), ITGB2 (Cat#HPA016894, RRID:AB_1846257), CXCR2 

(Cat#HPA032017, RRID:AB_2674112), PADI4 (Cat#HPA017007, RRID:AB_1854921), 

S100A12 (Cat#HPA002881, RRID:AB_1848175), CD2 (Cat#HPA003883, 

RRID:AB_1846263), CD3E (Cat#HPA043955, RRID:AB_2678747), IGHA1 (Cat#HPA001217, 

RRID:AB_1079120), JCHAIN (Cat#HPA044132, RRID:AB_2678826) and MZB1 

(Cat#HPA043745, RRID:AB_10960359) from Santa Cruz Biotechnology: AZGP1 (Cat#sc-

13585, RRID:AB_667849), VWA5B2 (Atlas Antibodies Cat#HPA036823, 

RRID:AB_10672269), BIRC5 (Cat#sc-17779, RRID:AB_628302), CDC20 (Cat#sc-13162, 

RRID:AB_628089), S1PR1 (Cat#sc-48356, RRID:AB_2238920), FCGR3A (Cat#sc-20052, 

RRID:AB_626925) from Agilent: CD8A (Cat#M7103, RRID:AB_2075537) from Leica 

Biosystems: TOP2A (Cat#NCL-TOPOIIA, RRID:AB_564035), TFF1 (Cat#NCL-pS2, 

RRID:AB_563985) from Epitomics an AbCam company: CDK1 (Cat#1161-1, 

RRID:AB_344898) and from Roche: CHGA (Product name: 1199 021). 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Reference transcript-based correlation analysis and criteria for cell type enrichment  

This method was adapted and expanded from that previously developed to determine the 

cross-tissue pan-EC-enriched transcriptome (Butler et al., 2016) and human brain and adipose 

tissue cell-enriched genes (Dusart et al., 2019; Norreen-Thorsen et al., 2022). Pairwise 

Spearman correlation coefficients were calculated between reference transcripts selected as 

proxy markers (´Ref.T. panels´) for: parietal cells [ATP4B, MFSD4A, ATP4A], chief cells [PGC, 

LIPF, AZGP1], gastric enteroendocrine cells [ST18, INSM1, ARX], gastric mucous cells 

[LGALS4, VILL, CAPN8], mitotic cells [NCAPG, KIFC1, NCAPH], endothelial cells [PECAM1, 

CDH5, ERG], fibroblasts [PCOLCE, CLEC11A, MMP2], macrophages [C1QB, FCGR3A, 

ITGB2], neutrophils [CXCR2, FCGR3B, CXCR1], T-cells [CD3E, CD2, CD3G] and plasma 

cells [IGKC, JCHAIN, IGLC1] and all other sequenced transcripts. Correlation coefficients were 

calculated in R using the corr.test function from the psych package (v 1.8.4) and False 
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Discovery Rate (FDR) adjusted p-values (using Bonferroni correction) and raw p-values were 

calculated. Genes were classified as cell type enriched when the following criteria were fulfilled: 

(i) a mean correlation >0.50 (FDR <0.0001) with the Ref.T. panel representing that cell type 

and (ii) a minimum ´differential correlation´ between this value and the next highest mean 

correlation with any other Ref.T. panel (representing another cell type) >0.15 and (iii) TPM 

expression <0.1 in over 50% of samples. See Figure S1 for method overview.  

Weighted correlation network (WGCNA) analysis 

The R package WGCNA (Langfelder and Horvath, 2008) was used to perform co-expression 

network analysis for gene clustering, on log2 expression TPM values. The analysis was 

performed according to recommendations in the WGCNA manual. Transcripts with too many 

missing values were excluded using the goodSamplesGenes() function. The remaining genes 

were used to cluster the samples, and obvious outlier samples were excluded.  

Gene ontology and reactome analysis 

The Gene Ontology Consortium (Ashburner et al., 2000) and PANTHER classification 

resource (Mi et al., 2013, 2016) were used to identify over represented terms (biological 

processes) in each set of predicted cell type enriched genes from the GO ontology (release 

date 2022-10-13) or reactome (Version 77, release date 2021-10-01) databases. Plots of GO 

terms were created using REVIGO (Supek et al., 2011) where stated. 

Visualisation  

Circular graphs were constructed using the R package circlize (Gu et al., 2014). Principle 

component analysis plot was generated using https://biit.cs.ut.ee/clustvis/ (Metsalu and Vilo, 

2015). Some figure sections were created with BioRender.com. 

Additional datasets and analysis 

Single cell RNAseq data from Tabula Sapiens (Tabula Sapiens et al., 2022) was downloaded 

and UMAP plots created using the Seurat package in R (Hao et al., 2021). Tissue enriched 

genes were downloaded from the Human Protein Atlas (HPA) tissue atlas (Uhlen et al., 2015) 

or GTEx database (Consortium, 2015), as collated in the Harminozome database (Rouillard et 

al., 2016). 

https://biit.cs.ut.ee/clustvis/
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ADDITIONAL RESOURCES 

Analysed data for all protein coding genes is provided on the Human Protein Atlas website: 

(https://www.proteinatlas.org/humanproteome/tissue+cell+type/stomach). Data for non-coding 

genes is provided on https://cell-enrichment.shinyapps.io/noncoding_stomach/. The published 

article includes all datasets generated during this study (Tables S1 and S2).  

https://cell-enrichment.shinyapps.io/noncoding_stomach/
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SUPPLEMENTAL TABLE LEGENDS 

Table S1. Reference transcript selection and analysis criteria.  

(Tab 1): Correlation coefficient values were calculated between selected Ref.T. to represent 

constituent stomach cell types. (Tab 2): Correlation coefficient values were calculated between 

selected Ref.T. and all other sequenced transcripts in GTEx stomach mRNAseq data (Table 

A) and the mean differential vs. all Ref.T. panels (Table B). Genes classified as enriched in: 

(Tab 3) parietal cells, (Tab 4) chief cells, (Tab 5) gastric enteroendocrine cells, (Tab 6) gastric 

mucous cells, (Tab 7) mitotic cells, (Tab 8) endothelial cells, (Tab 9) fibroblasts, (Tab 10) 

macrophages, (Tab 11) neutrophils, (Tab 12) T-cells and (Tab 13) plasma cells were analysed 

to identify over-represented terms in the (Table A) gene ontology or (Table B). Related to all 

Figures. 

Table S2. Sex stratified subset analysis of cell-enriched genes in human stomach. (Tab 

1): Correlation coefficient values were calculated between selected Ref.T. to represent 

constituent stomach cell types in females (Table A) or males (Table B). (Tab 2) Correlation 

coefficient values were calculated between selected Ref.T. and all other sequenced transcripts 

in stomach mRNAseq data (GTEx), subdivided into (Table A) female or (Table B) male only 

sample sets. See key for column details. Related to Figure 7 and S4.  
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Figure S1. Overview of the analysis methodology. Related to all figures. RNAseq data for 

359 unfractionated human stomach samples were retrieved from GTEx V8. (A) Each 

sequenced sample contained mixed cell types, present in differing proportions. (B) Cell type 

marker genes (´reference transcripts´ [Ref.T.]) were selected, based on in house tissue protein 

profiling and/or existing literature and datasets, as a proxy for the cell proportion within each 

sample (e.g., ATP4B, ATP4A and MFSD4A for parietal cells [PAC]). (C) Spearman correlation 

coefficients (corr.) between each selected Ref.T. and all other sequenced transcripts (>56,000) 

were calculated across samples and classified as: (i) not correlated, or (ii) correlated (corr. 

>0.50, p-value <0.00001). (D) This process was repeated for Ref.T. representing all cell types, 

and results integrated to identify genes that (E) correlated predominantly with only one cell 

type Ref.T panel (´differential corr.´ to next highest >0.15), which were classified as cell type 

enriched e.g., (i) CLIC6 and (ii) PXMP2, or those that (F) did not selectively correlate with one 

cell type Ref.T panel, e.g., (i) GPRC5C and (ii) EEPD1. 
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Figure S2. Expression distribution and correlations between human stomach cell type 

reference transcripts; Related to Figure 1 and Table S1, Tab 1. (A) Expression of Ref.T 

selected to represent: (i) parietal cells, (ii) chief cells, (iii) gastric enteroendocrine cells, (iv) 

gastric mucous cells, (v) mitotic cells, (vi) endothelial cells, (vii) fibroblasts, (viii) macrophages, 

(ix) neutrophils, (x) T-cells and (xi) plasma cells. (B) Minimal differential correlations between 

mean correlation coefficients with corresponding Ref.T. panel for genes above designated 

thresholds for classification as cell type enriched in: (i) parietal cells, (ii) chief cells, (iii) gastric 

enteroendocrine cells, (iv) gastric mucous cells, (v) mitotic cells, (vi) endothelial cells, (vii) 

fibroblasts, (viii) macrophages, (ix) neutrophils, (x) T-cells and (xi) plasma cells, and the mean 

correlation coefficients with all other Ref.T. panels. 
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Figure S3. Single cell RNAseq (scRNAseq) annotations; Related to Figure 5, 6 and 7. 

scRNAseq data was sourced from Tabula Sapiens (Tabula Sapiens et al., 2022). UMAP plots 

showing original annotations of cell clusters designated as: (A) endothelial, (B) epithelial, (C) 

stromal or (D) immune. 
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Figure S4. Identification of sex-specific cell type enriched genes in human stomach; 

Related to Figure 7. Human stomach RNAseq data (n=359 individuals) was retrieved from 

GTEx V8 and divided into female (n=132) and male (n=227) subgroups before classification 

of cell type-enriched genes. For genes classified as: (A) mitotic cell, (B) endothelial cell, (C) 

fibroblast, (D) macrophage, (E) neutrophil, (F) T-cell and (G) plasma cell enriched, in either 

female or male subsets, the ´sex differential correlation score’ (difference between mean 

correlation with the Ref.T panel in females vs. males) was plotted vs. ‘enrichment ranking’ 

(position in each respective enriched list, highest correlation = rank 1). See also Table S2, 

Tab 1. On each plot, genes enriched in both females and males are represented by 

common-coloured square symbols, and genes classified as enriched only in females or 

males are represented by differently coloured circle and triangle symbols, respectively. See 

also Table S2, Tab 1.  
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SUMMARY 

 The identification of cell type-specific genes and their modification under different conditions 

is central to our understanding of human health and disease. The colon, a tubular organ in the 

lower gastrointestinal tract, absorbs water and electrolytes, produces and absorbs vitamins, 

and forms and propels feces towards the rectum. In contrast to other sections of the 

gastrointestinal tract, descriptions of cell type gene enrichment profiles in the colon tend to be 

lacking from the major single cell sequencing-based atlases. Here, we use an integrative 

correlation analysis method to predict human sigmoid colon cell type transcriptome signatures 

using unfractionated colon RNAseq data from 373 individuals. We profile epithelial, enteric 

neuron, enteric glial, mitotic, endothelial, smooth muscle, fibroblast, macrophage, neutrophil, 

basophil, T-cell and plasma cells, identifying more than 3000 cell type-enriched transcripts. We 

uncover the cell type expression profile of several non-coding genes associated with colorectal 

cancer. Using a sex-based subset analysis, we uncover a small panel of male-only enriched 

genes. This study contributes to further the understanding of the biology of the human colon.  



3 

INTRODUCTION 

The colon is a part of the multiple organ system that constitutes the gastrointestinal (GI) tract. 

The GI tract can be divided into upper and lower sections that have various functions, such as 

the absorption of nutrients, digestion and reabsorption of water (Choi et al. 2014; de Santa 

Barbara, van den Brink, and Roberts 2003; Thompson, DeLaForest, and Battle 2018; Kim and 

Pritts 2017), reflected by the characteristics of the constituent cell types. GI tract epithelium 

predominantly consists of two functionally different cell types, absorptive and secretory, the 

specific types and relative abundance of which depend on the location within the system. 

These cell types constitute the gastrointestinal epithelial lining, forming a selective permeable 

barrier, preventing unwanted agents from entering the body while allowing nutrients to pass 

though (Laukoetter, Nava, and Nusrat 2008). The most abundant epithelial cell types in colon 

are colonocytes and goblet cells (Noah, Donahue, and Shroyer 2011; May and Kaestner 2010), 

while the entire GI tract has an extensive underlying stromal network including endothelial 

cells, smooth muscle cells and macrophages.  

Characterisation of human organs, and their cell-type specific gene expression profiles, is a 

cornerstone in the understanding of their biological processes and involvement in disease 

development; a basis for both the Human Protein Atlas (Uhlén et al. 2015) and Human Cell 

Atlas (Regev et al. 2017). The Genotype-tissue expression (GTEx) project provides RNAseq 

data from unfractionated human normal and disease tissue (Consortium 2015). Single-cell 

RNA sequencing (scRNAseq) technology has made it possible to sequence individual cells, 

allowing for much finer resolution of gene expression within tissues, but practical and technical 

challenges exist, such as requirement for fresh tissue, sequencing depth, financial constraints 

and data interpretation (Gawad, Koh, and Quake 2016; Shapiro, Biezuner, and Linnarsson 

2013; Grün and van Oudenaarden 2015). Additionally, artifacts due to sample isolation and 

processing can be problematic (O’Flanagan et al. 2019). Fragile cell types, such as neurons, 

are difficult to analyse using standard scRNAseq protocols and instead require nuclear 

sequencing to avoid aberrant transcription caused by heating or sample digestion (Lacar et al. 

2016; Lake et al. 2016). Further, due to the limited number of biological replicates typically 
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analysed with scRNAseq, there is a risk of false discoveries due to underestimation of 

biological variance (Squair et al. 2021; Denninger et al. 2022). 

The human colon has been studied extensively in the context of colorectal cancer, the third 

most common cancer type worldwide (Keum and Giovannucci 2019). Most studies have 

focused on individual cell types involved in colorectal cancer, such as: endothelial cells (Lu et 

al. 2013; Hong et al. 2009; Teranishi et al. 2007; Ishigami et al. 1998), T-cells (Di et al. 2020) 

and macrophages (Bailey et al. 2007; J.-C. Kang et al. 2010; Erreni, Mantovani, and Allavena 

2011), or specific tissue regions such as sites of metastases (Leung et al. 2017; Yunbin Zhang 

et al. 2020) and mucosa (Díez-Obrero et al. 2021) as well as genomic alterations (Bian et al. 

2018). Bulk sequencing studies of colorectal cancer have identified genetic and genomic 

alterations (Han et al. 2013; Yaeger et al. 2018; Pira et al. 2020), however these studies do 

not identify cell type specific changes. scRNAseq studies on colon have focused on the 

epithelium (Wang et al. 2020; Burclaff et al. 2022), macrophages (Domanska et al. 2022), 

neuron subtypes in colon (Hockley et al. 2019), changes in gene expression during 

inflammatory bowel disease (Smillie et al. 2019; Serigado et al. 2022; Kong et al. 2023; Kanke 

et al. 2022) and tumour profiles (Dalerba et al. 2011; Huipeng Li et al. 2017; Zhou, Guo, and 

Wang 2022).  

Here, we analysed unfractionated RNAseq data from 373 human sigmoid colon samples to 

identify over 3000 cell type enriched genes, using our previously described integrative 

correlation analysis method (Norreen-Thorsen et al. 2022; Butler et al. 2016; Dusart et al. 

2019). Enteric glial cells had the highest number of predicted protein-coding and non-coding 

enriched transcripts. We identified a high global similarity in cell type profiles between male 

and female samples, as well as a small panel of male-only cell type enriched genes. A number 

of non-coding transcripts with predicted cell type enrichment have been previoulsy associated 

with cancer progression. 
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RESULTS 

Identification of cell type transcriptome profiles in sigmoid colon 

Cell type reference transcripts correlate across unfractionated colon RNAseq data 

Identification of colon cell type-enriched transcriptome profiles was performed using a method 

based on our previous work (Butler et al. 2016; Dusart et al. 2019; Norreen-Thorsen et al. 

2022). Briefly, bulk RNAseq data from unfractionated sigmoid colon tissue (n=373 samples) 

was acquired from the Genotype-Tissue Expression (GTEx) portal V8 (https://gtexportal.org) 

(Consortium 2015) (Figure 1A). A list of candidate ‘virtual markers’ were sourced for each cell 

type based on: (i) in-house protein profiling (Gremel et al. 2015; Uhlen et al. 2015), (ii) single-

cell sequencing data (Karlsson et al. 2021) and (iii) collated databases, e.g. Cell Marker (X. 

Zhang et al. 2019) and PanglaoDB (Franzen, Gan, and Bjorkegren 2019) (Figure 1B). We then 

selected a panel of three established cell-type specific markers as ‘reference transcripts’ 

(Ref.T.) for each major constituent cell type (Figure 1C). The panels were chosen based on 

the following criteria: (i) a high mean correlation within each cell type panel (indicating cell type 

co-expression) (Figure 1C and Figure S1A), (ii) a low correlation between Ref.T. across the 

different cell type panels (indicating cell type specificity) (Figure 1C) and (iii) a normal 

distribution of Ref.T. expression across the samples (Figure S1). The calculated mean 

correlations and standard deviations for each Ref.T. panel were; Epithelial cells (EP) [EPCAM, 

SLC44A4, PHGR1 0.88±0.005], enteric neuron cells (ENC) [INA, RTN1, SCG3 0.95±0.005], 

enteric glial cells (EGC) [SLC35F1, NRXN1, L1CAM 0.93±0.009], mitotic cells (MTC) [HMMR, 

TOP2A, RMM2 0.74±0.01], endothelial cells (EC) [ESAM, CDH5, MMRN2 0.92±0.005], 

smooth muscle cells (SMC) [ACTG2, TAGLN, TPM1 0.81±0.054], fibroblasts (FB) [FBLN1, 

DCN, TNXB 0.79±0.054], macrophages (MC) [C1QB, CD68, ITGB2 0.82±0.034], neutrophils 

(NP) [S100A8, AQP9, FCAR 0.73±0.007], basophils (BP) [CPA3, TPSAB1, SIGLEC6 

0.89±0.043], T-cells (TC) [CD2, CD6, CD3E 0.82±0.032] and plasma cells (PC) [JCHAIN, 

IGKC, IGHA1 0.9±0.029] (Table S1). 

https://panglaodb.se/
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Figure 1.  Resolving constituent cell type identities from unfractionated sigmoid colon 

tissue RNAseq data using integrative co-expression analysis.  (A) bulk RNAseq data from 

373 sigmoid colon tissue samples were retrieved from GTEx V8. Each tissue sample contained 

a mixture of the constituent cell types and contributed differing proportions of mRNA. (B) 

Candidate marker genes (‘reference transcripts [Ref.T.]) were identified for each cell type, 

based on in house tissue protein profiling and available datasets. (C) Matrix of correlation 

coefficients between the selected Ref.T. across the sample set. (D) Mean correlation 

coefficients of genes above designated thresholds for classification as cell-type enriched, with 

dot plots showing enriched gene classifications and associated protein profiling in (i) epithelial 

cells [EP], (ii) intestinal endocrine cells [IEC], (iii) Enteric glial cells [EGC], (iv) Mitotic cells 

[MTC], (v) Endothelial cells [EC], (vi) smooth muscle cell [SMC], (vii) Fibroblasts [FB], (viii) 

Macrophages [MC], (ix) Neutrophils [NP], (x) Basophil [BP], (xi) T-cells [TC] and (xii) plasma 

cells [PC]. Scale bar 50 µm. 
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Reference transcript analysis to identify colon cell type-enriched genes  

We performed a full reference transcript-based analysis on the colon RNAseq data to produce 

correlation values between each selected Ref.T. and all other sequenced transcripts within the 

GTEx data (n=56,200). Inter-sample cell type proportion varies, but the ratio between 

transcripts in the same cell type should be consistent, therefore a correlation coefficient with a 

high mean value with the Ref.T. panels for a specific cell type should indicate enrichment of 

the gene(s) in that cell type. A list of enriched genes was generated for each cell type (Figure 

1D i-xii, top, Table S1, Tab 2) based on the following enrichment criteria: (i) the gene should 

have a mean corr. >0.5 with the cell-type Ref.T. panel  – indicated by a dashed horizontal line 

(Figure 1D) and (ii) the differential between this mean corr. value and the maximum mean corr. 

value with any other Ref.T. panel should be >0.15. This excluded genes that were potentially 

co-enriched in two or more cell types, as we previously described (Norreen-Thorsen et al. 

2022).  

Colon cell type enriched gene signatures 

A total of 3105 transcripts were predicted to be cell type-enriched in colon cell types. The 

individual cell types with the highest number of enriched genes were found in tissue specific 

cell types: epithelial cells (n=282), enteric neuron cells (n=320) and enteric glial cells (n=1542). 

The fewest enriched genes were found in neutrophils (n=69), fibroblasts (n=42) and basophils 

(n=34) (Figure 1D). In almost all cell-types the majority of enriched genes were protein-coding, 

with the exception of plasma cells in which immunoglobulin (IG) genes was most common 

(Figure 1D xii, middle) (Yates et al. 2020). Amongst the non-coding enriched genes, lncRNA 

was the most common classification, except in plasma cells where IG pseudogene was the 

most common (Figure 1D xii, middle). Protein profiling of selected proteins expressed by cell 

type-enriched transcripts showed consistent staining with cell type classification (Figure 1D, 

bottom). 
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Alternative analysis method and protein profiling support cell type-enriched 

classifications 

Colon cell type enrichment signatures 

We extracted up to the top 50 most enriched protein coding transcripts for each cell type, i.e., 

those with the highest correlation value with the corresponding Ref.T. panel, and plotted 

circular graphs of the mean corr. value, differential corr. value and expression level (mean 

TPM) in the bulk RNAseq dataset. Mitotic cell-enriched genes (Figure 2A i) had comparatively 

low TPM expression values, in comparison with epithelial cell (Figure 2B i), endothelial cell 

(Figure 2E i) and smooth muscle cell-enriched genes (Figure 2D i). Gene ontology analysis of 

the predicted cell type enriched genes (Ashburner et al. 2000; Gene Ontology 2021)(Table S1, 

Tab 3-14) revealed over represented terms consistent with known cell functions. For example, 

analysis of the mitotic-enriched genes resulted in GO terms consistent with cell cycle function 

(Figure 2A ii) such as: ‘mitotic cell cycle process’ (FDR 1.78x10-46), ‘mitotic nuclear division’ 

(FDR 9.38x10-33)  and ‘nuclear division’ (FDR 1.25x10-38) (Figure 2A ii), for epithelial cell genes 

most significantly enriched terms included ´epithelial cell differentiation´ (FDR 1.10x10-11), 

‘epithelium development’ (FDR 2.87x10-10)  and ‘epithelial cell development’ (FDR 8.33x10-8) 

(Figure 2B ii), and GO terms for endothelial cell genes were vasculature related: ‘angiogenesis’ 

(FDR 5.35x10-21), ‘vasculature development’ (FDR 9.18x10-20) and ‘blood vessel development’ 

(FDR 1.30x10-19) (Figure 2C ii) and for smooth muscle cells most significantly enriched terms 

included ‘actin filament-based process’ (FDR 4.45x10-20), ‘cytoskeleton organization’ (FDR 

1.18x10-18) and ‘muscle structure development’ (FDR 1.54x10-10) (Figure 2D ii). Protein 

profiling showing staining consistent with the respective cell type enrichment predictions in 

mitotic cells (Figure 2A iii), epithelial cells (Figure 2B iii), endothelial cells (Figure 2C iii) and 

smooth muscle cells (Figure 2D iii). 

Immune cell enriched genes (Figure 3 A-E) showed high expression variability, with T-cell 

enriched genes having the lowest (Figure 3D i) and plasma cell enriched genes having the 

highest TPM expression values (Figure 3E i). Indeed, within all cell types, the range of 
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expression values varies, reflecting individual gene variations in regulation and stability. GO 

analysis revealed over represented terms for predicted colon immune cell type enriched genes 

were also consistent with known cell functions e.g., for macrophages ´defence response´(FDR 

2.30x10-29) and ´immune response’ (FDR 1.50x10-29) (Figure 3A ii), for neutrophils ´leukocyte 

chemotaxis´(FDR 1.68x10-11) and ´neutrophil chemotaxis’ (FDR 2.09x10-9) (Figure 3B ii), for 

basophils ‘angiotensin maturation´(FDR 1.79x10-7) and ‘regulation of leukocyte activation’ 

(FDR 7.22x10-7) (Figure 3C ii), for T-cell ´lymphocyte activation’ (FDR 8.69x10-39) and ´T-cell 

activation´(FDR 2.00x10-38) (Figure 3D ii), for plasma cells ´adaptive immune response’ (FDR 

1.45x10-50) and ´immunoglobulin production´(FDR 2.94x10-45) (Figure 3 E ii). Protein profiling 

of the different immune cell types showed staining consistent with predicted enrichment 

profiles in macrophages (Figure 3A iii), neutrophils (Figure 3B iii), basophils (Figure 3C iii), T-

cells (Figure 3D iii), plasma cells (Figure 3E iii).  
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Figure 2. Protein coding gene signatures of human sigmoid colon cell types. Protein 

coding gene enrichment signatures of human sigmoid colon samples for: (A) mitotic cells, (B) 

epithelial cells, (C) endothelial cells and (D) smooth muscle cells with plots of (i) top 50 

enriched protein-coding transcripts showing the correlation coefficient with the cell type Ref.T., 

differential correlation value and mean expression in bulk RNAseq, (ii) over-represented gene 

ontology terms among genes predicted to be cell type-enriched and (iii) human colon tissue 

profiling for proteins encoded by genes classified as cell type-enriched. Scale bar 50 µm. (E) 

RNAseq data for 373 unfractionated human sigmoid colon samples were subjected to 

weighted correlation network analysis (WGCNA). Colored circles around clusters indicate 

corresponding cell type Ref.T. positions on dendrogram. The colored bars show distribution of 

transcripts predicted to be cell type-enriched across the dendrogram clusters. 
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Figure 3. Protein coding gene signatures of human sigmoid colon immune cell types. 

Cell type-enriched protein coding transcripts in: (A) macrophage, (B) neutrophil, (C) basophil, 

(D) T-cell, (E) plasma cell and (F) fibroblast with plots of (i) top 50 enriched protein-coding 

transcripts showing the correlation coefficient with the cell type Ref.T., differential correlation 

value and mean expression in bulk RNAseq, (ii) over-represented gene ontology terms among 

genes predicted to be cell type-enriched and (iii) human colon tissue profiling for proteins 

encoded by genes classified as cell type-enriched. Scale bar 50 µm. 
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Unsupervised weighted network correlation analysis of colon (WGCNA) 

As the Ref.T. analysis is based on manual selection of Ref.T. panels it can be subject to input 

bias. To determine the reliability of our results we subjected the same GTEx colon RNAseq 

dataset to a different analysis method – weighted correlation network analysis (WGCNA) 

(Langfelder and Horvath 2008), a method that can compute relationships between genes with 

similar correlations, without manual input of target reference genes. WGCNA generates 

correlation values between all transcripts and then clusters similar transcripts together, based 

on expression similarity. WGCNA analysis of the colon RNAseq data resulted in 104 distinct 

clusters (Figure 2E), and the genes that we had selected as Ref.T. for specific cell types 

consistently found in the same cluster, e.g., mitotic cell Ref.T.s HMMR, TOP2A and RMM2 in 

cluster 66 and endothelial cell Ref.T.s ESAM, CDH5 and MMRN2 in cluster 14. The majority 

of genes identified as cell type enriched in our analysis were clustered into the same, or related 

groups in the WGNCA (Figure 2E).  

Identification of an enteric glial cell-enriched transcriptome profile 

Enteric glial cells (EGCs) are a key component of the enteric nervous system (ENS), with 

potential roles in neuron survival, immune system function, and the development of several 

immunological disorders, such as inflammatory bowel and celiac disease (Liu and Yang 2022). 

Enteric glial cells had a large number of predicted cell type enriched protein-coding transcripts 

(n=904) and non-coding (n=638) transcripts. We extracted the top 50 most enriched protein 

coding and non-coding transcripts, as ranked by correlation value with the corresponding 

Ref.T. panel, and plotted mean corr. value, differential corr. value and expression level (mean 

TPM) in the bulk RNAseq dataset (Figure 4A). To compare the expression of these enteric 

glial cell enriched genes with expression levels in different human organs, we sourced GTEx 

bulk RNAseq expression data across multiple tissues (Figure 4B). Among the top enteric glial 

cell enriched protein-coding genes were SORCS1, COL28A1 and SHISA9, all of which had 

elevated expression in colon, or other gastrointestinal organs vs. other tissue types (Figure 4B 

i-iii), consistent with a gastrointestinal-specific function. Additionally, SHISA9 showed elevated 

expression in brain tissue (Figure 4B i-ii), indicating that this gene could have a general glial 



16 
 

cell function, beyond the gastrointestinal tract. Protein-coding and non-coding enriched enteric 

glial transcripts were analysed by gene ontology analysis (Ashburner et al. 2000; Gene 

Ontology 2021) (Figure 4C). The analysis revealed top enriched GO terms consistent with 

enteric glial cell functions such as: ´neurogenesis’ (FDR 1.10x10-9), ´generation of neurons´ 

(FDR 5.34x10-9) and ´cell morphogenesis involved in neuron differentiation’ (FDR 1.20x10-8). 

Protein profiling of selected enteric glial cell-enriched transcripts showed consistent cell-type 

staining in colon tissue (Figure 4D). Several of the non-coding transcripts also showed elevated 

expression in colon tissue (both sigmoid and transverse) compared to other tissues (Figure 4E 

i, ii, v, vi), consistent with a specialised function in this organ. Additionally, several transcripts 

showed elevated expression in brain regions (Figure 4E ii-vi), consistent with the neuronal 

maintenance function of enteric glial cells. Furthermore, some transcripts showed elevated 

expression in multiple organs (Figure 4E iv), which could indicate a broader function. 
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Figure 4: Gene enrichment signatures for human sigmoid colon enteric glial cells. (A) 

Protein-coding (i) and non-coding (ii) gene enrichment signatures for enteric glial cells showing 

the correlation coefficient with the Ref.T. panel, differential score, mean expression value in 

bulk RNAseq and additionally in (ii) the non-coding transcript type. (B) Expression of protein-

coding genes classified as enteric glial-enriched in bulk RNAseq in different human organs (i) 

SORCS1 (ii) COL25A1 and (iii) SHISHA9. (C) over-represented gene ontology terms among 

genes predicted to be cell type-enriched. (D) Human colon protein profiling of transcripts 

predicted to be cell-type enriched. Scale bar 50 µm. (E) Expression of non-coding genes 

classified as enteric glial-enriched (i) FOXD3-AS1, (ii) UG0898H09, (iii) CTD-2001J20.1, (iv) 

TPT1-AS1, (v) LINC01505 and (v) LINC00403. 
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Identification of enteric neuron cell-enriched transcriptome profile 

Enteric neuron cells (ENC) constitute the elaborate network of neuron cells within the enteric 

nervous system (ENS) that, together with EGC, facilitate communication within the 

gastrointestinal tract (Spencer and Hu 2020; Schneider, Wright, and Heuckeroth 2019). We 

extracted the top 50 most enriched protein-coding transcripts from the 306 protein coding 

genes we defined as enriched within ENCs, and plotted mean corr. value, differential corr. 

value and expression level (mean TPM) (Figure 5A i). ENC classifications were supported by 

protein profiling in colon tissue (Figure 5A ii). Gene ontology analysis of the complete list of 

protein-coding and non-coding enriched ENC transcripts (Ashburner et al. 2000; Gene 

Ontology 2021) (Figure 5A iii) revealed top enriched GO terms consistent with ENC function 

such as: ´trans-synaptic signaling´ (FDR 2.82x10-38), neuron development’ (FDR 6.24x10-21) 

and ‘cell-cell signaling’ (FDR 1.93x10-28). Of the non-coding genes that were predicted to be 

ENC-enriched (n=14) (Figure 5B i), the majority were classified as lncRNA (n=10).  

Numerous ENC enriched protein coding (Figure 5A iv) and non-coding (Figure 5B ii) genes 

were elevated in brain tissues, compared to other tissue types, consistent with neuronal 

functions.  
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Figure 5: Enrichment signatures for human sigmoid colon enteric neuron cells. (A) 

Protein-coding (i) gene enrichment signatures for enteric neuron cells showing the correlation 

coefficient with the Ref.T. panel, differential score, mean expression value in bulk RNAseq, (ii) 

human colon protein profiling of transcripts predicted to be enteric neuron cell enriched, (iii) 

shows plots over-represented gene ontology terms among genes predicted to be cell type-

enriched. (iv) Expression of protein-coding genes classified as enteric neuron enriched in 

various human organs ELAVL4, VAT1L, UCHL1, SYP, SNAP91 and PHOX2B. (B) (ii) gene 

enrichment signatures for transcripts classified as non-coding in enteric neuron cells showing 

the correlation coefficient with the Ref.T. panel, differential score, mean expression value in 

bulk RNAseq as well as non-coding transcript-type. (ii) Expression of non-coding genes 

classified as enteric neuron-enriched in bulk RNAseq in different human organs LINC00682, 

LINC00599, DGCR5 and LINC01561. 
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Cell-type enriched non-coding transcripts 

In addition to the non-coding transcripts predicted to be enriched in EGC (n=638) and ENC 

(n=14) (Table S1, Tab 2), a further 68 were classified as cell-type enriched in the other cell 

types (Table S1, Tab 2), including epithelial cells (n=16) (Figure 6A i), endothelial cells (n=15) 

(Figure 6B i), T-cells (n=11) (Figure 6C i), basophils (n=8) (Figure 6D i) and plasma cells (n=1) 

(Figure 6E i). No non-coding transcripts were enriched in mitotic cells or fibroblasts. Expression 

of cell enriched non-coding transcripts was generally highest in epithelial cells (Figure 6A). 

Unlike protein-coding transcripts, it is not possible to verify cell type expression profile of non-

coding transcripts with protein profiling. As an alternative,  we used scRNAseq data from 

Tabula Sapiens (Tabula Sapiens et al. 2022) generated from  large intestine. The Tabula 

Sapiens dataset lacked several cell types that we profiled, but verification of five cell types was 

possible (Figure 6). We generated UMAP plots for the Tabula Sapiens large intestine dataset 

to compare the cell expression profile of representative non-coding transcripts from each cell 

type present in both datasets (see Figure S2 for cell culture annotations). Non-coding epithelial 

cell enriched transcripts RP11-465B22.8 and RP11-395B7.2 (Figure 6A ii and iii), endothelial 

cell transcripts SENCR and GATA2-AS1 (Figure 6B ii and iii), T-cell enriched transcripts 

LINC00861 and RP11-326C3.2 (Figure 6C ii and iii), basophil enriched transcripts LINC01835 

and RP11-354E11.2 (Figure 6D ii and iii), and the plasma cell enriched transcript IGHGP 

(Figure 6D ii), all showed enrichment within corresponding cell type clusters in the Tabula 

Sapiens single cell data. Thus, the Tabula sapiens scRNAseq data provides supportive 

evidence for our non-coding cell type classifications. 
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Figure 6: Non-coding gene signatures of human sigmoid colon cell types. Non-coding 

gene enrichment signatures for (A) epithelial cell, (B) endothelial cell, (C) T-cell, (D) Basophil 

and (E) plasma cell showing: (i) up to the top 50 cell type-enriched non-coding transcripts 

ranked by highest mean correlation to Ref.T., showing correlation coefficients with the Ref.T. 

panel, differential score (correlation with corresponding cell type Ref.T. minus maximum 

correlation with any other Ref.T. panel), mean expression value in bulk RNAseq and the 

transcript type. (ii and iii) scRNAseq data from analysis of the large intestine was sourced from 

Tabula Sapiens and used to generate UMAP plots showing the expression profiles of cell type-

enriched non-coding genes. See figure SX for all UMAP plot annotations. 
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Sex-subset comparison 

We performed a sex subset analysis of the sigmoid colon RNAseq dataset from GTEx (male 

n=240, female n=133). Male and female data subsets were analysed separately and 

enrichment profiles for each cell type calculated as for the whole dataset (Table S2). To 

compare gene enrichment profiles in males and females, the following was calculated for any 

gene that was classified as cell type enriched in either subset: (i) the ‘differential correlation 

score’, defined as the difference between the mean corr. coefficient with the cell type Ref.T, in 

the male and female sample subsets, (ii) the ‘enrichment ranking’, based on the mean corr. 

value with the Ref.T. panel (rank 1 = highest corr.). Generally, the cell type gene enrichment 

profiles were largely comparable between the sexes (Figure 7A and Figure S3, transcripts 

enriched in both male and female are represented by square symbols). Genes that were 

classified as only enriched in males or females (differently coloured circle or triangle symbols), 

mostly had a differential corr. score close to zero; indicating that they only fell slightly below 

the enrichment threshold in the other sex.  

One distinct male-only enteric neuron enriched gene was identified, RP4-555D20.4 (Figure 7B 

i), a transcript with a higher mean expression in males samples, compared to female ones 

(Figure 7B ii). RP4-555D20.4 had elevated mean expression in multiple tissues, notably brain 

and thyroid, compared to other tissue types, potentially indicating a broader function beyond 

the colon. We also identified one male-only T-cell enriched gene BCORP1 (Figure 7C i), a Y-

chromosome gene with expression levels above background level only in male samples 

(Figure 7C ii). BCORP1 had enhanced expression in colon tissue, and other gastrointestinal 

tissues such as small intestine and oesophagus, compared to other tissue types (Figure 7C 
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iii), indicating a potential sex-linked gastrointestinal-specific T-cell function. 
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Figure 7. Identification of sex-specific cell type-enriched transcripts in human sigmoid 

colon tissue. (A) Human colon RNAseq data was retrieved from GTEx and divided into female 

(n=133) and male (n=240) subgroups identification of sex-specific cell type-enriched 

transcripts. For transcripts classified as (i) epithelial, (ii) enteric glial, (iii) mitotic, (iv) 

macrophage, (v) neutrophil and (vi) plasma cell enriched the ‘sex differential corr. score’ was 

plotted vs. ‘enrichment ranking’ was plotted. Transcripts classified as enriched in both sexes 

are represented by square symbols and transcripts that are classified as enriched in only male 

or female are represented by circle or triangle symbols, respectively. The sex-subset analysis 

for (B) Intestinal endocrine cell and (C) T-cell revealed male-enriched expression profiles (i). 

(iii) Expression in female or male samples for transcripts identified as male-only enriched and

(iv) expression of male-enriched genes in bulk RNAseq of different human organs from male

and female donors. 
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DISCUSSION 

Here, we present a genome wide cell type enriched transcriptome atlas for the human sigmoid 

colon. We have previously demonstrated that using the reference transcript analysis method 

can be used to identify cell-enriched transcripts from unfractionated RNAseq data (Dusart et 

al. 2019; Norreen-Thorsen et al. 2022; Butler et al. 2016). Here we use this approach to identify 

several cell-specific protein coding and non-coding transcriptomes in the human colon. Data 

is available on the human protein atlas online resource, which can be searched on a gene-by-

gene basis (https://www.proteinatlas.org/humanproteome/tissue+cell+type/colon). 

Using our approach has some advantages and limitations compared to other types of 

transcriptome profiling, for example single cell sequencing (scRNAseq). scRNAseq has some 

challenges involving efficient cell isolation and material amplification (Gawad, Koh, and Quake 

2016; Shapiro, Biezuner, and Linnarsson 2013; Grün and van Oudenaarden 2015). Our 

reference transcript-based method circumvents these issues by not requiring isolation of single 

cells from tissue to identify cell specific transcriptome profiles. Additionally, by not removing 

the cells of interest from the tissue we also avoid changing the acute gene expression due to 

loss of tissue specific cues. Sample processing of live cells in scRNAseq can also alter the 

transcriptome of individual cells (O’Flanagan et al. 2019), and therefore needs to be tightly 

controlled, and usually uses cells from only a handful of individuals. Our method extracts 

information from readily available bulk RNAseq, with a possibility to process hundreds of 

individual samples. By incorporating a larger number of biological replicates, it also enables 

the subgroup comparison between sexes and organs. 

Of the 12 cell types profiled, epithelial cells were one of the cell types with a high number with 

enriched genes, likely constituting a number of epithelial cell subtypes present in colon tissue. 

These enriched genes included proteins with known cell type specific functions, such as in 

mucosal defense MUC13, MUC4, MUC17 (Sheng et al. 2013; Grondin et al. 2020), lipid 

metabolism FABP1 and LIPH (Jin et al. 2002; Rodriguez Sawicki et al. 2017), structural 

integrity KRT18, KRT19, KRT20 (Coulombe and Omary 2002) and transcription factors CDX1 

and CDX2 (Eda et al. 2002; Grainger, Hryniuk, and Lohnes 2013; Silberg et al. 2000). We also 

https://www.proteinatlas.org/humanproteome/tissue+cell+type/colon
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identified genes with previously unknown functions in epithelial cells such as: PRR15, a low 

molecular weight nuclear protein previously associated with gastrointestinal tumors (Meunier 

et al. 2011). PRR15 has previously shown increased expression in colon tissue (D.-H. Yu et 

al. 2013) and loss of PRR15 mRNA in animal models causes embryonic lethality (Purcell et al. 

2009). We also identified PRR15L as epithelial cell enriched, a protein with unknown functions 

in epithelial cells but previously associated specifically with sigmoid colon cancer (Mizuguchi 

et al. 2019) and gastric cancer (Wei et al. 2021). Additionally, GPA33 , a cell-surface 

differentiation protein (Heath et al. 1997) was classified as epithelial cell enriched. The specific 

function of GPA33 is unknown, but it has been linked to cell-cell adhesion (Frey et al. 2008) 

and is expressed in intestinal mucosa and in more than 95% of colorectal cancer tumors 

(GarinChesa et al. 1996). 

Predicted enteric neuron cell enriched genes also included transcripts with known cell type 

functions, such as hormone production and maturation (SCG5, SCGN and CHGB) (Busslinger 

et al. 2021), bile acid transport (SLC10A4) (Claro da Silva, Polli, and Swaan 2013), amino acid 

transport (SLC7A14) (Fotiadis, Kanai, and Palacín 2013), insulin secretion (PRPRN and 

PTPRN2) (Atari et al. 2019) and neuronal proteins (TUBB2B, PHOX2B and RET) (Elmentaite 

et al. 2021). Novel enteric neuron cell genes identified included GABRG2 and SLC6A17, 

previously identified as differentially expressed hub genes in breast cancer (Yuanyuan Zhang, 

Yang, and Jiao 2022), cell adhesion-related gene ASTN1 (Tang et al. 2018) and genes related 

to colorectal cancer GNG3 and UCHL1 (Okochi-Takada et al. 2006; Y. Li et al. 2022). 

Several genes we predicted to be enteric glial cell enriched were well known markers for this 

cell type, such as S100B and PLP1 (Boesmans et al. 2022) and GAS7 and SPARC (Elmentaite 

et al. 2021). However, others had no reported cell type specific function. Our classifications 

were supported by showing elevated expression in both colon and brain tissue, compared to 

other organs available on the GTEx portal V8 (https://gtexportal.org) (Consortium 2015), as 

well as protein profiling. 

Currently there is no known database of non-coding gene enrichment profiles in the cell types 

of the human sigmoid colon, in addition to a general lack of information regarding the function 
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of any such genes in healthy tissue, while there is increasing amounts of evidence of the 

involvement of non-coding transcripts in the development of cancer (P.-F. Li et al. 2014; Gao 

et al. 2020; Ghafouri-Fard and Taheri 2020) indicating that these non-coding transcript classes 

have important functions. 

SORCS1, a non-coding gene that we predicted to be enteric glial cell enriched, has been 

associated with gastrointestinal cancerous malignancies (Hua et al. 2017; Rademakers et al. 

2021; Willnow, Petersen, and Nykjaer 2008). SORCS1 functions as a NRXN-binding protein 

and is a critical regulator of trafficking neuronal receptors (Ribeiro et al. 2019; Savas et al. 

2015) and has been identified in murine brain glial cells (Nielsen et al. 2008). Enteric glial 

enriched TPT1-AS1 has been associated with colorectal cancer (CRC) progression where the 

expression is upregulated in cancerous tissue and further associated with a poor prognosis, 

functional analysis of TPT1-AS1 suggest a pro-angiogenic and metastatic role (Yiyun Zhang 

et al. 2020). FOXD3-AS1 has been implicated in the involvement of several cancer types (Z.-

H. Chen et al. 2016; X. Chen et al. 2019; Guan et al. 2019; Ji et al. 2020; Yang et al. 2021) in 

addition to CRC where it has been linked to tumour growth (Q. Wu et al. 2019). FOXD3-AS1 

has previously been identified in Müller glial cells (Rochet et al. 2019). Other genes we 

identified as enteric glial cell enriched include COL28A1, which has previously been identified 

in satellite glial cells (Chu et al. 2023; Mapps et al. 2022), a cell type which surrounds the cell 

body of peripheral neuron cells, and SHISA9, which codes for an AMPA receptor auxiliary 

subunit that modifies AMPA receptor activity (Farrow et al. 2015; Khodosevich et al. 2014). 

Of the profiled cell types, epithelial cells and enteric glial cells had the highest number of 

predicted non-coding enriched genes. Several of the epithelial cell non-coding enriched 

transcripts included antisense transcripts corresponding to epithelial cell enriched protein 

coding genes, such as SATB2-AS1, VIPR1-AS1 and TRIM31-AS1, suggesting local gene 

regulation. Several of the smooth muscle cell enriched non-coding transcripts with higher TPM 

values had previously been mentioned in the context of cancer, and especially in relation to 

CRC. LINC01278 has been shown to increase CRC progression (Xi, Ye, and Wang 2020) and 

MBNL1-AS1 is downregulated during CRC but is involved in invasion, migration and 
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proliferation of cancer stem cells (K. Zhu et al. 2020). Additionally, AF001548.6 has been 

identified as downregulated in stomach adenocarcinoma (Q. Li et al. 2020) and RP11-92C4.6 

was identified as a potential candidate for putative cancer driver mutation across whole cancer 

genomes (Rheinbay et al. 2017). Epithelial cell enriched LINC00261 has numerous reports of 

abnormal expression in several human malignancies, where it mainly functions as a tumour 

suppressor regulating cellular functions such as apoptosis, proliferation and motility (H.-F. 

Zhang, Li, and Han 2018; Shi et al. 2019; Sha et al. 2017; B. Zhang, Li, and Sun 2018; Y. Yu 

et al. 2017; Yan et al. 2019; M. Zhang et al. 2021). LINC00261 has also been shown to be 

important for maintaining a pro-epithelial state, which is associated with a favourable disease 

outcome, in pancreatic adenocarcinoma (Dorn et al. 2020). Additional reports establish 

LINC00261 as an epithelial cell marker in lung (Dhamija et al. 2019). CDKN2B-AS1 has been 

reported in several cancerous malignancies in addition to CRC (Ma et al. 2021; Dasgupta et 

al. 2020; L. Zhu et al. 2019; Huang et al. 2018), it has also been reported in glaucoma (Burdon 

et al. 2011; Pasquale et al. 2013) and atherosclerosis (Ou et al. 2020; Haocheng Li et al. 2019). 

Additionally, CDKN2B-AS1 has shown involvement in gastrointestinal diseases such as 

inflammatory bowel disease, specifically in ulcerative colitis (Tian et al. 2020; Rankin et al. 

2019), where the expression of CDKN2B-AS1 was downregulated and negatively correlated 

with the level of inflammatory cytokines. 

BCORP1 was identified as T-cell enriched in male colon tissue, and was previously identified 

as T-cell enriched in male visceral adipose tissue (Norreen-Thorsen et al. 2022). 

Overexpression of the Y-linked BCORP1 has been reported during the differentiation of 

embryonic stem cells to cardiomyocytes (Meyfour et al. 2017), there are also reports that 

indicate that loss of chromosome Y in leukocytes, and CD4+ T-cells, is involved in an increased 

risk of diseases and cancer in males (Dumanski et al. 2021). The X-linked counterpart of 

BCORP1, BCOR (encoding for a BCL6 corepressor), has been identified as a potential tumour 

suppressor in T-cell linked malignancies (Tanaka et al. 2017; Dobashi et al. 2016; J. H. Kang 

et al. 2021). We also identified RP4-555D20.4 as a male-enriched enteric neuron cell 

transcript. RP4-555D20.4 is a long non-coding RNA (LncRNA) with little previous information 
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other than reports of downregulation in breast cancer cell lines after SIRT7 knockdown (K.-L. 

Chen et al. 2017). 

There are some limitations to our method; there might be incorrect classification of transcripts, 

especially between cell-types that are closely related or expressed at similar ratios across 

samples or with genes that are regulated by environmental factors. In the case for the sigmoid 

colon we were unable to identify transcriptomes for the epithelial subtypes, such as 

colonocytes and goblet cells. This could be due to the tissue sample processing, as there was 

extreme inconsistency with the mucous layer being removed before sequencing in many 

samples, which can be seen in a large portion of the epithelial cell enriched genes having large 

percentages of samples with TPM <0.1, with large standard deviations that were not seen in 

most non-epithelial cell types. This prevented identification of suitable Ref.T panels that fulfilled 

the required criteria for rarer epithelial cell subtype-enriched transcriptome identification, and 

so we used a more general epithelial cell definition. 
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METHODS AND RESOURCES 

LEAD CONTACT  

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact: Dr. Lynn Marie Butler. Email: Lynn.butler@ki.se 

MATERIALS AVALIBILITY 

This study did not generate new unique reagents. 

DATA AND CODE AVAILABILITY 

• This paper analyses existing, publicly available data from the Genotype-Tissue 

Expression (GTEx) project with accession number phs000424.v8.p2 (Consortium 

2015) and single cell RNAseq data from Tabula Sapiens (Tabula Sapiens et al. 2022) 

retrieved on 2022/07/29. 

• All original code has been deposited at GitHub and is publicly available as of the date 

of publication, link: https://github.com/PhilipDusart/cell-enrichment. 

• Any additional information required to reanalyse the data reported in this paper is 

available from the lead contact upon request. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Bulk RNAseq data analysed in this study was obtained from the Genotype-Tissue Expression 

(GTEx) Project (gtexportal.org) (Consortium 2015) accessed on 2021/04/26 (dbGaP 

Accession phs000424.v8.p2). Transcript types were categorised according to Biotype 

definitions in ENSEMBL release 102 (Yates et al. 2020). Human tissue protein profiling was 

performed in house as part of the Human Protein Atlas (HPA) project (Ponten, Jirstrom, and 

Uhlen 2008; Uhlen et al. 2015; 2017) (www.proteinatlas.org). Human colon tissue samples 

were obtained from the Department of Pathology, Uppsala University Hospital, Uppsala, 

Sweden, as part of the Uppsala Biobank. Samples were handled in accordance with Swedish 

laws and regulations, with approval from the Uppsala Ethical Review Board (Uhlen et al., 

2015).  

mailto:Lynn.butler@ki.se
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METHOD DETAILS 

Tissue Profiling: Human tissue sections 

Colon tissue sections were stained, as previously described (Ponten, Jirstrom, and Uhlen 

2008; Uhlen et al. 2015). Briefly, formalin fixed and paraffin embedded tissue samples were 

sectioned, de-paraffinised in xylene, hydrated in graded alcohols and blocked for endogenous 

peroxidase in 0.3% hydrogen peroxide diluted in 95% ethanol. For antigen retrieval, a 

Decloaking chamber® (Biocare Medical, CA) was used. Slides were boiled in Citrate buffer®, 

pH6 (Lab Vision, CA). Primary antibodies and a dextran polymer visualization system 

(UltraVision LP HRP polymer®, Lab Vision) were incubated for 30 min each at room 

temperature and slides were developed for 10 minutes using Diaminobenzidine (Lab Vision) 

as the chromogen. Slides were counterstained in Mayers hematoxylin (Histolab) and scanned 

using Scanscope XT (Aperio). Primary antibodies, source, target and identifier are as follows: 

Atlas Antibodies: LGALS4 (Cat#HPA031184, RRID:AB_2673776), CHGB (Cat#HPA012602, 

RRID:AB_1846706), CADPS (Cat#HPA059328, RRID:AB_2683982), ALCAM 

(Cat#HPA010926, RRID:AB_1078449), PLP1 (Cat#HPA004128, RRID:AB_1079635), ANLN 

(Cat#HPA050556, RRID:AB_2681175), CCNB1 (Cat#HPA061448, RRID:AB_2684522), 

ADGRL4 (Cat#HPA025229, RRID:AB_10602493), CD93 (Cat#HPA012368, 

RRID:AB_1846341), PDIA5 (Cat#HPA030355, RRID:AB_10602200), PRKD2 

(Cat#HPA021490, RRID:AB_1855708), MYLK (Cat#HPA031677, RRID:AB_10794617), 

CNN1 (Cat#HPA014263, RRID:AB_1847039), TAGLN (Cat#HPA019467, 

RRID:AB_1857245), FXYD2 (Cat#HPA068838, RRID:AB_2686047), FBN1 

(Cat#HPA021057, RRID:AB_1848586), ITGB2 (Cat#HPA016894, RRID:AB_1846257), CYBB 

(Cat#HPA051227, RRID:AB_2681395), PGD (Cat#HPA031315, RRID:AB_2673825), FPR1 

(Cat#HPA046550, RRID:AB_2679694), MCEMP1 (Cat#HPA014731, RRID:AB_1845619), 

CRISPLD2 (Cat#HPA030055, RRID:AB_10611821), CEACAM3 (Cat#HPA011041, 

RRID:AB_1078481), CD247 (Cat#HPA008750, RRID:AB_1857863), CD40LG 

(Cat#HPA045827, RRID:AB_10959606), IL2RB (Cat#HPA062657, RRID:AB_2684822), 

JCHAIN (Cat#HPA044132, RRID:AB_2678826), GIMAP4 (Cat#HPA019135, 
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RRID:AB_1849670), MYH11 (Cat#HPA014539, RRID:AB_1234906), ALOX5AP 

(Cat#HPA026592, RRID:AB_10601115), S100A8 (Cat#HPA024372, RRID:AB_1856536), 

HPGDS (Cat#HPA024035, RRID:AB_1855743), VAT1L (Cat#HPA061138), PHOX2B 

(Cat#HPA074325, RRID:AB_2686678), from Santa Cruz Biotechnology: PIGR (Cat#sc-

20656, RRID:AB_2164819), MUC2 (Cat#sc-7314, RRID:AB_627970), SCG3 (Cat#sc-50289, 

RRID:AB_2302033), S100B (Cat#AMAb91038, RRID:AB_2665776), CDC20 (Cat#sc-13162, 

RRID:AB_628089), S1PR1 (Cat#sc-48356, RRID:AB_2238920), FBLN1 (Cat#sc-25281, 

RRID:AB_671972), NCF4 (Cat#sc-48388, RRID:AB_627989), S100A9 (Cat#sc-20173, 

RRID:AB_2184420), IGLC3 (Cat#sc-53344, RRID:AB_629719), IGKC (Cat#sc-52338, 

RRID:AB_2251264), ELAVL4 (Cat#sc-28299, RRID:AB_627765), SNAP91 (Cat#sc-25552, 

RRID:AB_2302221), from Leica Biosystems: SPARC (Cat#NCL-O-NECTIN, 

RRID:AB_563919), TOP2A (Cat#NCL-TOPOIIA, RRID:AB_564035), CD163 (Cat#NCL-

CD163, RRID:AB_563510), CD2 (Cat#NCL-CD2-271, RRID:AB_442057), UCHL1 (Cat#NCL-

L-PGP9.5, RRID:AB_563981), SYP(Cat#NCL-L-SYNAP-299, RRID:AB_564017), from 

Sigma-Aldrich: L1CAM (Cat#L4543, RRID:AB_609903), CADM1 (Cat#S4945, 

RRID:AB_532287), from R&D Systems: CHL1 (Product name: MAB2126), from AbCam: 

CDK1 (Cat#1161-1, RRID:AB_344898), CMA1 (Cat#ab2377, RRID:AB_2083616), NEFH 

(Cat#1707-1, RRID:AB_598179), from Origene: DCN (Product name: 2354), CPA3 (Product 

name: 3129.00.02), from Merck: CTSD (Product name: MAB422), TPSAB1 (Product name: 

MAB1222), from Agilent: LYZ (Cat#A0099, RRID:AB_2341230), MKI67 (Cat#M7240, 

RRID:AB_2142367),from AbFrontier: IGHM (Cat#LF-MA0164, RRID:AB_1617732), from NCI-

CPTAC: GSN (Product name: CPTC-Gelsolin-1) and from Cell signaling technology, Inc: 

HNF4A (Cat#3113, RRID:AB_2295208). 

  

QUANTIFICATION AND STATISTICAL ANALYSIS 

Reference transcript-based correlation analysis  

This method was adapted and expanded from that previously developed to determine the 

cross-tissue pan-EC-enriched transcriptome (Butler et al. 2016) and human brain and adipose 
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tissue cell-enriched genes (Dusart et al. 2019; Norreen-Thorsen et al. 2022). Pairwise 

Spearman correlation coefficients were calculated between reference transcripts selected as 

proxy markers for Epithelial cells [EPCAM, SLC44A4, PHGR1], enteric neuron cells  [INA, 

RTN1, SCG3], enteric glial cells [SLC35F1, NRXN1, L1CAM], mitotic cells [HMMR, TOP2A, 

RMM2], endothelial cells [ESAM, CDH5, MMRN2], smooth muscle cells [ACTG2, TAGLN, 

TPM1], fibroblasts [FBLN1, DCN, TNXB], macrophages  [C1QB, CD68, ITGB2], neutrophils 

[S100A8, AQP9, FCAR 0.73], basophils [CPA3, TPSAB1, SIGLEC6], T-cells [CD2, CD6, 

CD3E] and plasma cells [JCHAIN, IGKC, IGHA1] and all other sequenced transcripts. 

Transcripts with a TPM value <0.1 in more than 50% of samples were excluded from analysis 

(but are still included in data tables). See results section for full criteria required for transcript 

classification of transcripts as cell-type enriched. Correlation coefficients were calculated in R 

using the corr.test function from the psych package (v 1.8.4). In addition to correlation 

coefficients False Discovery Rate (FDR) adjusted p-values (using Bonferroni correction) and 

raw p-values were calculated. FDR <0.0001 for correlation was required for inclusion as cell 

type enriched, but no transcripts required exclusion due to this criterion. 

Weighted correlation network (WGCNA) analysis 

The R package WGCNA (Langfelder and Horvath 2008) was used to perform co-expression 

network analysis for gene clustering, on log2 expression TPM values. The analysis was 

performed according to recommendations in the WGCNA manual. Transcripts with too many 

missing values were excluded using the goodSamplesGenes() function. The remaining genes 

were used to cluster the samples, and obvious outlier samples were excluded.  

Gene ontology analysis 

The Gene Ontology Consortium (Ashburner et al. 2000) was used to identify over represented 

terms (biological processes) in the panel of identified cell-type-enriched transcripts from the 

GO ontology (release date 2022-03-22) database. Dendrogram plots showing over-

represented GO terms were created using the R package ClusterProfiler (T. Wu et al. 2021). 

Visualisation  
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Circular graphs were constructed using the R package circlize (Gu et al. 2014). Some figure 

sections were created with BioRender.com. 

Additional datasets and analysis 

Single cell RNAseq data from Tabula Sapiens (Tabula Sapiens et al., 2022) was downloaded 

and UMAP plots created using the Seurat package in R (Hao et al., 2021). Tissue enriched 

genes were downloaded from the Human Protein Atlas (HPA) tissue atlas (Uhlen et al., 2015) 

or GTEx database (Consortium, 2015), as collated in the Harminozome database (Rouillard et 

al., 2016). 

ADDITIONAL RESOURCES 

Analysed data for all protein coding genes is provided on the Human Protein Atlas website: 

(https://www.proteinatlas.org/humanproteome/tissue+cell+type/colon).  

SUPPLEMENTAL TABLE LEGENDS 

Table S1. Reference transcript selection and analysis criteria.  

(Tab 1): Correlation coefficient values were calculated between selected Ref.T. to represent 

constituent colon cell types. (Tab 2): Correlation coefficient values were calculated between 

selected Ref.T. and all other sequenced transcripts in GTEx colon mRNAseq data (Table A) 

and the mean differential vs. all Ref.T. panels (Table B). Over represented gene ontology terms 

in transcripts classified as enriched in: (Tab 3) epithelial cells, (Tab 4) enteric neuron cells, 

(Tab 5) enteric glial cells, (Tab 6) mitotic cells, (Tab 7) endothelial cells, (Tab 8) smooth muscle 

cells, (Tab 9) fibroblasts, (Tab 10) macrophages, (Tab 11) neutrophils, (Tab 12) basophils, 

(Tab 13) T-cells and (Tab 14) plasma cells. Related to all Figures. 

Table S2. Sex stratified subset analysis of cell-enriched transcripts in human colon.  

(Tab 1): Correlation coefficient values were calculated between selected Ref.T. to represent 

constituent colon cell types in females (Table A) or males (Table B). (Tab 2) Correlation 

coefficient values were calculated between selected Ref.T. and all other sequenced transcripts 

in colon mRNAseq data (GTEx), subdivided into (Table A) female or (Table B) male only 

sample sets. See key for column details. Related to Figure 7 and S3.  
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Figure S1. Expression distribution and correlation between human sigmoid colon cell 

type reference transcripts. Related to Figure 1. (A) Expression of Ref.T. selected to 

represent: (i) epithelial cell, (ii) intestinal endocrine cell, (iii) enteric glial cell, (iv) mitotic cell, (v) 

endothelial cell, (vi) smooth muscle cell, (vii) fibroblast, (viii) macrophage, (ix) neutrophil, (x) 

basophil, (xi) T-cell and (xii) plasma cell, across the sample set. 

 

Figure S2. Single cell RNAseq (scRNAseq) annotations. Related to Figure 6. scRNAseq 

data was sourced from Tabula Sapiens. UMAP plots showing original annotations of cell 

clusters in large intestine. 
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Figure S3. Identification of sex-specific cell type enriched genes in human sigmoid 

colon. Related to figure 7. Human colon RNAseq data was retrieved from GTEx and divided 

into female (n=133) and male (n=240) subgroups before analyzing for sex-specific cell type-

enriched transcripts. For transcripts classified as (A) endothelial, (B) fibroblast, (C) smooth 

muscle cell or (D) basophil enriched the ‘sex differential corr. score’ was plotted vs. ‘enrichment 

ranking’ was plotted. Transcripts classified as enriched in both sexes are represented by 

square symbols and transcripts that are classified as enriched in only male or female are 

represented by circle or triangle symbols, respectively. 
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SUMMARY 

Genes with cell type specific expression typically encode for proteins that have cell type 

specific functions. Single cell RNAseq (scRNAseq) has facilitated the identification of such 

genes, but various challenges limit the analysis of certain cell types and lowly expressed 

genes. Here, we performed an integrative network analysis of over 6000 bulk RNAseq datasets 

from 15 human organs, to generate a tissue-by-tissue cell type enrichment prediction atlas for 

all protein coding genes. We profile all the major constituent cell types, including several that 

are fragile or difficult to process and thus absent from existing scRNAseq-based atlases. The 

stability and read depth of bulk RNAseq data, and the high number of biological replicates 

analysed, allowed us to identify lowly expressed cell type enriched genes that are difficult to 

classify using existing methods. We identify co-enriched gene panels shared by pancreatic 

alpha and beta cells, chart temporal changes in cell enrichment signatures during 

spermatogenesis, and reveal that cells in the hair root are a major source of skin enriched 

genes. In a cross-tissue analysis, we identify shared gene enrichment signatures between 

highly metabolic and motile cell types, and core identity profiles of cell types found across 

tissue types. Our study provides the only cell type gene enrichment atlas generated 

independently of scRNAseq, representing a new addition to our existing toolbox of resources 

for the understanding of gene expression across human tissues. 
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INTRODUCTION  

Cell type can be categorised by function, origin, location, morphology and, more recently, 

global transcriptome. Transcriptional profiles depend on both intrinsic cell characteristics and 

transient states, but selective expression of genes typically required for cell type specialised 

functions currently underlie our definition of cell type. Large-scale projects, such as the Human 

Cell Atlas (www.humancellatlas.org) 1 and the Human Protein Atlas (www.proteinatlas.org/) 2,3 

contain single-cell RNA sequencing (scRNA-seq) data from thousands of cells, which can be 

used to further understand human health and disease, through, for example, targeted 

biomarker discovery 4, or elucidation of disease associated gene expression 5,6.  

However, scRNA-seq has limitations; cell processing can cause artefactual modification of 

gene expression, through induction of the stress response 7,8 or as a consequence of removal 

from the microenvironment 9. Some cell types are sensitive to extraction protocols, e.g., kidney 

podocytes 8, whilst others require extensive, damaging proteolytic digestion to isolate e.g., 

adipocytes 10,11; such cell types are absent from the major databases 3,12,13. Single nuclei 

sequencing is an alternative tool for analysing such cell types 14, but resultant expression 

profiles are incomplete 15. Compared to bulk RNA-seq, where all cell types in a tissue are 

sequenced without prior separation, scRNAseq produces less stable and more variable data, 

with a high number of zero values, particularly for lowly expressed genes 16-19, requiring 

computational imputation for interpretation 20,21, with methods remaining controversial 22. 

Typically, tissues from a limited number of donors are analysed, resulting in underestimation 

of biological variance of gene expression and potential false discoveries when analysing 

differential expression between cell types or conditions 23-25. Differentially expressed genes 

identified using scRNAseq typically have higher expression and smaller fold changes than 

those identified with bulk RNAseq 24.  

We previously developed and validated an integrative correlation analysis method to identify 

cell type-enriched transcriptome profiles from unfractionated tissue RNAseq 26-28. Our method 

circumvents some limitations of scRNAseq; hundreds of samples are analysed concurrently to 

http://www.humancellatlas.org/
https://www.proteinatlas.org/
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reduce the influence of biological variation and batch effects, cell types that are technically 

challenging to process can be analysed, and lowly expressed cell enriched transcripts 

classified 28. Here, we analysed over 6000 bulk RNAseq datasets from Genotype-Tissue 

Expression (GTEx) to generate a genome-wide, tissue-by-tissue cell type enrichment 

prediction atlas for all protein coding transcripts in 15 different human tissues. We provide gene 

enrichment signatures for all major constituent cell types, including those that are fragile or 

difficult to process, such as podocytes in the kidney and adipocytes in the breast, as well as 

for minority cell types, such as those in the hair follicles of the skin. We identify co-enriched 

genes shared by related cell types, such as pancreatic alpha and beta cells, and chart temporal 

changes in gene enrichment during spermatogenesis. In a cross-tissue analysis, we identify 

common gene enrichment signatures, e.g., between respiratory ciliated cells and spermatids, 

endocrine cells in the pancreas, colon, thyroid, and stomach, and between cell types found in 

all or most tissues, such as endothelial and immune cell types.  

All data is available on the Human Protein Atlas (HPA) 

(www.proteinatlas.org/humanproteome/tissue+cell+type). 

https://www.proteinatlas.org/humanproteome/tissue+cell+type
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RESULTS 

Cell type reference transcripts correlate across unfractionated tissue RNAseq data 

Bulk RNAseq datasets for 15 human tissue types were retrieved from Genotype-Tissue 

Expression (GTEx) V8 (www.gtexportal.org) 29 (Figure 1A). To identify cell type-enriched 

transcript profiles, we performed an integrative correlation analysis on each dataset, using our 

previously published method 26-28. 

As the tissue is unfractionated prior to sequencing, constituent cell types are present in 

different proportions in each sample (Figure 1 B.i [lung as an illustrative example]). Thus, each 

cell contributes mRNAs subsequently measured by RNAseq (Figure 1 B.ii), which can be: 

predominantly expressed in that cell type (cell type enriched), selectively expressed in two cell 

types (co-enriched), or expressed in several, or all, cell types within the tissue. For the main 

constituent cell types in each tissue (Figure 1 B.iii) marker ´reference transcripts´ [Ref.T.] were 

shortlisted (n=10-30), including: (i) those identified through in house tissue protein profiling 2 

(ii) established markers identified in older ´none-omics´ studies, (iii) those identified by 

scRNAseq of mouse 13 or human 30 tissue, and (iv) markers from databases containing multiple 

studies e.g., Cell Marker 31, PanglaoDB 32 (Figure 1 B.iv). Spearman correlation coefficients 

were generated between all shortlisted candidate Ref.T. across each sample set, and three 

were selected to represent each cell type (for lung see Figure 1 B.v), based on the following 

criteria: (i) a high correlation between Ref.T. within each cell type panel (FDR <0.00001), 

consistent with cell type co-expression, (ii) a low correlation coefficient between Ref.T. in 

different cell type panels, consistent with high specificity of each panel (Figure 1 B.v) and (iii) 

a normal expression distribution of Ref.T. across samples. For all cell types, corresponding 

Ref.T and intra/inter Ref.T panel correlation coefficients in each tissue see Table S1, Tab 1, 

Table A-O.  

http://www.gtexportal.org/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
https://panglaodb.se/
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Figure 1. Integrative co-expression analysis of unfractionated human lung tissue 

RNAseq can resolve constituent cell type enriched genes. (A) Bulk RNAseq datasets were 

retrieved from GTEx V8 and analysed by tissue type (n=sample number). (B) Analysis concept, 

using lung as an illustrative example: (i) each sample (n=578) contained mixed cell types, 

contributing (ii) differing proportions of mRNA to each sequenced dataset. To profile cell type-

enriched transcriptomes (iii) constituent cell types for each tissue were identified and for each 

(iv) candidate reference transcripts (Ref.T.) for ´virtual tagging´ were shortlisted, primarily 

based on predicted cell specificity from existing literature and/or in house protein profiling. (v) 

Matrix of correlation coefficient values between selected Ref.T. across the sample set. (C) 

Mean correlation coefficients between genes above designated thresholds for classification as 

cell-type enriched in: (i) respiratory ciliated [RCC], (ii) alveolar type I [AT1], (iii) alveolar type II 

[AT2], (iv) endothelial [EC], (v) alveolar fibroblasts [FB1], (vi) adventitial fibroblasts [FB2], (vii) 

smooth muscle cell [SMC], (viii) macrophage [MC], (ix) mast cell [MastC], (x-xi) neutrophil [NP1 

and NP2], (xii) T-cell [TC], (xiii) natural killer cell [NK], (xiv) plasma cell [PC], (xv) B-cell [BC], 

or (xvi) mitotic cell [MitC], and all Ref.T. panels. Total number, most significant gene ontology 

(GO) terms and illustrative protein profiling in human lung tissue are provided for each cell 

type. See also Table S1, Figure S1 and S2.
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Reference transcripts analysis can identify cell-type enriched gene signatures 

For each tissue type analysed, the proportion of constituent cell types between samples vary, 

due to sampling and genetic factors 33,34, but ratios between constitutively expressed cell-

specific genes remain relatively constant. Thus, high correlation of a given transcript with all 

Ref.T. in any one panel is consistent with selective expression in the corresponding cell type 

28. For all tissues, we generated correlation coefficients between each Ref.T. and all other

sequenced transcripts (´test-transcripts´) and produced a list of provisional cell type-enriched 

transcripts, based on the following criteria: (i) the test-transcript had a mean correlation with a 

given Ref.T. panel ≥0.50 (FDR <0.0001), which was (ii) higher than the mean correlation with 

any other Ref.T. panel. Resultant transcripts for each cell type were generally well separated 

from all others e.g., for lung: respiratory ciliated cells (RCC; Figure S1 A.i) and alveolar cell 

type 1 (AT1; Figure S1 Bi). However, in some cases, test-transcripts correlated well with more 

than one Ref.T. panel; panels typically representing closely related cell types, e.g., natural 

killer and T-cells (NK and TC; Figure S1 C.i), or those with functional commonalities, e.g., 

macrophages and alveolar type 2 (AT2) cells 35 (MC and AT2; Figure S1 D.i). To more carefully 

analyse the relationship between transcripts, the following was calculated for each to compare 

cell type lists: (i) the ‘differential correlation score’, defined as the difference between the mean 

correlation of the test-transcript with the two sets of Ref.T., e.g., respiratory ciliated cell (RCC) 

type panel [ERICH3, DNAH12, SNTN] and smooth muscle cell (SMC) panel [TPM2, MYL9, 

TAGLN] (Figure S1 A.ii) and (ii) the ‘enrichment ranking’, based on the mean correlation value 

of the test-transcript with the Ref.T. panel (rank 1 = highest corr.). Transcripts that most highly 

correlated with the RCC Ref.T. panel separated well, from even the next closest cell type, SMC 

(Figure S1 A.ii), as did those most highly correlating with the alveolar cell type 1 (AT1) Ref.T. 

panel (Figure S1 B.ii). A panel of transcripts that most highly correlated with Ref.T. 

representing NK (Figure S1 C.ii, right side) or MC (Figure S1 D.ii, right side) had a low 

differential correlation score with Ref.T. for TC or AT2, respectively (Figure S1 C.ii and D.ii, left 

side), consistent with co-enrichment in both cell types, as we previously demonstrated 28. 
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scRNAseq data from human lung 36 was used to verify expression profiles of selected 

transcripts with predicted enrichment in one (Figure S1 A-D.iii and v) or both cell types (Figure 

S1 A-D.iv). For classification as single cell-type enriched, any transcript with a differential 

correlation score <0.15 vs. any Ref.T. panel representing a different cell type was excluded, 

on the basis of predicted co-enrichment (e.g., Figure S1 A-D.ii, grey shaded area). Application 

of these criteria across tissues generally resulted in intra-tissue cell-enriched gene panels that 

were well separated from each other (example for lung; Figure 1 C.i-xvi). For some cell types, 

these default thresholds were decreased when overlap with other Ref.T. panels was absent 

e.g., for erythroid cells in the liver (Figure S1 E.i and ii) or increased when overlap remained 

(details provided in Table S1, Tab 3). Gene ontology (GO) analysis 37, performed to identify 

over-represented classes and pathways among genes identified as cell type enriched 

produced resultant terms consistent with expected cell type functions, e.g. for lung respiratory 

ciliated cells, significant terms included ´cilium organisation´ (FDR 4.4 x10-63) (Figure 1 C.i), 

and for plasma cells ´adaptive immune response´ (FDR 3.0 x10-189) (Figure 1C.xiv). Tissue 

profiling for selected proteins encoded by predicted cell type enriched genes had expression 

consistent with our classifications (Figure 1 C.i-xvi).  

Weighted network correlation analysis supports cell type enrichment predictions 

As our analysis method is based on manually selected Ref.T., cell type classification is subject 

to an input bias. However, we previously showed that unbiased weighted network correlation 

analysis (WGCNA) 38, where correlation coefficients between all transcripts are calculated and 

subsequently clustered into related groups (based on expression similarity), supports Ref.T. 

based analysis cell type enrichment predictions 27,28. Here, we performed WGNCA of lung and 

liver samples (Figure S2). Both Ref.T (Figure S2 A-B.i) and predicted cell-type enriched gene 

panels (Figure S2 A-B.ii-ix) clustered into the same, or closely related WGCNA groups when 

the differential correlation for exclusion was set at >0.15 (as described above) (Figure S2 A-

B.v). When the differential correlation was increased in increments of 0.05 (Figure S2 A-B.vi-

ix) the number of predicted cell type enriched genes outside the predominant WGCNA clusters 

decreased (see red dashed box), consistent with higher enrichment specificity. Gene 
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enrichment could thus be categorised into very high, high or moderate, corresponding to a 

differential score vs. other profiled cell types within the tissue of >0.35, >0.25 or >0.15, 

respectively (see Table S1, Tab 3 for total number in each category for all cell types/tissues). 

Specialised cell types have the highest number of enriched genes within tissues 

The total number of genes with predicted cell type enrichment (very high, high or moderate) 

within each tissue ranged from 7041 (testis) to 829 (pancreas) (Figure 2 A) (Table S1, Tab 3). 

The number of cell types analysed in each tissue type ranged from 7-18; with the lowest 

number profiled in skeletal muscle and subcutaneous adipose tissue (n=7 and 8, respectively) 

and the highest in skin and lung (n=18 and 14, respectively) (Table S1, Tab 1).Tissue 

specialised cell types had the highest number of enriched genes, such as cardiomyocytes in 

the heart (number/total enriched in all cell types in that tissue: 916/1902 [48%]) (Figure 2 B.v), 

proximal tubular cells in the kidney (657/1778 [37%]) (Figure 2 B.vii), hepatocytes in the liver 

(1264/2393 [53%]) (Figure 2 B.xi), keratinocytes in the skin (945/2460 [38.4%]) (Figure 2 B.xiii), 

gastric mucosal cells in the stomach (379/1361 [28%]) (Figure 2 B.xiv) and respiratory ciliated 

cells in the lung (681/2419 [28%]) (Figure 2 B.xv).  

Of the 19,634 protein coding genes expressed in one or more tissues, 5644 (28.7%) were not 

predicted to be cell type enriched in any tissue (Figure 2 C.i). GO analysis identified the most 

significant over-represented pathways among these genes as ´metabolism of RNA´ (FDR 4.6 

x10-21), ´gene expression (transcription)´ (FDR 2.3 x10-11) ´RNA polymerase II transcription´ 

(FDR 5.4 x10-10) and ´rRNA processing ´ (FDR 5.8 x10-10) (subgroups shown in Figure 2 D), 

consistent with housekeeping function. Indeed, 2893 of these 5644 genes (52.3%, p<10-15) 

had been previously categorised as members of the housekeeping proteome 2.   

5979 (30.4%) genes were classified as cell type enriched in only a single tissue (Figure 2 C.ii), 

the largest proportion of which were in testis (n=3141) (Table S1, Tab 4). GO term analysis of 

this gene group identified the most significant over-represented pathways as ´sexual 

reproduction´ (FDR 3.7 x10-32) and ´spermatogenesis´ (FDR 2.9 x10-30) (subgroups shown in 

Figure 2 E). Of the 8011 genes predicted to be cell type enriched in multiple tissues (Figure 2 

C.iii), a small number (741, 9.2%) were enriched in seven or more; the majority of which were
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predicted to be immune cell-, endothelial cell- or stromal cell- enriched (Figure 2 F), i.e., in cell 

types profiled in all, or most, tissues. Enrichment scores for all genes in cell types by tissue 

type can be found in Table S2 (summary of cell type gene enrichment across tissue in Table 

S1, Tab 4). 
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Figure 2. Overview of cell type enriched gene profiles across tissue types. Bulk RNAseq 

datasets were retrieved from GTEx V8 and cell type enriched transcriptome predictions made 

using integrative correlation analysis. (A) Number of genes with predicted cell type enrichment 

in each analysed tissue type. (B) Circular plots showing broad classification of genes predicted 

to be cell type enriched in: (i) subcutaneous adipose tissue, (ii) visceral adipose tissue, (iii) 

breast, (iv) skeletal muscle, (v) heart, (vi) thyroid, (vii) kidney, (viii) prostate, (ix) pancreas, (x) 

testis, (xi) liver, (xii) colon, (xiii) skin, (xiv) stomach and (xv) lung, with majority cell types 

indicated in connected boxes. (C) Total number of expressed genes (in at least one tissue 

type) by respective status: (i) no cell type enrichment in any tissue, (ii) prediction as cell type 

enriched in one tissue, or (iii) predicted to be cell type enriched in two or more tissues. Gene 

ontology overrepresented terms for genes with: (D) no predicted cell type enrichment and (E) 

predicted enrichment only in testis. (F) Cell type enrichment predictions for genes classified as 

enriched in seven or more tissue types. See also Table S1 and S2 and Figure 
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Ref.T. analysis can predict source of tissue enriched genes 

RNAseq data from unfractionated human tissues can be used to identify genes with higher 

expression in any given tissue, compared to others. For genes classified as tissue enriched in 

the Human Protein Atlas (HPA) 2, those we classified as cell type enriched were predominantly 

expressed in tissue specialised cell types, for example, heart enriched genes were 

predominantly cardiomyocyte enriched and liver-enriched genes predominantly hepatocyte 

enriched (Figure S3 A). A hypergeometric test was performed to determine similarity between 

predicted cell type enriched genes and the top 300 enriched genes in each tissue in the GTEx 

data 29 (as collated in the Harminozome database 39); similar to the comparison with the HPA 

data, the highest statistical overlap between tissue enriched genes and cell enriched genes 

were predominantly with tissue specialised cell types (Figure S3 Bi-vi). This highlights the 

usefulness of our analysis of bulk RNAseq to disentangle cell type variance across the different 

tissues in the human body, independent of scRNAseq data.  

Pancreatic alpha and beta cells have both specific and shared gene enrichment profiles 

Alpha and beta cells, the most abundant endocrine cell types in the pancreatic islet of 

Langerhans 40, are defined by their expression of the blood glucose elevating or lowering 

hormones, glucagon (GCG) and insulin (INS), respectively. As a general rule, transcripts 

predicted to be cell type enriched generally separated well from others, but analysis of 

pancreas samples (n=328) revealed that many transcripts that correlated most highly with the 

alpha cell Ref.T. panel also correlated well with the beta cell Ref.T. panel (Figure 3 A.i), and 

vice versa (Figure 3 A.ii). Analysis of individual transcripts revealed 131 genes highly and 

selectively correlated with the Ref.T. panels for both alpha and beta-cells (Figure 3B, [grey 

central panel; mean differential corr. between Ref.T panels <0.15]). GO and reactome analysis 

41 of these 131 co-enriched genes revealed over-represented classes and pathways included 

´regulation of secretion by cell´ (FDR 7.5 x10-11), ´neuronal system´ (FDR 9.9 x10-7) and 

´synapse´ (FDR 1.5 x10-15) (Table S3, Tab 1, Tables A-C). Synapse related proteins (n=44) 

included members of the synaptotagmin (SYT4, 5, 7, 13, 14), and glutamate receptor 
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(GRIA2,3) families (Table S3, Tab 2), many of which are reported to be important for pancreatic 

endocrine cell function e.g., SYT4 42 and SYT13 43,44, whilst the function of others in this context 

is not currently known e.g., FRRS1L and NSG1. Alpha and beta cell co-enriched genes 

included several encoding for transcription factors involved in islet cell specification, e.g., 

NKX2-2, 45, NEUROD1 46, RFX6 47, INSM1 48, PAX6 49 and MYT1 50, as well as those with no 

currently reported function in these cell types, e.g., CELF3 and MYT1L one could speculate 

such genes likely have a role in neuroendocrine cell function. 91 genes had predicted alpha 

cell-enrichment, including GCG, TTR and KCNH6 (Figure 3 B, left side); all of which are 

involved in glucose homeostasis 51-53, and other genes with, as yet, no described function in 

this cell type e.g., SMIM24, CALY and C5orf38 (Figure 3 B, left side). 69 genes had predicted 

beta cell enrichment, including those encoding proteins with known beta cell-specific functions, 

e.g., IAPP and MAFA 54,55, as well as those with no reported function in this cell type, e.g., 

HHATL, SNCB and SLC6A17 (Figure 3 B, right side). Tissue profiling for selected genes 

showed protein expression consistent with our classifications (Figure C-D top panel). We 

sourced data from scRNAseq of human pancreas 36, to compare the expression profiles of 

selected predicted alpha- (Figure 3 C.i-iv), beta- (Figure 3 E.i-iv) or co- (Figure 3 D.i-iv) 

enriched genes; categorisation was largely consistent between datasets. A small number of 

genes we predicted to be alpha-, beta or co-enriched had a mean expression <0.1 TPM in the 

analysed bulk RNAseq dataset (gene n=11, 6 and 4, respectively, Figure S4 A). Despite this 

low expression, our predicted expression of these genes was consistent with the scRNAseq 

analysis; with most (21/22 [95%]) detected predominantly in the correspondingly annotated 

cell types (Figure S4 C-E). However, for several of these genes, detectable expression by 

scRNAseq was low, or only evident in a small number of cells within the cluster, e.g., GLB1L3 

(Figure S4 C.ii). The interpretation of such scRNAseq data is challenging; thus, our 

classifications, based on a completely independent data collection and analysis method, can 

be used to verify that low or irregular detection of gene expression by scRNAseq in an 

annotated cell type supports a real biological phenomenon, as opposed to noise or imputation 

artefact. 
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Figure 3. Pancreatic alpha and beta cells express respective cell type enriched genes 

and a panel of shared co-enriched genes. RNAseq datasets for human pancreas (n=328) 

were retrieved from GTEx V8 and correlation coefficients between selected cell type Ref T. 

and all others were generated. Mean correlation values between protein coding genes that 

correlated most highly with (i) alpha or (ii) beta cell Ref.T. (above >0.50) and all Ref.T. panels. 

(B) For these transcripts, the ‘differential correlation score’ (difference between mean 

correlation with alpha and beta cell Ref.T.) was plotted vs. ‘enrichment ranking’ (position in 

each respective list, highest correlation = rank 1). Shaded grey box highlights genes with 

differential correlation <0.15. Genes highlighted in bold correspond to those featured in the 

lower panels. Tissue protein profiling of selected genes predicted to be (C) alpha cell-enriched, 

(D) co-enriched in both alpha and beta cells, or (E) beta cell-enriched, in human pancreas 

samples. scRNAseq data from analysis of human pancreas was sourced from Tabula Sapiens 

36, and used to generate UMAP plots, showing the expression profiles of example genes we 

predicted as being (C) alpha cell-enriched; (i) C5orf58, (ii) F10 (iii) NECAB2 and (iv) PLPPR1, 

(D) co-enriched in both alpha and beta cells; (i) CELF3, (ii) CPLX2, (iii) SEZ6L and (iv) RFX6, 

or (E) beta cell-enriched; (i) DACH2, (ii) HHATL, (iii) MAFA and (iv) SNCB. scRNAseq cell type 

annotations are displayed on lower central plot. AlphaC; alpha cell, BetaC; beta cell, DC1; 

ductal cell 1, DC2; ductal cell 2, EC; endothelial; FB1/2; fibroblast 1/2, SMC; smooth muscle 

cell, MC; macrophage, MastC; mast cell, NP1/2; neutrophil 1/2, TC; T-cell, PC; plasma cell. 

See also Table S3 and Figure S4.
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Temporal changes in gene enrichment signature underlie the process of 

spermatogenesis  

Precise definitions, markers and terminology used for the respective cell types in the different 

stages of spermatogenesis vary between studies. Our analysis was based on four Ref.T. 

panels (S1-S4) that were selected to represent the temporal order of development: S1, germ 

cell expressed [MAGEB2, KDM1B, PIWIL4] (spermatogonia), S2, meiotic cell cycle expressed 

[ANKRD31, RBM44, TOP2A] (spermatocytes), S3, spermatid structure-related [CEP55, 

KPNA5, PBK] (round/early elongating spermatids) and S4, nuclear condensation/protamine 

repackaging factors [PRM1, PRM2, TNP1] (late/elongated spermatids) (Figure 4 A and Table 

S1, Tab 1, Table N). When the sample set was analysed by WGNCA, Ref.T. within each 

respective panel were all in a common module (Figure S5 A). Principle component analysis of 

the corr. values of cell-enriched genes vs. all Ref.T. panels revealed the greatest proportion of 

variance in enrichment, and thus uniqueness vs. other cell types, was driven by cell types S1, 

S2, S3, S4 (Figure 4 B). Tissue profiling for proteins encoded by a panel of genes predicted to 

be enriched in cell types outside those in the spermatogenesis pathway revealed expression 

consistent with our classifications (Figure 4 C). 6179 genes were enriched in one or more of 

the germ cell types representing the different stages of spermatogenesis, vs. non-germ cell 

types (Figure S5 B.i and Table S4, Tab 1 [correlation with respective Ref.T panel >0.50, 

differential correlation vs. all non-germ cell types >0.15] columns H-K and Q). GO and 

reactome analysis of this gene list revealed that the most significantly over-represented terms 

included ´sexual reproduction´ (FDR 3.1 x10-27), ´microtubule-based processes´ (FDR 2.2 x10-

26), ´male gamete generation´ (FDR 2.3 x10-26) and ´cell cycle´ (FDR 4.6 x10-19) (Table S4, Tab 

2, Tables A and B) (Figure S5 B.ii [summary plot of GO terms, made with REVIGO 56]). Genes 

that correlated with Ref.T. panels representing cells at different stages of spermatogenesis 

had two main profiles; they were enriched at a specific developmental stage, i.e., S1 (Figure 4 

D.i), S2 (Figure 4 D.ii) S3 (Figure 4 D.iii) or S4 (Figure 4 D.iv) (for all see Figure S5 C .i and ii) 

or, they were co-enriched in adjacent cell types on the developmental trajectory: i.e., S1 and 
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S2 (Figure 4 D.v), S2 and S3 (Figure 4 D.vi), S3 and S4 (Figure 4 D.vii) or S2, S3 and S4 

(Figure 4 D.viii) (for all see Figure S5 D.i and ii). Each plot shows five illustrative genes for 

each enrichment profile type (Figure 5 Ei-vii), including genes encoding for proteins with a 

previously reported function at the corresponding stage of spermatogenesis e.g., for S1: 

FGFR3 57, and those with no known role in this context e.g., C19orf84( Figure 4 E.i). Protein 

profiling revealed spatial distribution for those encoded by genes classified as S1, S2, S3 or 

S4-enriched or co-enriched, with positive signals observed progressively closer to the centre 

of the seminiferous tubule with each subsequent developmental stage (Figure 4 E.i-vi). GO 

analysis revealed over-represented classes in genes predicted to be S1, S2- or S1 & S2 

enriched included developmental, cell cycle and meiotic processes (Figure 4 F.i, ii and v), 

whilst organelle assembly, microtubule processes and cilium and flagellum organisation and 

motility associated genes were over represented in S3-, S4- and S3 & S4-enriched genes 

(Figure 4 F.iii, iv and vii) (Table S4, Tab 3). No transcripts were predicted to be co-enriched in 

non-adjacent cell stages along the developmental trajectory (e.g., S1 and S3, or S2 and S4), 

consistent with a coordinated temporal modification in gene enrichment signatures between 

subsequent stages. A single gene, MEIOC, was predicted to be enriched in 3 stages - S2, S3 

and S4. MEIOC is required for germ cells to properly transition to a meiotic cell cycle program, 

together with binding partners YTHDC2 and RBM46 58; both of which we also predicted as 

enriched in cells in S2 and, to a lesser extent S3 (Table S4, Tab 1). Data from scRNAseq of 

human adult testis 59 supported our predictions, showing MEIOC enrichment in cell clusters 

broadly corresponding to our classification of S2, S3 and S4 (Figure 4 G.i) (cell type annotation 

UMAP as in the original publication in Figure S5). In contrast, we predicted that the related 

transcript MEIOB had specific enrichment at stage S2 (Figure 4 D.ii and E.ii), which was also 

verified by scRNAseq (Figure 4 G.ii). scRNAseq for selected less well characterised genes 

that we predicted as enriched in either S1, S2, S3 or S4 cells (Figure S5 C.iii), or gene predicted 

to be co-enriched in two stages (Figure S5 D.iii) also showed agreement with our 

classifications. A number of genes that were predicted to be enriched in one or more of the 

germ cell stages were lowly expressed (n=240 with mean TPM<0.1), several of which did not 
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appear in the scRNAseq dataset 59, presumably due to a lack of detection. Of the 100 most 

lowly expressed genes for which scRNAseq data was available, most (>80%) had expression 

profiles consistent with our predictions in the scRNAseq data (examples in Figure S6), but in 

many cases transcripts were detected at low levels in only a few cells in the corresponding 

cluster, e.g., FZD10 (Figure S6 D), LEP (Figure S6 F) and SIGLEC15 (Figure S6 J), making 

interpretation of this scRNAseq data in isolation challenging. Thus, we show that analysis of 

bulk RNAseq can identify differentially enriched genes associated with one or multiple stages 

of the developmental trajectory during spermatogenesis, including genes that are likely too 

lowly expressed for detection or classification as cell type enriched by scRNAseq. 

RNAseq data from unfractionated tissue can be used to identify genes with enriched 

expression in testis vs. other tissues, as we previously described 2. The vast majority of genes 

with testis-enriched expression were predicted to be enriched in one or more germ cell type 

(845/871 [97%]), with a smaller number predicted to be enriched in sertoli (24/871 [2.8%]), 

Leydig (24/871 [0.1%]) or peritubular cells (24/871 [0.1%]) (Figure 4H). No testis enriched 

genes were classified as endothelial or macrophage-enriched in our analysis, reflecting their 

presence in other tissues.  
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Figure 4. Analysis of pseudo temporal changes during spermatogenesis reveals stage-

specific and common stage-shared gene enrichment signatures. (A) Cell types at the 

different stages of spermatogenesis were defined based on Ref.T. selected to broadly 

represent the developmental stage classifications spermatogonia [S1], spermatocytes [S2], 

early spermatids [S3] and late spermatids [S4]. (B) Principal component analysis of 

comparative correlation profiles of cell-enriched genes in S1, S2, S3, S4, sertoli cells (SC), 

Leydig cells (LC), peritubular cells (PtC), endothelial cells (EC) or macrophages (MC) vs. all 

Ref.T. panels. (C) Tissue profiling for proteins encoded by example genes we predicted to be 

enriched in non-germ cell types. (D) Pseudo trajectories of gene enrichment signatures over 

time, showing enrichment values for each developmental stage, using (E) illustrative genes 

predicted to be: (i) S1, (ii) S2, (iii) S3, (iv) S4, (v) S1 and S2, (vi) S2 and S3, (vii) S2, S3 and 

S4, enriched, with corresponding tissue protein profiling. (F) Over-represented gene ontology 

terms and significance corrected FDR values for all genes classified as: (i-iv) highly enriched 

at a specific stage, or (v-vii) co-enriched at one or more stages of development. (G) UMAP 

plots showing gene expression profile in the Human Testis Atlas scRNAseq data (Guo et al., 

2018) of: (i) the S2, S3 and S4 predicted enriched gene MEIOC and (ii) the S2 predicted 

enriched gene MEIOB. (H) Classification of testis tissue enriched genes that we predicted to 

be cell type enriched. See also Table S4, Figure S5 and S6



 

 24 

 

Constituent cells of the skin hair root are the primary source of skin tissue enriched 

genes 

The skin is one of the most complex tissue types in the human, with multiple layers and diverse 

constituent cell types. We profiled 18 different cell types in the skin, many of which are not 

represented in scRNAseq data in Tabula Sapiens 36 or the Human Protein Atlas (HPA) 

(www.proteinatlas.org/) 2,3, e.g. sebaceous gland cells, eccrine sweat gland cells, adipocytes, 

hair cortex and inner/outer root cells. Keratinocytes expressed the largest proportion of 

predicted cell type-enriched genes; 737 in the sub-granular layers (Figure 5 A.i) and 208 in the 

granular layer (Figure 5 A.ii). Analysis of the sub-granular keratinocyte layers at a higher cell 

type resolution was not possible, as a Ref.T panel with high, consistent, specificity for sub-

population(s) of basal and suprabasal keratinocytes could not be identified. Similarly, when the 

dataset was analysed by WGNCA, most genes we predicted to be sub-granular keratinocyte 

enriched clustered in multiple groups on common clades (552/737 [75%]), the constituent 

groups of which contained a combination of genes considered basal e.g., COL17A1 or 

suprabasal e.g., DSG1 keratinocyte markers (Figure S7 A.i). In contrast, Ref.T. representing 

granular keratinocytes and the majority of genes predicted to be enriched in this cell type 

(181/208 [87%]), clustered in two groups on a single clade (Figure S7 A.ii). These results are 

consistent with keratinocyte development being associated with a shift in absolute gene 

expression levels, as opposed to a defined transition between highly distinct cell states that 

express many specific markers (prior to terminal differentiation in the granular layer).  

For genes identified as cell type enriched, GO analysis revealed over-represented classes 

consistent with cell type annotation, e.g. for granular keratinocytes significant terms included 

´epidermal cell differentiation´ (FDR 2.0 x10-16) (Figure 5 A.ii) and for sebaceous gland cells 

´lipid metabolic processes´ (FDR 2.3 x10-32) (Figure 5 A.vi). Of the skin-specific cell types 

profiled, melanocytes had the fewest enriched genes (n=17) (Figure 5 A.v), including highly 

expressed genes with known cell type-specific functions e.g., PMEL, DCT (mean TPM in skin 

RNAseq 58.2 and 29.6, respectively). More lowly expressed melanocyte-enriched genes 

https://www.proteinatlas.org/
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included SLC24A5, CA14 and SLC45A (mean TPM in skin RNAseq 0.5, 1.9 and 5.7, 

respectively). In skin scRNAseq data from Tabula Sapiens 36 (Figure S7 B.i) SLC24A5 was 

predominantly expressed in a sub-population of cells in melanocyte annotated cluster (Figure 

S7 B.ii), but CA14 and SLC45A2 were not as clearly enriched in this cell type (Figure S7 B.iii 

and iv). However, our classifications of these genes as melanocyte-enriched are supported by 

other studies showing that SLC45A2 has a role in deacidification of maturing melanosomes to 

support melanin synthesis 60 and that CA14 is downregulated in vitiligo skin samples, 

compared to normal, along with other genes we classified as melanocyte enriched 61. 

Furthermore, all three of these genes were clustered together with the melanocyte Ref.T when 

the dataset was analysed by WGNCA (Figure S7 A.iii). Thus, as we demonstrated for alpha 

and beta cells in the pancreas and germ cells in the testis, our analysis can identify cell-type 

enriched genes that are not always detectable as such by scRNAseq.  

RNAseq data from unfractionated tissue was used to identify 188 genes as skin enriched vs. 

other tissues in the HPA tissue section 2, of which 151 were also identified as such in a similar 

analysis of tissues in GTEx 29, collated in the Harminozome database 39. Of these, 96/151 

[63%] were predicted to be cell type enriched in our analysis (Figure 5 B.i); most frequently in 

cells of the hair root (hair cortex or inner root sheath cell), granular keratinocytes or other 

keratinocytes. Other skin enriched genes were predicted to be enriched in melanocytes, sweat 

gland or sebaceous gland cells (Figure 5 B.i). Tissue profiling of proteins encoded by selected 

genes supported our classifications (Figure 5 B.ii). No skin enriched genes were predicted to 

be cell type enriched in endothelial cells, smooth muscle cells, fibroblasts, macrophages, or 

other immune cell types - consistent with their presence in multiple tissue beds, and thus lack 

of specificality to skin. Of those cells that were skin enriched, but not classified as cell type 

enriched in our analysis (Figure S7 C.i [rows lacking an enlarged circle]) most had co-

enrichment profiles in multiple cell types in the hair root (Figure S7 C.ii). These genes included 

PSORS1C2, a member of the psoriasis susceptibility locus 62. Enrichment of this gene in cell 

types of the hair follicle is supported by studies showing that ´near naked hairless´ mice, which 

have a spontaneous mutation preventing the development of a normal coat, have significantly 
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reduced expression of PSORS1C2 63, together with others highlighted here e.g., S100A3 and 

KRTAP16-1 (Figure S7 C.ii) 63. In depth skin tissue profiling showed expression of selected 

encoded proteins consistent with enrichment in the hair root (Figure S7 C.iii). Previously, 

keratinocytes, the majority cell type in the skin, have been annotated as the site of expression 

for the majority of skin enriched genes 3. However, this is likely due to the lack of hair root cells 

in the scRNAseq data on which these classifications are based. Here, we show that a minority 

cell type represents the most common source of skin enriched genes.  
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Figure 5. Constituent cells of the skin hair root are the primary source of skin tissue 

enriched genes. (A) Number of genes predicted to be cell type enriched, and corresponding 

over-represented gene ontology terms and significance corrected FDR values, for skin 

specialised cell types profiled: (i) keratinocytes, (ii) granular keratinocytes, (iii) Langerhans 

cells, (iv) hair cortex cells, inner and outer root sheath cells, (v) melanocytes, (vi) sebaceous 

gland cells (vii) eccrine sweat gland cells and (viii) adipocytes. (B) (i) Genes enriched in skin 

vs. other organs, which were predicted to be cell type enriched in our analysis, were plotted to 

show the min differential values between the mean correlation coefficients with the Ref.T. 

panels for each cell type. Enlarged circles represent classification as predicted cell type 

enriched. (ii) Tissue profiling for proteins encoded by skin tissue enriched genes with predicted 

enrichment in the indicted cell type. See also Figure S7.
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Cross-tissue analysis reveals similarities in cell type gene enrichment signatures 

8011 genes were predicted to be cell type enriched in more than two tissue types. To explore 

the relationship between these cell type gene enrichment signatures, we performed a 

hypergeometric test to determine the degree of similarity between all cell types in all tissues. 

As cell type gene enrichment signatures are generated via a correlation-based analysis, 

independent of cell type absolute gene expression levels, such comparisons between tissue 

datasets can be made without correction for batch effects, the analysis platform used, or 

requirement for normalisation.  

Organ-specific cell types can have common gene enrichment signature panels 

Organ specific cell types (i.e. excluding those found in all or multiple organs, e.g., endothelial 

cells, fibroblasts and immune cell types) had gene enrichment signatures with: little or no 

similarity to other cell types e.g., hair inner root sheath cells and melanocytes (Figure 6 A.ii 

and iii), significant similarity to one other cell type, e.g., skeletal myocytes and cardiomyocytes 

(Figure 6 A.iv) or significant similarity with multiple other cell types, e.g., endocrine cells from 

several tissues; alpha and beta cells from the pancreas, enteroendocrine cells from the colon 

and stomach, and parafollicular cells from the thyroid (Figure 6 A.vi). We found a significant 

overlap between the enriched gene signatures of adipocytes (subcutaneous adipose, visceral 

adipose and breast), skin sebaceous gland cells, liver hepatocytes, and kidney proximal 

tubular cells (Figure 6 A.vii). GO analysis of the 41 genes predicted to be enriched in at least 

three of the aforementioned cell types (Figure 6 B.i  [green box]) (Table S5, Tab 1, Table A) 

revealed significant terms all related to metabolic processes, including ´carboxylic acid 

metabolic processes´ (FDR 8.8 x10-26)  and ´organic acid metabolic processes´ (FDR 9.4 x10-

26) (Table S5, Tab 1, Table B) (Figure 6 B.ii). 22 of these 41 genes were also predicted to be

enriched in cardiomyocytes, another highly metabolically active cell type with a significant 

overlap in gene enrichment signature with both adipocytes and hepatocytes (Figure 6 A and 

Table S5, Tab 1, Table A). Illustrative protein profiling showed selective expression of ACO1 

and HADH in adipocytes in adipose tissue, sebaceous gland cells in skin, hepatocytes in liver 

and proximal tubular cells in kidney (Figure 6 B.iii). The enrichment of such genes in many 
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highly metabolically active cells is consistent with a common shared function across tissue 

types. In contrast, cell type enriched genes classified as such in only one tissue are likely key 

for highly specialised cell functions, e.g., complement and coagulation factor genes were 

predicted to be enriched only in hepatocytes (including C4B, C8A, C9, CFHR1/2/4/5 and 

others) and specific solute transporters only in proximal tubular cells (e.g., SLC13A1, 

SLC22A13, SLC22A6, SLC22A8). Tissue profiling for proteins encoded by example genes 

predicted to be enriched in only one of these four cell types; adipocytes (PRKAR2B), 

sebaceous gland cells (TMEM97), hepatocytes (OTC) or proximal tubular cells (TMEM174) 

showed positive staining in only the respective cell types (Figure 6 B.iv). In contrast to ACO1 

and HADH, which were expressed mean TMP >10 in the RNAseq datasets analysed (Figure 

6 B.v), expression values of these example genes were highest in the corresponding tissue, 

with low or no expression in the others (Figure 6 B.vi). 

Our analysis also revealed a significant overlap between the gene enrichment signatures of 

early and late spermatids in the testis and respiratory ciliated cells in the lung (Figure 6 A.v 

and C.i). GO term analysis of these 441 shared genes (Table S5, Tab 2, column A-B) revealed 

the most significant terms were related to cilia (Figure 6 C.ii), which are important for both 

clearance of fluid from the airways and movement of the sperm flagellum, including ´cilium 

organisation´ (FDR 3.6 x10-69) and ́ cilium movement´ (FDR 9.5 x10-64) (Table S5, Tab 2, Table 

1). The top 50 genes predicted to be most highly enriched in both early and late spermatids 

and RCC (Figure 6 C.iii) had variable absolute expression in the respective tissues. LMNTD1 

and MROH9 had very low expression in the lung RNAseq (mean TMP 0.42 and 0.68, 

respectively) (Figure 6 C.iii) and scRNAseq data from human lung 36 revealed highly specific, 

but variable expression (or detection) of these genes in RCC (Figure S8 A.ii and iii). Predicted 

expression in S3 and S4 cells in testis was also supported by scRNAseq from the Human 

Testis Atlas 59 (Figure S8 B.ii and iii). Despite the highly specific enrichment profiles of LMNTD1 

and MROH9; neither were predicted to be enriched in any other cell type across all tissues 

analysed (Figure 6 C.iii), there are no existing studies of these genes in this context. Some 

other genes with highly predicted enrichment in early and late spermatids and RCC were also 
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predicted to be enriched in several other cell types e.g., PACRG (Figure 6 C.iii), which is well 

studied in the context of motile cilia, particularly in sperm 64, but has also been proposed to 

have other roles, such as in primary cilia 65 and even inflammatory pathway signalling 66; 

perhaps explaining its more widespread enrichment profiles in our analysis. Tissue profiling for 

proteins encoded by example genes enriched in both RCC and early and late spermatids 

(Figure 6 C.iv), or RCC only (Figure 6 C.v) showed expression consistent with our predictions. 

GO analysis of genes predicted to be highly enriched in spermatids, but not RCC, revealed the 

most significant terms were unrelated to cilia formation, including ´spermatogenesis´ (FDR 1. 

x10-25), ´multicellular organism reproduction´ (FDR 1.5 x10-19), ´spermatid development´ (FDR 

6.7 x10-14) and ´fertilisation´ (FDR 1.4 x10-10) (Table S5, Tab 3, Column A-B and Table 1); 

reflecting an enrichment for genes with highly specialised function within the testis only, e.g., 

CALR3, LELP1 and SMCP (Figure 6 C.vi). 
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Figure 6. Organ specific cell types can have gene enrichment signature similarities. (A) 

Heatmap showing significance p-values for similarity scores between predicted cell type 

enriched genes, calculated using a hypergeometric test for: (i) all organ-specific cell type 

enriched gene signatures, (ii) skin inner root sheath hair cells, (iii) skin melanocytes, (iv) 

skeletal myocytes, (v) lung respiratory ciliated cells and testis spermatids, (iv) pancreatic alpha 

and beta cells, colon enteroendocrine cells, thyroid parafollicular and stomach gastric 

enteroendocrine cells and (vii) kidney proximal tubular cells, sebaceous gland cells, 

hepatocytes, and adipocytes in subcutaneous adipose tissue, visceral adipose tissue and 

breast. (B) (i) Number of individual or common enriched genes for adipocytes (in at least 2/3 

tissues profiled) kidney proximal tubular cells, sebaceous gland cells and hepatocytes. (ii) 

Over-represented gene ontology terms among the 41 genes featuring in the gene enrichment 

signature of at least 3/4 cell types, displayed in tree map format, generated using REVIGO 

(areas proportional to Log10 significance values). Tissue profiling for proteins encoded by 

genes that were: (iii) part of the shared gene enrichment signature [ACO1, HADH] or (iv) 

classified as cell type enriched only in one cell type [PRKAR2B, TMEM97, OTC, TMEM174] 

and corresponding mean TMP expression in the corresponding tissue RNAseq datasets (v) 

and (vi), respectively. (C) (i) Number of genes that featured in gene enrichment signatures for 

respiratory ciliated cells, early and late spermatids and (ii) the over-represented gene ontology 

terms among these shared enriched genes. (iii) Circular plot showing up to the top 50 most 

enriched genes in respiratory ciliated cells and spermatids, displaying the mean TMP values 

in the lung and testis RNAseq datasets, the number of mentions in Pubmed of gene and 

corresponding tissue (´Pubmed + lung/testis´) or the gene alone (´Pubmed all´), and the 

number of other cell types in which the gene was also predicted to be enriched (´enriched other 

cell type´). Tissue profiling for proteins encoded by genes with predicted enrichment in: (iv) 

both respiratory ciliated cells and spermatids, (v) respiratory ciliated cells only and (vi) 

spermatids only and corresponding mean TMP values in the tissue RNAseq. See also Table 

S5 and Figure S8.
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Core cell types have common gene enrichment signature panels across tissues 

Eight cell types were profiled in all, or most, tissue types (termed “core cell types”); endothelial 

cells [n=15 tissues], smooth muscle cells [n=10], fibroblasts (including hepatic stellate cells 

(HSC) in the liver, and adipose progenitor cells (APC) in adipose tissue) [n=14], macrophages 

(including Kupffer cells in the liver) [n=15], neutrophils [n=8], mast cells [n=5], T-cells [n=13] 

and plasma cells [n=14] (Figure 7 A.i). Gene enrichment signatures of the same core cell type 

in different tissues had high similarity, with little, or no, crossover between different cell types 

(Figure 7A). Notable exceptions included hepatic stellate cells (HSC) and fibroblasts in liver 

and kidney, respectively, which had some commonality with smooth muscle cell gene 

enrichment signatures in other tissues (Figure 7 A.ii), in line with reports that liver HSC can 

have contractile properties 67 and potentially  reflecting the presence of a kidney myofibroblast-

like population, and lung neutrophils, which had some similarity to macrophages in several 

other tissues (Figure 7 A.iii). Enrichment signatures of core cell types had little or no cross over 

with those of organ specific cell types (Figure S8 C.i), except for lung macrophages, which had 

a significant similarity with the cell type group we previously identified as having shared gene 

enrichment signatures related to metabolic processes (Figure 6 B), including adipocytes, 

hepatocytes, proximal tubular cells (Figure S8 C.ii). One could speculate that this indicates 

macrophages in the lung have specific metabolic characteristics, in keeping with recent studies 

indicating that their metabolic responses to infectious pathogens or other insults may be 

distinct from other macrophage subtypes 68. 

Endothelial cells had strong gene enrichment signature similarities across tissues (Figure 7 A), 

with the exception of liver sinusoidal endothelial cells (LSEC), where over half of the enriched 

genes (19/34 [56%]) were not enriched in endothelial cells in any other tissue, consistent with 

their unique structural and phenotypic features, and highly specialised function 69. Despite this, 

overall, they did have greatest similarity with vascular endothelial cells vs. any other core cell 

type (Figure 7 A.iv). Tissue profiling for proteins encoded by CLEC4G (Figure 7 B.i) and CD36 
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(Figure 7 B.ii) showed expression consistent with our predictions of LSEC enrichment only, or 

vascular endothelial and LSEC enrichment, respectively.  

To define key components of the gene enrichment signature for each core cell type, we 

identified genes predicted to enriched in at least half of the tissues profiled (Table S6), e.g., in 

at least 8/15 tissues for EC and MC (Figure 7 C-Gi and ii and Table S6, Tab 1). To assess 

existing reports for each gene in each given cell type, we used PubMed to search for the 

number of studies citing both gene name and cell type together (Figure 7C-G.iii), or gene name 

alone (Figure 7 C-G.iv). Many were well characterised genes on which a plethora of studies 

have been performed, e.g., CD3E and CD2 in T-cells (Figure 7 C.iii and iv), others were poorly 

studied in the cell type context. For example, SHANK3, predicted to be endothelial cell 

enriched in 10 tissues (Figure 7 D), has been researched predominantly in the context of 

neurons and autism 70. TSPAN7 (Figure 7D), predicted to be endothelial cell enriched in 8 

tissues, has only been identified in endothelial cells in the context of tumour associated 

vasculature and metastasis 71. There is little information in the literature about the function of 

LRRN4CL (Figure 7 E), a gene we predicted to be fibroblast enriched in 7 tissues, except for 

its elevated expression in skin melanoma metastases and breast cancer samples 72,73. In 

contrast, MFAP4 (Figure 7 E) is a well-known gene in this cell context 74. TBXAS1 was 

identified as a macrophage core enriched gene, and its enzymatic product, thromboxane A2, 

is linked to vasoconstriction and platelet aggregation, with links to innate immunity 75, but little 

knowledge exists in the macrophage context. Tissue profiling for proteins encoded by 

predicted endothelial enriched genes SHANK3 (Figure 7 D.v) and TSPAN7 (Figure 7 D.vi), 

fibroblast enriched genes LRRN4CL (Figure 7 E.v) and MFAP4 (Figure 7 E.vi) and the 

macrophage enriched gene TBXAS1 (Figure 7 G.vi), revealed selective expression consistent 

with our predictions. 

Whereas most core endothelial and fibroblast enriched genes were not predicted to be 

enriched in any other cell types in our analysis (Figure 7 D-E.v), several T-cell (Figure 7 C.v) 

smooth muscle cell (Figure 7 F.v), and macrophage (Figure G.v) enriched genes where 

predicted to be enriched in an additional cell type(s). BCL11B, a gene we predicted to be T-
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cell enriched gene in 10 tissues (Figure 7 C) with a known role in T-cell development 76, was 

also predicted to be enriched in skin keratinocytes, consistent with its role in dermal 

development in mice 77, and unexpectedly, in the absence of any existing reports, in 

spermatogonia in the testis; expression profiles we verified by protein profiling (Figure 7 C.vii). 

AIF1, predicted to be macrophage enriched in 12 tissues (Figure 7 G.i and viii), consistent with 

its known expression in this cell type 78, was also classified as kidney podocyte enriched; 

previously reported in only a single study 79, a prediction we again verified with tissue protein 

profiling (Figure 7 G.vi). Of all the core cell types, smooth muscle cell enriched genes were 

most likely to have predicted enrichment in another cell type, most frequently cardiomyocytes, 

skeletal myocytes or breast myoepithelial cells, e.g., SYNM (Figure 7 F.v) and TPM1 (Figure 

7 F.vi).  



37 



 

 

 

 

38 

Figure 7. Core cell types share gene enrichment signatures across organs. (A) Heatmap 

showing significance p-values for similarity scores in cell type gene enrichment signatures, 

calculated using a hypergeometric test, between (i) plasma cells (PC), T-cells (TC), endothelial 

cells (EC), fibroblasts (FB), smooth muscle cells (SMC), mast cells (MastC), macrophages 

(MC) and neutrophils (NP) in different tissues. (B) Tissue profiling for proteins encoded by (i) 

the sinusoidal EC enriched gene CLEC4G and (ii) the vascular and sinusoidal EC enriched 

gene CD36, in different tissue beds. Circular plots showing up to the top 50 genes most 

frequently predicted as enriched in (C) TC, (D) EC, (E) FB, (F) SMC and (G) MC in different 

organs, displaying (i) the percentage of tissues in which the gene was classified as enriched 

in the given cell type (´% tissues´), the number of mentions in Pubmed of (ii) gene and 

corresponding core cell type (´Pubmed + cell type´) together or (iii) the gene alone (´Pubmed 

all´), and (iv) the number of other cell types (including non-core cell types) in which the gene 

was also predicted as enriched (´enriched non-cell type´). (v-vi) Tissue profiling of proteins 

encoded by selected genes predicted to be core cell type enriched. See also Table S6 and 

Figure S8. 
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DISCUSSION 

Here we present a tissue-centric, cell type gene enrichment atlas, generated from the analysis 

of hundreds of biological replicates. Although it is frequently stated that cell-type gene 

expression profiles cannot be extracted from bulk RNAseq, e.g., 80,81, here we have identified 

cell type enriched or co-enriched genes, and charted temporal transcriptome changes 

underlying cell type differentiation. We made comparisons between cell type enrichment 

signatures across tissues, without the requirement for normalisation or batch effect 

adjustments, a significant issue when handling scRNAseq datasets, for which currently no 

universal solution 82,83. Our analysis included cell types that are difficult to extract from tissue, 

e.g., adipocytes, and those that are sensitive to processing, e.g., kidney podocytes; issues that 

can hinder analysis 8,10, but are circumvented here as cell removal from tissue was not 

required. We identify lowly expressed transcripts as cell type enriched, many of which can be 

detected only in a small minority of cells annotated as a given type by scRNAseq, possibly due 

to limited read depth and high number of drop-out events 18. Transcript level alone is not 

sufficient to predict protein levels 84 and so potential function of proteins encoded by such 

genes may have been overlooked. 

Our study is the only cell type gene enrichment atlas generated independently of scRNAseq. 

Comparison of scRNAseq datasets generated from analysis of the same tissue type can reveal 

surprisingly low agreement between studies 22,23, possibly due to the low number of samples 

typically analysed, and the associated lack of biological varience. For top cell type enriched 

genes in adipose tissue, agreement between data generated using our analysis method and 

several scRNAseq studies was equivalent or greater than between the scRNAseq studies 

themselves 28. This could reflect the large sample set analysed and the associated biological 

variance represented. Our method also has scope for well-powered comparisons of cell type 

enrichment profiles between healthy and disease states, sexes 28, ages, developmental 

stages, or metabolic states, using existing RNAseq resources for which phenotypic data is 

available, such as GTEx 33 or TCGA (https://www.cancer.gov/tcga) . 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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Various deconvolution algorithms have been developed to determine proportions of constituent 

cell types in bulk RNAseq, e.g., CIBERSORT and others 85-87. Such analyses typically depend 

on input expression matrices of cell type reference genes, generated from transcriptome 

analysis of isolated cells or cell types. The accuracy of input matrices can be affected by 

various factors, such as technical artifacts due to cell extraction and processing, the presence 

of contaminating cell types, and limited input data availability for some cell types. Cross 

checking input matrices against our dataset could optimise such analysis, by identifying the 

most likely highly enriched genes in vivo.  

Limitations of the study 

There are limitations to our study. In some tissues, we do not profile specific cell subtypes, 

e.g., basal and suprabasal keratinocytes in the skin, which were handled as one cell type in

our analysis. In such cases, we failed to identify genes that fulfilled the criteria for use as input 

Ref.T.. In keeping with our observations, scRNAseq analysis of skin showed that genes 

considered to be basal keratinocyte markers e.g., COL17A1 and KRT5, were indeed most 

highly expressed in this cell type, but were also co-enriched within the tissue in suprabasal 

keratinocytes 3. Thus, such cell subtype definitions are likely primarily governed by variation in 

absolute mRNA expression levels, rather that the presence or absence of a large number of 

uniquely enriched genes.  

As our analysis end point is a gene enrichment score, we do not provide information on 

absolute mRNA expression profiles on a cell type basis, such as that generated by scRNAseq 

analysis.  

As the prediction of cell type enriched genes is dependent on known input Ref.T., we cannot 

identify novel cell (sub)types for which Ref.T. have not yet been described.  

We analysed samples from a total of 933 individuals from the GTEx portal 33, with diverse 

health status, whose ages skewed older (ages 20-29: 8.5%, 30-39: 8.1%, 40-49: 15.6%, 50-

59: 31.9%, 60-69: 32.4%, 70-79: 3.4%). Thus, the input dataset represents a limited age 

demographic, and a health status that may not represent the general population.  
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Expression of certain genes are strongly modified by environmental (e.g., eating, exercise, 

inflammation etc.), or genetic factors 88. Such genes may therefore lack correlation with the 

constitutively expressed Ref.T. selected to represent the cell type in which they are 

predominantly transcribed, and thus could be considered a type of false negative in our 

analysis. One such example is SELE, an endothelial cell specific gene that is highly 

upregulated during inflammation and expressed at very low levels, if at all, in resting state 89. 

SELE, despite its highly endothelial cell restricted expression profile, is not classified as EC 

enriched in our analysis, due to the variable nature of its expression.  

We used relatively high thresholds for classification of cell type enriched genes. It is likely that 

some cell type enriched genes may be false negatives in our analysis, as they fall just below 

the thresholds required for classification as such. For example, the gene KANK3 is classified 

as endothelial cell enriched in 9 tissue types, in the remaining 6 the highest enrichment score 

is also in endothelial cells, vs. all other types profiled, although it did not reach classification 

threshold. Thus, our classifications are intended only as a guide, and the reader should 

consider the data on a transcript-by-transcript basis. 

All data generated in this study is available on the Human Protein Atlas in the ´Tissue Cell 

Type´ section (www.proteinatlas.org/humanproteome/tissue+cell+type), and can be used 

alongside data generated from scRNAseq in the ´Single Cell Type Section´ 3, and the antibody 

based tissue protein profiling in the ´Tissue Section´ 2. 

https://www.proteinatlas.org/humanproteome/tissue+cell+type
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METHODS AND RESOURCES 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact: Dr. Lynn Marie Butler. Email: Lynn.butler@ki.se 

This study did not generate new unique reagents. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Bulk RNAseq data analysed in this study was obtained from the Genotype-Tissue Expression 

(GTEx) Project (gtexportal.org) V8 29 on 2021/04/26 (dbGaP Accession phs000424.v8.p2). 

Protein coding genes were categorised according to Biotype definitions in ENSEMBL release 

102 90 inclusive of those defined as “protein_coding”, “IG_C_gene”, “IG_D_gene”, 

“IG_J_gene”, “IG_V_gene”, “TR_C_gene”,“TR_D_gene” ,“TR_J_gene” and “TR_V_gene”. All 

other categorisations were classified as “non-protein coding” and were excluded from the 

analysis. Human tissue protein profiling was performed in house as part of the Human Protein 

Atlas project 2,91,92 (www.proteinatlas.org). Normal tissue samples were obtained from the 

Department of Pathology, Uppsala University Hospital, Uppsala, Sweden, as part of the 

Uppsala Biobank. Samples were handled in accordance with Swedish laws and regulations, 

with approval from the Uppsala Ethical Review Board (Uhlen et al., 2015).  

METHOD DETAILS 

Sample inclusion  

All samples in each GTEx tissue type dataset were included in the analyses, with the exception 

of: (i) Skin-not Sun Exposed (suprapubic): Ref.T. selected to represent hair root cells were 

absent or very lowly expressed in a large number of samples, presumably due to the lack of 

such structures in the selected region of tissue analysed. Thus, only samples with mean TPM 

>0.1 for hair follicle expressed transcripts trichohyalin (TCHH), keratins 25 (KRT25) and 71 

(KRT71) were included for in the analysis (n=177). (ii) Breast – Mammary Tissue: The GTEx 

breast dataset contains samples from both male and female donors, we analysed those from 

mailto:Lynn.butler@ki.se
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only from females. In both cases, sample IDs included in the analysis can be found in Table 

S2, Tab ´Sample IDs´. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Reference transcript-based correlation analysis  

This method was based on that we previously developed 26-28. Pairwise Spearman correlation 

coefficients between reference transcripts (Ref.T.), selected as proxy markers for each cell 

type (see Table S1, Tab 1, Table A-O), and all other transcripts were calculated in R using the 

corr.test function from the psych package (v 1.8.4). False Discovery Rate (FDR) adjusted p-

values (using Bonferroni correction) <0.0001 were considered significant. Genes were 

predicted to be cell type enriched if they fulfilled the criteria as described in the results section. 

In cases where a given cell type was represented by more than one Ref.T panel, or they could 

be considered related sub-cell types, the minimum differential score required vs. other Ref.T. 

panels was calculated excluding each the other (i.e., genes that correlated highly with both 

Ref.T. panels representing the same (sub)cell type were not excluded from classification as 

cell type enriched, but included in both – see Table S1, Tab 2).  

Weighted correlation network (WGCNA) analysis 

The R package WGCNA 38 was used to perform co-expression network analysis for gene 

clustering, on log2 expression TPM values. The analysis was performed according to 

recommended conditions in the WGCNA manual. Non-protein coding transcripts and 

transcripts with too many missing values were excluded using the goodSamplesGenes() 

function.  

Gene Ontology 

The Gene Ontology Consortium 41 and PANTHER classification resource 93,94 were used to 

identify over represented terms in gene lists from the GO ontology (release date 2022-07-01) 

or reactome (release date 2021-10-01) databases. Plots of GO terms were created using the 

Clusterprofiler package in R 95 or REVIGO 56, as specified. 
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Additional datasets and analysis 

Single cell RNAseq data from Tabula Sapiens 36 was downloaded and UMAP plots created 

using the Seurat package in R 96. Human testis scRNAseq data was sourced from the human 

testis atlas 59. Tissue enriched genes were downloaded from the Human Protein Atlas (HPA) 

tissue atlas 2 or GTEx database 29, as collated in the Harminozome database 39. 

Tissue Profiling: Human tissue sections 

Immunohistochemistry (IHC) stained tissue sections were stained, as previously described 2,91. 

Briefly, formalin fixed and paraffin embedded tissue samples were sectioned, de-paraffinised 

in xylene, hydrated in graded alcohols and blocked for endogenous peroxidase in 0.3% 

hydrogen peroxide diluted in 95% ethanol. For antigen retrieval, a Decloaking chamber® 

(Biocare Medical, CA) was used. Slides were boiled in Citrate buffer®, pH6 (Lab Vision, CA). 

Primary antibodies and a dextran polymer visualization system (UltraVision LP HRP polymer®, 

Lab Vision) were incubated for 30 min each at room temperature and slides were developed 

for 10 minutes using Diaminobenzidine (Lab Vision) as the chromogen. Slides were 

counterstained in Mayers hematoxylin (Histolab) and scanned using Scanscope XT 

(Aperio). Primary antibodies used for IHC staining are listed in Table S7. 

Other visualisation and analysis tools 

Graphs and plots were made using Graphpad prism or the ggplot2 package in R 97, unless 

otherwise specified. Circular plots were constructed using the R package circlize 98 and 

pubmed data was extracted using the easyPubMed package in R (https://CRAN.R-

project.org/package=easyPubMed). Some figure illustrations were created using 

BioRender.com. 

DATA AVAILABILITY 

Data for all protein coding genes and antibody-based protein profiling is provided on the 

Human Protein Atlas (Tissue Cell Type section) 

(www.proteinatlas.org/humanproteome/tissue+cell+type). This article also includes all 

https://cran.r-project.org/package=easyPubMed
https://cran.r-project.org/package=easyPubMed
http://www.proteinatlas.org/humanproteome/tissue+cell+type
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individual tissue datasets generated (Table S2) and cell type enrichment categorisations 

(Table S1, Tab 4). 



 

 

 

 

46 

AUTHOR CONTRIBUTIONS 

Conceptualisation: LMB. Methodology: PD, LMB. Formal analysis: PD, SO, ES, MNT, MJI, 

LMB. Investigation: PD, SO, ES, MNT, MJI, FP, CL, LMB. Resources: FP, CL, JO, MU, LMB. 

Writing – Original Draft: PD, LMB. Writing – Review & Editing: All, Visualisation: PD, LMB. 

Supervision: LMB, PD. Funding Acquisition: JO, FP, CL, MU, LMB. 

ACKNOWLEDGEMENTS  

This work was supported by funding granted to LMB from Hjärt Lungfonden (20170759, 

20170537) and the Swedish Research Council (2019-01493). Main funding for the Human 

Protein Atlas was provided from the Knut and Alice Wallenberg Foundation (WCPR) and the 

Erling Persson Foundation (KCAP). We acknowledge the staff of the Human Protein Atlas 

program and the Science for Life Laboratory (SciLifeLab) for their valuable contributions. Data 

usage: We used data from the Genotype-Tissue Expression (GTEx) Project (gtexportal.org) 

29, supported by the Office of the Director of the National Institutes of Health, and by NCI, 

NHGRI, NHLBI, NIDA, NIMH, and NINDS. 

DECLARATION OF INTERESTS 

The authors declare no competing interests.  

https://gtexportal.org/home/)


47 

SUPPLEMENTAL TABLE LEGENDS 

Table S1. Reference transcript selection and analysis summary 

[Tab 1]: Correlation coefficient values between selected Ref.T. in each tissue. [Tab 2]: Cell 

subtypes represented by different Ref.T. panels within a single tissue and corresponding 

annotations in the Tabula Sapiens and HPA databases. [Tab 3]: Analysis criteria and totals for 

very high, high and moderately enriched genes within each cell type. [Tab 4]: Cell type 

enrichment predictions for all protein coding genes. 

Table S2. Sample IDs and tissue-by-tissue data 

[Tab: Sample IDs]: Analysed sample IDs (GTEx). [Other tabs]: Details for each tissue type 

(see key). 

Table S3. Gene ontology (GO) terms in alpha and beta cells of pancreas 

[Tab 1]: GO biological process, reactome, and cellular component analysis for genes predicted 

to be co-enriched in alpha and beta cells of the pancreas. [Tab 2]: Synapse-linked genes with 

predicted co-enrichment in alpha and beta cells of the pancreas. 

Table S4. Values and gene ontology (GO) analysis of germ cell enriched genes 

[Tab 1]: Genes predicted to be enriched in germ cells of the testis (see key). [Tab 2]: GO 

biological process and reactome analysis of germ cell enriched genes. [Tab 3]: GO biological 

process analysis for germ cell subtype predicted enriched genes. 

Table S5. GO analysis of genes enriched in multiple cell types 

[Tab 1]: Table A: Genes predicted to be enriched in 3 or more of: adipocytes, sebaceous gland 

cells, hepatocytes, and proximal tubular cells. Table B: GO Biological Process analysis for 

genes in Table A. [Tab 2]: Table A: Genes predicted to be enriched in respiratory ciliated cells 

of the lung and S3 and/or S4 cells (early or late spermatids) of the testis. Table B: Enriched 

GO biological process anaysis for genes listed in Table A. [Tab 3]: Table A: Genes predicted 

to be enriched in S3 and/or S4 cells (early/late Spermatids) of the testis, but not in respiratory 

ciliated cells of the lung. Table B: GO biological process analysis for genes listed in Table A. 
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Table S6. Core cell type predicted enriched genes 

Genes predicted to be enriched in the same cell type in at least half of the tissues where 

profiled. 

Table S7. Primary antibodies 

IDs for all primary antibodies used to stain all immunohistochemistry images used in this study.  
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Figure S1. Integrative co-expression analysis of unfractionated human tissue RNAseq 

can resolve constituent cell type enriched genes. Related to Figure 1. 

RNAseq datasets for human lung (n=578) were retrieved from GTEx V8 and correlation 

coefficients between selected cell type Ref. T. and all other sequenced transcripts generated. 

Correlation values vs. all other cell type Ref.T. panels for transcripts reaching the designated 

threshold with Ref. T. for (A) (i) respiratory ciliated cells (RCC) (B) (i) alveolar type I cells (AT1), 

(C) (i) natural killer cells (NK) or (D) (i) macrophages (MC). The ‘differential correlation score’

and respective enrichment rankings for transcripts reaching the designated threshold with Ref. 

T. for (A) (ii) RCC or SMC, (B) (ii) AT1 or AT2, (C) (ii) NK or TC and (D) (ii) MC and AT2.

scRNAseq data from analysis of human lung was sourced from Tabula Sapiens (Tabula 

Sapiens et al., 2022) and used to generate UMAP plots, showing the expression profiles of 

example genes we predicted as being enriched in (A) (iii) RCC only, (iv) RCC and SMC or (v) 

SMC only, (B) (iii) AT1 only, (iv) AT1 and AT2 or (v) AT2 only, (C) (iii) TC only, (iv) TC and NK 

or (v) NK only, or (D) (iii) AT2 only, (iv) AT2 and MC or (v) MC only. (E). RNAseq datasets for 

human liver (n=226) were retrieved from GTEx V8 and analysed as described for lung. 

Correlation values vs. all cell type Ref.T. panels for transcripts reaching the (i) designated or 

(ii) modified threshold for classification as erythroid cell enriched. EC; Endothelial cell,

FB1/FB2; fibroblast, MC; macrophage, MastC; mast cell, NP1/NP2; neutrophil, TC; T-cell, NK; 

natural killer cell, PC; plasma cell, BC; B-cell.
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Figure S2. Unsupervised weighted network correlation analysis (WGNCA) is consistent 

with Ref.T. analysis. Related to Figure 1. RNAseq data from human (A) lung (n=578 

individuals) or (B) pancreas (n=328) was subject to weighted correlation network analysis 

(WGCNA). In the resultant dendrograms, the position of (i) Ref.T. selected to represent each 

cell type and (ii) the % of the cluster containing transcripts that had a correlation with any Ref.T. 

panel above the designated threshold, are indicated; colour representing the cell type 

classification (see bottom panel) (Table S1, Tab 5 for thresholds). Distribution of transcripts for 

each cell type classification when the highest correlation with any given Ref.T. panel was a 

minimum of (ii) 0, (iii) 0.05, (iv) 0.10, (v) 0.15 [moderately enriched], (vi) 0.20, (vii) 0.25 [highly 

enriched] or (viii) 0.30 or (ix) 0.35 [very highly enriched] greater that the next highest with a 

different Ref.T. panel (´differential correlation score´).
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Figure S3. Integrative co-expression analysis of unfractionated human tissue RNAseq 

can resolve tissue enriched genes into single cell type expression source. Related to 

Figure 2. (A) Bar plot showing the fraction of predicted cell type enriched genes among the 

tissue, or tissue-group, enriched genes in Human Protein Atlas (HPA). Colour indicates cell 

type group. The cell type with the most shared enriched genes with tissues are labelled. (B) 

Bubble plots showing the significance (indicated by dot size and colour) of similarity between 

the top 300 tissue enriched genes in GTEx and the predicted cell type enrichment signatures 

Where overlap is not statistically significant (hypergeometric test, P > 0.05), the corresponding 

dot is removed. EC; endothelial cell, SMC; Smooth muscle cell, MC; macrophage, MastC; mast 

cell, TC; T-cell, PC; Plasma cell, NP; Neutrophil, MI; Mitotic cell, NK; Natural killer cell.
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Figure S4. Reference transcript-based identification of lowly expressed pancreatic 

alpha and beta cell type enriched and co-enriched genes. Related to Figure 3. RNAseq 

datasets for human pancreas (n=328) were analysed to generate correlation coefficient values 

between all protein coding genes and Ref T. (A) For genes that correlated most highly with 

alpha (dark blue) or beta cell (turquoise) Ref.T (above >0.50), the ‘differential correlation score’ 

(difference between mean corr. with alpha and beta cell Ref.T.) was plotted vs. ‘enrichment 

ranking’ (position in each respective list, highest corr. = rank 1). Shaded grey box highlights 

genes enriched in both cell types (co-enriched). Genes highlighted in bold correspond to those 

featured in the lower panels. scRNAseq data from analysis of human pancreas was sourced 

from Tabula Sapiens 36, and used to generate UMAP plots showing (B) scRNAseq cell type 

annotations, and the expression profiles of genes we predicted as being (C) alpha cell-

enriched; (i) DSCAM, (ii) GLB1L3, (iii) UPB1 and (iv) SPOCK3, (D) co-enriched in both alpha 

and beta cells; (i) ADGRA1, (ii) FAM135B, (iii) GPR158 and (iv) SCRT2, or (E) beta cell-

enriched; (i) BEST3, (ii) EIF4E1B, (iii) TRPM3 and (iv) UNC5D.
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Figure S5. Analysis of pseudo temporal changes during spermatogenesis reveals 

stage-specific and common stage-shared gene enrichment signatures. Related to 

Figure 4. (A) weighted network correlation analysis of human testis RNAseq data (n=361) 

annotated to show position of genes in Ref.T. panels (each indicated with single circle) 

selected to represent cell types at the different stages of spermatogenesis: S1 

(spermatogonia), S2 (spermatocytes), S3 and S4 (early and late spermatids, respectively). (B) 

For genes with predicted cell-type enrichment in S1, S2, S3 or S4 (i) mean correlation 

coefficients with Ref.T. for S1, S2, S3, S4 and sertoli cells (SC), Leydig cells (LC), peritubular 

cells (PtC), endothelial cells (EC) or macrophages (MC) and (ii) over-represented gene 

ontology terms, summarised and visualised using REVIGO. For all genes predicted to be: (C) 

highly cell type enriched at one stage of spermatogenesis or (D) co-enriched at two or more 

stages of spermatogenesis (category indicated in top left of each plot): (i) mean correlation 

coefficients with Ref.T. for S1, S2, S3, S4, SC, LC, PtC, EC or MC, (ii) mean correlation 

coefficients with Ref.T. for S1, S2, S3, S4 with linkage lines connecting each individual gene 

(iii) expression profiles in Human Testis Atlas scRNAseq data (Guo et al., 2018) for selected

lesser known genes appearing in each respective category. UMAP from the Human Testis 

Atlas shows original cell type annotations (bottom left), with arrows to indicating the broad 

equivalence classifications in our analysis.
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Figure S6. Reference transcript-based identification of lowly expressed germ cell 

enriched genes in the human testis. Related to Figure 4. (A) UMAP and cell type 

annotations as defined in the scRNAseq Human Testis Atlas (Guo et al., 2018), with arrows to 

indicate the broad equivalence classifications in our analysis. (i) Enrichment scores in all cell 

types profiled for genes predicted to be (B-F) S1 enriched, (H-N) S3 and S4 enriched or (O-Q) 

S4 enriched, with (ii) corresponding UMAP expression plots from the scRNAseq Human Testis 

Atlas (Guo et al., 2018).
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Figure S7. Constituent cells of the skin hair root are the primary source of skin tissue 

enriched genes. Related to Figure 5. (A) Weighted network correlation analysis (WGNCA) 

of human skin samples (n=210) with coloured coded bars showing distribution of genes 

predicted to be cell type enriched. Position of Ref.T. and example cell-type enriched genes are 

highlighted for: (i) supra-basal keratinocytes, (ii) granular keratinocytes and (iii) melanocytes. 

(B) scRNAseq data and cell type definitions were sourced for human skin from Tabula Sapiens

(Tabula Sapiens et al., 2022) and used to generate UMPA plots showing: (i) cell type 

annotations or expression profiles for genes we predicted to be melanocyte enriched (ii) 

SLC24A5, (iii) CA14 and (iv) SLC45A2. (C) Skin enriched genes (vs. other tissue types) were 

identified and (i) corresponding cell type enrichment profiles in skin plotted, a panel of which 

(ii) did not reach the threshold for classification as enriched in a single cell type but had highest

enrichment scores in one or more hair cell types. (iii) Expression of proteins encoded by 

selected examples were profiled in human skin tissue containing hair roots. 
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Figure S8. Cell type enriched signature comparisons. Related to Figure 6 and 7. scRNAseq data 

was sourced for human (A) lung from Tabula Sapiens (Tabula Sapiens et al., 2022) or (B) 

testis from the Human Testis Atlas (Guo et al., 2018), and used to generate UMAP plots to 

show (i) cell type annotation as according to the original studies, or expression profiles of (ii) 

LMNTD1 or (iii) MROH9. (C) Heatmap showing significance p-values for similarity scores, 

calculated using a hypergeometric test, between: (i) all predicted cell type enriched genes, and 

(ii) lung macrophages vs. other non-macrophage cell types.
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ABSTRACT 

The endothelium is the innermost layer of all blood vessels. Endothelial cells (EC) play a central 

role in the regulation of vascular processes, such as coagulation, inflammation, and angiogenesis. 

Proteins with EC restricted expression tend to be critical for such cell type specific functions. In a 

previously published bioinformatic based analysis of RNAseq, we predicted that KANK3, which 

encodes an uncharacterised protein, had body wide enriched expression in human EC. Here, we 

verify that KANK3 is a body-wide endothelial-enriched protein at the transcript and protein level. 

We characterise its subcellular distribution in primary EC and uncover that its expression is 

strongly induced in response to shear stress exposure. When KANK3 protein was depleted using 

siRNA, the distribution of the EC intermediate filament vimentin was disrupted in both static and 

shear stress exposed cultures, indicating a direct or indirect interaction between these proteins. 

Correspondingly, in a wound healing model, depletion of KANK3 increased EC migratory capacity, 

but did not increase proliferative capacity. Furthermore, we observed an increase in the 

expression of the pro-coagulant protein tissue factor in KANK3 depleted EC, indicating that it could 

have further regulatory roles, beyond those associated with cytoskeletal modification and motility.   
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INTRODUCTION 

The vascular endothelium lines the inside of all blood and lymphatic vessels and has numerous 

functions, including in the regulation of inflammation, haemostasis, and blood pressure [1, 2]. 

Proteins specifically expressed in endothelial cells (EC) tend to have central roles in cell 

specialised functions, e.g., cadherin-5 (CDH5), claudin-5 (CLDN5) and endothelial cell-selective 

adhesion molecule (ESAM), play established roles in EC integrity, polarity and shape, vessel 

permeability and signalling  [3-6], and the vascular endothelial growth factor receptor 1 (FLT1) and 

2 (KDR) are central to angiogenesis [7]. In earlier work, based on bioinformatic analysis of bulk 

RNAseq, we predicted that the gene encoding the uncharacterised protein KN Motif And Ankyrin 

Repeat Domains 3 (KANK3) had body wide enriched expression in human EC [8].  

The KANK family consist of four members (KANK 1-4), which arose through gene duplication and 

diversification, with strong conservation across the evolutionary tree [9, 10]. They are defined by 

their unique structure, consisting of a variable number of coiled-coil motifs in the central N-terminal 

regions, five ankyrin repeats in the C-terminal region and a talin-binding KN-motif domain at the 

N-terminus  [10, 11]. The interaction between KANK1 and talin regulates the recruitment of 

complexes that stabilize cortical microtubules to focal adhesions [11]. KANK2 promotes the 

creation of central adhesions by triggering talin activation and is responsible for the reduction of 

force transduction across integrins [12].  KANK1 and 2 are involved in cell migration and adhesion, 

via interactions with kinesin family member 21A (KIF21A), and the regulation of its activity through 

its coiled-coil domain [10, 13].  

The cytoskeleton and focal adhesions are crucial for various EC specialised functions, such as 

the maintenance of the structural integrity required to withstand the mechanical forces exerted by 

the blood flow [14], to control movement and migration during processes such as angiogenesis 

[15], to stabilise junctional connections and control vascular permeability [16] and in processes 

such as coagulation [17] and inflammation [18].   
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While KANK1 and KANK2 are well relatively studied, KANK3 is comparably poorly described; 

currently, it has no reported function in a vascular context in vertebrates. A homologue of KANK3 

has been described in vascular EC in of zebrafish embryos, where it was essential for embryonic 

development and survival, with a potential role in cell adhesion and tissue integrity  [19, 20]. Over 

expression of KANK3 in NIH3T3 cells revealed a possible role in actin stress fibre formation [21], 

and other studies have indicated a role in the regulation of cell migration in hepatocellular 

carcinoma [22] and lung adenocarcinoma [23].  

In this study, we verify that KANK3 is a body-wide endothelial-enriched protein. We characterise 

its subcellular distribution in primary EC, and report that it is shear stress-induced gene. We show 

that KANK3 depletion modifies the subcellular distribution of the EC intermediate filament vimentin 

and increases EC motility in a gap closing assay. We observed an increase in the expression of 

the pro-coagulant protein tissue factor in KANK3 depleted EC, particularly under inflammatory 

conditions, together with an increased capacity to induce thrombin generation in plasma. Thus, 

we demonstrate a role for the EC enriched protein KANK3 in EC specialised functions.  
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RESULTS 

KANK3 IS AN ENDOTHELIAL ENRICHED PROTEIN IN HUMAN  

KANK3 mRNA expression correlates with endothelial cell genes in human tissues  

Proteins expressed specifically by EC tend to be critical for EC specialised functions. Previously, 

using mixed tissue bulk RNAseq, we found that KANK3 expression was strongly correlated with 

EC marker genes, indicating EC specificity [8]. More recently, using a similar approach, we profiled 

gene enrichment signatures for cell types in 15 individual tissue datasets [24-27] (data is displayed 

on the Human Protein Atlas [www.proteinatlas.org/humanproteome/tissue+cell+type]). Here, 

KANK3 was predicted to be EC enriched in multiple vascular beds (Figure S1 A.i), whilst other 

KANK family members, KANK1, 2 or 4 were not (Figure S1 B-D.i).  

To further explore this potential relationship using a KANK3-centric approach in an expanded 

dataset, we retrieved bulk RNAseq datasets for 36 human tissue types from Genotype-Tissue 

Expression (GTEx) V8 (www.gtexportal.org)[28] (mean samples/tissue =377, range 85-803) 

(Table S1A). For each dataset, we calculated Pearson correlation coefficient values between 

KANK3 and all other mapped genes (Table S1B). The top 100 most highly correlating genes with 

KANK3 (all correlation coefficient [corr.] >0.5, p-value<0.0001) in each tissue type (Table S1C) 

were cross-compared, to identify 67 genes that were highly correlated with KANK3 in 10 or more 

tissue types (Figure 1A) (Table S1D). These genes included EGFL7 (32 tissues; mean corr. 

=0.76), ROBO4 (29 tissues; mean corr. =0.74), ESAM (29 tissues; mean corr. =0.76) and CDH5 

(29 tissues; mean corr. =0.72); all of which have key roles in EC specific functions [29-32].  

Gene ontology (GO) analysis [33] was performed to identify over represented groups within this 

list of 67 genes (Figure 1B and Table S1E). Over-represented terms were related to vascular or 

EC function and included ´vasculature development´ (p=1.1 x 1013), ´angiogenesis´ (p=1.8 x 1011) 

and ´establishment of endothelial barrier´ (p=3.2 x 107) (Figure 1 B) (Table S1E). As high 

correlation values between genes within tissue can indicate co-expression in a common cell-type, 

these results are consistent with our prediction that KANK3 is an EC enriched gene. 

http://www.proteinatlas.org/humanproteome/tissue+cell+type
http://www.gtexportal.org/
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Figure 1. KANK3 is an endothelial cell enriched protein in the human. RNAseq data from 36 human 

tissue types was sourced from Genotype-Tissue Expression (www.gtexportal.org) [28]. Pearson correlation 

coefficient values between KANK3 and all other mapped genes were calculated for each. (A) Genes most 

frequently among the top 100 most highly KANK3 correlated genes (all >0.50, p<0.0001) across tissue types 

(B) Gene Ontology over-represented terms associated with genes among the top 100 most highly KANK3 

correlated genes in ≥10 tissues. (C) Data was downloaded from Tabula Sapiens [34] and used to generate 

Uniform manifold approximation and projection (UMAP) visualizations for KANK3 expression in human: (i) 

liver, (ii) skin, (iii) fat, (iv) prostate, (v) mammary gland, (vi) pancreas, (vii) muscle, (viii) lung, (ix) large 

intestine and (x) kidney. (D) Protein profiling for KANK3 across human tissue types. (D) Immortalised human 

cell lines in the panel tested that had with the highest expression of KANK3, generated as part of the Human 

Protein Atlas project (ref).  

  

http://www.gtexportal.org/
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KANK3 endothelial enriched expression can be verified by scRNAseq and protein profiling  

Single cell RNAseq data from the Tabula Sapiens [34] was used to explore expression profiles of 

KANK3 in skin, liver, fat, prostate, mammary gland, pancreas, muscle, lung, large intestine, and 

kidney (Figure 1 C.i-x). In all cases, KANK3 was predominantly expressed within clusters 

annotated as EC. Low levels of KANK3 were detected in myofibroblasts in fat (Figure S1 C.iii), 

and pericytes in muscle and lung (Figure 1C.vii and viii). There was little or no KANK3 expression 

in tissue specific cell types, e.g., hepatocytes in the liver (Figure 1 C.i) or pneumocytes in the lung 

(Figure 1 C.viii). Protein profiling confirmed EC expression of KANK3 in multiple tissues, including 

colon, kidney, liver, breast, adipose, cortex, prostate, skeletal muscle, thyroid (Figure 1D) and 

others (Figure S1B) [35].  

KANK3 expression is enriched in cell lines of endothelial origin 

To determine if KANK3 expression is maintained in cells of EC origin following immortalisation, 

we examined its expression in RNA-sequencing data from different 41 cell lines from the HPA 

[35]. KANK3 was not detectable, or detectable only at very low levels (nTPM ≤ 0.5) in 30/41 (73%) 

of the cell lines tested. The highest expression was detected in human umbilical vein endothelial 

cells (HUVEC), HUVEC/TERT2 cells (7.2 nTPM), followed by the mesenchymal cell line U2OS 

cells (1.8 nTPM) (Figure 1E) (data for all shown in Figure S1). In comparison, other members of 

the KANK family (KANK1, 2 and 4), which we have previously predicted to lack EC specificity 

across human tissue types [36], show no EC specificity in immortalised cell lines (Figure S2) or in 

scRNAseq data from Tabula Sapiens (Figure S2). Together, these data support our prediction [8, 

24, 27, 36] that KANK3, but not KANK1, KANK2 or KANK4, is a human endothelial enriched gene. 
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Figure 2. Validation of tools for the study of KANK3 function. (A) Detection of KANK3 splice variants 

by RNAseq in: (i) primary HUVEC and (ii) unfractionated human tissue from Genotype-Tissue Expression 

(www.gtexportal.org). HEK293 cells were untreated or transfected with KANK3-eGFP expressing plasmids 

and used to generate (B) cell lysates for Western Blot analysis using primary antibodies: (i) HPA051153, a 

rabbit polyclonal antibody raised to target KANK3, or (ii) an anti-eGFP antibody, or (C) immunocytochemistry 

staining to show signals from eGFP (yellow), HPA051153 (Magenta), Actin (Phalloidin-647; yellow) or DAPI 

(Nuclear staining, Gray), in (i) KANK3 transfected or (ii) untreated cells. HUVEC were transfected with 

siRNAs targeting KANK3 and cultured for between 48 and 168h before cell lysis and (E) measurement of 

KANK3 mRNA expression using real time qPCR and (F) Western blot analysis using primary antibody 

HPA051153 and an anti-GAPDH as loading control, or (G) immunocytochemistry using HPA051153 

(Magenta), and DAPI (Nuclear staining, grey) (72 hours post transfection). All immunocytochemistry images 

were captured using captured using structured illumination microscopy (SIM). 

 

  

http://www.gtexportal.org/
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GENERATION AND VERIFICATION OF TOOLS FOR THE STUDY OF KANK3 

The search term KANK3 returns 11 hits on PubMed (https://pubmed.ncbi.nlm.nih.gov/), confirming 

this protein is not well studied. One reason why under studied proteins are unattractive targets for 

functional analysis can be a lack, or unknown reliability, of research tools with which to investigate 

them [37, 38]. Thus, we tested our model system and generated or purchased reagents prior to 

study of KANK3 functional role in EC. 

KANK3 splice variant expression profile in HUVEC reflects that found in vivo  

Having confirmed that KANK3 is an EC enriched protein across tissue types, we went on to verify 

its expression profile in freshly isolated primary HUVEC, which we planned to use as an 

experimental model. RNA sequencing of in vitro cultured HUVEC (n=5) revealed that KANK3 was 

reasonably highly expressed (mean 26.37 TPM ± std dev 2.25). Other KANK family members 

were expressed at similar levels: KANK1 (39.5 TPM ± std dev 3.31), KANK2 (27.3 TPM ± std dev 

2.62), with the exception of KANK4, which was very lowly expressed (0.04 TPM ± std dev 0.03). 

KANK3 splice variant ENST00000330915 was the most common isoform in HUVEC (61.6%; 

length: 821 aa), whilst the other variants were expressed at lower levels: ENST00000593331 

(20.3%; non-protein coding), ENST00000595639 (11.9%; length: 146 aa) and ENST00000593649 

(6.2%; length: 840 aa) (Figure 2A.i). Data from bulk sequencing of unfractionated human tissues 

in GTEx revealed that, similar to HUVEC, ENST00000330915 was the most highly expressed 

KANK3 splice variant, followed by the non-protein coding variant ENST00000593331 (Figure 2 

A.ii). The transcript ENST00000610351.1 in the GTEx data (Figure 1 A.ii) was retired after

ENSEMBL version 104 and is not part of the current ENSEMBL gene set (V110), which our 

sequencing data was mapped against (hence its absence from Figure 1 A.i). It can be assumed, 

based on the verification of KANK3 as an endothelial enriched protein (Figure 1), that the 

expression site of the KANK3 isoforms within GTEx tissues is largely EC restricted. Thus, the 

relative expression profile of KANK3 variants in HUVEC reflects that found in vivo. 

https://pubmed.ncbi.nlm.nih.gov/
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Figure 3: KANK3 is a shear stress regulated protein. HUVEC were cultured under (A) static or (B) shear 

stress exposed conditions (4 or 40 dyn/cm2) for 48 hours after they were (i) untreated, or transfected with 

(ii) scrambled control siRNA, (iii) siRNA1-KANK3 or (iv) siRNA2-KANK3. Immuno-cytochemistry was 

performed using primary antibodies targeting KANK3 (magenta), F-actin (yellow) or vimentin (VIM; cyan). 

(C) Untreated HUVEC from 3 donors were cultured under static or shear stress exposed conditions (4 

dyn/cm2) for 48 hours (´flow´) before analysis of KANK3 protein expression by Western blot, with GAPDH 

as a loading control. (D) Expression of (i) KANK3 mRNA in HUVEC following static or shear stress exposure 

or (ii) VIM in HUVEC following transfection with or without siRNAs targeting KANK3. ** p<0.001, * p<0.01 
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Verification of KANK3 antibody specificity and siRNA knockdown efficiency 

Antibody reliability can be a problematic issue and a major source of research waste; it has been 

suggested that up to half of all commercially available antibodies have significant issues with 

sensitivity and specificity [39, 40]. Furthermore, the availability and testing of such reagents 

targeting understudied proteins is limited [41] and thus, the validation of antibody reagents is 

important.  

We obtained an in house generated rabbit polyclonal antibody targeting KANK3 (HPA051153) 

[35]. To verify its binding specificity, we took a twofold approach. Firstly, we designed a plasmid 

vector coding for KANK3 with an eGFP tag, based on the sequence of the most common KANK3 

isoform (ENST00000330915). This was used to express recombinant KANK3 in HEK293 cells, 

which do not express endogenous KANK3. Western Blot analysis of cell lysates with antibody 

HPA051153 detected bands corresponding to the size of the KANK3 protein (130kDA) (Figure 2 

B.i), and staining with an anti-eGFP antibody gave similar results to HPA051153, over a range of 

dilutions (Figure 2B.ii).  

Immunofluorescence staining of KANK3-eGFP transfected HEK293 cells with antibody 

HPA051153 (Figure 2 C.i) showed selective binding (pink) to cells expressing recombinant 

KANK3-eGFP (yellow) (Figure 1 C.i, large panel). HPA051153 did not bind KANK3-eGFP negative 

HEK293 cells within the transfected culture (Figure 1C.i, large panel), or to untreated HEK293 

cells (Figure 2 C.ii). Secondly, to test antibody HPA051153 specificity for HUVEC KANK3, we 

used siRNA to deplete the protein. Two different siRNAs (siRNA1-KANK3 and siRNA2-KANK3) 

effectively depleted HUVEC KANK3 mRNA expression over an extended time course (fold change 

at 48h [mean ± std dev]: siRNA1 0.22 ± 0.006, siRNA2 0.21 ± 0.086) (Figure 2E). 

Correspondingly, subsequent Western Blot analysis with HPA051153 showed that bands of a size 

corresponding to KANK3 protein (130kDA) were smaller, or absent, in cell lysates from siRNA 

transfected HUVEC (Figure 2F); an inhibition that was maintained over several days. Having 

verified efficient KANK3 knockdown in HUVEC using siRNA, we performed immunofluorescence 
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staining using HPA051153 as a primary antibody (Figure 2G). HPA051153 showed clear punctate 

staining in untreated HUVEC (Figure 2 G.i), which was absent when cells were transfected with 

siRNA targeting KANK3 (Figure 2 G.ii). Thus, we can have high confidence that HPA051153 

selectively binds KANK3 protein in both Western Blot and immunofluorescence staining 

applications. Furthermore, HUVEC appear to be a suitable model system for the functional 

investigation of KANK3, and siRNA-mediated depletion induced a robust knockdown of KANK3 

protein for several days after transfection.  

KANK3 localizes within the cytoplasm and accumulates in cell-cell interaction sites 

A recent study found KANK3 to be expressed at the plasma membrane of mouse EC in dermal 

and lymphatic vessels (S. S. Guo et al. 2021), with more diffuse staining in kidney, lung brain and 

oesophagus EC. Immunofluorescence staining of native KANK3 expression in endothelial cells 

such as HUVEC and mouse LSEC however, shows punctate distribution of KANK3 in the 

cytoplasm and accumulation in cell-cell interaction sites (FIGURE S2B) as well as partial 

colocalization to the cytoskeleton (Figure S2A).  

Expression of KANK3 is enhanced under flow versus static conditions 

Whilst KANK3 is poorly studied in a functional context, it shares structural homology with other 

members of the KANK family, which have been shown to have a role in cytoskeletal organisation, 

and focal adhesion formation [21, 42]. As such processes are key in the EC response to shear 

stress [14, 43], we investigated KANK3 expression and distribution in this context.  

Untreated HUVEC, or those transfected with siRNA1-KANK3, siRNA2-KANK3 or a scrambled 

siRNA control were cultured under static or shear stress exposed conditions (4 or 40 dyne/cm2) 

for 48 hours. Cell were fixed and stained for KANK3, vimentin - the major endothelial intermediate 

filament (IF) that is a key regulator of focal contact size and cell-matrix adhesions in EC subjected 

to shear stress [44, 45] and the actin cytoskeleton which has a vital role in cell-cell adhesions [46]. 

Under static conditions, in both untreated and control HUVEC, KANK3 had a diffuse punctate 

distribution (Figure 3 A.i and ii, magenta arrows) and its expression was markedly up regulated 
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following shear stress exposure (Figure 3 B.i and ii, magenta arrows). Staining patterns revealed 

distinct areas of dense KANK3 expression. Western blotting confirmed that a significant up 

regulation of KANK3 protein was induced in HUVEC that had been exposed to shear stress, in 3 

biological replicates (Figure 3C). Measurement of KANK3 mRNA showed significantly elevated 

levels following exposure to shear stress of both 4 and 40 dyne/cm2 (fold change vs. static ± std 

dev: 4 dyne/cm2 6.15 ± 5.6 p=0.004, 40 dyne/cm2 9.5 ± 8.1 p=0.002) (Figure 3D).  

Under static conditions, in both untreated and control HUVEC, vimentin was located to the 

endogenous IF network (Figure 3 A.i and ii, turquoise arrows) with notable directional redistribution 

following shear stress exposure (Figure 3 B.i and ii, turquoise arrows), as previously described 

[47]. In KANK3 depleted HUVEC, cultured under static conditions, vimentin expression was 

markedly reduced compared to untreated or control HUVEC (Figure 3 A.iii and iv, turquoise 

arrows, Figure S2C & D). Shear stress exposure failed to induce a recovery of vimentin expression 

or a more typical redistribution pattern in KANK3 depleted cells (Figure 3 B.iii and iv, turquoise 

arrows).  

In EC cultured under static conditions, VIM mRNA expression was lower in siRNA1-KANK3 

treated HUVEC, compared to untreated or control HUVEC, but not in siRNA2-KANK3 treated 

HUVEC (fold change control EC vs. siRNA1-KANK3 ± std dev 0.51 ± 0.27 p=0.03, siRNA2-KANK3 

0.74 ± 0.25 p=0.10) (Figure 3 D.ii). Thus, the effects of EC KANK3 depletion on vimentin 

expression/cellular distribution is unlikely to be driven by changes at the transcriptional level. Actin 

was diffusely expressed under static conditions, in both untreated and control HUVEC (Figure 3 

A.i and ii, yellow arrows). Actin was redistributed to align with flow direction following shear stress 

exposure, as previously described [48] (Figure 3 B.i and ii, yellow arrows). Unlike vimentin, actin 

redistribution in response to shear stress was not markedly modified by KANK3 depletion (Figure 

3 B.iii and iv, yellow arrows). 

Thus, our results show that KANK3 levels are increased in response to EC and that KANK3 has 

a previously unreported direct or indirect link to vimentin distribution. 
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Figure 4. KANK3 depletion increases EC migration in vitro. HUVEC were cultured to 

confluence in (A) standard or (B) low serum (0.5%) culture medium, following transfection with 

scrambled control siRNA, siRNA1-KANK3 or siRNA2-KANK3. A ´wound´ was created in the 

monolayer, using a pipette tip, and (i) gap closure was monitored over 72 hours. (ii) Representative 

phase contrast images and (iii) corresponding data points from individual experiments, from the 

36-hour time point.  *** p<0.001, ** p<0.01, *p<0.05 
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KANK3 has a role in endothelial cell migration 

KANK3 has not been studied in the context of EC motility, but it has been reported to have a role 

in the regulation of cell motility in cancer cells [22, 23]. Furthermore, we observed that KANK3 

depletion modified EC vimentin distribution, a protein with a key role in EC migration[49]. 

Therefore, we analysed the influence of KANK3 depletion in an EC gap closing assay. EC were 

transfected with one of 2 siRNAs targeting KANK3, or a scrambled siRNA control and cultured to 

confluence before a gap was created in the monolayer. Gap closure was monitored in real time, 

using phase contrast microscopy, and the wound area was measured at  24h, 36h, 48h and 72h. 

KANK3 siRNA treated EC tended to close the gap faster than those treated with the scrambled 

control EC (p for trend C vs siRNA 1 p for trend 0.0142, C vs siRNA 2 p for trend: 0.0505) (Figure 

4 A.i). Representative phase contrast images show the gap size at 0 and 36 hours (Figure 4 A.ii), 

with corresponding data points for replicate experiments (Figure 4 A.iii) (Change in gap closure 

normalised to control [%] ± std dev: siRNA1-KANK3: +30.9 ± 24.9, p=0.004, siRNA2-KANK3: 

+36.0 ± 24.6, p=0.028). Accelerated gap closure could be either due to increased migratory

capacity of cells in which KANK3 has been depleted, or an increase in cell proliferation.  

To assess the relative role of each, we performed the same experiment in low serum culture 

medium as we have previously showed that proliferation is inhibited in this condition [50]. As 

expected, closure of the gap was inhibited in low serum medium (Figure 2 A.ii) (% of gap remaining 

[control HUVEC] standard vs. low serum ± std dev: 36h 57.1 ± 16.8 vs. 75.9 ± 7.5 and 72h 10.3 ± 

11.8 vs. 50.3 ± 13.7).  

As observed for standard medium, KANK3 siRNA treated EC tended to close the gap faster than 

control EC (p for trend C vs siRNA 1 p for trend 0.0307, C vs siRNA 2 p for trend: 0.0402) (Figure 

4 B.i), but no gap closed completely within the 72-hour time frame. Representative phase contrast 

images of the gap size at 0 and 36 hours (Figure 4 B.ii) and corresponding data points for replicate 

experiments (Figure 4B A.iii) (Change in gap closure normalised to control [%] ± std dev: siRNA1-

KANK3: 23.3 ± 21.0, p=0.018, siRNA2-KANK3: +23.5 ± 6.0, p=0.0004), showed similar results as 
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those obtained in standard culture medium. Furthermore, measurement of PCNA mRNA revealed 

no difference in expression between control of KANK3 depleted cells (fold change control EC vs. 

siRNA1-KANK3 ± std dev 0.71 ± 0.11, siRNA2-KANK3 1.08 ± 0.07). Therefore, the increased rate 

of gap closing observed in KANK3 depleted HUVEC appears to be primarily driven by an 

increased migratory capacity, as opposed to an increased rate of proliferation. 
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Figure 5: Effects of endothelial KANK3 knockdown on coagulation related proteins. HUVEC 

were untreated, or transfected with scrambled control siRNA, siRNA1-KANK3 or siRNA2-KANK3. 

Measurement of: (A) PLAT or (B) (i) F3 mRNA expression by qPCR, or (ii) cell surface tissue 

factor protein by flow cytometry. HUVEC were treated with or without IL1 (10 ng/ml) before 

measurement of mRNA encoding for (C) F3, or (D) the cytokine responsive adhesion molecules 

(i) ICAM1, (ii) VCAM1, (iii) SELE. (E) Calibrated automated thrombogram (CAT) assay was used 

to assess the thrombin generation potential of HUVEC treated with TNF (10 ng/ml) for 24 hours 

with or without pre-incubation with a function blocking anti-tissue factor antibody (HTF1). (F) Bar 

plots show the (i) total endogenous thrombin potential (ii) maximum endogenous thrombin 

potential (iii) lag time until the beginning of thrombin production (iv) time until peak thrombin 

production. *** p<0.001, ** p<0.01, *p<0.05 vs. scrambled control.  
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KANK3 effects tissue factor and tissue type plasminogen activator expression 

As other members of the KANK family have potential functions beyond cytoskeletal regulation, 

e.g. KANK4 can regulate VEGFR2 signalling via its interaction with talin [51], we screened 

untreated, scrambled siRNA transfected and KANK3 depleted EC for expression profiles of the 

following gene panels, which are related to EC specialised functions: (i) Coagulation related: 

Factor 8 (F8), protein C receptor (PROCR), protein S (PROS), tissue factor (F3), tissue factor 

pathway inhibitor (TFPI), tissue plasminogen activator (PLAT) and von Willebrand Factor (VWF) 

(ii) Inflammation related: intracellular adhesion molecule 1 (ICAM1), vascular cell adhesion 

molecule 1 (VCAM1), E-selectin (SELE) and (iii) angiogenesis related: angiopoietin-1 receptor 

(TEK), angiopoietin-2 (ANGPT2), vascular endothelial growth factor A (VEGFA) and vascular 

endothelial growth factor receptor 1 (FLT1), and kinase insert domain receptor (KDR, also known 

as vascular endothelial growth factor receptor 2).  

Two genes in the coagulation related panel, PLAT and F3, were expressed at higher levels in both 

siRNA1-KANK3 and siRNA2-KANK3 treated EC, compared to the scrambled control (mean fold 

change ± std dev F3: 4.1 ± 2.8, PLAT: 3.1 ± 1.9, both p<0.05) (Figure 5 A and B.i). No other genes 

tested were consistently elevated, or reduced, in KANK3 depleted EC (Figure S3). As the F3 gene 

encodes for the protein tissue factor, which is the key initiator of the extrinsic coagulation cascade, 

we investigated its relationship with KANK3 further. In line with the changes observed at the 

transcript level, flow cytometry confirmed an increase in the cell surface expression of tissue factor 

(TF) protein on KANK3 depleted HUVEC, compared to the scrambled control (Figure 5 B.ii) 

(scrambled control: MFI 29489; 6.66% cells TF positive, siRNA1-KANK3: MFI 47548; 27.3% cells 

TF positive, siRNA2-KANK3: MFI 93347; 62.3% cells TF positive).  

F3 expression is relatively low on resting EC, but strong induced by inflammatory cytokines [52], 

so we tested if KANK3 depletion would modify this response. HUVEC transfected with scrambled 

siRNA, siRNA1-KANK3, or siRNA2-KANK3 were treated with the inflammatory cytokine IL-1β for 
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24h. IL-1β strongly induced F3 mRNA expression in scrambled siRNA HUVEC (scrambled siRNA 

vs. scrambled siRNA +IL-1β [mean fold change ± std dev] 22.4 ± 18.7), an increase that was 

exacerbated further by KANK3 depletion (scrambled siRNA +IL-1β vs. siRNA1-KANK3+IL-1β 

[mean fold change ± std dev]: 2.1 ± 1.0, siRNA2-KANK3+IL-1β: 3.2 ± 1.6) (Figure 5C).  

To test if this was a consequence of a general enhancement of IL-1B signalling, we measured the 

expression of EC adhesion molecules. As expected, all were induced by IL-1β treatment (Figure 

5 D i-iii), but we did not observe any further increase in expression in KANK3 depleted EC (Figure 

5 D i-iii). Thus, KANK3 depletion does not appear to enhance cytokine signalling per se.  

F3 is also induced by the inflammatory cytokine TNF, which has many signalling pathways in 

common with IL-1β [53]. To test if there was a functional consequence of this enhanced expression 

of F3 in KANK depleted EC, thrombin generation potential was measured using the calibrated 

automated thrombograph (CAT) (Figure 5E). Relative to scrambled siRNA control, the depletion 

of KANK3 resulted in enhanced thrombin generation, as shown by a representative curve (Figure 

5E). Whilst no statistically significant difference in endogenous thrombin potential (ETP) was 

observed (Figure 5 D.i), response time (scrambled siRNA vs. siRNA1-KANK3 [difference [min;%], 

± std dev]: -1.5 min, -52.2 %), time to peak (scrambled siRNA vs. siRNA1-KANK3 [difference 

[min;%], ± std dev]: -1.5 min, -52.2 % -3.3min; -42.2 %), and peak thrombin generation levels 

(scrambled siRNA vs. siRNA1-KANK3 [difference [levels; %], ± std dev]: +134.04; +105.1%) were 

all enhanced in KANK3 depleted EC (Figure 5 F.i-iv). Similar results were observed with siRNA2-

KANK3 (Figure S3 B and C). When KANK3 depleted EC were pre-treated with tissue factor 

function blocking antibodies, these effects were largely abolished (Figure 5 E and F ii-vi), 

consistent with tissue factor being the driver behind the increased thrombin generation. 
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DISCUSSION 

Previously, we generated the first prediction that KANK3 was an EC enriched protein in the human 

[8]. Here we confirm that KANK3 has a body wide EC enrichment at both the transcript and protein 

level. Recent work in mice also showed KANK3 expression exclusively in the vasculature, whilst 

KANK1 was expressed at the basal side of epithelial cells in various tissues, and KANK2 was 

observed predominantly at the plasma membrane and/or in the cytoplasm of mesenchymal cells 

[54]. Thus, the strictly restricted cell type expression profile of KANK3 is unique among the KANK 

family, the other members of which are also expressed more broadly in the human [26]. The EC 

type specific profile of KANK3 could underlie the lack of studies on its function, as indeed a several 

studies regarding KANK3 primarily center on cancer and overlook EC types in experimental design 

[9, 22, 23, 55], presumably due to the fact that EC are a minority cell type within any given tissue 

[8]. In the absence of understanding the likely context (cell type) in which a protein functions, it 

can be challenging to functionally characterise it. Understudied proteins can be unattractive 

targets for functional analysis due to a lack, or unknown reliability, of research tools with which to 

investigate them [37, 38]. Here, we validated our in house generated anti-KANK3 antibody, using 

both over expression and knockdown systems, as antibody specificity and reliability can be a 

problematic issue [39, 40, 56]. A study from 2008 showed that this problem is systemic. Of 6000 

tested antibodies, fewer than 3000 were able to bind their target correctly. Due to the increased 

use of commercial antibodies, without validation, this might mean that an entire project could be 

based on artifacts. Due to the widespread utilisation of research antibodies, this is potentially a 

billion-dollar problem, with approximately 1.7 billion USD that have been wasted to antibodies in 

2019. Hence, validation of any antibody used in a project is an essential step in research [57, 58]. 

The KANK family have a unique shared structure, consisting of a small N-terminal motif (“KN-

motif”), C-terminal coiled-coil domains and ankyrin repeats (Zhu et al. 2008; Kakinuma et al. 2009). 
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The protein structure of KANK3 would indicate a function within cytoskeletal organization and in 

focal adhesions, due to the presence of a talin binding domain. It consists of a liprin binding domain 

and a KIF21A binding domain, which links them to the cytoskeleton [11, 59]. Immunofluorescence 

staining of endogenous KANK3 expression in EC, including HUVEC and mouse LSEC, reveals a 

distinctive punctate pattern within the cytoplasm. Notably, there is an accumulation of KANK3 at 

sites of cell-cell interactions in murine LSEC. This supports the role of KANK3 being linked to cell 

adhesions and to the basement membrane, which are important for integrity of the endothelial 

layer under stressful conditions such as flow or inflammation [60, 61]. Crosstalk between focal 

adhesion proteins and cell junction proteins has been previously described in the regulation of 

endothelial barrier function [62]. Considering the critical role of EC barrier function and the 

established involvement of the cytoskeleton and focal adhesions in the maintenance of cellular 

junctions [16], it could be speculated that KANK3 has a role in anchoring EC to the extracellular 

matrix and neighbouring cells. Furthermore, KANK3 might play a role in cell junction processes in 

some vascular beds.   

EC shear forces have been shown to modulate various biochemical processes, in addition to 

cellular morphology and reorganisation of the cytoskeleton [63]. Shear stress has previously been 

shown to induce focal assembly, recruit signalling complexes to FA, and induce redistributions in 

stress fibres in EC [14]. We observe a significant upregulation of KANK3 gene and protein 

expression following EC exposure to shear stress. Similar mechanoregulation has been previously 

reported for different focal adhesion proteins through vinculin-vinculin regulation [64]. Laminar 

shear stress has been shown to induce integrin expression [65], -actinin recruitment [66] and to 

mediate redistribution of intracellular stress fibers. Consequently, under the influence of this shear 

stress, there is a force-dependent alteration in the dynamics of FAs due to enhancement in actin 

fibers. The enhancement in actin fibers results in the sustenance or growth of the FAs connected 

to them [67]. FA have been shown to be involved in matrix-adhesion and mechanosensing in EC 
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[14], and vascular resistance in SMC [68]. Due to its vascular specificity, one could speculate, that 

KANK3 is involved in similar vascular functions. 

We also observed that KANK3 depletion had a marked effect on the distribution of vimentin. This 

did not appear to be driven by a modification in VIM transcription, and could therefore be driven 

by a direct or indirect KANK3-vimentin protein-protein interaction, such as is observed with other 

cytoskeletal components, e.g., actin and myosin [69] or intermediate filaments and microtubules 

[70]. Vimentin is a major intermediate filament in EC [44], which has roles in cell migration and 

polarity, cell structure and integrity, response to mechanical stress and EC differentiation [71-74] 

and has been described as integral to cell adhesion and EC sprouting [44]. Although there is a 

lack of research regarding the interactions between KANK proteins and vimentin, it's worth noting 

that vimentin plays a role in cell migration. Previous research has indicated its involvement in 

determining cellular polarity, regulating the formation of cell contacts, and organizing and 

transporting signalling proteins that contribute to cell motility [75]. Vimentin increases cell stiffness 

and promotes cell migration when cells are densely cultured. However, its impact on the migration 

of cells plated sparsely is minimal or negligible [76].  

Here we show that KANK3 depletion increases EC migratory capacity. Previously, talin has been 

identified as a regulator of cell motility [77] and the stability of talin rods has been shown to control 

cell migration [78]. It could be reasonably assumed that KANK3 migratory control is driven through 

KANK3-talin interactions. Although to our knowledge, KANK3 has not been studied in the context 

of EC motility, previous reports showed it had a role in the regulation of oxygen dependent 

suppression of cell motility in hepatocellular carcinoma cells [22], and the inhibition of invasion 

and migration of lung adenocarcinoma [23] and was therefore considered a valuable target in 

cancer research. The increase of cell motility in KANK3 depleted cells could suggest a protective 

effect against shear forces and increase in matrix adhesion, similar to the contribution of vimentin 

networks to the stiffening of cells, which allows them to withstand mechanical forces [79]. 
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Focal adhesions play a pivotal role in relaying mechanical forces and external signals to 

intracellular pathways. Disturbed multidirectional shear stress of the vasculature is recognised for 

its role in triggering the activation of atherogenic and thrombogenic genes in EC and SMC [80]. 

Hence, it is plausible that KANK3 mediated modifications in the cytoskeleton might initiate 

signalling pathways linked to the regulation of genes associated with coagulation. FA activation in 

vascular smooth muscle cells regulates arterial stiffness and procoagulant properties of the vessel 

wall. Their findings revealed a decrease in thrombin generation potential of vascular smooth 

muscle cells (VSMCs) as the matrix stiffness increases On a rigid matrix, the presence of αvb3 

integrin within the FA complex diminishes the accessibility of binding sites for prothrombin. As a 

consequence, this leads to a reduction in the generation of thrombin on VSMCs. Conversely, it 

could be hypothesized that this outcome is reversed when dealing with a less rigid matrix  [81]. 

This connection underscores the intricate interplay between FA signalling, vascular mechanics, 

and thrombotic potential.  

In summary, our study provides insight into the function of KANK3 in the vascular compartment. 

Our findings are consistent with it having EC specific functions, in line with its enriched expression 

profile in this cell type.  
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METHODS 

Tissue profiling 

Protein profiling was performed as part of the Human Protein Atlas (HPA) project. Tissue sections 

from breast, adipose tissue, cortex, thyroid gland, colon, kidney, liver, prostate, epididymis, 

duodenum, bronchus, testis, endometrium, cervix, appendix, stomach, oesophagus, lung, 

pancreas and ovary were generated and stained, as previously described (Pontén, Jirström, and 

Uhlen 2008; Uhlen et al. 2015). Briefly, formalin fixed, and paraffin embedded tissue samples were 

sectioned, de-paraffinized in xylene, hydrated in graded alcohols and blocked for endogenous 

peroxidase in 0.3% hydrogen peroxide diluted in 95% ethanol. For antigen retrieval, a Decloaking 

chamber® (Biocare Medical, CA) was used. Slides were boiled in Citrate buffer®, pH6 (Lab Vision, 

CA). Primary antibody against KANK3 (HPA051153) and a dextran polymer visualization system 

(UltraVision LP HRP polymer®, Lab Vision) were incubated for 30 min each at room temperature 

and slides were developed for 10 min using Diaminobenzidine (Lab Vision) as the chromogen. 

Slides were counterstained in Mayers haematoxylin (Histolab) and scanned using Scanscope XT 

(Aperio). 

Isolation and culture of human umbilical vein endothelial cells 

Ethical approval for endothelial cell isolation and subsequent experimentation was granted by 

Regionala etikprövningsnämnden i Stockholm (diarienummer 2015/1294-31/2). Human umbilical 

vein endothelial cells (HUVEC) were isolated from human umbilical cords, collected from 

Karolinska Hospital (Stockholm, Sweden) and from the University Hospital of Northern Norway 

(UNN; Tromsø, Norway), as previously described (Cooke et al. 1993). HUVEC were cultured in 

Medium M199, supplemented with 10% fetal bovine serum (FBS) (or 0.5% FBS in some 

experiments), 10ml/l Penicillin-Streptomycin, 2.5mg/l Amphotericin B (all ThermoFisher, Gibco), 

1mg/l Hydrocortisone 1µg/l and human Epidermal Growth Factor (hEGF) (both Merck). In some 
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experiments, EC were cultured under laminar shear stress (4dyn or 40dyn) for 48 hours in flow 

chamber slides (-slide VI 0.4, Ibidi), integrated into an Ibidi flow pump system.  

HEK293 cells were obtained in frozen vials from ATCC (HEK-293 CRL-1573) and cultured in 

DMEM Cell culture medium supplemented with 10ml/l Penicillin-Streptomycin and 10% fetal 

bovine serum (FBS). 

Mouse liver sinusoidal endothelial cells (mLSEC) were gifted from Vascular Biology Research 

Group (VBRG) at UiT The Arctic University of Norway, isolated and cultured in RPMI 1640 

supplemented with L-Glutamine (300mg/l), 10ml/l Penicillin-Streptomycin, as previously described 

[82].  

siRNA transfection 

HUVECs and HEK239 cells were transfected with siRNA sequences targeting KANK3 (silencer 

select siRNA s230059, s230061, ThermoFisher) or Silencer Select negative control siRNA 

(ThermoFisher: 4390843). Transfection was performed using Lipofectamine RNAiMAX 

transfection reagent (Invitrogen), according to manufacturer instructions, at 60-80% confluency in 

Opti-MEM reduced serum medium (ThermoFisher, Gibco) without additives for 4h. Medium was 

changed to standard cell culture medium. Knockdown efficiency was accessed after 48h by qPCR, 

Western blot, or immunofluorescence staining. 

Recombinant KANK3-eGFP protein expression 

Transient transfection of vector coding for KANK3_eGFP (GenScript) into HEK293 (ATCC: CRL-

3216) cells was done using Lipofectamine 3000 (ThermofisherScientific), according to the 

manufacturer’s instructions. Plasmid transfection was performed at cell confluency of 60-80% in 

Opti-MEM reduced serum medium without additives for 5h using Lipofectamine 3000 transfection 

reagent (Invitrogen), according to manufacturer instructions. 48 h after transfection, transfected 

cells were lysed with RIPA cell Lysis Buffer and sample was frozen, or cells were fixed for further 

analyses. 
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RNA sequencing 

RNA isolation and purification was performed using the RNAeasy mini kit (Qiagen). RNA 

concentration was measured using Nanodrop 2000 spectrophotometer and RNA integrity number 

(RIN) determined using Agilent 2100 Bioanalyzer (RIN>9 required for inclusion). Library 

preparation and RNA sequencing was performed by the National Genomics Infrastructure Sweden 

(NGI) using Illumina stranded TruSeq poly-A selection kit and Illumina NovaSeq6000S (4 lanes, 

2x 150bp reads, incl 2Xp kits). The data was processed using demultiplexing. Data storage and 

initial analyses were performed using server sided computation supplied by the Swedish National 

Infrastructure for Computing (SNIC). Genome assembly used for sequence alignment: 

Homo_sapiens.GRCh38.dna.primary_assembly.fa and annotation performed using: 

Homo_sapiens.GRCh38.96.gtf. Sequence alignment was carried out using STAR/2.5.3a. Gene 

mapping has been carried out using subread/1.5.2 and the module feature counts. Transcript 

mapping carried out using Salmon/0.9.1. 

Gap closing (“scratch”) assay 

A ´gap´ was created in a confluence EC monolayer using a 100 µl pipette tip. Gap size was 

monitored with an Olympus IXplore Live microscope in phase/contrast mode in 10x magnification, 

with cells in a 37°C, 5% CO2 on stage incubator chamber. Gaps were imaged every 30min for 

96h. Gap size was measured every 6h in Fiji using ImageJ2 graphics procession software. 

Shear stress exposure 

Endothelial cells were cultured in flow chamber slides (-slide VI 0.4, Ibidi) until confluence. The 

slide was connected to an Ibidi flow pump system and cultured under laminar shear stress (4dyn 

or 40dyn) for 48 hours. The cells were then lysed for qPCR, Western blot, and fixed for confocal 

microscopy. 

qPCR 

Cell lysis and cDNA creation were performed using the 2-Step Fast-Cells-to-CT-Kit (Invitrogen, 

ThermoFisher) according to their protocols. qPCR was performed using TaqMan Fast Universal 
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PCR mix. Target primer conjugated to FAM-probe (4448892, ThermoFisher) was used to access 

KANK3 levels. 18s rRNA (4319413E conjugated to VIC probe, ThermoFisher) was used as 

endogenous control. qPCR was performed using a RealTime PCR LightCycler 96 ® system 

(Roche Life Sciences). 

SDS-PAGE and Western blot 

Lysate was analysed for KANK3 expression by western blotting with rabbit polyclonal anti-KANK3 

antibody (1:250, HPA051153) and horseradish peroxidase (HRP)-coupled goat anti-rabbit 

antibody (1:2000, Dako). After chemiluminescence detection, membrane was washed, incubated 

in stripping buffer, and analysed for GAPDH housekeeping gene expression. Additionally, mouse 

monoclonal anti-eGFP antibody (1:1000) with secondary HRP-coupled goat anti-mouse antibody 

(1:2000, Dako), were used. 

Flow cytometry 

Endothelial cells were cultured in 6 well plates and transfected with 2 different siRNAs targeting 

KANK3 or a scrambled siRNA control 48h prior 2 harvesting cells. 4h prior to harvest cells were 

stimulated with 10ng/ml TNF. Cells were harvested by trypsin digest followed by centrifugation 

(x350g, 7min) and separation, decantation of supernatant and resuspension of EC in ice-cold PBS 

(Gibco, ThermoFisher). Cells were split into two tubes and treated with PE-conjugated anti-CD142 

Clone NY2 (30 µl/ml) and isotype-matched control mouse-IgG1 (6 µl/ml) and incubated on ice for 

30min, followed by centrifugation (x350g, 7min), decantation of supernatant and resuspension of 

cells in PBS. Flow cytometry was performed in Beckman Coulter CytoFLEX Flow Cytometer 

(acquisition settings FSC 20V, SSC 150V, PE 130V). Gating and data analysis was performed 

using CytExpert for CytoFLEX Acquisition and Analysis Software and FlowJo™ v10.7. Gating was 

performed for live vs dead cells and singlets vs doublets. Dead cells and doublets were excluded, 

followed by gating for TF positive and TF negative cells. Isotype control signal was subtracted 

from full stain for each sample and median fluorescence intensity (MFI) and TF positive cells (%) 

were identified for each condition. 
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Confocal microscopy 

Cells were fixed in 4 % paraformaldehyde in PBS, permeabilised in 0.5% triton X-100 and blocked 

using 5% BSA. Primary antibodies against KANK3 (HPA051153, Atlas antibodies) and vimentin 

(OMA1-06001, Invitrogen) were incubated on cells for 20 minutes, followed by FITC-conjugated 

anti-rabbit antibody (F-9887, Sigma), Alexa 555-conjugated anti mouse IgG, and either TRITC-

conjugated (P1951, Sigma) or Atto-647N-conjugated (65906, Sigma) phalloidin, depending on 

experiment, and were then coated in mounting medium (VectaShield) containing DAPI nuclear 

stain for storage and imaging. Images were taken using a Leica TP5 SP5 confocal microscope 

and image analysis was performed in Fiji ImageJ2 graphics procession software.  

Structured Illumination Microscopy and Deconvolution imaging 

48h after siRNA or plasmid transfection, cells were plated on fibronectin coated (1 µg/cm2) #1.5 

glass coverslips (Zeiss) subconfluently (30-50k cells per cm2) and cultivated for 1h (HEK293 cells) 

or 4h (HUVECs). Afterwards, cells were fixed in 4% paraformaldehyde (Merck, Sigma) in PBS 

(Dulbecco, Sigma) for 20 min, washed with PBS (Dulbecco, Sigma) and left in PBS until further 

analysis. Samples were permeabilised in 0.05% Triton X-100 (Sigma) in PBS and blocked in 3% 

BSA in PBS. Primary antibody from Rabbit against KANK3 (HPA051153, Atlas antibodies) was 

prepared in blocking buffer, followed by incubation with phalloidin conjugated to atto-647, 

secondary anti rabbit IgG conjugated to Alexa 555 and anti-mouse IgG conjugated to Alexa 488 

for 30 minutes at RT, nuclear stain was performed with DAPI for 20 minutes at RT in the dark. 

Samples were mounted using hardset antifade mounting medium (VectaShield). Images were 

taken in an OMX Blaze SIM microscope using a 60X 1.42NA oil-immersion objective (GE 

Healthcare; Olympus). 3D-SIM images stacks of up to 3 µm were acquired every 125 nm in five 

phases and three angles, resulting in 15 raw images per z-plane and total of 24 focal planes. 

Reconstruction used SoftWoRx software (GE Healthcare). Image analysis was performed in Fiji 

ImageJ2 graphics procession software. 
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Calibrated automated thrombinoscope (CAT) assay 

HUVECs were cultivated until confluency in medium M199 and, if stated, knocked down as 

described above. Cells were transferred to flat-bottom 96 well plates (VWR) treated with tumour 

necrosis factor alpha (TNF; 10 ng/mL) (ThermoFisher) for 24h before thrombin generation assay. 

After washing the cells with PBS, thrombin formation was initiated in 120 μL reaction mixtures 

containing human citrated plasma, 4 μM phospholipids (Thrombinoscope BV), 16.6 mM Ca2 + 

and 2.5 mM fluorogenic substrate (Z-Gly-Gly-Arg-AMC, Thrombinoscope BV). As controls, Tissue 

factor (1 pM, Dade Innovin), mouse monoclonal anti-TF antibody (12.5 µg/ml, HTF-1, BD 

Pharmingen) or corn trypsin inhibitor were added 15 min before adding the substrate. All real time 

thrombin formation experiments were run in triplicates. Thrombin generation was quantified using 

the Thrombinoscope software package (Version 5.0.0.742) that reported means ± SD. 

Gene ontology analysis 

The Gene Ontology Consortium [33] and PANTHER classification resource (Mi, 2019) were used 

to identify overrepresented terms in gene lists using the GO databases (release date 2023-07-

05). Plots of GO terms were created using the R package clusterProfiler [83]. 

Data usage and analysis 

Human tissue RNAseq data was retrieved from Genotype-Tissue Expression (GTEx) portal V8 

(www.gtexportal.org) [84]. Statistical analyses were done in RStudio (R V 4.0.3), using the 

corr.test function from the additional package psych (V 2.0.12) (Pearson correlation coefficient). 

Single Cell sequencing data was sourced from data collected into the Tabula Sapiens [85]. 

Software: Image analyses 

Image analysis was performed using ImageJ2 Fiji using ImageJ2 graphics procession software 

[86]. 

Software: Graphs, Figures and Tables 

Graphs and calculation tables were created using GraphPad Prism (V. 8.4.3) and Microsoft Excel 

2019 (Office 365). Figures were created in Photoshop. 

https://gtexportal.org/
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Software: Statistical analyses 

Statistical analyses were performed in RStudio (R version 4.0.3) using the following additional 

packages: psych, readr dplyr, data.table and tools.  
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Figure S1. Enrichment of KANK family members in human tissues and immortalized cell 

lines. Expression profiles for (A) KANK3, (B) KANK1, (C) KANK2 and (D) KANK4 in: (i) human 

cell types profiled using bioinformatic based analysis of bulk RNAseq data [26], or in (ii) 

immortalised cell lines [35]. 
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Figure S2. Subcellular location of KANK3 in static and flow culture: Immunocytochemistry 

staining using anti-KANK3 antibody (magenta), DAPI nuclear stain (grey), and phalloidin F-actin 

stain (cyan) for (A) HUVEC Z stack average (B) mLSEC. (C,D) Immunocytochemistry staining 

using anti-KANK3 antibody (magenta), anti-vimentin antibody (yellow), DAPI nuclear stain (grey), 

and phalloidin F-actin stain (cyan) in (C) static cultured and (D) shear stress exposed HUVEC. 
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Figure S3: Effect of KANK3 depletion on gene expression. (A) HUVEC were untreated, or 

transfected with scrambled control siRNA, siRNA1-KANK3 or siRNA2-KANK3 before 

measurement of mRNA level of genes indicated by qPCR. *p<0.05 vs. scrambled control. (B) 

Calibrated automated thrombogram (CAT) assay was used to assess the thrombin generation 

potential of HUVEC treated with TNF (10 ng/ml) for 24 hours with or without pre-incubation with a 

function blocking anti-tissue factor antibody (HTF1). (C) Bar plots show the (i) total endogenous 

thrombin potential (ii) maximum endogenous thrombin potential (iii) lag time until the beginning of 

thrombin production (iv) time until peak thrombin production. *** p<0.001, ** p<0.01, *p<0.05 vs. 

scrambled control. 
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