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ABSTRACT

Marine macroalgae form underwater “blue forests” with sev-
eral important functions. Hyperspectral imaging from un-
manned aerial vehicles provides a rich set of spectral and
spatial data that can be used to map the distribution of such
macroalgae. Results from a study using 81 annotated hyper-
spectral images from the Norwegian coast are presented. A
U-net convolutional network was used for classification, and
accuracies for all macroalgae classes were above 90%, indi-
cating the potential of the method as an accurate tool for blue
forest monitoring.

1. INTRODUCTION

Marine macroalgae have several important functions: Cap-
turing carbon and contributing to primary production, form-
ing structures that are habitats for a plethora of marine ani-
mals, and providing food for both animals and humans[1]. In
many regions across the world, the ’blue forests” are chang-
ing rapidly due to climate change and human activity. The
current methods for measuring such changes are mainly based
on manual sampling (e.g. diving or using a ’drop camera”),
and imaging from satellites or airplanes.

Satellite images generally have a fairly coarse spatial res-
olution, and imaging from airplanes is costly and requires
detailed planning. Unmanned aerial vehicles (UAVs) have
recently been introduced as a low-cost and flexible imaging
platform for remote sensing. In this paper we present a study
where blue forests were imaged using a hyperspectral camera
mounted on a UAV. Hyperspectral cameras capture images
with hundreds of spectral channels, and thus provide more
detailed information than e.g. RGB imagery.

Maerl beds are a type of seabed formed by unattached
nodules of coralline algae. Maerl beds are habitats with a high
diversity and abundance of marine species, but are threatened
in large parts of Europe [2]. In Norway, their status is un-
known due to lack of data. The data presented in this paper
was collected in an area with a high abundance of maerl, to

study whether maerl beds can be identified using remote sens-
ing from UAVs or satellites. The area also has a high abun-
dance of kelp, which is one of the most important blue forest
species.

Classifying the individual pixels of a hyperspectral image
is a semantic segmentation task. Convolutional neural nets
(CNNs), and particularly the encoder-decoder architectures
first introduced with the U-Net[3], have demonstrated very
high performance on semantic segmentation tasks. A convo-
lutional network combines the values of neighboring pixels,
and thus uses both spectral and spatial (textural) features for
classification. In this paper we show that a relatively small
U-net can yield good accuracy for macroalgae classification.

2. METHODOLOGY

2.1. Imaging and annotation

The data presented in this paper was collected on the is-
land of Sgla (65.68°N, 11.71°E), Norway. Shallow waters
(<15m) close to the island were imaged using a Resonon
Pika L hyperspectral camera mounted on a DJI Matrice 600
Pro UAV, shown in Fig. 1. The hyperspectral camera has 300
spectral channels, spanning a wavelength range of 400-1000
nm. A spectrometer measuring downwelling irradiance was
mounted on top of the UAV, and the irradiance measurements
were used in post-processing to convert radiance to remote
sensing reflectance, R,s(A). The UAV was flown at 50m
altitude, yielding a ground sampling distance of 4 cm. On
the day of the imaging (August 23. 2023), the weather was
good, with cloudless skies and low wind, yielding high qual-
ity images with a low amount of light reflected from the water
surface.

Ground truth was collected using several methods: In
shallow areas (< 5 meter), the seafloor was imaged from an
autonomous surface vehicle, from a boat, and while snorke-
ling, while in deeper areas (> 5 meters), a “drop camera”, a
small ROV, or diving was used. The ground truth informa-



Fig. 1: DIJI Matrice 600 Pro drone carrying gimbal with
Resonon Pika L hyperspectral camera.

tion was used to annotate the hyperspectral images, using the
dominant vegetation species or nature type as classes. Seven
habitat classes were defined:

Rock: Underwater bedrock.

Cobble: Large stones, mostly along shoreline.

Sand: Mainly coralline sand with high albedo.

=

Maerl bed: Bed with unattached nodules of coralline
algae.

5. Rockweed: Macroalgae in the Fucaceae family, grow-
ing in the intertidal zone

6. Kelp: Laminaria hyperborea and Laminaria digitata,
growing below the intertidal zone .

7. Brown algae: All other macroalgae not included in
classes 5 and 6. Mainly Halidrys siliquosa, Chorda
filum, Desmarestia aculeata and Ectocarpus siliculo-
sus.

Example annotations are shown in Fig. 5. The classes could
potentially have been split into more specific classes, e.g. at
species level. However, species frequently intermingle, and
accurate species-level annotations are often not possible. Us-
ing a lower number of classes also results in a wider range of
annotated examples per class.

2.2. Data preprocessing and machine learning

200 GB of raw hyperspectral data were collected in total. In
order to reduce the amount of data to a manageable level, the
images were transformed using principal component analysis
(PCA), reducing 300 spectral channels to 8 components rep-
resenting 98,6 % of the variance in the dataset. Before PCA,
spectra were normalized by subtracting the mean and divid-
ing by the standard deviation. The mean (normalized) spectra
for each class are shown in Fig. 2.

A U-net encoder-decoder convolutional network imple-
mented using Tensorflow and Keras [4] was used to classify
the PCA images. The structure of the network is shown in
Fig. 3. The input image is fed into an augmentation layer
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Fig. 2: Mean spectra (normalized) for each class.

(only used during training) which randomly flips the image
horizontally or vertically. The data then flows through a num-
ber of convolution layers, with spatial downsampling and up-
sampling performed using standard and transpose 2D convo-
lutions, respectively. Skip connections concatenate the data
from downsampling and upsampling layers operating at the
same spatial resolutions. The implementation is similar to
that of the generator in the Tensorflow pix2pix tutorial [5].
The depth and size of the network was kept fairly small, with
435 000 trainable parameters. Deeper networks with a U-net
structure were tested, but gave no improvement in accuracy.

71 images were used for training and 10 images were used
for validation. Training images were split into 128x128 pixel
“tiles”, and only tiles with more than 5% annotated pixels
were included, thus removing a significant amount of non-
annotated data from the training pipeline. The trained U-net
was used to predict classes for all pixels in the validation im-
ages, but only annotated pixels were used to calculate the con-
fusion matrix.

3. RESULTS

The classification results are summarized in the confusion
matrix in Fig. 4. The classification of algae (rockweed, kelp,
brown algae) is fairly accurate, with over 90% accuracy for
each class. The substrate classes (rock, cobble, sand, and
maerl bed) have slightly lower accuracies (65-85%). There is
also very low overlap between algae and substrate, i.e., mis-
classifications are mainly within the algae or substrate su-
perclasses”.

Three example images are shown in Fig. 5. The first im-
age demonstrates good performance in classifying rockweed,
brown algae, cobble and rock. The second image shows ac-
curate classification of kelp, but a maerl bed is misclassified
as rock. The third image shows an interesting case of a maerl
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Fig. 3: Structure of convolutional net (U-net) .

bed covered by clusters of brown algae. The predicted classes
show accurate separation between maerl and brown algae.

4. DISCUSSION AND CONCLUSION

The results show high classification accuracy for algae classes
and lower accuracy for substrate classes. A possible explana-
tion for this is that algae have more distinct features, both
spectral and spatial, than substrates. Another potential con-
tributing factor is that the algae often grow at distinct wa-
ter depths, and that the effect of the water column on the
spectrum becomes part of the spectral signature of each algae
class. The substrates, on the other hand, are present at all wa-
ter depths, and even though there may be spectral differences
between the substrate classes, the varying water depth intro-
duces "noise” in the spectra. Combining bathymetry (depth)
data with hyperspectral data may improve the classification
accuracy for all classes.

The high accuracies achieved for macroalgae mapping
demonstrate that UAV-based remote sensing can be a useful
tool for monitoring blue forests. UAV hyperspectral imaging
is complex and costly compared to RGB imaging, but the
datasets collected can be used to develop more specialized
and lightweight sensors that can mounted on small UAVs.
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Fig. 4: Confusion matrix for classification of validation im-
ages. For each class (true label), the numbers (in percent)
indicate how the predictions are distributed across classes.
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Fig. 5: Example images. RGB images (left) were made from hyperspectral image bands corresponding to 640, 550 and 460
nm. Saturated pixels are black. Each image band was independently “percentile stretched” (2 to 98 %). Annotations (middle)
show manually drawn classifications. Non-annotated areas are shown as gray ("Background”). Predicted classes (right) show
predictions from U-net.



