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Abstract

This thesis is concerned with the definition of elementary particles as irreducible
projective unitary representations of the Poincaré group. During the contents of
this work, we will introduce the relevant prerequisites and results. Concerning
differential geometry, we will discuss smooth manifolds, Lie groups and Lie
algebras. About quantum mechanics, we will introduce Hilbert spaces and the
basic structures of quantum mechanics, together with Wigner’s theorem on
symmetries. With respect to special relativity, we will present the Minkowski
spacetime as an affine space and derive its group of automorphisms, the
Poincaré group. We will finally talk about representations of Lie groups and
define an elementary particle to be an irreducible projective representation of
the Poincaré group.



Introduction

The interest in breaking down the matter of the physical world around us into
its most elementary constituents has always been a central part of humanity’s
scientific study of nature. This work is occupied with the current understanding
of mathematical physics about what those elementary constituents are. The
goal of the work is to get to the definition of an elementary particle and to
do so in a natural way. They are going to be defined as irreducible projective
unitary representations of the Poincaré group and, if the goal of this work is
accomplished, this definition will be a natural one. During the course of the
work, we will introduce the objects that will allow us to reach that definition
and the results upon which it is built. Some of the main results that we will need
are Wigner’s theorem on the symmetries of quantum systems and Bargmann’s
theorem about projective unitary representations, both of them central pieces
of the mathematical study of physics.

Most of the results of this work are not original. Wigner’s theorem dates
from 1939 and the later contributions to the theory date from the central years
of the last century. All of the material in this work is, however, original in
its presentation, in the sense that it attempts to present those topics while
keeping a strictly mathematical presentation. Discussion about the natural
world is excluded from the presentation by such choices as defining a quantum
system to be a complex Hilbert space, and thus making it clear that we are
just concerned about the mathematical properties of our model. A similar
situation happens in our discussion of Minkowski spacetime and references on
it. The section about references in spacetime, in particular, presents the subject
with a detail that is often omitted in special relativity textbooks. Overall, the
present work manages to stay within the strict boundaries of the mathematical
discourse by giving to certain mathematical objects the name of the physical
reality that they are modeling.

It is also important to note the peculiarity in the approach that we have
taken since the culminating point of the work is a definition. Usually, definitions
are the starting point upon which one builds a richer theory by deriving results
from them. It would have been a perfectly valid approach too if instead of



spending all of our efforts into trying to define what an elementary particle is
in a natural way, we would just have taken the definition as given and started
building upon it. In such an approach, we would possibly have managed to
get to Wigner’s classification of elementary particles, which would have been
an arguably stronger punchline for the work. However, since the background
motivation for the work was always to understand how mathematics are used to
model nature as understood by physics, motivating the definitions was of higher
priority and the present slower and longer approach was preferred.

Lastly, this work serves as a basis and toolbox that allows the reader (and
the author as well) to move on to the next topics in the study of the Standard
Model of particle physics, such as gauge theory and the quantum theory of
fields.

Structure of the work

* Chapter 1: We introduce the basics of differential geometry that will be
needed during the rest of the work, including a concise introduction to
Lie groups and Lie algebras.

* Chapter 2: After a short introduction to Hilbert spaces, the notions of
quantum mechanics that we will work with are introduced as mathemat-
ical objects. We discuss Wigner’s theorem on symmetries, a central result
of the theory.

* Chapter 3: We will introduce the Minkowski spacetime as an affine space
with a signature (1,3) bilinear form. The Poincaré group will be defined to
be the group of bijections that preserve the structure on the Minkowski
spacetime. A short discussion on reference frames in spacetime will
follow.

* Chapter 4: We discuss unitary and projective unitary representations
of Lie groups and present Bargmann’s theorem as providing a link be-
tween them. Finally, we define an elementary particle to be a projective
unitary representation of the Poincaré group, or equivalently, a unitary
representation of its universal cover.



A word on the present work

My starting motivation for this work was to study and provide an account
of J. Baez and J. Huerta’s article [BH10] “The Algebra of Grand Unified Theo-
ries”. In the introductory part of this article, the authors present the algebraic
structure underlying the Standard Model of particle physics and how the finite-
dimensional representation theory of Lie groups comes into the picture. Lie
groups were meant to model the symmetries of the fundamental interactions
of physics (electromagnetic, weak nuclear and strong nuclear interactions, with
gravity being left out) and the classification of their representations closely
reproduced the classification of particles in the Standard Model. However, the
reader who compares the outline of that article with the outline of the present
work will quickly realize that they have nothing to do with one another. The
reason for that is that after being engaged in studying the aforementioned
article, it was quickly obvious that the amount of prerequisites and dedication
needed to begin to understand the Standard Model was out of the scope of a
master’s thesis. Instead of that, my main goal for the work became to try and
get as far as it was possible within the limits of the course.

With this motivation in mind, and after trying to break down the study
of the Standard Model into smaller problems, some questions came up quite
naturally. One of those questions was about the Standard Model and how it
uses Lie groups as groups of symmetries, and it was just to ask: symmetries of
what? This question led me naturally to the subject of elementary particles that
will occupy the whole of this work. However, this has, by far, not been the only
topic that I have been studying about the Standard Model. Some of my efforts
have been directed toward studying gauge theory, which uses principal fiber
bundles to model field theories in physics. In gauge theory, the mathematical
objects of principal curvature and principal connection turn out to play a key
role in physics by representing the fields and potentials themselves. Also, some
basic ideas about quantum field theory were required to try to put all these
things together into a basic understanding of how the Standard Model works.
Also, the advanced topics that would start right at the end of this work (the
representation theory of the Poincaré group through the theory of induced
representations of G. Mackey) have used lots of effort in the late part of the
work.

However, all those subjects (except for the one that will occupy us in this
work: elementary particles) had to be left out for not having gathered enough
understanding to write about them. This leads me to the last topic that I want to
write about before starting with the proper contents of this work: the difficulty
of doing physics from within the boundaries of mathematics. During the course
of this work, I have constantly struggled with various difficulties that arise when
trying to think about physics from within the domain of mathematics. In the



first place, it is not obvious at all that such a task (doing physics mathematically)
can be accomplished, as can be illustrated by the impossibility of the converse
idea (that of doing pure mathematics from within the domain of physics). If
the task of doing physics within the domain of mathematics can be carried out
(as I think has been the case for this present work), it will be at the expense of
both effort and amount of progress. The absolute precision that is required for
a subject to be able to be treated within mathematics makes progress tough
and greatly restricts how far one can get in a limited amount of time.

That said, the mathematical study of physics produces beautiful results
(such as the ones presented in this work). That together with the fact that
such fundamental notions in physics as that of an elementary particle can be
satisfactorily defined as mathematical objects is a temptation that is hard to
resist. The Standard Model itself is a great example of how studying physics
from the mathematics side can produce beautiful descriptions of nature, where
reality seems to be playing with Lie groups and their representations. I hope
that by the end of this work, the reader will feel some of this curiosity to
know more about the things that ensue when mathematics tries to describe
nature.
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Review of differential
geometry

In this chapter, we are going to review fundamental notions of differential
geometry that we will need during the rest of the work. They can be found
in most textbooks on the subject and references will be provided for more
extensive and pedagogic treatments of the subject. The goal of the chapter is
to provide a brief review to settle the notation and to make sure there is some
degree of self-containment in the present work.

In the first section, we define the notion of a smooth manifold and introduce
some of the structure that comes with it, such as smooth maps, tangent vectors
and differentials. In the second section, we introduce the slightly more advanced
idea of a fiber bundle on a smooth manifold. This allows us to define tangent
bundles, sections and also the metric tensor. Lastly, in the third section, we will
briefly present some topics in Lie theory that are going to be necessary for the
coming chapters.
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1.1 Smooth manifolds and tangent vectors

One of the main purposes of differential geometry is to provide tools for
doing calculus on spaces that locally look like R” Euclidean spaces but are
not necessarily the same. The study of differential geometry allows us to
bring such familiar notions as those of derivatives, integrals, curves, surfaces,
distances, etc. into a larger class of spaces than just Euclidean spaces. Those
more general spaces are called smooth manifolds, and they are the central topic
of the section. Some standard references on the subject are [Lee13], [dC92]
and [O’'N83].

From now on, by a smooth function we mean a real function f : U C
R"™ — R™, with U open in the Euclidean topology, so that all partial deriva-
tives of f of all orders exist and are continuous. Thus,

Definition 1.1.1. A smooth n-dimensional manifold is a tuple (M, {(Uy, ¢o)}acl)s
where:

(i) M is a set.
(ii) U, C R" are open subsets for all a € I (with the euclidean topology).
(iii) Forall @ € I, ¢ : Uy — M is an injective map.

(iv) Ifthereare a, f € I so that U, NUp # 0, then gb;l opg : Uy NUg — R"
is a smooth map.

We say that {(Uy, ¢s)}aer is an atlas for M and that (U, ¢, ) is a local
chart or a local coordinate system.

A smooth manifold possesses a natural topology induced by the charts.
We define a subset W C M to be open if and only if Va € I such that
$a(Ug) NW # 0, then ¢ (o (Uy) N W) C R™ is an open set in the euclidean
sense. This gives rise to a topology on M since M and () are open and
also:

(i) If {W;};es are all open sets of M, then W = |J; W; is also an open set,
since if U, N W # 0 then:

62 Ua W) = 21 Wi nU) = gl WinUs) @)
i i
which is a union of open sets in R” and is therefore open.

(i) If {W;}", is a finite collection of open sets of M, then W = ([_; W} is
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also an open set, since if « is such that U, N W # ( then:
o (W NUs) = ¢;1<ﬁ(wi NUy)) = ﬂ b WinUy)  @2)
i=1 i=1
which is also open in the Eljlclidean topologyl.

Notice that with this induced topology the charts are continuous maps
and the sets ¢,(U,) are open sets. This topology is an example of a final
topology induced by the collection of topological spaces {U, }, and the maps

{¢ata-

Example 1.1.2. A trivial example of a smooth n-manifold is just R” with the
atlas consisting of only one chart, (R", id), where id : R" — R" is the identity
map.

Another less trivial example of a manifold is the sphere S = {x € R**! :
||x|| = 1}, together with the atlas {(R", ¢n), (R, ¢s)} formed by two stereo-
graphic projections of the sphere through the north and through the south pole,
for example. The north pole projection ¢y : R” — 8"\ {(0, ...,0,1)} € R**!
can be given as the inverse of the map

Y1 Yn )

- (1.3)
1- Yn+1 1- Yn+1

UNW1, s Yns) = (

As we said above, one of the main purposes of differential geometry is to
be able to bring the familiar notions of real analysis into a more general kind
of domains than just subsets of R”, that is, to smooth manifolds. To do that,
we have to define some basic notions such as what will we mean by “smooth
functions” on the manifold or between different manifolds.

Definition 1.1.3. Let (M, {(Uy, o) }aer) be a smooth n-manifold and let W C
M be an open set. We will say that a function f : W — R™ is smooth at
a point p € W if for every chart (U, @o) so that p € Uy, then the function
fo¢rt: Uy €R®™ — R™ is smooth in the usual sense. We will say that f is
smooth on W if it is smooth at all points of W.

A particular instance of a smooth function that we will use are smooth
real functions. We will denote C° (M) the set of smooth functions from some
open set W C M containing p to the real numbers, f : W — R. In the
same vein, we can define what we mean by a smooth function between smooth
manifolds.

Definition 1.1.4. Let (M, {(Uy, o )}aca) be a smooth m-manifold and
(N, {(Vg,Y)}peB) be smooth n-manifold. A function f : W € M — N is
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said to be smooth at p € W if for every chart (Uy, ¢) containing p and for
every chart (Vg, 5) containing f(p), the composition lﬁ[;l ofogy: WNU, C
R™ — R™ is smooth in the usual sense.

Remark 1.1.5. It is noteworthy that all the above definitions could be rewritten
in the following manner. We say, for example, that f : M — R is smooth
at p € M when for every chart (U, ¢,) where p € U, we have that f o ¢, :
U, — R is smooth at ¢! (p) in the usual sense. But it is enough for us to just
ask f o ¢, to be differentiable in the usual sense for one chart, and then the
definition of a smooth manifold will give the differentiability of f o ¢ for any
other chart where p € Ug.

After introducing this basic structure and definitions, we must now introduce
how are we going to do calculus in those smooth manifolds that we have just
defined. How are we going to locally describe functions in this manifold?
The key to this question is the introduction of the tangent spaces to the
manifold. This definition is motivated by the notion of tangent space to a
surface embedded in R", where one can intuitively define them. Since giving a
proper introduction to differential geometry is not the goal of this section, and
since there are multiple ways to motivate the definition of the tangent space in
the more general setting of a smooth manifold (where we cannot use any of the
properties of the space where the manifold is embedded because we are not
assuming that such an embedding exists), we will simply give the definition
below and briefly motivate it afterward. For a complete discussion of the
different ways in which one can think about tangent vectors, see [Spi79].

Definition 1.1.6. Let (M, {(Uy, ¢o)}) be a smooth manifold and p € M. Denote
as before CY(M) = {f : W — R : W C Mopenandp € W, f smooth}.
This set is a real vector space. A derivation v of M at the point p is a linear map
v Cy’(M) — R that satisfies the following condition: given f,g € C,°(M),
then

v(fg) = f(p)v(g) + g(p)v(f) (1.4)

We will denote as T, M, the tangent space at p, the set of all such derivations
and call its elements tangent vectors at p. Given v,w € T, M, A, 1 € R and
f € (M), define the derivation

(A0 + pw)(f) = Ao(f) + pw(f). (1.5)

That turns T, M into a real vector space.

Remark 1.1.7. Above, it is clear that fg is just the product of the two functions,
which is also smooth.
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The following example of tangent vectors will help motivate the previous
definition, which is a bit obscure if seen for the first time.

Example 1.1.8. Let (M, {(Uy, o )}) be a smooth n-manifold. Given a chart
(Ug» Po ), we will define:

(i) The functions defined, fori = 1,...,n, g{)fx : 9o (Uy) — R, so that
¢ 1 (p) = (PL(P), ... o"(p)) € R™. That is, the ¢, are the coordinates of
the chart.

(ii) Forp € ¢4(Uy), fori = 1,..., n, the derivations (0;¢4), : C,;°(M) — R
defined by

@) = - Fobaldh(ph - GOV o BhP). VS € CROM)
(1.6)

The functions from i) are smooth, and the maps from ii) are derivations. Then,
one can see (rather non-trivially) that for a given v € T, M, with p € ¢, (Uy),
we can write:

o(f) = ) v(@h) - @ida)p(f).  Vf €CIM) .7)
and see from here that v = }; v(¢},)(9;$«),. Since this decomposition can be
done uniquely, we conclude that {(014«)p, ---, (Onda)p} is a basis for T, M.

The next concept that we will introduce is that of the differential of a
map.

Definition 1.1.9. Let (M, {(Uy, o) }aeca) be a smooth m-manifold and

(N, {(V,¥p)} peB) be smooth n-manifold. Let ¢ : W € M — N be a smooth
function and p € W. Then, the differential of ¢ at the point p, denoted by d,¢,
is a linear map between the tangent spaces dpp : TyM — Ty(,)N, defined as
follows. For v € T, M, then d,p(v) : Cg’(p)(N ) —> R is the derivation given by:

dpp(0)(f) =v(f o),  VfeC,,N) (1.8)

This definition works since fogp: W € M — R.

1.2 Fiber bundles

In this section we are going to set up the basic structures that we will need to
talk about vector fields later on, mainly to discuss Lie algebras. This structure
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is that of a fiber bundle.

Definition 1.2.1. Let & M, F be smooth manifolds and let 7 : & — M
be a surjective smooth function. A smooth fiber bundle is then the tuple

(8’ M, F, x, {(Uaa l//a)}aeA); where:
(1) U, Uy = M is an open cover of M

(ii) Forany a € A, Y : m 1 (Uy) — U, X F is a diffeomorphism and the
restriction to {x} C Uy is a diffeomorphism Y| : 7 ({x}) — {x} X F.

In this context, & is called the fiber bundle manifold, M is called the base
manifold, F is the typical fiber, 7 is the bundle projection map and {(Uy, ¥/ )}
are the local trivializations. We will often just denote by &, = 7~ !(x) the fiber
at x.

Example 1.2.2. As an example of a fiber bundle, we can construct a trivial
bundle. Let M and F be smooth manifolds and define & = M x ¥, with the
product smooth structure. Then, define 7 : & — M to be just the projection
of the first component, 7(x,u) = x, V(x,u) € M X ¥ = &. One can consider
the local trivialization given by (U, ¢), where U = M is just the whole base
manifold and ¢/ : 771(U) — U X isjust the identity map, since 77 1(U) = &
by definition.

Definition 1.2.3. Let (&, M, F, m) be a smooth fiber bundle. A section of the
fiber bundle is a smooth map o : U € M — & so that m o ¢ = id. We will
denote the set of sections o : U € M — E as T(U, E) or just as T'(E) when the
base manifold or domain is understood.

That is, Vx € U, o(x) € E, the image of the section belongs to the fiber at
that point. The next natural notion that we usually want to define after intro-
ducing a new object is that of homomorphisms between those objects.

Definition 1.2.4. Let (&, M, ¥,x) and (&', M, ¥',n") be smooth bundles
with the same base manifold M (we will omit the local trivializations from now
on). A bundle homomorphism is then a smooth map f : & — &’ so that
7’ o f = 7 (i.e, it maps the fiber & = n~1(x) to the fiber &, = '~ Y(x)). I f is
a diffeomorphism of smooth manifolds, then we will say that those fiber bundles
are isomorphic.

We will leave it here, for now, concerning bundle homomorphisms. It is
important to note, however, that they play a key role in modern physics in that
they encode the idea of a gauge transformation. This topic, though, is out of
the scope of the work.
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Let us now introduce the different kinds of fiber bundle structures that we
can define based on the previous definition and that we will use from now on.
We will consider fiber bundles where the typical fiber is, apart from a smooth
manifold, also a vector space.

Definition 1.2.5. A vector bundle is a smooth fiber bundle

(E, M, V,m,{(Uy,Ya)}aeca) so that the typical fiber V is also a (real or
complex) vector space. Then, the restrictions induced by the local trivializations
Valx 17 (x) — V are also vector space isomorphisms.

Example 1.2.6. Let (M, {(Uy, ¢o)}~) be a smooth n-manifold. We will con-
struct a vector bundle with M as its base manifold by considering the tangent

spaces T, M at each point. We will define the vector bundle & with projection
7:&E— Mas:

&= U {x} X T, M, m(x,v) =x,YVx e M, Yo € T, M
xeM

We can see that the typical fiber is isomorphic to R”. We will denote TM = &
for the tangent bundle from now on. Then, we have the vector bundle given
by (T M, M,R™, ). For the local trivializations, we can see that the charts
{(Uy, o) }o of M induce a set of trivializations {(Uy, V4 )}« Where:

Vo 7Y (U,) — U, x R™, Vo (x,0) = (x, (v(ngé(v)), ()

Where ¢! are the coordinate functions of the chart.

Note also that from the tangent bundle constructed above, one can also
consider the cotangent bundle (denoted as T* M) by simply considering the
cotangent spaces (the dual vector spaces to the tangent spaces), denoted as

TIM.

Example 1.2.7. Let M be a smooth n-manifold. For a given point p € M,
we define the cotangent space to be the dual space of the tangent space. We
denote it by T; M. We define the cotangent bundle to be the vector bundle
(T* M, M, ), where
M= | J{prxT;M (1.9)
peM

and where 7 is just the usual projection onto the base manifold.

Given a local chart (U, ¢) for the manifold M and p € U, we can consider
the induced basis of the tangent space T, M, {(9;¢),}_,. We can denote the
basis of the cotangent space that is dual to this tangent basis as {(d¢'),}7;,
that is, so that (d¢'),((0;¢),) = ;.
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From those two, one can form arbitrary tensor bundles as follows:

Example 1.2.8. Given a smooth n-manifold M, we can consider the (r,s)-
tensor bundle, denoted by T"* M, by just considering the tensor product of
tangent and cotangent spaces as follows:

M= J{x)x|TMe- e TMBTIMe - @ TIM|  (110)
xeM

r s

This is also a vector bundle over M. It has X)]"° R" as its typical fiber. The
projection and the trivializations can be constructed from the charts as in the
previous example.

As a commentary, sections of those tensor bundles over a manifold that
represents a spacetime are used to represent physical fields in general relativity
and classical field theories. We now briefly turn to the topic of semi-Riemannian
geometry. We have delayed the introduction of metrics into our treatment of
differential geometry until after we introduced the notion of a fiber bundle
so that we can use those notions when thinking about vector and tensor
fields.

Definition 1.2.9. Let M be a smooth n-manifold. A tensor field of rank (r, s) is
a section of the vector bundle (T"* M, M, r).

Therefore, we can think of a tensor field T € I'(T"*M) as a function

associating to every point, an element of its tensor tangent space T(p) €
r,s
T, M.

Definition 1.2.10. Given alocal chart (U, ¢) and the induced tangent basis at every
p € ¢(U), {(0i§)p}-, we define the components of a tensor field T € I'(T"*M)
to be the functions

TV M—R (1.11)
J1s--os)s

given by
Tl (p) = T (AP )po -oos (A7) (0, P)pr - (1,9)p) (112

The components of the tensor field are smooth functions since sections are
smooth maps. Then, we can see that we can write

)= > o SN S T ()8, ... 0(8;, ), (A )p ... R(d ),
i1 ir J1 Js

(1.13)

Now, we will introduce the notion of a metric.
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Definition 1.2.11. Let M be a smooth n-manifold. A metric g on M is a tensor
field g € T(T %2M) so that g(p) € T;’ZM is symmetric and non-degenerate
at every point p € M. A manifold together with a metric, (M, g), is called a
semi-Riemannian manifold.

Thus, at a given point, the metric tensor is just a symmetric non-degenerate
bilinear form on the tangent space. We will give more details about symmetric
non-degenerate bilinear forms further on.

1.3 Lie groups and Lie algebras

After this review of the fundamental objects of differential geometry, we can
give a brief introduction to the subject of Lie theory. The objects introduced
in this section will be used extensively in the last chapters of the work. The
key importance of Lie theory in mathematical physics is that they are used to
model the idea of a smooth symmetry group. From that approach, a Lie group
is the object that allows us to talk about symmetries (the idea at the core of
a group) in a smooth way (the idea behind calculus) by treating the group of
symmetries geometrically.

In this section, we will start by introducing the definitions of a Lie group
and a Lie algebra. We will give some examples and results about their mutual
connection. Lastly, we will talk about the notion of a universal cover of a Lie
group.

Definition 1.3.1. A Lie group is a (finite-dimensional) smooth manifold G that
is also a group (G, *) so that the group structure is smooth. That is, the group
operations * : GXG — Gand ~' : G — G are smooth maps.

Remark 1.3.2. A Lie group, since it is, in particular, a group, can have any
property related to groups: it can be abelian, solvable, etc. Since it is a smooth
manifold, it can also have any property related to manifolds: it has a dimension,
a topology, it can be compact, connected, etc.

Perhaps the simplest examples of Lie groups are matrix Lie groups.

Definition 1.3.3. A matrix Lie group is a subgroup of GL,(C), for some n € N
which is also closed with respect to the topology induced by the smooth structure
of GL,(C). The smooth structure of GL,(C) is given by the chart ¢ : R27*
GL,(C) that associates each of the n? pairs of real numbers (a;, b;) to the complex
entry of the matrix a; + ib;. Note here that GL,(C) is a Lie group (and a matrix



CHAPTER 1 / REVIEW OF DIFFERENTIAL GEOMETRY 15

Lie group too).

Given a n-dimensional vector space over K = R, C, its group of automor-
phisms, denoted by Aut(V), is isomorphic to GL,(K). Similarly, its (additive)
group of endomorphisms (linear maps not necessarily isomorphisms), denoted
by End(V), is isomorphic to M,,(K).

Example 1.3.4. Remember that if f : GL,(K) — GL,,(K) is a continuous
function (K = C or R), then the preimage of a closed set is going to be again a
closed set. That is a way in which we can see whether some subgroups of the
general linear group are in fact matrix Lie groups.

(i) We can see that the set of matrices with determinant one, the SL(n, K) =
{A € GL,(K) : det(A) = 1}, named special linear group, is a matrix Lie
group. Indeed, one can check that it is a group under matrix multiplication,
and further, the map

det: GL(R) — K
A — det(A) (1.14)

is continuous and det™(1) = SL(n, K).

(ii) Similarly, the set of orthogonal matrices O(n) = {A € GL,(R) : A™! =
AT} is a matrix Lie group too, named the orthogonal group, since one
can check that products and inverses of orthogonal matrices are still
orthogonal and if one considers the map

f: GL(R) — GL(R) (1.15)
A — ATA (1.16)

then f is continuous and O(n) = f~!(Id). We can also consider the
subgroup SO(n) = O(n) N SL(n, R), which is also a matrix Lie group and
is named the special orthogonal group.

(iii) A lastexample, which generalizes the previous one and we will use further
on, is the set O(n,m) = {A € GL, m(R) : ATIn,mA = I, m}, where
In.m = diag(+1,...,+1,-1,...,—1) € GL,+,(R) with n positive entries
and m negative entries. This is also a matrix Lie group, as can be seen
by using the map f(A) = ATI, ,,A and seeing that O(n,m) = £~ (I, m)-
Similarly, SO(n, m) = O(n, m) N SL(n + m,R) is also a matrix Lie group.
They are called respectively the (n,m) pseudo-orthogonal group and
the special (n,m) pseudo-orthogonal group.

Just as with any smooth manifold, we can consider the tangent spaces T,G
at a point g € G and the tangent and cotangent bundles TG and T*G (to
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be properly introduced later on). We can consider vector fields too, that is,
elements of y(G). There is a very important kind of vector fields, the ones that
are compatible with the group structure of G. Basically, for every g € G we have
a canonically defined diffeomorphism in G which we call the left translation
map:

Definition 1.3.5. Let G be a Lie group. Given g € G, we have the left g-translation
map ly : G — G given by ly(h) = gh. This is a smooth map (since group
multiplication is smooth) and we can also consider its differential dply : TG —
T, G

9

The subset of the vector fields in G that will be compatible with the
group structure is precisely the ones that commute with the action of this
left-translation map.

Definition 1.3.6. Given a Lie group G and a smooth vector field X € y(G), we

will say that X is a left-invariant vector field if for every g, h € G we have that
dylp(Xy) = Xpg. That is, if the following diagram commutes:

X X (1.17)
dyly
TyG — TpyG
This set of left-invariant vector fields inherits a fundamental structure of
the vector fields, that of being a Lie algebra.
Definition 1.3.7. A Lie algebra is a vector space V over the real or complex
numbers field together with a binary operation [, | : V XV — V, called a Lie
bracket, that satisfies the following properties:
i) It is bilinear.
ii) It is antisymmetric.
iii) It satisfies the Jacobi identity, [u, [v, w]] + [v, [w, u]] + [w, [u,v]] = 0.
Then, a vector space with such an operation is called a Lie algebra (V, |, ]).
The vector fields over a smooth manifold naturally possess a Lie algebra
structure in the following manner. Remember that given a smooth manifold M,

a vector field X € y(M) is at every point p € M amap X,, : C;’(M) — R
with certain properties that make them analogous to tangent vectors to curves
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in the manifold. In particular, vector fields can be added and multiplied by real
numbers, so they form a vector space.

Proposition 1.3.8. Let M be a smooth manifold and consider the vector space of
smooth vector fields y(M). Then, given a vector field X € y(M) and a smooth
function f € C*(M,R), we can define the function:

XefeC”M,R): Xef)(p)=X,(f) €R, VYpeM (1.18)
Therefore, we can define the Lie bracket [, | : y(M) X y(M) — y(M) as:

[X.Y],(f) =X(Yef)-Y(Xef),  VXYe)M),VfeC"(MR)
(1.19)
This operation satisfies the conditions above and therefore turns (y(M), [, ]) into
a Lie algebra.

Then, we can now see that while for a Lie group G we still have this Lie
bracket structure in the space of its vector fields y(G), we also have the set
of left-invariant vector fields defined above (those fields that commute with
the group operation) and that, further, it has the crucial property that this Lie
bracket turns it into a Lie subalgebra of y(G). This Lie subalgebra will be the
Lie algebra of G, denoted as Lie(G). The reason why it is Lie(G) that we regard
as the important Lie algebra for our purposes instead of the bigger algebra
x(G) is that, as we will see, Lie(G) turns out to be isomorphic as a Lie algebra
to T, G, the tangent space at the identity element of G. That means that Lie(G)
encodes in some sense the local smooth structure of G. We will now make
those statements precise.

Proposition 1.3.9. Given a Lie group G, the left-invariant vector fields on G are
a Lie subalgebra of y(G).

Proof. It is immediate to check that left-invariant vector fields form a vector
space, since if X, Y € y(G) are left-invariant and A, u € R, then by the linearity
of the differential,

dglh(Zg) = dglh(/ng + /lYg) = )Ldglh(Xg) + ,udglh(Yg) = /1th + ,uth = Zhg

We only need to check that if X, Y are left-invariant, then [X, Y] is also left-
invariant. But this is also true, since by expanding the expression dy I, ([ X, Y]4)(f)
for given X, Y € y(G) left-invariant, g, h € G and f € C*(G,R), we get:
dglp([X, Y1g)(f) = [X, Y]g(f o lp) = X(Y o (folp) + Y(X o (f oly)) =

= Al (XY @ )+ Al (V)X ® £) = Xpg(Y @ ) + Yag(X ® ) = [X, Y] (f)

And so, Lie(G) is indeed a Lie algebra. O
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Now we can finally see that this Lie algebra of invariant vector fields is
indeed isomorphic to the tangent space at the identity. We can see that for
every g € G, its tangent space T,G is also a Lie algebra by just inheriting the
Lie bracket from y(G). That is, if X, Y € T,G, we can define the tangent vector
[X, Y] € TyG as acting on a smooth function f € C°(G) as

[X,Y](f) = X(Y o f) - Y(X o f). (1.20)

Proposition 1.3.10. Let G be a Lie group and Lie(G) its Lie algebra, that is, the
Lie algebra of left-invariant vector fields. Then, considering T.G as a Lie algebra
with the inherited Lie bracket from y(G), we have a Lie algebra isomorphism
Lie(G) = T,G.

Proof. For this, we only need to consider the left-translation map again. Let
the map ¢ : T.G — x(G) be defined as

P(Xe)g = dely(Xe) € TyG (1.21)

Then, ¢(X.) is a vector field in G. It is linear by the properties of the differential.
We can see that ¢(X,) is left-invariant for every X, € T.G, since by using the
definitions we have:

dglh(¢(xe)g) = dglh(delg(Xe)) = de(lh © lg)(Xe) = delhg(xe) = ¢(Xe)hg
(1.22)

So that Im(¢) C Lie(G). But further, we can see that indeed Im(¢) = Lie(G) by
seeing that the map ¢! : Lie(G) — T,.G defined as

¢ (X) = Xe (1.23)

is indeed an inverse of ¢, since trivially we have that ¢! o ¢(X,) = X, and
because X € Lie(G) we have that

(po ¢_1(X))g = ¢(Xe)g = delg(Xe) = Xge = Xy (1.24)

Finally, it is obvious to see that [¢(X,), ¢(Ye)] = ¢([Xe, Ye]), where the bracket
on the left-hand side refers to the bracket in Lie(G) and the one on the right
refers to the bracket in T,G. But since one bracket is induced by the other, it is
easy to see that it is preserved under the map ¢.

Therefore, ¢ : TG — Lie(G) is a Lie algebra isomorphism. O

Example 1.3.11. Using any of the equivalent definitions of the Lie algebra of
a Lie group that we have seen (as the subalgebra of invariant vector fields or
as the tangent space at the identity), we can see that the Lie algebra of the
general linear group GL,(K) is just M, (K), the set of all n by n matrices.
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Lie group homomorphisms induce Lie algebra homomorphisms between
their respective Lie algebras.

Proposition 1.3.12. Let G and H be Lie groups with Lie algebras Lie(G) and
Lie(H). Let ¢ : G — H be a Lie group homomorphism. Then, the differential
at the identity is a Lie algebra homomorphism:

de¢ : T.G = Lie(G) — T.H = Lie(H) (1.25)

There is a very natural way to pass from the Lie algebra of a Lie group to
the Lie group itself and it is given by the exponential map:

Theorem 1.3.13. Given a Lie group G and a left-invariant vector field X € Lie(G),
there is a unique one-dimensional subgroup Gx C G satisfying the property that
Vg € Gx, X4 € T,Gx € T,G.

A proof for the above theorem can be found on [Lee13] (Chapter 20, Theo-
rem 20.1).

Remark 1.3.14. This resultis also usually stated as saying that given X € Lie(G)
there exists a unique smooth group homomorphism ¢ : R — G so that
%¢(s)| + = X¢(1)- That is, ¢ is an integral curve of X.

We will call this map the exponential map:

Definition 1.3.15. Let G be a Lie group with Lie algebra Lie(G). We define the
exponential map exp : Lie(G) — G as

exp(X) = ¢x(1) (1.26)

Where ¢x : R — G is the integral curve of the vector field X defined above.

Now, we can see that the Lie algebra homomorphism induced by a Lie group
homomorphism preserves the exponential map:

Proposition 1.3.16. Let, as above, G, H be Lie groups and Lie(G), Lie(H) their Lie
algebras. Let ¢ : G —> H be a Lie group homomorphism and d.¢ : Lie(G) —
Lie(H) the induced Lie algebra homomorphism. Then, if expg, expy are the
corresponding exponential maps, we have that VX € Lie(G),

¢ o exp;(X) = expy o de(X) (1.27)
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That is, the following diagram commutes:

G—2 s H

\Lexpc \Lepo (1 . 28)

Lie(G) 2?5 Lie(H)

Without getting in too much detail, for matrix Lie groups the exponential
map has a particularly simple expression and allows us to think of the Lie
algebra of a matrix Lie group in a much simpler way.

Definition 1.3.17. Let A € M, (C) be a square complex matrix. We define the
exponential of the matrix e as the series:

(o) An‘
A _
e’ = ZO n! € M,(C) (1.29)

The above series converges for all matrices (in, for example, the operator
norm). With this definition, the Lie algebra of a matrix Lie group can be given
as follows:

Example 1.3.18. Let G C GL,(C) be a matrix Lie group. Then, its Lie algebra
Lie(G) is given by

Lie(G) = {X € M,(C) : ¢"X € G, Vt e R}. (1.30)

Also, the exponential map exp : Lie(G) — G is given by exp(X) = eX (cf.
[Halo3] section 3.3).

Example 1.3.19. The Lie algebra of GL,,(C), denoted gl,,(C), is just M,,(C), since
eX is an invertible matrix for all X. Indeed, e X is the inverse of eX. Given a
finite-dimensional vector space, the Lie algebra of its group of automorphisms
Aut(V) is just its group of endomorphisms:

Lie(Aut(V)) = End(V), (1.31)
Example 1.3.20. Lie algebras for the matrix Lie groups in Example 1.3.4:

(i) The Lie algebra of the special linear groups, denoted sl(n, K), is the set
of traceless matrices, as can be seen from the condition that det(e’X) = 1
for all ¢t and by properties of the trace and the matrix exponential. Thus,

sl(n,K) = {X € Mp(K) : Tr(X) = 0} (1.32)
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(ii) For the Lie groups O(n) and SO(n), one can see by using properties of
the matrix exponential that their Lie algebras, denoted o(n) and so(n)
respectively, are given by

o(n) =so(n) = {X e M,(R) : X" +X =0} (1.33)
(1.34)

(iii) Lastly, for the pseudo-orthogonal group O(n,m) and special pseudo-
orthogonal group SO(n, m), their Lie algebras are given by:

o(n,m) = so(n,m) = {X € Mpym@R) : I mX" Iom +X =0}, (1.35)

where I,, ,, = diag(+1,...,+1,-1,...,—1) € GLp4+n(R) as in Example
1.3.4.

Finally, we will just mention the correspondence between Lie algebras
and Lie groups, which is turned into a bijection if one considers only simply
connected Lie groups.

Theorem 1.3.21. (Lie) Let g be a real finite dimensional Lie algebra. Then, there
exists a connected Lie group G with Lie(G) = g. Further, there exists a unique
connected and simply connected Lie group G with Lie(G) = g, in the sense that if
another such group exists, they will be isomorphic.

A proof for this result can be found in [Lee13] (Chapter 20, Theorem 20.21).
This correspondence between Lie algebras and simply connected Lie groups
is known as the Lie correspondence. Thus by this last theorem, there exists a
bijective correspondence between finite-dimensional Lie algebras and simply
connected Lie groups. Also, given any connected Lie group, we can always find
a connected and simply connected Lie group that is, in a way, an extension of
it. We call these extensions universal covers:

Definition 1.3.22. Let G be a connected Lie group. A universal cover of G is a pair
(H, ¢) where H is a connected and simply connected Lie group and ¢ : H — G
is a Lie group homomorphism so that the induced Lie algebra homomorphism
de : Lie(H) — Lie(G) is a Lie algebra isomorphism. That is, H and G have
isomorphic Lie algebras.

It is not difficult to see that if a Lie group has a universal cover, it is unique
(up to isomorphism). It can also be seen that a universal cover exists for every
connected Lie group.

Theorem 1.3.23. Let G be a connected Lie group. Then, there exists a unique
universal cover of G which we will denote (G, @), where ¢ is the covering map.
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A proof can be found in [Lee13] (chapter 7, theorem 7.7).

Example 1.3.24. Consider the group T = {z € C : |z| = 1} of unit norm
complex numbers. It is a Lie group under complex multiplication. It can be
seen that its Lie algebra is isomorphic to the real numbers Lie(T) = R. This can
be seen either by computation using 1.3.18 or by seeing that the tangent space
at every point is the real line. T is connected but not simply connected. The
universal cover of T is the Lie group R, with covering map ¢ : R — T given
by ¢(x) = e!?"*. We can see that Ker(p) = Z and that by the isomorphism
theorem of groups, R/Z = T.

Example 1.3.25. It can be seen in a much more involved way that the universal
cover of the pseudo-orthogonal groups O(1, 3) and SO(1, 3) is the special linear
group SL(2,C). We will sketch a proof of this result after introducing the
required notions in the following chapters.

Example 1.3.26. Let G be an arbitrary Lie group. We define the identity
component of G, and denote it by Gy, as the set of elements of the group that
are path-connected to the identity element of the group. Then, Gy is connected,
and it is a Lie subgroup of G. Further, T.Gy = T,G, so that their Lie algebras
are also isomorphic.



Symmetries of quantum
systems

We are moving towards a mathematical description of elementary particles.
The study of elementary particles in physics belongs to the field of quantum
mechanics. The theory of quantum mechanics provides a generalization of
classical mechanics by being able to describe a larger class of systems that
were not accessible with only the usual machinery of the Hamiltonian and the
Euler-Lagrange equations.

In classical mechanics, a system is understood to have a fixed number of
degrees of freedom and the state of a system is completely determined by
specifying the values for all of those degrees of freedom and their derivatives
at that point. One can think of a system of n particles moving freely in three-
dimensional space as an example of a system. Then, each particle has three
degrees of freedom (one for each dimension), making up for a total of 3n + 3n
values that need to be specified for completely determining the state of a system
(three for their positions and three for their velocities). All information about
the system is contained in those 6n numbers and the state of the system is a
point in R®".

There is a series of phenomena, however, that doesn’t fit in such a model.
Briefly, the framework of classical mechanics assumes the continuity of those

23
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degrees of freedom and functions of those degrees of freedom, and this as-
sumption is found to not apply to some of the systems that are of interest. At
the core of the subject is the experimental fact that some quantities cannot be
made arbitrarily small in nature, having then a fundamental and indivisible
nature. Examples such as the polarization and interference of photons are
discussed in [Dir49], as well as a complete introduction on the subject. The
conflict between those systems and classical mechanics is solved by describing
the states of the system in a way that allows for so-called superpositions.

We will not go deeper into quantum mechanics in this work, but the
interested reader can find extensive treatments of the subject in of course
[Dirg9] together with [Hal13], [Tako8],[Mac13] and [Jau68].

In this chapter, we will introduce the only ideas about quantum mechanics
that we will need during our work, namely the structure that models the states
of a quantum system (the projective space of a complex Hilbert space) and the
idea of symmetry. In the first section, we will define basic technical concepts
about Hilbert spaces that will allow us to move on to the definitions of quantum
systems and symmetries in section two. Section two contains one of the central
theorems of the work, Wigner’s structure theorem for the symmetries of a
quantum system.

2.1 Preliminary notions

To talk about the mathematical description of quantum systems we will first
review some things about Hilbert spaces that will be used throughout the
following discussion.

Definition 2.1.1. Let K be a field (with K = R or C) and H be vector space over
K. An inner product on H is amap (,) : H X H — K that satisfies:

1. (Linearity) It is linear in its first argument. That is, V¢, ¥, w € H and
VA, p e K
A9 + p, w) = K¢, @) + (Y, @) (2.1)

2. (Hermitian symmetry) It is Hermitian symmetric. That is, V¢, € H,

(9. 9) =Y. 4) (2.2)

Where the over-line denotes the complex conjugate. Note that if K = R then
the overline is understood to leave the element of the field invariant.
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3. (Positive definite) It is positive-definite. That is, V¢ € H:

(9. ¢) 20 (2.3)
With equality holding if and only if ¢ = 0.

An inner product space is then a pair (H, (, )) formed by a vector space and an
inner product.

Note that (1.) and (2.) combined imply that an inner product is conjugate-
linear in its second argument, that is:

(2 + po) = U ¥) +Hlpw), Vo0 e H VA peK  (24)

Also, (2.) implies that the inner product of a vector with itself is always real,
since

<¢’ ¢> = <¢’ ¢>7 V(/) eH (2.5)
then (¢, ¢) € R.

We can also remember that:

Definition 2.1.2. Let H be a vector space over K. A norm on H is a map
Il : H — R that satisfies:

1. (Positivity) ||¢|| = 0, V¢ € H and ||@|| = 0 if and only if ¢ = 0.
2. (Homogeneity) ||AP|| = |All|@l], V¢ € H, VA e K.
3. (Triangle inequality) ||¢ + /[l < |Igll + ¥l Yo,y € H.

A normed vector space is then a pair (H, || ||) formed by a vector space and a
norm.

Remark 2.1.3. It is easy to see that if (%, (,)) is an inner product space, then
we can obtain a normed vector space by defining the norm ||¢|| = /{¢, ¢).

Now, norms also allow us to introduce the notion of limits and therefore of
completeness.

Definition 2.1.4. Let (H, || ||) be a normed vector space over K. Let {¢,, } nent € H
be a sequence of elements of H.

1. We will say that the sequence converges if there exists ¢ € H, so that
Ve > O there exists n. € N so that Vn > ns, ||¢, — @|| < €.
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2. We will say that the sequence satisfies the Cauchy condition (or is Cauchy)
if Ve > O there exists ne € N so that Vn,m > ne, ||¢pn — dml| < €.

It is easy to see that every convergent sequence is also of Cauchy type. The converse
is not always true. Therefore, we will say that a normed vector space (H, || ||) is
complete if every sequence of Cauchy type is also convergent. It is also common
to say that a complete normed vector space is just a Banach space.

Now we are in a position to define Hilbert spaces, which are going to be
the main object in our formulation of quantum mechanics.

Definition 2.1.5. Let K be a field (with K = R or C). A Hilbert space over K is
then an inner product space (H, {,)) so that with the norm induced by the inner
product, ||p|| = (P, p)z, (H, || ||) is a complete normed vector space.

Another very important notion that we will need during the next sections is
that of Hermitian operators in Hilbert spaces. We will begin by defining what
we mean by an adjoint operator.

Definition 2.1.6. Let (H,(,)) be a Hilbert space. Let A €End(H), a linear
operator. We will say that B €End(H) is an adjoint operator to Aif Vo, € H,

(A(9).¥) = (¢, B(¥)) (2.6)

We can prove the uniqueness of adjoint operators given their existence:

Proposition 2.1.7. Let A €End(H) and let B, C €End(H) be adjoint to A. Then,
B = C. Therefore, if there exists and adjoint operator to A, we will denote it by
AT,

Proof. Lets just consider ¢ € H and see that ||B(¢) — C(¢)||> = 0, meaning
that B and C are the same. If we expand:

1B(¢) — C(P)II> = (B(¢), B(¢h)) — (B(¢), C(¢)) — (C(¢), B(¢)) + (C(¢)). C(¢)))
(2.7)

By using the definition of an adjoint operator, that is equal to:

(A(B(9)). ¢) — (A(B(¢)), §) — (A(C(9)), §) + (A(C(9)).$) =0 (2.8)

Existence, however, does not happen in general. There are some cases
where it is guaranteed.
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Definition 2.1.8. A map A : H — H of a Hilbert space is said to be bounded
if A1 € R so that V¢ € H, ||A($)|| < All]l.

Theorem 2.1.9. Let (H, (,)) be a Hilbert space and A €End(H) be a bounded
linear operator. Then, there exists a unique adjoint operator A,

A proof of the above result can be found in [Hal13] (Appendix A, Proposition
A.52).

Lastly, we need to define what we mean by a self-adjoint linear opera-
tor.

Definition 2.1.10. Let (H, (,)) be a Hilbert space and A €End(H) be a linear
operator. We will say that A is self-adjoint if A" eEnd(H) exists and A = A",

Then, if A €End(H) is a self-adjoint operator, it satisfies that (A(¢), ) =
(¢, A()) for all ¢,y € H. Lastly:

Lemma 2.1.11. Let (H, (,)) be a Hilbert space and A €End(H) be a self-adjoint
linear operator. Then:

1. If ¢ € H is an eigenvector of A, then its eigenvalue is real. Thatis, A(¢) = A¢p
for some A € R.

2. If ¢, € H are eigenvectors of Awith different eigenvalues, then (¢, /) = 0.

2.2 Quantum systems and symmetries

In this section we will introduce the structure of a quantum system and
study the automorphisms of this structure, that is, the maps that preserve its
properties. The presentation of this topic will be purely mathematical in its
approach and its main concern is to introduce the objects that we will be using
further on. Those definitions, however, attempt to provide a model for a broad
set of experiments in nature. That means that there is a strong connection
between the abstract objects introduced here and the realities they model.
References will be provided for the reader interested in the ideas that the
following definitions are modeling.

The fundamental object in quantum mechanics is that of a complex Hilbert
space (H, (,)). It is common in the physics literature to postulate that to any
given “quantum mechanical system” there corresponds a Hilbert space that
completely characterizes it. Since the notion of a “quantum mechanical system”
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presents some difficulties when trying to define it with precision, we will avoid
it altogether and just define abstractly a “quantum mechanical system” to be
that Hilbert space. This subtle distinction allows us to treat the subject with
consistency at the expense of disconnecting our discussion from the reality that
is being modeled. For a less abstract, standard introduction to the subject in
the physics literature, [Gri17] or [SN17].

The Hilbert space is not, however, the object whose properties are analogous
to those of a quantum system, in the sense that the elements of the Hilbert
space do not correspond bijectively to states of the quantum system. Due to
some superposition properties of the experiments being modeled (c.f. [Dir49]
Chapter 1), there is a degree of redundancy in the Hilbert space that has to be
dealt with. Namely, elements that are multiples of one another are needed to
correspond to the same state of the system. That brings us to the notion of the
projective Hilbert space.

Definition 2.2.1. Let H be a complex Hilbert space. The relation ~ in H \ {0}
given by ¢ ~ ¢ if and only if ¢ = Ay for some A € C\ {0} is an equivalence
relation. The set of equivalence classes is called the projective space of H and is
denoted by PH.

The elements of the projective space of a given Hilbert space are going
to model the notion of states of the system. Given an element ¢ € H, its
equivalence class in PH is going to be denoted as [¢] € PH. Any element of
the projective space is of this form. Let us note also that the inner product of
the Hilbert space induces naturally a real map on its projective space.

Definition 2.2.2. Let (H, (,)) be a Hilbert space and PH its projective space.
Then, the projective inner product is the map

<’>P: Pﬂxpﬂ_)Rzo

defined by

U1 e = o=

It is easy to check that this map is well-defined. This projective inner
product is usually referred to as the transition probabilities of the system. This
is so because it is related to the notion of performing a “measurement” on
the system. We will not get into this topic here since it is not relevant to the
discussion. It is important to note, however, that this projective inner product
is part of the structure of the system and has to be preserved by any notion
of automorphism of quantum systems. Let us then define what is meant by a
quantum system.
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Definition 2.2.3. A quantum system is a complex Hilbert space (H, (,)). The
states of the system are the elements of the projective space PH. The transition
probability of the system is the map

(p: PHXPH —R
induced by the inner product of ‘H.

The relevant notion of automorphism of a quantum system is not concerned
with the elements of the Hilbert space but with the states themselves, that is,
with elements of the projective space. Therefore, the automorphisms of a
quantum system are going to be maps that preserve the structure of the space
of states.

Definition 2.2.4. An automorphism of a quantum system H is a bijective map
© : PH — PH that preserves the transition probabilities of the system. That
is, so that

©(¢D. e(yDe = (gl [¥De, Vo, € H\{0}.

Automorphisms of the system are going to be denoted by Aut(PH). We will
also call them symmetries of the system. They form a group under composition.
Although symmetries of a quantum system refer to bijections of the projective
space, some symmetries can be seen as coming from maps of the underlying
Hilbert space satisfying certain conditions.

Definition 2.2.5. Given a Hilbert space (H, {,)), a unitary operator is a map
U : H — H that preserves the inner product. That is,

U@L,UW) =< ¥), Vo yeH (2.9)

We will denote the set of unitary operators as U(H).

Note that any unitary operator is in particular bounded. Now we will prove
a couple of properties of unitary operators.

Lemma 2.2.6. Given a Hilbert space as above, let U : H — H be a unitary
operator. Then, U € End(H), i.e., U is a linear operator.

Proof. The proof is elementary and follows easily by considering arbitrary
#,¢ € H and A, u € C and expanding the expression

I AU($) + pU ) = U(A$ + ) |I? (2.10)

into its expression using the inner product and the definition of a unitary
operator. O
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Also, we can link the definition we gave with another usual definition of
unitary operators.

Lemma 2.2.7. Consider a Hilbert space as above and a unitary operator U. Since
U is linear and bounded, we can consider its adjoint operator U'. Then, U is a
bijective map and its inverse is its adjoint. That is:

U'u=uu" =1 (2.11)

Where I denotes the identity operator and the product is understood to be the
composition of linear operators.

Proof. Again, the proof is elementary and it suffices to consider two arbitrary
vectors @, € H and see that

(9. I -UDY)) = ($.9) ~ U@, U)) =0 (2.12)

And therefore since this is true for every pair of vectors, we get that UTU = I.
Now, if we consider {(I — UU")(¢), /) and use the fact that U is also unitary,
we get that UUT = I. Then, since U" is the left and right inverse of U, we
conclude that U is a bijection and that U~! = U™, o

Now, all this discussion was done so that we can provide a very important
example of the symmetries of a quantum system. As can be expected, unitary
transformations of a quantum system induce symmetries.

Definition 2.2.8. Let T : H — H be a bijective map. We will denote by [T]
the map [T] : PH — PH defined by [T]([¢]) = [T(p)] whenever it is well
defined.

Proposition 2.2.9. Let (H, (,)) be a quantum system and let U € U(H) be a
unitary operator. Then, [U] : PH — PH is well defined and is a symmetry of
the system, i.e., [U] € Aut(PH).

Proof. The proof is immediate from the definitions. O

There is also the closely related notion of a conjugate-unitary operator, that
also gives rise to symmetries of the quantum system.

Definition 2.2.10. Given a Hilbert space as above, a conjugate-unitary operator
isamap W : H — H that satisfies:

(W(g), W) = (4. 9) (2.13)
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Note the similarity with the definition of unitary operator. Indeed, the prop-
erties of conjugate-unitary operators are closely related to unitary operators. It
can be proven in a way similar to the one above that they are conjugate-linear
maps instead of linear maps, meaning that

WA+ py) = IW(P) + AW (),  YApeC, Vo y € H.

Given a conjugate-linear operator W we can also define the notion of conjugate-
adjoint, W¥ as satisfying the equation

(W(), ) = ($, Wi(Y)). (2.14)

The conjugate-adjoint of a conjugate-unitary map is also conjugate-unitary. We
can prove similarly as above that conjugate-linear operators are bijective and
have their conjugate-adjoint as their inverse, WW* = W*W = I.

We will denote the set of conjugate-unitary transformations as U(H). We
will also denote by U(H) = U(H) U U(H) the set of unitary or conjugate-
unitary maps of H. It is a group under composition, with U(H) being a
subgroup.

Corollary 2.2.11. Let T € U(H). Then, [T] € Aut(PH), ie., T induces a
symmetry of the system.

The main result of this section, due to Wigner, is that all symmetries of
a quantum system in this sense arise from unitary or conjugate-unitary op-
erators in this way and that there is a certain notion of uniqueness in the
correspondence between those operators and symmetries.

Theorem 2.2.12. (Wigner) Let (H, (, )) be the Hilbert space representing a given
quantum system and let © € Aut(PH) be a symmetry. Let us assume also that
dim(H) > 2 (see remark). Then:

i) There exists T € U(H) so that [T(¢)] = O([¢]) forall g € H, ¢ # 0.

ii) If there is T’ € U(H) so that also [T’] = ©, then there is z € T so that
T = zT.

Remark 2.2.13. Note that in particulay, ii) implies that if there is a unitary
(resp. conjugate-unitary) map inducing ©, then any other T € U(H) inducing
© is also unitary (resp. conjugate-unitary).

Remark 2.2.14. Note that ii) is not implied in i). If T and W induce the
same symmetry, then [T(§)] = [W(¢)] for all ¢ # 0. All we can deduce from
that is that there is a complex function ww,r : H \ {0} — T so that
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W(P) = ow,1(¢)T(¢) for all ¢ # 0. Wigner’s theorem says something stronger,
namely that w7 is a constant function.

Remark 2.2.15. Ifdim(H) = 1, then PH consists of a single element. Therefore,
any bijective map T : H — H satisfying T(¢) # O for ¢ # 0 will induce a
symmetry of the system. Since there is only one possible symmetry (namely,
the identity map in PH), all such bijections will induce the same symmetry.

This is the main result of the chapter. Proofs of this theorem can be found in
[Bar64], [SMCSo08], [Mor18] (Theorem 12.11) and of course [Wig12] (appendix
to Chapter 20).

Its importance as a central piece of the study of symmetries in quantum
mechanics comes from the fact that after seeing that any unitary or conjugate-
unitary map induces a symmetry of the projective space by projection, Wigner’s
theorem tells us that this is the only way in which symmetries of the system
can arise. Further, it tells us exactly when two such maps are going to induce
the same symmetry.

To see the meaning of this result in another way, we can introduce the
notion of an exact short sequence of groups. In this approach, we follow the
ideas found in [Simo6] (Chapters 1 and 2).

Definition 2.2.16. An short sequence of groups is a finite set {Gy, ..., G, } of
groups together with {fi, ..., fu—1} group homomorphisms so that fi : Gy —
Gi41 forall k = 1,...,n — 1 that satisfies the property that Imf; C Ker fi,1. It
can be presented as:

G L, Ly I, Iy,

(2.15)

The short sequence is called exact if Imf; = Kerfy,1 forallk =1,...,n—1.

Given a complex Hilbert space H, we will denote by 4(1) the set of maps
of H that are unit-norm multiples of the identity map. That is, given T € U(1),
there is z € C with |z| = 1 so that T = z - Id. Clearly, U(1) is a subgroup of
U(H).

We can also define the map
p: UH) — Aut(PH)

given, for all ¢ € H \ {0} by p(T)([¢]) = [T($)]. It is easy to see that it is
a group homomorphism. With these notions, we can reformulate Wigner’s
theorem in the following way:
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Corollary 2.2.17. (Wigner) Let H be a quantum system with dim(H) > 2. Then,
the following short sequence is exact:

{1d} — UQ) <=3 U(H) -2 Aut(PH) — {1d} (2.16)

Proof. The unlabeled homomorphisms on the left and the right are the only pos-
sible ones, namely, the inclusion on the left and the map that sends everything
to the identity on the right. Also, trivially, Ker(inc) = {1} and Im(inc) = U(1).
Therefore, the only equalities that need to be proven are Im(p) = Aut(PH)
and Ker(p) = U(1). Both of them are provided by Wigner’s theorem above.

_ Indeed, i) of Wigner’s theorem says that VO € Aut(PH) there exists T €
U(H) so that p(T) = ©. This gives Im(p) = Aut(PH).

To see the remaining equality, consider T € /() so that p(T) = Id. Then,
since also p(Id) = p(T), by ii) we have that T = zId for some z € T, which
is equivalent to saying T € U(1). Therefore, Ker(p) = U(1) since the other
inclusion is trivial.

O

Remark 2.2.18. Let H be a quantum system and consider the group homomor-
phism p : U(H) — Aut(PH). Then, the isomorphism theorem for groups
gives

Aut(PH) = UH)/U(L).

If one considers the restriction p|q/ to the subgroup U(H) C U(H), then the
image Im(p)q/) corresponds to those symmetries of the system that come from
a unitary map. We will denote them by Autq (P ). Again by the isomorphism
theorem,

Autq (PH) = UH)/UL).



The Minkowski spacetime

In the previous chapter, we occupied ourselves with the quantum mechanical
aspect of the topic that concerns us, that of the description of an elementary
particle. In this chapter, we deal with the relativistic side of the problem. Both
sides of the discussion are essential to it since it is desirable for a description
of an elementary particle to agree with both quantum mechanics and special
relativity.

In this chapter, we will focus on motivating where is the Poincaré group
coming from and why it appears as the group of symmetries of special relativity.
To do that, we will model the Minkowski spacetime as an affine space with a
pseudo-distance function (that is, a not necessarily positive-definite distance).
Then, we will see that any map preserving a distance function in an affine
space is necessarily an affine map, and see how this allows us to define the
Poincaré group. In section two, we will do a brief detour from our study of
elementary particles to see the implications of our treatment of Minkowski
spacetime and how this allows us to model a change of observer in special
relativity. We will link our affine space description with the more standard (but
seen to be equivalent) description by using a smooth manifold.

34
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3.1 Affine spaces, Minkowski spacetime and the
Poincaré group

As a brief reminder of special relativity, we will introduce here the group of
symmetries of Minkowski space. We will introduce it by using non-degenerate
symmetric bilinear forms. The interested reader can refer to [Krio3] (Section
1.4) or [Nabo3] for a more extensive mathematical introduction to special
relativity.

Definition 3.1.1. Let V be a finite-dimensional vector space over the real numbers.
A non-degenerate symmetric bilinear form is a map B : ¥V XV — R that
satisfies:

1. B(v+w,u) = B(v,u)+B(w, u) and B(Av, w) = AB(v, w) forallu,v,w € V
and A € R.

2. B(v,w) = B(w,v) for all v,w € V. That is, B is symmetric.

3. If v € V is such that B(v,w) = 0 for all w € V, then v = 0. That is, B is
non-degenerate.

We will state the following well-known results about symmetric non-
degenerate bilinear forms, usually known as Sylvester’s Law of Inertia (c.f.
[Lani12] Chapter XV Theorem 4.1):

Proposition 3.1.2. Given a finite dimensional real vector space V and a non-
degenerate symmetric bilinear form B: VXV — R:

1. There exists a basis {e1, ..., e, } of V so that the matrix of B in this basis is

diag(-1,...,-1,1,...,1)
| S
s q

2. Further, the natural numbers (s, q) are unique for a given form B. We will
say that (s, q) is the signature of the form B.

We can now go one step further and consider an affine space A over the
vector space V, with a pseudo-distance function induced by the bilinear form
Bof V.

Definition 3.1.3. An affine space A over the real finite dimensional vector space
V is a triple (A, V, ¢) where A is a set and ¢ : A XV — A is a right transitive
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and free action.

Since the action is transitive, given p,q € A, there exists v € V so that
@(p,v) = q. Further, since the action is free, this v is unique. Therefore, we
will define the “point subtraction map”:

AxA—E, (p,q)l—)qu):U

mapping each pair p, q to the unique vector v so that ¢(p, v) = q. In this way,
we will get that for every p, g € A, ¢(p, pq) =

Given an affine space (A, V, ¢) and a bilinear symmetric non-degenerate
form B on V, we can induce a (pseudo) distance functiond : A X A — R

given by d(p, q)* = B(pq, pq)

The reason why we are introducing all these ideas is that the special
theory of relativity is formulated in one of those affine spaces, the Minkowski
spacetime, and that the pseudo distance function induced by a particular
bilinear form (the spacetime interval) turns out to be a fundamental property
of this model of nature. We can define a Minkowski spacetime as follows:

Definition 3.1.4. A Minkowski spacetime M is an affine space (M,R*, ¢),
where the vector space of this affine space is R* together with a non degenerate,
symmetric, bilinear form n : R* x R* — R of signature (1, 3).

That is, there is a basis of R* so that the matrix of nis diag(—1, +1, +1, +1).
It can be seen that any two Minkowski spacetimes are isomorphic, so we will
refer to the Minkowski spacetime.

For the rest of the section, we will see that the set of maps of an affine space
f+ A — A that preserve a pseudo-distance function induced by a form B on
V are going to be necessarily affine maps. That is, we will see that if f preserves
the distance function, then there exists a linear map f : V — V that preserves
the form B and so that f(¢(p,v)) = o(f(p), f(v)) forallp € A, v € V. Thisisa
rather easy argument if one assumes that B is positive-definite (i.e., B(v,v) > 0
for all v # 0). This case was already proved in Lemma 2.2.6. However, we will
be interested in the symmetries of Minkowski space, where the bilinear form
in that case is not positive-definite, but only non-degenerate. That makes the
proof of the statement a bit less conventional. More on the subject is said in
[Vog72]. We will start with the definition of an affine map.

Definition 3.1.5. Given an affine space (A,V, ), amap f.A —> A is called

affine if there exists a linear mapf V — Vsothat f(e(p,v)) = o(f(p), f(v))
forallpe Aandv € V.
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By using the “vector subtraction” map, one can restate the definition of
~ _—
ffi tisfying that f(pq) = . Thi b b
an affine map as satisfying that f(pq) = f(p)f(q) is can be seen by

writing f(q) = ¢(f(p). f(p)f(g)) and equating it with f(q) = f(¢(p. 29)) =
o(f(p), f(pq)) coming from the definition of affine map.

We will now first show that if a function in a vector space preserves a
symmetric, non-degenerate, bilinear form, then it has to be linear.

Lemma 3.1.6. Let V be a finite-dimensional vector spaceand B: Y XV — R
be a symmetric bilinear non-degenerate form. Let f : V — V be a map that
preserves B, that is, so that B(f(v), f(w)) = B(v, w) for all v,w € V. Then, f is
linear.

Proof. Letv,w € V, A € R. Then we have that by the bilinearity of B and since
f preserves the form B:

@ B(f(v+w) = f(v) - f(w), f(w) =B(0,u) =0, Vu € V
(i) B(f(Av) —Af(v), f(u)) = B(O,u) =0, Vu € V

Therefore, by the non-degeneracy of B we get that f(v + w) = f(v) + f(w)
and that f(Av) = Af(v).

Now, we will finish the proof by seeing that a bijection that preserves the
distance function in an affine space has to be an affine map.

Proposition 3.1.7. Consider (A, V, @), an affine space with a (pseudo) distance
function d : A — A induced by a form B of signature (r,s). Let f : A — A
be a bijective map that preserves the (pseudo) distance, d(f(p), f(q)) = d(p, q).
Then, f is an affine map.

Proof. Let f : A — A be a bijection that preserves the distance function.
Choose 0 € A and define f : V — V to be the map defined as

f(0p) = f0)f (p)

This is well defined, since given v € V, there is a unique p € A so that v = o_p>

and it is non zero if p # o (because of injectivity and surjectivity of f). Further,

it preserves the form B of V, in the sense that B( f (0), f (w)) = B(v, w) for all

v, w € V.. Indeed, let v, w € V and lets see that B(f(v) f(w)) = B(v, w). Let

p,q € A be the unique points so that p = ¢(0,v) and g = ¢(0, w). That is,
—> — . .

v = op and w = 04. Then, we can see that the vector pq can be written as just
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;7q> = 175 +0g = —v + w by just using the transitivity of the map ¢. Then:

d(p, q)* = B(pq, pq) = B(v, v)+B(w, w)—2B(v, w) = d*(0, p)+d>(0, g)—2B(v, w)
(3.1)
And similarly:

d(f(p). f(@)* = B(f(p)f(9). f(p)f(q) = B(f (p)f(0) + f(0)f (). f(p)f(0) + f(0)f (q)) =

= d(f(p), f(0))* + d(f (o), f(@))* = 2B(f (p)f(0), f(0) f(q)) =
= d(f(p). f(0))* +d(f(0), f(@)) — 2B(f (v), f(w))

Thus, by using the fact that f preserves the distances, we can equate
both expressions and cancel the corresponding terms to get that B(v, w) =
B(f(v), f(w)) as well. Then by using the previous lemma, we know that a map
that preserves a bilinear form B is linear. Therefore, f together with f is an
affine map, as we wanted to see. O

Thus, we have proved:

Theorem 3.1.8. Let (A,V, @) be an affine space. Let B be a symmetric, non-
degenerate, bilinear form in 'V and d be the corresponding induced pseudo distance
on A. let f : A — A be a bijective map that preserves the distance function

(e, d(f(p), f(q))? = d(p,Nq)2 forallp,q € A). Then, f is an affine map so that
its associated linear map f preserves the form B.

Remark 3.1.9. Let V be an n-dimensional real vector space. Let B be a sym-
metric, non-degenerate, bilinear form. Then, let r, s > 0 be natural numbers

so that in some basis of V, the matrix of B is just diag(-1,...,-1,1,...,1).
—_———— ——

r S
Going back to Example 1.3.4 we can see that the set of linear maps that leave in-
variant such a matrix are precisely the set of (r, s) pseudo-orthogonal matrices,
O(r,s) € GL(V). Further, we saw that it is a Lie group.

We will denote by Aff(A) the set of affine maps of an affine space, not
necessarily preserving any bilinear form on it (we will add that assumption
further below). It is not difficult to see that it is a group, the group of affine
maps of an affine space. We will now see that this group can be described in a
simple way:.

Remark 3.1.10. Let (A, V, ¢) be an affine space and let o € A. Then, given
p e Aand f € GL(V), there exists a unique f € Aff(A) so that (o) = p and
so that f(q) = f(@(0,09)) = ¢(f(0), f(0g)), for all g € A. That is, a choice of a
linear map f and a choice of image for one point f(0) completely determines
an affine map.



CHAPTER 3 / THE MINKOWSKI SPACETIME 39

This remark points clearly toward the direction that affinities are no more
than just a composition of a linear map and a translation. We will see that in
fact, the structure of the group of affine maps is that of a semidirect product of
linear maps and translations.

Definition 3.1.11. Let G, H be groups and let p : G X H — H be an action of
G on H that is free and transitive. Then, it induces an homomorphism of groups
p: G—> Aut(H).

We will define the semidirect product G x H as being the set G X H together
with the multiplication given, for (g, h),(g’,h’) € G X H, as (g,h) x (¢’,h’) =
(99’, hpgy(h’)), where the operation in each component of the tuple refers to the
corresponding operation of each group. This is a group, with identity element

(egs €n).

We will now consider, given a (finite-dimensional, real) vector space V, the
group given by the semi-direct product of the translations and the linear maps.
That is:

Remark 3.1.12. Let V be n-dimensional real vector space. Let the group GL(V)
play the role of G in the above definition, and let V seen as an additive group
plays the role of H above. Then, consider:

(i) The action of the group of linear maps on the additive group, p : GL(V) X
V — V. It is transitive and free, and therefore it induces the group

homomorphism g : GL(V) — Aut(V).

(ii) The product GL(V) x V with the product defined as, for all A, B € GL(V)
and for all v, w € V, then (A, v) - (B,w) = (AB, v + p(A, w)).

This product turns the set into a semi-direct product as defined above, GL(V)x V

Proposition 3.1.13. Let (A, V, ¢) be an affine space. Then, the affine group is
isomorphic to the semi-direct product Aff(A) = GL(V) x V.

Proof. We will see that we can construct a pair of group homomorphisms, after
choosing o € A, as follows.

(i) Define ¢ : Aff(A) — GL(V) x V as follows. We saw that given an affine
map f, it is completely determined by its associated linear map f and by
—

the vector of (o). Then, define ¢/(f) = (f, of_)(o)) € GL(V) x V.

It is easy to see that ¢/ is a group homomorphism, this can be checked
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by seeing thatif h = go f € Aff(A), then oh(o) = 0og(0) + g(of(0)), which
corresponds with the product ¢/(g) - ¢(f).

(i) Define ¢ : GL(V) x V — Aff(A) as follows. Given (f,v) € GL(V) x V,
define ¢(f,v) = f, where f is the affine map determined by f(0) =
¢(0,v) and the associated linear map f . This map is well-defined. It is
also easy to see that it is a group homomorphism in a similar way as
above.

Finally, one can see that the compositions of those maps are the respective
identity maps. As an example, well see that ¢o¢/ = Id, since given an affine map

f determined by f(o) and by £, then ¢/(f) = (f,0f(0)). Then, h = ¢ o Y(f) is
—

the affine map defined as h(o) = ¢(0,0f(0)) = f(0) and the associated linear

map f, which is just the original affine map f.

So we saw that indeed Aff(A) is just the semi-direct product of linear maps
and translations of the vector space. We are interested in those affine maps
that also preserve a distance induced by non-degenerate, symmetric, bilinear
form B on V. We will denote them as:

Remark 3.1.14. Let (A, V, ¢) be an affine space, let B be a non-degenerate,
symmetric, bilinear form on V and let d be the distance on A induced by this
form as d(p, q)* = B(pq, pq). We saw that if f : A —> A is a bijection that
preserves the distance function, then f € Aff(A) and its associated linear map
f preserves the form B. We will denote the set of such maps as Affg(A).

It is not difficult to see based on Remark 3.1.9 that Affg(A) is a group and
that:

Corollary 3.1.15. Let (A,V,¢) be an affine space, let B be a non-degenerate,
symmetric, bilinear form on V. Then, Affg(A) = O(r,s) x V

Now we are in a position to define the Poincaré group, which is precisely the
connected component of the group of affine maps that preserve the bilinear form
of the Minkowski spacetime. Let M a Minkowski spacetime. That is, an affine
space (M, R*, ) with a symmetric, non-degenerate, bilinear form  of signature
(1,3) and the corresponding distance function defined as d*(p, q) = q(p_q),qu)).
From our previous discussion, the set of maps that preserve this distance
function is the group Affg(M) = O(1,3) x R*. Now, this is, in turn, a Lie
group, since it is the product of two Lie groups and the semidirect product
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operation is smooth.

Now, the Minkowski spacetime is the basic underlying structure for most
of the physical theories that are accepted nowadays, at least locally. If one
considers the effects of gravity, then we move on from a Minkowski spacetime
and towards more general kinds of spacetimes. But, and this is a key point too,
any of those more general spacetimes have to satisfy the condition of being
locally isometric to the Minkowski spacetime.

Another key assumption of the currently accepted physical theories is that
they have to be formulated in the same way independently of the observer.
In terms of what we have introduced until now, an observer amounts to a
choice of a reference in the Minkowski spacetime. And a change of observer
is represented as an affine map that preserves the distance function. So this is
why the group Aff, (M) is of such fundamental importance.

Not all of the transformations in Aff,(M) are going to be physically rel-
evant for the discussion that follows. There are some elements of the group
O(1, 3) x R* that represent discontinuous transformations, even though it is a
smooth (Lie) group. By discontinuous, we mean transformations that cannot
happen continuously by deforming the identity transformation. Such trans-
formations involve reflections in space and reflections in time (time-reversing
transformations). We will be interested in preserving space orientation and
time orientation in the discussion that follows, and therefore we will define
the group that will be of interest for us to be the identity component of the
group of affine transformations of the Minkowski spacetime. We will name this
group the Poincaré group.

Corollary 3.1.16. Let A be an affine space with bilinear (non-degenerate, sym-
metric) form B of signature (r, s). Then, the identity component of its affine group
is AffB(A)O = SO(T’, 3)0 x RS,

Definition 3.1.17. Let M be a Minkowski spacetime, 1 its bilinear form. The
Poincaré group is the identity component of the group Aff,(M). We will denote
itby P. We can see that P = SO(1, 3)oxR*. We will also denote by £ = SO(1, 3)o
and call it the restricted Lorentz group, or just the Lorentz group for short.

Remark 3.1.18. The Poincaré group % is connected, since it is defined as the
identity component of Aff, (M).

We will end the section with two results on the Poincaré group that we will
use in the last chapter.

Proposition 3.1.19. The universal cover of the connected component of the or-
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thogonal group O(1, 3) is the special linear group SL(2, C).

Proof. We will, as anticipated in 1.3.25, provide a sketch of the proof. We begin
by denoting by H = {A € M5(C) : A = AT} the set of self-adjoint matrices of
dimension 2. It is a 4-dimensional real vector space, with a basis given by the
usual Pauli matrices and the identity:

1 ] 1
H:<0():Id,0'1:(§) O),GZZ(_Oi (l)),O'gz(O _01 )> (3.2)

We note that there is a vector space isomorphim 1/ : R* — H given by

Xo+Xx3 X1 +ixy
X1 —ixXyg —Xo+ X3

) (3.3)

V(x0, X1, X2, X3) = X300+ X101 + X202+ X003 = (

It is easy to check that if 7 is the bilinear form of signature (1, 3) given by the
diagonal matrix diag{—1,+1, +1, +1}, then

||x||2 =n(x,x) = —xg + x% + xg + x?% = det(¢/(x)) (3.4)

This allows us to define the following Lie group homomorphism:
¢ SL(2,C) — GLyR),  @(A)x) = ¥ (AY(x)A). (3.5)

We can see that ¢(A) preserves the inner product. Indeed, ||/~ (¢(A)(x))||? =
det(p(A)(x)) = det(Ay(x)A"). Then, since det(A) = det(A") = 1 since A €
SL(2,C), we have that

1Y~ @A))II? = det(y(x) = 1] (3.6)

Therefore, the image of ¢ is in O(1, 3). Further, since the map is continuous
and SL(2, C) is connected, the image is in the connected component of O(1, 3),
the Lorentz group L. It can be proved that ¢ : SL(2,C) — L is a surjective
Lie group homomorphism and that its kernel is Ker(¢) = {Id, —Id}. Finally,
the Lie algebras of SL(2,C) and of £ are isomorphic (for example, by using
Theorem 21.32 of [Lee13]). This proves that SL(2, C) is the universal cover of
the Lorentz group. ]

Since we can extend the covering map from the previous proof to the
semi-direct product, we have that:

Corollary 3.1.20. The universal cover of the Poincaré group is # = SL(2, C) x R*.

Remark 3.1.21. We will use further on the fact that the covering map given by
the universal cover of the Poincaré group, ¢ : $ — #, has Ker(p) = {Id, —Id}.
In particular, this means that # = SL(2, C)x R* is a double cover of the Poincaré

group.
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3.2 References in spacetime

We will start by introducing some extra structure in our description of the
Minkowski spacetime of the previous chapters. Remember that a Minkowski
spacetime is an affine space (M,R%, 7, @), where 7 is a symmetric, non-
degenerate, bilinear form on R* of signature (1, 3). Remember also that this
form induces a pseudo distance d? on M. Further, remember that we proved
that if f : M — M is a bijective map that preserves the distance function,
then f is an affine map, f € Aff,(M) = O(1, 3) x R*. We will now define, in
this context, what we mean by a reference in Minkowski spacetime.

Definition 3.2.1. Let (M, R*, 1, ¢) be a Minkowski spacetime. A reference frame
is a pair (O, {ei}f'zl), where O € M and {e;}; € R* is an orthonormal basis
(i.e., n(eo,e0) = —1 and n(e;, e;) = +1 fori =1,2,3).

A reference frame on M induces a map ¢ : R* — M that turns M into
a smooth manifold.

Proposition 3.2.2. Let (O, {e;};) be a reference frame in a Minkowski space M.
Then, the map ¢ : R* — M defined as ¢(x!, ..., x*) = (O, 3; x'e;) is a global
chart for M. Thus, (M, (R*, §)) is a smooth manifold as defined in Chapter 1.

With this smooth structure on the Minkowski space, we can consider such
things as the tangent spaces on M and the vector fields on them. Before that,
let’s see how a change of reference is treated:

Proposition 3.2.3. Let M be a Minkowski spacetime as above, and let (O, {e;};)
and (O, {é;};) be references. Let ¢, ¢ : NRA' —> M be their associated charts.
Then, there exists f € Aff, (M) so that ¢ = f o ¢.

Proof. Define f : M — M to be the map determined by f(O) = O and
the linear map A : R* — R* defined as A(e;) = é;. Since both bases are
orthonormal with respect to 5 by definition, we know that A preserves the form
n and therefore A € O(1, 3). Then, f is simply the map f = (A, v) € Aff,(M),
where ¢(0,v) = 0.

Further, it is clear that:

Fx') = 90, ) x'e) = p(f(0), Y x'Aen)) = fo9(O, ) x'er) = foglx')

(3.7)
O
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We can consider the tangent spaces T, M as defined in Chapter 2. Further,
given a reference frame and its associated chart, we can consider the tangent
basis induced by the chart. Due to the affine structure of M, we can write the
basis tangent vectors in a different way.

Proposition 3.2.4. Let (M,R*, 1, ) be a Minkowski space and let (O, {e;};) be
a reference frame. Let ¢ : R* — M be the chart induced by the reference. Then,
the basis tangent vectors induced by the chart at the point p € M, (0;¢),, are
given, for any smooth function a € C,°(M) (thatis, « : U € M — R smooth
atp € U) by:

d
@:9)p(@) = o plpute)] 38)

Proof. Remember from Example 1.1.8 that the tangent basis vectors induced
by a chart ¢ : R* — M are given by

@@ = TaobF OO 418" 6o

But by using the definition of the chart ¢, which is induced by the reference
frame (O, {e;};), we can see that

H(P'(P)s s (P) + 1. 8" (P)) = 9O, > ¢ (pej + te:) = g(p, te) (3.10)
J

since (¢1(p), ..., p"(p)) = $~1(p) by construction. O

With this expression for the tangent basis vectors, it is easy to see how
different basis induced by different references are related. We will need the
following lemma:

Lemma 3.2.5. Let D, = Y; v'(9;4), € Ty M be a tangent vector at the point
p of a Minkowski spacetime (M,R%, 7, ), where ¢ is the chart induced by a
reference frame (O, {e; };). Then, we can write, for a given smooth function «,

Dy(a) = (Z vi<ai¢>p) (@) = %a °g (p,t (Z v"ei))\t_o (3.11)

i i B

Proof. Itall comes down to a straightforward although cumbersome application
of the chain rule in real analysis. First of all, we define, given v € R*, the curve
Yo : R — R* given by y,(t) = tv = (tv!, ..., tv*). We also define, given a €
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C,°(M), the function ¢ : R* —s Rgiven by /4 (x, ..., x*) = acp(p, 3, x'e;).
It looks cumbersome but we’ve just decomposed:

@)p(@) = o gl te)

With the difference that now both functions y,, and ¢/, are smooth functions
between real spaces. Therefore, we can use the chain rule to see that:

d
= o yei(t)‘tzo (3.12)

t=0

d al//a d()/v)i 0¢a i
— t = —_— _ = — . v] .
dt% ° Yol ))tzo Z Oxjlx=0 dt lt=0 z]: Ox;j lx=0 (3.13)
But using the same expression, we can see that:
d 0y
0; = — (t ‘ = .
(9i@)p() dt% ° Yei(t) t=0  0x; lx=0 (3.14)
And therefore, J
a‘ﬁa o Yv(t)‘tzo = Z vi(aic/’))p(a) (3.15)
But by expanding the left-hand side we can see that by construction,
Yo 0 Yolt) = aop(p,t Z v'e;) (3.16)
i

This finishes the proof, since we got that:

dt

(3.17)
O

1

Dy(a) = (Z viwiqs)p) @ =30 (@) @) = peored)] = Eaop (p, t(

i

Corollary 3.2.6. Let (O, {e;}) and (O, {é;};) be reference frames for a Minkowski
space (M, R*, n, p) with associated charts ¢ and ¢. Let f = (A, v) € Aff,(M)
be the affine map so that ¢ = f o ¢. Then:

@:f)p = > N(9;9), € TyM (3.18)
J
Where AJI: € R are defined as &; = A(e;) = %; AJl..ej.

Proof. Let a € C;°(M), a real function smooth at a point p € M. The result
follows from the previous lemma. Let’s consider the action of the basis tangent
vectors of the chart ¢:

> A{I<aj¢>p) (@)
J

(3.19)
O

B d . _ d J —
Oif)p(@) = Zacp(p.té)| = a““"(’”t;Ai%)Lo -

E vlei

1

))

t=0
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Therefore, the tangent vectors associated with a chart follow the same
change of reference rules that the vectors themselves:

e — ZA]l:ej =¢€; (3.20)

J
@id)p = D N(9;9)p = (3i)p (3.21)
J

It can be seen by using the definition of the dual tangent basis that it
transforms in the opposite way, that is, involving the inverse matrix of A. That
is:

e — ZAJleJ = éi
J

(dg')y — Y (Mg, = (dh), (3.22)
J

To finish off this digression about observers and the action of the Poincaré
group on the tangent bundle of the Minkowski spacetime, we can briefly say how
this comes into play when modeling fields in classical field theory. This is one
of the starting points towards gauge theory and quantum field theory.

Remark 3.2.7. Let M be a Minkowski spacetime and consider a tensor field
T € T(T"* M, M) (c.f. Definition 1.2.9). Then, given a reference (O, {e; }) with
associated chart ¢ : R* — M and associated basis for the tangent spaces
T, M given by {(ai¢)P}§:O, we can write the components of the tensor field
with respect to this chart (c.f. Definition 1.2.10) as:

T (p) = Ty ((d6")ps or (A9 )ps (8, D)ps s (0),8)p) €R, (3.23)

where all indices run from O to 3.

To make the expressions more manageable, consider instead a rank (0, 2)
tensor field F € T(T%2M, M) and its components in the given reference:

Fij(p) = Fp((0:i9)p, (0;9)p), i,j=0,...,3. (3.24)
This allows us to write the tensor field F in terms of the tangent dual basis as:

F,,:Z

3 3
i=0 j=0

Fij(p)dg"), ® (d¢), (3.25)

Now, and coming to the point of the whole example, if we consider another
reference (O, {¢;};) with associated chart ¢ and affine map f = (A,v) €
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Aff, (M) so that ¢ = f o ¢, we can see how the components of F change
when expressing them in a different basis. Indeed, we can denote by F;; the
components of F in the tangent dual basis {(d¢i)p}?:0, defined as:

Fij(p) = Fp((0:)p, (0;0)p),  1j =0, ..., 3. (3.26)

and write s s
Fp= 313" Fy(p)dd"), ® (dg),. (3.27)

i=0 j=0

If we use the change of basis rules from eq. 3.22 we can see that indeed the
components of F change as:

Fij(p) = Fp(0i9)p» 08)p) = D > AFALE, (k) (1)) = D° > AFALFrap)
kK 1 kK 1

(3.28)
And therefore by using eq. 3.22 together with eq. 3.27 we can see that both
choices of references agree when the corresponding changes of basis in the
tangent bundles are taken into account.

Fy= > Fy(p)(dd"), ® (dd), =
Lj

2| 2 NN (0. (31¢)p))

i,j

k,1
> 8L SLE(Okd)p. (1)) ATy ® (d™), = F (3.29)

k,l,m,n

D UATLATYdP™), ® (g™, | =

Incidentally, this last equation provides an example of how far can we go
without introducing Einstein’s summation convention, since the above compu-
tation is made substantially clearer when one adopts such a convention.

The point of this last rather cumbersome example is to show how the defini-
tions given about references and how they relate to charts and components of
tensor fields agree with their expected behavior. This is a point that is presented
in the physics literature with a considerably less degree of formality, leaving
in a vague state some definitions such as those of a reference frame. The fact
that we can write equations about tensor fields in these two ways (that is,
by either using their components in a given reference frame or by using the
tensors themselves without referring to any particular reference) is at the core
of what is commonly referred in the physics literature as “general covariance”
of a theory in physics. Note that any tensor field in a Minkowski spacetime
is invariant under the action of the Poincaré group on any reference, as the
example above shows. We will leave this discussion here and continue our
discussion about elementary particles in the next chapter.



Elementary particles and
the Poincareé group

After introducing the necessary mathematical machinery in the first chapter, the
required notions of quantum mechanics in the second chapter, and the Poincaré
group in the third chapter, we are now in a position to culminate our work by
putting all the pieces together and being able to define what an elementary
particle is understood to be. In this fourth and last chapter, we will introduce the
notion that allows us to tie together Lie groups and quantum systems: that of a
group representation. We will discuss how quantum symmetries are related to
projective unitary representations of Lie groups and discuss the fundamental
result by V. Bargmann that allows us to talk about unitary representations
instead of projective ones. Finally, the definition of an elementary particle will
be given and discussed.

4.1 Unitary and projective unitary
representations

We will start by introducing the usual definition of a finite-dimensional repre-
sentation of a Lie group and a Lie algebra.

48
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Definition 4.1.1. Let G be a Lie group and V be a finite-dimensional vector space
over K. Then, a representation of G on V is a Lie group homomorphism

I1: G—> Aut(V). (4.1)

That is, it is a smooth group homomorphism. Similarly, we can think of
representations of Lie algebras on vector spaces as being Lie algebra homo-
morphisms between the Lie algebra and the algebra of endomorphisms of the
vector space.

Definition 4.1.2. Let (g, [, ]) be a Lie algebra and V a finite-dimensional vector
space. A Lie algebra representation of g on V is a Lie algebra homomorphism

p: g — End(V) (4.2)

One of the obvious results of the theory that we have introduced in the
previous sections is that

Corollary 4.1.3. Let p : G — Aut(V) be a Lie group representation. Then,
dep : Lie(G) — End(V) is a Lie algebra representation on V. The exponential
map of G of Aut(V) commutes with these representations in an obvious way.

Example 4.1.4. For a basic example of a finite-dimensional representation of
a Lie group, one can think of the real general linear group of dimension n,
GL,(R), and its obvious action on R” by matrix multiplication:

p: GL,(R) x R" — R" p(A,x)=A-x eR". (4.3)

Then, for every A € GL,(R), the map IT : GL,(R) — GL,(R) given by I1(A) =
p(A,.) is a Lie group homomorphism and therefore a representation. Similarly,
the restriction of this representation to any matrix Lie group G C GL,(R) will
also induce a representation. This representation of a matrix Lie group on R"
is called the standard representation.

Example 4.1.5. For an example of a representation of a Lie algebra, one can take
the differential map of a Lie group representation. Indeed, letIT : G — GL(V)
be a representation on the finite-dimensional vector space V. Since it is a smooth
map between Lie groups, we can consider the differential of the map at the
identity e € G, giving a Lie algebra homomorphism:

d.Il : T,G = Lie(G) — TigGL(V) = Aut(V) (4.4)

Most of the representations of groups that we will need in our work are
not, however, finite-dimensional as the ones we have introduced so far. That
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happens because we are interested in representations where the vector space
is a quantum system, and we did not restrict our definition of quantum systems
to only finite-dimensional ones. This means that Definitions 4.1.1 and 4.1.2 will
no longer be of use in those situations.

We will work, instead, with unitary representation in Hilbert spaces.

Definition 4.1.6. Let G be a Lie group and H be a Hilbert space. A unitary
representation of G on H is a group homomorphism I1 : G — U(H). The
representation is said to be continuous if the map I1? : G —s H given by
1(g) = I(g)(¢) is continuous for all ¢ € H.

We will usually denote the image of the unitary map II(g) at ¢ € H as
I14(¢) instead of as I1(g)(¢).

Definition 4.1.7. Let G be a Lie group and (‘H, {, )) a Hilbert space. A projective
unitary representation of G on H is a group homomorphism I1 : G —
Autq(PH). It is said to be continuous if the map 11%Y : G — R given by

H¢’¢(g) = (T1([¢]), ([ ]))p is continuous for all ¢,y € H +# {0}.
Remember the group homomorphism pq; : U(H) — Autq,(PH).

Proposition 4.1.8. Let G be a Lie group, H a Hilbert space and Il : G — U(H)
be a continuous unitary representation. Then, II = pq; o I : G — Autq/(PH)
is a continuous projective unitary representation.

Proof. 11 is a group homomorphism since it is the composition of two group
homomorphisms. It remains to be checked that it is continuous in the projective
sense. Given ¢,/ € H \ {0}, consider the map 1%V : G — R given by

%Y (g) = (A ([$), Ty ([P ]))e. (4.5)

By the definition of (, )p and by the definition of I1, we can write it as:

. (Ty(9), Ty (y))? (I1?(g), 11V (9))?

69 (g) = S I =

I%¥(g) = ([y(P)], [TIy(¥)D)e T, ($)12 - T,(P)|2 ~ [T%(qg))? - |H¢((g)|é)
4.

The denominator never vanishes for ¢, # 0, since Il is a unitary map and
therefore I1;(¢) # 0. Therefore, the norm does not vanish either. Now, this
expression is continuous as a function of g by the continuity of 1% for every
¢ # 0. This finishes the proof. mi

Definition 4.1.9. We will say that a unitary representation Il : G — U(H)
is irreducible if the only vector subspaces V C H with the property that
y(V) SV for every g € G are {0} and H.
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Similarly, a projective unitary representation Il : G — Autq,(PH) is said
to be irreducible if the only vector subspaces V C H with the property that
Oy (PV) C PV forevery g€ Gis H.

Definition 4.1.10. Let IT : G — Autq,(PH) be a continuous projective unitary
representation. A unitary lift of I1 is a continuous unitary representation II :
G — U(H) so that IT = pqy o I1.

Then, the lift can be seen as “inducing” the projective representation. A lift
makes the following diagram commute:
G
lﬁ S (4.7)
UH) L2 Autg(PH)

The next result allows us to think of projective unitary representations
of a connected Lie group and unitary representations of its universal cover
equivalently, under the very strong assumption that every projective unitary
representation of the covering group has a unitary lift.

Theorem 4.1.11. Let G be a connected Lie group and assume that its universal
cover G has the property that every continuous projective unitary representation
has a unitary lift. Then:

() Given a Hilbert space H and a projective unitary representation Il : G —
Autq;(PH), there is a unitary representation II of its universal cover so that
[Tog=pyoll

(ii) Given a Hilbert space H and a unitary representation I1 : G — U(H)
so that TI(Ker(¢)) € U(1), then there is a unique projective unitary repre-
sentation IT of G on H so that Il o ¢ = pqs o IL

A way in which the above result can be visualized is by realizing that we
have the following two short exact sequences of groups, with the dashed arrows
standing for a possible unitary or projective unitary representation if there’s
any.

{e} — Ker(p) —= 5 G s G s {1d}
i § in (4.8)

e

(1} — U1) S UH) L5 Autg (PH) — {1d)

Then, the existence of a projective unitary representation I of G implies
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the existence of a unitary representation IT of the covering group G. Conversely,
the existence of a unitary representation II of G with Ker(¢) € U(1) implies
the existence of a unique projective unitary representation II of G.

Proof. (i) LetIl : G — Autq/(PH) be a projective unitary representation.
Then, o : G —> Autq,(PH) is also a projective unitary representation.
By the assumption on G, this representation has a unitary lift IT : G —
U(H) and by definition of a unitary lift, IT o ¢ = pq o IT as we wanted.

(i) Let IT : G — U(H) be a unitary representation with [I(Ker(¢)) C
U(1). Then, II defines a group homomorphism on the quotient groups
I1: G/Ker(p) — U(H)/U(1) given by II([g]) = [[1(g)]. But since we
saw that:

G/Ker(p) = G, UH)/UQ) = Autg (PH), (4.9)

then the induced homomorphism II is a projective unitary represen-
tation and it gives [T o ¢ = pqy 0 IT by construction. The uniqueness of IT
can be seen by assuming that there is another projective unitary represen-
tation I1” with the same property and with II(k) # I1’(h) for some h € G.
But then for any g € ¢~'(h) C G, we have that IT o ¢(g) # II’ o ¢(g),
which contradicts the assumption.

It now remains to be seen whether that rather strong assumption on the
universal cover of a connected Lie group, namely, that every projective unitary
representation has a unitary lift, is a reasonable assumption to make for the Lie
groups that will be of interest to us. The answer is, surprisingly, a positive one,
and it comes under the name of Bargmann’s theorem, which gives a condition
for the existence of those unitary lifts. This particular form of Bargmann’s
theorem follows [Mor19] Theorem 7.14.

Theorem 4.1.12. Let G be a connected and simply connected Lie group with Lie
algebra g. Assume that for every bilinear skew-symmetric map ¢ : g X g — R
such that

o([x,y],2) + ¢([y, 2], x) + ¢([z,x],y) = 0 (4.10)
there exists a map a : ¢ — R so that ¢(x,y) = a([x, y]), for all x,y € g.

Then, every projective unitary representation of G has a unitary lift.

A proof of this result can be found in [Mor18] Theorem 12.72. The original
proof due to Bargmann can be found in [Bar47], where the result that we are
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going to be using corresponds to Theorem 3.2. Note that several formulations of
Bargmann’s theorem are stated by using the cohomology theory of Lie algebras,
such as [Simo6] (Section 2 Theorem 4).

4.2 Elementary particles

The importance of the definitions and results of the last section comes from
the fact that they capture the idea of what is meant by saying that a Lie group
is a symmetry group of a quantum system. The key idea is that given a Lie
group G and a quantum system H, we will say that G is a symmetry of the
system if there is a continuous projective unitary representation of G on H.
Intuitively, one can think of the slightly more natural concept of a group action,
and define a group G to be a symmetry group of a quantum system whenever
there is an action of G on the group of symmetries of /.

Remark 4.2.1. A group action of a Lie group G on the group of symmetries
of H would be a map p : G X Aut(PH) — Aut(PH) so that p(e, .) is the
identity map of Aut(PH) and so that p(g, p(h, .)) = p(gh, .). To make it into a
continuous symmetry, we would further demand a continuity condition similar
to the one in Definition 4.1.7. In summary, such an action would end up being
equivalent to a projective unitary representation.

Thus, we define the notion of a Lie group being a symmetry group of a
quantum system as follows:

Definition 4.2.2. Let H be a quantum system and let G be a Lie group. We will
say that G is a symmetry group of the system if there is a projective unitary
representation of G on H.

For an extended discussion about this definition the interested reader can
refer to [Weios] (section 2.2) and the original papers by E.P. Wigner and V.
Bargmann, such as [BW88] or [Wig39].

The connection between the different sections of this work, relating the
appearance of the Poincaré group with the discussion on quantum mechanics,
is as follows. Due to fundamental considerations in theoretical physics, a
necessary condition for a quantum system to be consistent with the special
theory of relativity is to have the Poincaré group as a group of symmetries. Cf
[Weios] section 2.2 for a discussion about this topic.

Definition 4.2.3. A quantum system H is called relativistic if the Poincaré group
P is a symmetry group of the system.
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We want to exploit the results of the previous chapter concerning lifts of
projective unitary representations. The first result that is of importance in that
direction is Bargmann’s theorem. In fact, the universal cover of the Poincaré
group satisfies the hypothesis of Bargmann’s theorem (Theorem 4.1.12).

Proposition 4.2.4. Let P be the Poincaré group and P be its universal cover.
Then, every projective unitary representation of P has a unitary lift.

This is equivalent to saying that the Poincaré group satisfies the hypotheses
of Bargmann’s theorem. A discussion on that can be found in [Bar47] (Section
6). Alternatively, also in [Mor18] (Proposition 12.76).

With this result, we can finally establish the equivalence between relativistic
quantum systems and unitary representations of the universal cover of the
Poincaré group, as in Theorem 4.1.12.

Corollary 4.2.5. A quantum system H is relativistic if and only if there is a
unitary representation I1 : P — U(H) of the universal cover of the Poincaré

group.

Proof. We saw in Remark 3.1.21 that the kernel of the covering map ¢ of
the Poincaré group is Ker(¢) = {Id, —Id}. The result follows from Theorem
4.1.11. |

This leads to the last definition of the work, and the one towards which we
have been working all the way through.

Definition 4.2.6. A relativistic quantum system H will be called an elementary
particle if the unitary representation of the universal cover of the Poincaré group
is irreducible.

This definition marks the end of our progress. It is, however, the starting
point of many other studies and discussions, such as:

(i) Still on the mathematical side, one can start working with this definition
and move on towards studying the representation theory of the Poincaré
group and its universal cover. The classification of those representations
is known as Wigner’s classification.

(ii) On the philosophical side, however, Definition 4.2.6 provides a precise
definition of what an elementary particle is. Looking for the fundamental
constituents of nature has been a relevant question ever since humanity
started to think about nature.
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Regarding (i), a study and eventual classification of the unitary representa-
tions of the universal cover of the Poincaré group is far from trivial. Even though
this classification was done by Wigner in his original paper [Wig39] (Section 6)
by using his “little groups” method, the problem was not solved with generality
until G. Mackey published his work on induced representations. The problem
of studying the representation theory of Poincaré’s group (or of its universal
cover) is part of the more general problem of classifying the representations of
a semidirect product of Lie groups when one knows the representation theory
of the factors of the product. A mathematical treatment of the theory of induced
representations of groups, including the study of representations of semidirect
products, is out of the scope of this work. The interested reader can find a
complete treatment of the subject in G. Mackey’s original work, [Mac68], in
the more modern work [Varo7] (chapter VI) and in [Simo6] (Chapter 6, 7 and
8). [Stegs] (section 3.9) contains a lighter and more practical approach.

Regarding (ii), a short discussion on the relevance of Wigner’s theorem
and classification can be found in [Stegs] (section 3.9, pgs 148-50). Wigner’s
classification of elementary particles is widely recognized as a central result
in mathematical physics. It is also a starting point for the standard model of
particle physics, which studies the classification of elementary particles and
their interactions through their symmetry groups. Then, the Poincaré group
is the first symmetry group that is introduced into the theory, since it is a
symmetry that has to be satisfied by any relativistic system, with the resulting
Wigner’s classification of elementary particles. This classification, though, only
classifies particles according to two parameters that label the representation of
the Poincaré group on their Hilbert space (these two parameters end up being
the “spin” of the particle, a half-integer, and the mass of the particle, a positive
real number, with no further restrictions). If more specific symmetry groups
are added to the model (specific in the sense that they model the properties of
specific particles and are not shared by all of the particles in nature), a finer
classification of elementary particles is obtained, giving rise to the notions of

YP RN 1%

“color”, “flavour”, “charge”, etc.

Both of these considerations lead towards the standard model of particle
physics. A general study of the standard model requires a large number of
prerequisites in a wide range of fields. A starting point to motivate the study of
the standard model from the algebraic viewpoint is [BH10] and also [BM9g4]. A
more general but still mathematical treatment, including most of the mathemat-
ical prerequisites for gauge theory (mostly differential geometry), can be found
in the excellent [Ham17]. Once out of those purely mathematical treatments,
even more general accounts exist, but they usually require some knowledge
of the theory of quantum fields. Mathematical treatments of quantum field
theory can be found in [Ticg9] and in [Folo8]. For a more physical approach,
[Jos6s], the very extensive [Weios] and lastly [Dir66].
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The author of this work hopes that the contents presented inside it, as well
as the ideas and works, referred to outside of it, trigger the reader’s curiosity
to know more about the topics discussed here. The fruits that grow out of
the collaboration between mathematics and physics have been providing for a
long time some of nature’s most precise and beautiful descriptions, and that is
reason enough to continue to keep an interest in those subjects.
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