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Abstract

There is large geographical variation in the stroke incidence rate worldwide. In addition, stroke is one of the

diseases with highest total mortality rate globally. In this thesis, we examine if there are any geographical

variation in stroke incidence in Norway. We first perform a preliminary analysis using classical hypothesis

tests within the frequentist framework. Then we enhance the study by using a spatial model. This is done

through Integrated Nested Laplace Approximation (INLA) within the Bayesian framework. This method

allows us to conveniently incorporate the hierarchical nature of the data structure and look for spatial effects

on the stroke incidence rate. Based on the spatial model, we see that aside from two hospital referral

areas (OUS and UNN), there are no geographical variation in the stroke incidence in Norway. We further

look at stroke mortality by using Bayesian survival analysis. For the study of mortality, we examine for

geographic variation as well as effects of socioeconomic status. We run the Cox proportional hazards model

and include factors such as geographic, demographic and socioeconomic information. We find that there are

no geographical variation in the stroke mortality rate in Norway. However, those with higher income and

education level have lower mortality rate.
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1 Introduction

1.1 Background

Stroke, or cerebrovascular accident (CVA), is when there is a loss of blood flow to part of the brain.

When the brain cells do not receive the oxygen and the nutrients from the blood, the affected brain tis-

sue start to die. This can happen in a matter of minutes and can cause serious brain damage, disability

or death. Therefore it is an acute condition and requires medical attention immediately (Centers for Dis-

ease Control and Prevention (CDC)). There are two types of stroke: ischemic and hemorrhagic. Ischemic

stroke is when there is a blockage in the blood vessel hence hindering the blood to flow to the rest of

the brain. This is the most common type of stroke and accounts for about 85% of the stroke incidence

(The Organization for Economic Cooperation and Development (OECD)). Hemorrhagic stroke is when

there is a rupture in a blood vessel and causes bleeding into the brain. While this is less common, it

carries very high mortality rate at about 51 − 65% depending on the location of the hemorrhage (Rymer,

2011).

Stroke is the second-leading cause of death and disability worldwide. In 2013, it accounted for over 10%

of total death globally (Benjamin et al., 2017). Not only does it have high mortality rate, but the high

morbidity results in more than 50% of survivors with life-long disability. Therefore, it puts a heavy bur-

den on the healthcare system and causes great economic and social consequences (Donkor, 2018). There

are many risk factors for stroke, such as high blood pressure, high cholesterol, heart disease and dia-

betes, just to name a few. Some of these may be hereditary, but many are modifiable and are affected

by lifestyle and environment. Therefore it is not unthinkable that there are geographical variation for

stroke. Globally, there is a more than ten-fold difference between the countries with the highest and low-

est age-standardized stroke incidence and mortality rate (Kim et al., 2015). In addition, socioeconomic

status has also been shown to contribute to the variation in stroke incidence and mortality (Addo et al.,

2012).

In Norway, there were about 8 500 stroke cases in 2014 reported into the Norwegian stroke register. 46% of

the patients are women with the mean age of 77.7 and 54% are men with the mean age of 71.9 (Indredavik

et al., 2015). The healthcare atlas for the elderly in Norway showed that for the population over the age of

75, there are little geographical variation in the number of inpatients during 2013 - 2015 (Center for Clinical

Documentation and Evaluation (SKDE), 2017). This could be an indication that the incidence rate is also

evenly spread throughout the country.
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Understanding the geographic and demographic patterns of the stroke incidence and mortality helps the

healthcare system with planning and providing necessary care to the patients. Furthermore, educating

the public with stroke prevention and management can lighten the load that the disease puts on the soci-

ety.

1.2 Data source

The data for the analysis is based on information from various Norwegian health registries. Stroke patients

are identified from the Norwegian stroke register (NHR) during the years 2014-2018. According to the an-

nual report from NHR (Indredavik et al., 2015; Ellekjær et al., 2016; Fjærtoft et al., 2017, 2018, 2019), only

84-87% of the stroke patients are captured in the registry during the study period. In order to ensure that

we include as many patients as possible, and more importantly to minimize any geographical skew, the data

is supplemented by identifying additional patients with stroke diagnosis from the Norwegian patient register

(NPR). Stroke diagnosis is defined as patients with main diagnosis codes as one of the following: I61, I63, I64 1

In addition to incidence, we also want to examine the mortality. NHR includes the patients’ condition

when they were in contact with the specialist health services, such as the type of stroke (hemorrhagic or

ischemic), and whether they had previous stroke. Furthermore, the demographics of these patients from

Statistics Norway (SSB) is also available for us to identify their socio-economic status such as level of income

and education. Lastly, these patients are matched with the Norwegian cause of death registry (DÅR) so we

know the date and cause of death for those that died between 2014-2020. Note that the study of the mortality

will be based on only patients from NHR and not the additional patients from NPR since the data from

SSB and DÅR is available for only the patients from NHR. However, since this still covers the majority of

the population and due to the richness of the data, we believe that it is sufficient for the purpose of this thesis.

Data manipulation and visualization will be done in SAS, while data analysis and additional visualization /

presentation will be done in R2 and R-INLA 3.

1ICD-10 code I61 is for Nontraumatic intracerebral hemorrhage, I63 is for cerebral infarction, and I64 is for stroke, not

specified as hemorrhage or infarction.
2https://www.r-project.org/
3https://www.r-inla.org/
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1.3 Objectives and outline

The objectives of this thesis are to study if there are any spatial pattern for stroke incidence rates, as well

as if there are any demographical and geographical differences in stroke mortality rate.

While the subject of stroke incidence and mortality rate is well-studied, there has been few that use Bayesian

methodology. In chapter 2, we introduce the fundamentals of the Bayesian method. Furthermore, we present

a class of statistical models called latent Gaussian models. This is a very wide class of models that fits into

the computational framework known as the integrated nested Laplace approximation (INLA) which simpli-

fies the implementation of Bayesian models.

Chapter 3 focuses on the spatial analysis of the stroke incidence rate. Section 3.1 presents the data from

stroke patients based on their place of residence in Norway. Section 3.2 outlines hypothesis tests that will be

used under the frequentist framework while section 3.3 discusses the spatial models that will be used within

INLA to study the geographical differences. Section 3.4 presents the results of the analysis and lastly section

3.5 provides a summary of the findings.

The survival analysis is presented in chapter 4 in a very similar manner as the spatial analysis above.

Section 4.1 presents the mortality data of stroke patients. Section 4.2 looks at the theory behind survival

analysis while section 4.3 shows how it is implemented in INLA. Section 4.4 then presents the results of the

analysis and 4.5 summarizes the models.

Lastly, a short discussion is included in chapter 5 as concluding remarks for the thesis.
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2 Bayesian statistics

In this chapter we will introduce the theory behind Bayesian inference by first examining Bayes’ theorem

and how it is applied to Bayesian inference. We will then look at the components of the inference, namely

the prior distribution, likelihood function and posterior distribution.

The second part of this chapter is on integrated nested Laplace approximation. It is a computational

technique that can be used when working with Bayesian inference. We will look at the specifications and

assumptions with this approach and how it is done.

2.1 Bayesian inference

Bayesian inference is a branch of statistical analysis tool that uses probability theory to obtain a distribution

about the parameters by updating prior knowledge with observed data. In the Bayesian framework, the pa-

rameters are unknown and treated as random variables. They can be expressed as probability distributions

which are used for the inference.

One of the advantage with this method is that it can easily be adapted to incorporate hierarchical models.

This allows us to analyse the information that may occur at different levels and capture the dependencies

and variations between them. It is a powerful tool that is very versatile in dealing with complex data.

2.1.1 Bayes’ theorem

The cornerstone of Bayesian inference is Bayes’ theorem (Bayes, 1763). Suppose A and B are events on a

sample space, then

P (A|B) =
P (B|A)P (A)

P (B)
. (2.1)

This can be used for the probability distributions of the unknown parameters. For the observed data

yT = (y1, . . . , yn) and the m unknown parameters θT = (θ1, . . . , θm), the joint probability distribution can

be expressed as the product of the probability distribution of y given θ and the probability distribution of

θ. So,

π(θ, y) = π(y|θ)π(θ). (2.2)

When Bayes’ theorem in equation (2.1) is applied to the data and parameters in equation (2.2), we end up

with a conditional probability distribution of the parameters given the data

π(θ|y) = π(θ, y)

π(y)
=

π(y|θ)π(θ)
π(y)

.
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Since y represent the data, π(y) does not depend on θ and can be viewed as a normalizing constant. We

therefore omit the denominator and consider the simpler form

π(θ|y) ∝ π(y|θ)π(θ). (2.3)

π(θ|y) on the left side of expression (2.3) is ultimately what we are after in Bayesian inference: probability

distribution of the parameters given data, which is also referred to as the posterior distribution. If we ex-

amine how the posterior distribution can be derived, we have π(y|θ) which can be expressed as a function

of θ instead of y. Then we have l(θ|y), which is the likelihood function of the parameters given data. The

other component is π(θ) which represents the probability distribution of the parameters. This captures our

initial beliefs of the parameters and is called the prior distribution.

In all, we can say that Bayesian inferences can be made with the knowledge of the likelihood function

and the prior distribution. We update our previous beliefs about the parameter with the observed data

through the likelihood function. This allows us to arrive at the posterior distribution for the parameters

which can be used to make prediction, estimation, or draw conclusion about the data.

2.1.2 Prior distribution

The priors are the distributions of the unknown parameters θ without the knowledge of data. As it is a

component in determining the posterior distribution, the choice of prior is important and affects the outcome

of the model. There are many different types of prior, for example, non-informative, weakly informative, or

informative priors.

If we don’t know much about the parameter, we can use a non-informative, vague or flat prior. This means

that we assume very little about the parameter and allow the data to be the main driver in determining

the posterior. Some examples of non-informative priors are: flat prior where we assign the same probability

or density to all values in the possible range, Gaussian prior with large variance to allow for uncertainty,

or Jeffrey’s prior which is invariant to parameter transformation (Jeffreys, 1946; Blangiardo and Cameletti,

2015).

On the other end of the spectrum, we have also informative priors. It is when the distribution of θ is

known, or that we have reasonable beliefs based on, for instance, previous knowledge, expert opinion or the

population from which the parameters were drawn. Having an informative prior ensures that the model

has as much information as possible, and is especially useful if we have limited data. There is a subclass

of priors which are called conjugate and non-conjugate priors. Conjugate priors are such that the resulting
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posterior falls under the same class of distribution as the prior. Consider a prior that has a beta distribution

with a binomial likelihood, which results in a posterior that is also of beta distribution. Conjugate priors

provide a simpler computational framework, but are not always appropriate or possible (Gelman et al., 2013).

In reality, non-informative priors force us to model with ignorance, and informative priors are not easily

obtainable or sometimes too strong that they overpower the data. Weakly informative priors can be a com-

promise to these drawbacks. It can be built by either starting with a non-informative prior and adding some

information or constraints until we arrive at a reasonable posterior. Alternatively, one can also start with an

informative prior and relax the beliefs to allow for some uncertainty (Gelman et al., 2013). Choosing a prior

is often not easy or clear-cut and may require some experimentation and evaluation of the results. Later on

in section 2.2.4 we will look at a specific type of weakly informative prior called penalized complexity prior.

2.1.3 Likelihood function

The likelihood function is the probability distribution of observing data y given the parameter θ. It is a

function of θ and can be expressed as

l(θ|y) = π(y|θ).

It captures how well the parameter explains the data. In Bayesian inference, the observed data is expressed

through the likelihood function which is in turn used to update the prior distribution in order to obtain the

posterior distribution.

2.1.4 Posterior distribution

If we have several parameters in the model, then the posterior is called a joint posterior distribution. When

interpreting the model, we may want to be concerned with only a subset of them at a time. The marginal

posterior distribution of the parameters of interest can be obtained by integrating the joint posterior over the

parameters that are not of interest, so-called nuisance parameters (Gelman et al., 2013). This can further be

written as a product of the conditional posterior distribution given the nuisance parameter and the marginal

posterior distribution of the nuisance parameter. To see this mathematically, consider θT = (θ(1), θ(2)) where

θ(1) are the parameters of interest and θ(2) are the nuisance parameters, then we have

π(θ(1)|y) =
∫

π(θ(1), θ(2)|y) dθ(2)

=

∫
π(θ(1)|θ(2), y)π(θ(2)|y) dθ(2). (2.4)

Inferences from the marginal posterior distributions can then be summarized by point estimates and credible

intervals. Posterior distributions are probability distributions, and the summary statistics is therefore quite
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straight forward. The most commonly used point estimator is the posterior mean. It can be written as

E(θ|y) =
∫

θπ(θ|y)dθ.

Since we are working with a distribution, we can also easily find the median and the quantiles. The posterior

median θ0.5 is the value that divides the distribution into two equal parts (Blangiardo and Cameletti, 2015):

P (θ ≤ θ0.5) = 0.5 and P (θ ≥ θ0.5) = 0.5.

Similarly we can define the 2.5% and 97.5% quantiles as

P (θ ≤ θ0.025) = 0.025 and P (θ ≥ θ0.975) = 0.025,

which gives us the end values of the 95% equi-tail credible interval. Since the summary statistics are obtained

from the probability distribution, the interpretation is intuitive. A 95% credible interval simply means that

there is 95% probability that the value of θ is within the interval. In frequentist statistics we use the confi-

dence interval and the alpha level to interpret significance. In Bayesian statistics, there is not such notion

of significance, but we often use credible interval as a guideline and say that if the interval covers 0, then it

indicates that there is no positive or negative effect, hence can be thought of as no significance.

2.1.5 Hierarchical models

The parameters in the model can in some cases be related to each other. Bayesian inference allows for this

dependency through hierarchical models (Blangiardo and Cameletti, 2015). It incorporates complex data

that are structured in different hierarchies into the Bayesian probabilistic framework and effectively accounts

for the variability within and between the levels. In addition to the data y and parameters θ as we have seen

so far, hierarchical model introduces hyperparameters ϕ to describe the dependencies between the θs. One

example would be patients in different hospitals, where the variability between the patients is described by

the parameter θ and the variability between the hospitals is captured by the hyperparameter ϕ. The joint

posterior distribution in equation (2.3) is extended to reflect the extra level of information and becomes

π(θ, ϕ|y) ∝ π(y|θ, ϕ)π(θ|ϕ)π(ϕ). (2.5)

This means that hierarchical models are a three-stage process: first identify the likelihood of the parameters

l(θ|y), then the prior of the parameters given the hyperparameters π(θ|ϕ), and lastly prior of the hyperpa-

rameters π(ϕ). Once we have the joint posterior distribution π(θ, ϕ|y), similar to the process described in

equation (2.4), we want to find the marginal posterior of the parameters of interest, θ, by integrating out

the nuisance hyperparameters, ϕ.
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As we see, hierarchical models can easily be adapted to the Bayesian framework which gives us a very

powerful tool in statistical analysis. Through the additional level of the hyperparameter that describes the

parameter, the model borrows information from similar populations and reduces the uncertainty in each

population. This results in a model that is more robust while still maintaining the variability between the

different populations.

2.2 Integrated nested Laplace approximation

2.2.1 Introduction to INLA

Bayesian inference is done through the posterior distribution of the parameters for prediction, estimation

and/or conclusion. It is especially powerful when we incorporate hierarchical structure in the models. How-

ever, due to the complexity of the models, this often means that obtaining the distribution analytically is

difficult or sometime impossible. Simulation-based techniques such as Markov chain Monte Carlo (MCMC)

are popular choices to explore the target distribution. The property of Markov chain states that the con-

ditional probability of the next state is dependent solely on the current state. One may use a sampling

technique such as Gibbs sampling to construct a chain such that at its stationary state, the approximate

distribution is equal to the desired target distribution (Gelman et al., 2013).

While sampling makes it possible to estimate the posterior distribution, it can be computationally expensive

and time consuming. In the case of hierarchical models, due to the richness of the data and/or the complex

model structure, this may still take hours or days even with modern powerful computers. Rue, Martino and

Chopin introduced a method called integrated nested Laplace approximations (INLA) in 2009 for approxi-

mating the posterior distributions for a particular type of model, namely the latent Gaussian model (Rue

et al., 2009). It improves the computational efficiency significantly without sacrificing accuracy (Rue et al.,

2017).

Latent Gaussian model

To understand what a latent Gaussian model (LGM) is, we first consider a general form of an additive model

ηi = g(µi) = β0 +

n1∑
j=1

βjzji +

n2∑
k=1

fk(cki), i = 1, . . . , n, (2.6)

where µi = E(yi), g(.) is a link function, β0 is the intercept, βj are the parameters for the covariates zji, and

fk are non-linear functions, smoothing splines, or some random effects (Rue et al., 2017). These terms are
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all random variables under the Bayesian framework. Consider the vector x as a latent field from equation

(2.6) for which each of the parameters have a Gaussian prior. Then we have

x = {β0, β1, ..., βn1
, f1, ..., fn2

, η1, ..., ηn}, (2.7)

and the model is called a latent Gaussian model. The latent components fs have priors with parameters

ϕ. A hierarchical model as in equation (2.5) that falls under the subclass of LGM, where the data y is

conditionally independent given the latent field x, and hyperparameters ϕ, can be formulated as

y|x, ϕ1 ∼
∏
i∈I

π(yi|xi, ϕ1)

x|ϕ2 ∼ N (µ(ϕ2), Q
−1(ϕ2))

ϕ ∼ π(ϕ),

where Q is the precision matrix. Note that the dimension of ϕ is generally small, but the dimension of x is

often large as it may be necessary to capture the complexity and the variation in the data, especially in a

hierarchical model (Rue et al., 2017).

Gaussian Markov random field

Gaussian Markov random field (GMRF), as the name suggests, is a random vector that has a multivariate

Gaussian distribution and follows the Markov property. Markov property is such that some components

in the vector is conditionally independent, i.e. xi ⊥ xj |x−ij , for i ̸= j (Rue and Held, 2005). Rue et al.

(2009) showed that this property is encoded in the precision (inverse of covariance) matrix Q such that

xi ⊥ xj |x−ij ⇔ Qij = 0. A LGM is a GMRF if many components in the latent field can be assumed to be

conditionally independent, which gives us the sparse precision matrix. This is the key attribute that enables

the computational efficiency in INLA (Rue et al., 2009, 2017).

Laplace approximation

Laplace approximation can be used to approximate an integral. Assume f(x) is non-negative and integrable.

We want to approximate the integral

I =

∫
x

exp(nf(x))dx.
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Consider the Taylor expansion of f(x) around x0 where f(x) is maximize, then we have

I ≈
∫
x

exp

[
n

(
f(x0) + (x− x0)f

′(x0) +
(x− x0)

2

2
f ′′(x0)

)]
dx

=

∫
x

exp

[
n

(
f(x0) +

(x− x0)
2

2
f ′′(x0)

)]
dx

= exp(nf(x0))

∫
x

exp

(
n
(x− x0)

2

2
f ′′(x0)

)
dx

= exp(nf(x0))

∫
x

exp

(
−1

2

(x− x0)
2

−1/(nf ′′(x0))

)
dx.

Let σ2 = −1/(nf ′′(x0)), then we have

I ≈ exp(nf(x0))
√
2πσ

∫
x

1√
2πσ

exp

(
−1

2

(x− x0)
2

σ2

)
dx

≈ exp(nf(x0))
√
2πσ

where the integrand is approximated with a Gaussian distribution matching the mode and the curvature at

the mode (Rue et al., 2009, 2017).

INLA

With the understanding of LGM, GMRF and Laplace approximation, we can now see how INLA uses these

properties to efficiently evaluate the posterior distribution. A LGM is considered a hierarchical model when

the f functions have hyperparameters ϕ. The joint posterior follows equation (2.5) and can be expressed as

π(x, ϕ|y) ∝ π(y|x, ϕ)π(x|ϕ)π(ϕ).

In INLA, instead of obtaining the joint posterior distribution π(x, ϕ|y), we are interested in evaluating the

marginal posterior distributions for each hyperparameter π(ϕ|y), and component of the latent field π(x|y).

The posterior marginals for the hyperparameters are

π(ϕj |y) =
∫

π(ϕ|y) dϕ−j (2.8)

and the posterior marginals for the components of the latent field are

π(xi|y) =
∫

π(xi|ϕ, y)π(ϕ|y) dϕ. (2.9)

So what needs to be evaluated are the terms inside the integrals, π(ϕ|y) and π(xi|ϕ, y).

π(ϕ|y) is needed for the posterior marginals for the hyperparameters, but is also nested in the marginals for

the latent field. In order to evaluate π(ϕ|y), we use probability theory and rewrite it to π(x, ϕ, y)/π(x|ϕ, y).

10



The denominator can be approximated with Laplace approximation by evaluating the Gaussian density at

its posterior mode (Rue et al., 2009, 2017). Therefore we have :

π̃(ϕ|y) ∝ π(x, ϕ, y)

π̃G(x|ϕ, y)

∣∣∣∣
x=x∗(ϕ)

, (2.10)

where x∗(ϕ) is the mode of π̃G given ϕ.

Similarly, π(xi|ϕ, y) can be obtained by the same logic. However, since the dimension of x might be large,

it may be more expensive to perform Laplace approximation. Some other methods that can also be consid-

ered are Gaussian approximation, Laplace approximation with partitioning of the latent field, or simplified

Laplace approximation (Rue et al., 2009, 2017).

Finally, once we have π̃(ϕ|y) and π̃(xi|ϕ, y), we are ready to calculate the integrals in equations (2.8) and

(2.9). This can be done through numerical integration. For the posterior marginals for the latent field in

equation (2.9), we would have

π̃(xi|y) ≈
∑
k

π̃(xi|ϕk, y) π̃(ϕk|y)∆k,

where ∆k denotes the weights. This is possible since the dimension of ϕ is usually small (Rue et al., 2009).

In summary, INLA uses numerical integration on the nested marginals with Laplace approximation to arrive

at the desired marginal posterior distributions. It is possible due to the properties of GMRF and the sparse

precision matrix which contributes to the computational efficiency. While this method is limited to LGM, it is

applicable to a large collection of models such as spatial and spatio-temporal models, time series analysis and

survival analysis, to name a few. INLA has gained popularity in the recent years (Van Niekerk et al., 2023)

due to the improvement of efficiency over traditional simulation-based techniques while maintaining accuracy.

2.2.2 Independent models for the latent effects

In INLA, all components in the latent field have priors that are Gaussian distributed. The βs in (2.7) have

non-informative priors with mean zero and large variance. However, the f functions in equation (2.6), which

are also the latent effects in a Bayesian hierarchical model, should have priors that are informative. One of

the most common and simplest options is the independent and identically distributed (IID) model. Consider

g(µi) = β0 + ui where ui denotes the random independent effects. Then we have

ui ∼ N (0, τ−1
u ), i = 1, . . . , n.

11



where the precision τu is the hyperparameter. Since the effects are assumed i.i.d., it can be used to capture

unstructured variability in the data.

2.2.3 Random walk for the latent effects

Another common model for the latent effects are the random walk models (Gómez-Rubio, 2020; Blangiardo

and Cameletti, 2015). This is often used for covariates that are on a time scale. For the first order random

walk (RW1), consider a vector v = (v1, . . . , vk) that is sorted in ascending time order, the first order difference

∆vj can be written as

∆vj = vj − vj−1
iid∼ N (0, τ−1), j = 2, . . . , k.

This therefore gives us a GMRF that is of rank k − 1, which is improper. We call this an intrinsic GMRF

(IGMRF) due to the rank deficiency (Rue and Held, 2005). vj is independent of v1, ...vj−2 given vj−1. This

conditional independence gives us a sparse precision matrix that looks like:

Q = τR = τ



1 −1

−1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2 −1

−1 1


.

With a RW1 prior for the latent component, deviation from a constant level is penalized. τ is the hyperpa-

rameter which defines the smoothness of the curvature for the random walk model.

The second order random walk (RW2) is constructed in similar ways, but assumes that the second order

difference ∆2vj is Gaussian distributed, so we have

∆2vj = vj − 2vj−1 + vj−2
iid∼ N (0, τ−1), j = 3, . . . , k.
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In a RW2 prior, vj is independent of the other elements, given vj−1 and vj−2. The sparse precision matrix

is

Q = τR = τ



1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

. . .
. . .

. . .
. . .

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 5 −2

1 −2 1



.

Deviation from a linear trend is penalized therefore giving a smoother result (Rue and Held, 2005).

2.2.4 Penalized complexity prior

The choice of prior is important and can affect the resulting posterior distribution. In equation (2.7) we

have a latent field x with Gaussian priors within the LGM framework. However, choosing a prior for

the hyperparameters is often not as easy or clear cut. Simpsons et al. proposed a class of priors called

penalized complexity (PC) priors (Simpson et al., 2017). PC prior uses a systematic approach by using an

inherited nested structure, which contains the base model and a flexible version of the model. It penalizes

the complexity induced by deviating from the base model (Simpson et al., 2017; Sørbye and Rue, 2017).

Consider hyperparameter ϕ, PC prior is built based on the following four principles:

1. Occam’s razor - base model is preferred unless there is enough evidence to suggest otherwise. Let

π(x|ϕ) be the prior distribution, then π(x|ϕ = 0) is the base model (Simpson et al., 2017).

2. Measure of complexity - use of Kullback-Leibler divergence (KLD) (Kullback and Leibler, 1951) to

measure the information lost by using a base model over the more flexible model. KLD is defined as:

KLD(ϕ) = KLD(π(x|ϕ)||π(x|ϕ = 0)) =

∫
π(x|ϕ) log

(
π(x|ϕ)

π(x|ϕ = 0)

)
dx.

For ease of interpretation, the complexity can be expressed as a unidirectional measure of distance

between the two models (Simpson et al., 2017)

d(π(x|ϕ)||π(x|ϕ = 0)) =
√

2KLD(ϕ).
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3. Constant-rate penalization - the deviation from the base model with distance d is penalized with a

constant rate of decay r ∈ (0, 1) so that the prior satisfies the following

πd(d+ δ)

πd(d)
= rδ, d, δ ≥ 0.

This means the change in the prior by adjusting δ is independent of the distance d. Moreover, it implies

an exponential density π(d) = λ exp(−λd) for λ = − log(r). The PC prior can then be obtained by

change of variable transformation (Sørbye and Rue, 2017).

4. User-defined scaling - user defines parameters U and α. For Q(ϕ) as a transformation of ϕ, we have

P (Q(ϕ) > U) = α. Here, U controls the upper limit of a tail event and α controls the probability of

exceeding the limit (Simpson et al., 2017).

These priors have the advantages of being robust and invariant to reparameterization as well as easy inter-

pretation.

2.2.5 Joint model with two response vectors

The most commonly seen models have one response vector. However, it is possible to set up a joint model

with multiple response vectors (Gómez-Rubio, 2020). This allows us to model the responses simultaneously.

Consider the response vectors, y = (y1, . . . , yn) and z = (z1, . . . , zm), they can be set up in a matrix in the

form of:



y1 NA
...

...

yn NA

NA z1
...

...

NA zm


(2.11)

The covariates can be set up in the same way if they correspond to only one of the response vectors.

Consider that we want y and z to have separate intercepts and that covariate u = (u1, . . . , un) affects y,
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and v = (v1, . . . , vm) affects z. Then the linear predictors would look like:

1 NA u1 NA
...

...
...

...

1 NA un NA

NA 1 NA v1
...

...
...

...

NA 1 NA vm


(2.12)

If all covariates affect only one of the response vectors, then the joint model would yield the same result as

if the responses were modelled separately. The interesting aspect with a joint model is that there may be

shared terms between the different responses. Consider w = (w1, . . . , wn+m) which affects both y and z. It

would then be a column in the matrix filled with values, without any NAs like what we see for the other

vectors above. 

w1

...

wn

wn+1

...

wn+m


(2.13)

Lastly, note that while the example is for two response vectors, this setup can be generalized to any number

of response vectors.

2.2.6 Deviance information criteria

As a part of the model building process, we explore multiple models and choose one in the end as a final

model. One common metric used for Bayesian models is the deviance information criteria DIC (Spiegelhalter

et al., 2002). DIC is the sum of the measure of fit (deviance) and model complexity. The deviance is defined

as

D(θ) = −2 log(l(y|θ)).

The model complexity is measured with the effective number of parameters and is defined as the posterior

mean of the deviance minus the deviance of the posterior mean, and can be written as

pD = D(θ)−D(θ).
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So,

DIC = D(θ) + pD.

The smaller the deviance, the better the fit, which also usually means higher complexity. We want to

minimize both terms, therefore a model with a smaller DIC is preferred.
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3 Spatial analysis

In this chapter, we would like to study the stroke incidence rate during the years 2014-2018 for the population

of ages 45 and over. The main focus is to explore if there are any geographical variation in the incidence

rates. In other words, are there any geographical areas that have different incidence rates than the other

areas. If so, is there an underlying pattern that can be explained by a spatial model.

Section 3.1 introduces the data we are working with. Section 3.2 and section 3.3 cover the theory be-

hind the analysis tools: hypothesis tests and spatial models, respectively. Section 3.4 presents the analysis

and the results. Lastly in section 3.5, the results from the hypothesis tests and spatial models are compared

and a conclusion is drawn.

3.1 Stroke patients and incidence rates

From the Norwegian stroke register (NHR), there are 40 120 stroke patients ages 18-105 during the period

2014 - 2018. In addition, 7 968 stroke patients from NPR in the same time period are also included in the

study, which gives us a total of 48 088 patients. Figure 1 (left) shows the distribution of the number of

stroke patients by gender and age (in 5-year blocks, hereafter referred to as age blocks or blocks). Below the

age of 80, there are more men with stroke than women. However, for the population of 80 years and older,

there are more women with stroke comparing to men. This however does not necessarily mean that women

are more likely to get stroke than men in the older age groups. This is due to the fact that there are more

women in the older population. We therefore look at the average annual percent of population with stroke

as shown in figure 1 (right). Now we see that there is a higher proportion of men with stroke comparing

to the proportion of women with stroke in the same age block. This remains true throughout the population.

In addition, notice that while there are stroke patients in every age block, there are very few under the

age of 45. We will therefore concentrate the analysis on stroke patients between ages 45 and 105, which gives

us 45 235 patients, or an annual average of 9 047.
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Figure 1: Stroke patients during 2014-2018. Figure on the left shows the average annual number of patients by age and gender

while the figure on the right shows the average annual percent of population with stroke by age and gender.

For each of the patients, we have data on the municipality they live in. This information allows us to assign

the patients to the areas in which the hospitals serve. There are 21 hospital referral areas (RA) in Norway,

and they can be aggregated into 4 regional health authorities (RHA): north, central, west and south-east. To

study the geographical variation, we illustrate the stroke incidence rate by the 21 RAs on a Norwegian map

in figure 2. The figure on the left shows the average annual crude (unadjusted) incidence rate calculated as

number of patients divided by the population in the RA. However since each RA have a different make-up

of age and gender, and that these are known risk factors of stroke (Roy-O’Reilly and McCullough, 2018),

we apply direct age- and gender-adjustment using the national numbers as the reference. This ensures that

the rates across different geographical areas are comparable (Nyi, 2000). Figure 2 (right) shows the age- and

gender-adjusted rates across Norway. If we compare the difference between the two maps, we see that some

RAs have a lower rate after adjustment. This is due to the fact that the population is older in these areas

compared to the national average, so the crude rate appears higher. By the same token, those that have a

higher rate after adjustment are the ones with a younger population. This highlights the importance of age-

and gender-adjustment in order to be able to compare the incidence rates across areas and regions. We will

investigate the data in this section by using the adjusted rate. However, in the analysis in section 3.4, the

unadjusted (crude) rate will be used and the difference in the age and gender proportion will be addressed

by the appropriate test and model designs.
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Figure 2: (Left) Unadjusted crude stroke incidence rate. (Right) Age- and gender-adjusted stroke incidence rate. The rates are

number of patients per 10 000 population.

Figure 3 (left) presents the same information as the map in figure 2 (right) but with the adjusted incidence

rates in descending order. We see that the referral area Oslo university hospital (OUS, area 14) has the

highest rate of 52 stroke patients per 10 000 population while referral area Diakonhjemmet (region 16) has

the lowest rate of 33 stroke patients per 10 000 population. This gives us a factor of 1.6. In epidemiology,

this is often considered little geographical variation. However, it depends on many other factors, such as

volume and mix of the population. Figure 3 (right) illustrates the adjusted incidence rate aggregated to the

regional level. The north RHA has the highest rate followed closely by the central RHA. Both south-east

RHA and west RHA are below the national average and have very similar rates. We will investigate this

in section 3.4.1 by doing some hypothesis testing to see if there is statistical significance within the regions

(RHA) as well as the referral areas (RA).
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Figure 3: (Left) Age- and gender-adjusted stroke incidence rate per 10 000 population for the 21 hospital referral areas. (Right)

The same rates aggregated to the 4 regional health authorities.

20



3.2 Hypothesis tests

Hypothesis test is used to determine if the differences observed in data is by chance or if there are some

factors that may explain the relationship. There are many types of such tests, each suitable for different

types of data and scenarios.

3.2.1 Friedman test

The data we are testing on is number of stroke patients in the geographical areas in which we can not

assume normality. Thus, we consider non-parametric tests. Moreover, the data is divided into independent

age blocks within the the areas (RA/RHA), and there is only one measurement for a given block within an

area, the resulting model is referred to as a complete block design. For this we can use the Friedman test

for significance between 2 or more groups (Friedman, 1937).

Let yj be the average number of stroke patients per year in area j and Ej be the population in area j

during the reference year, then stroke incidence rate per year per 10 000 population can be estimated by

λ̂j = (yj/Ej) × 10 000. For j = 1, . . . , k where k is the number of areas, the hypotheses for the underlying

rates using Friedman test are:

H0 : λ1 = λ2 = . . . = λk

H1 : At least one of the λs differ

First we set up the data in a matrix X = (xij) with i = 1, . . . , n for the blocks and j = 1, . . . , k for the

areas. To perform the Friedman test, we assign ranks to the groups within each of the blocks and record the

results in another n × k matrix R = (rij). The final ranking of the areas is obtained by taking an average

across all blocks: r̄·j =
1
n

∑n
i=1 rij . The test statistic is obtained by

Q =
12n

k(k + 1)

k∑
j=1

(
r̄·j −

k + 1

2

)2

. (3.1)

Finally, we can look up the p-value from a Friedman test table (Martin et al., 1993) and reject the null

hypothesis if it is less than the predetermined significance level. If n and k are sufficiently large (n > 15, k >

4), a chi-square table can be used as an approximation. So Q is approximately χ2
ν where ν = k − 1.

3.2.2 Wilcoxon test

If the Friedman test suggests significance, we want to find out which pairs of areas are significantly differ-

ent from each other. For the same reasons as in the Friedman test, we use a non-parametric hypothesis

test. There are two types of Wilcoxon tests: Wilcoxon rank-sum test and Wilcoxon signed-rank test. The
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Wilcoxon rank-sum test is also called the Mann–Whitney U test. This is for when the two areas are inde-

pendent. However, when the areas can be paired and the measurements are dependent or related, we want

to use the Wilcoxon signed-rank test (Rosner et al., 2006). For our data, even though the areas are assumed

independent, the block design introduces dependency across the areas within the same block. We therefore

choose Wilcoxon signed-rank test for two dependent or related samples to test for significant differences

between two areas.

Consider the same data setup as above in the Friedman test with n blocks and k areas. For two areas,

a, b where a, b = 1, . . . , k and a ̸= b, the hypotheses of the Wilcoxon signed-rank test is:

H0 : λa = λb

H1 : λa ̸= λb

We perform the test by calculating the difference between the values in the ith block, denoted by di = λ̂ia−λ̂ib

for i = 1, . . . , n. The absolute values of the differences are ranked. W+ is the sum of ranks where di > 0,

and W− is the sum of ranks where di < 0. The test statistic T = min(W+,W−). The P-value can then

be determined by comparing the test statistic with the distribution under the null hypothesis. If it is less

than the predetermined significance level, then we reject the null hypothesis and conclude that there is a

significant difference between the two areas.

3.2.3 False discovery rate

Moreover, if the results of many paired tests are to be considered simultaneously, we need to adjust the

p-value by using the false discovery rate. In this section, we will look at how to perform these tests.

Typically in hypothesis testing, we compare the resulting p-value derived from the test statistic with the

pre-set significance level (for example, α = 0.05). This level α represents the acceptable probability of falsely

rejecting the null hypothesis (or false positive rate, or type I error). This works when we are performing a

single hypothesis test. However, under multiple tests, if we use the same α threshold for each of the tests,

we will end up accepting too many false positives and significantly weaken the overall test. This is called

the multiple comparison problem.

A method called False Discovery Rate addresses this issue (Benjamini and Hochberg, 1995). Suppose there

are a total of m tests performed. We sort the p-values such that p(1) ≤ p(2) ≤ . . . ≤ p(m). Let k be the largest

i for which p(i) ≤ iα
m . The corresponding hypotheses to the p-values that are less than p(k) are rejected.
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3.3 Bayesian spatial models

Disease mapping is a study of disease incidence and prevalence by estimating the number of cases within

geographical areas. When modelling count data, it is common to use Poisson regression models with a

log-link function, so we have a likelihood yi ∼ Poisson(λi), and the predictor ηi = ln(λi) (Blangiardo and

Cameletti, 2015). In addition to the log-link function, it is often needed to also include an offset, E. As the

areas we are modelling on have different population sizes, using the population size as the offset to ensure

that the rate is comparable across different areas. A model following equation (2.6) would then become:

ηi = ln(λi) = β0 +

n1∑
j=1

βjzji +

n2∑
k=1

fk(cki) + ln(Ei) (3.2)

where λi is the expected number of cases, and Ei is the population size in area i as the offset. We have βjzji

as fixed effects that apply across all areas, and fk(cki) as random effects that vary across the different areas

and capture the variability within and between them.

When working with geographical data, it is often logical to think that the disease rate in neighbouring

areas should be similar to each other. One natural way of accounting for this spatial effect is to build a

hierarchical model where the latent field component captures the effects between the different areas. In order

to extend the general hierarchical model to a spatial model, we need to know the structure of the areas in

terms of their neighbours. We do so by setting up a neighbourhood map (see appendix A.2). This allows

the model to capture the spatial random effects with the non-linear terms, fk, in equation (3.2). To not lose

sight of the spatial term in the hierarchical model, we express it separately and call it bi, where i represents

the areas. Hence, the model can be written as:

ln(λi) = β0 +

n1∑
j=1

βjzji + bi + ln(Ei). (3.3)

In the following sections, we look at some commonly used spatial models for this random effect bi.

3.3.1 The Besag model

A commonly used spatial model is the Besag model (Besag, 1974). It uses the conditional auto-regressive

model (CAR) as the choice prior to model for the structured spatial effect. It is Gaussian distributed and

can be written as:

bi|b−i, τb ∼ N(
1

nδi

∑
j∼i

bj ,
1

nδiτb
),
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where bi, as seen in equation (3.3), is the spatial random effect of area i and b−i is the collection of all

elements of b except for bi. τb is the precision parameter (τb = 1
σ2
b
), j ∼ i denotes all j that are immediate

neighbours of i, δi is the collection of all neighbours of area i, and nδi is the number of neighbours. The

distribution can also be read as that the mean of bi is the average of all of its neighbours, and the precision

of bi is proportional to its number of neighbours (Moraga, 2019). Therefore the more neighbours an area

has, the higher the precision which implies the lower the variance. So the field would be more smoothed out.

Since it is Gaussian distributed, the joint distribution of b is therefore

π(b|τb) ∝ exp

−τb
2

∑
j∼i

(bi − bj)
2

 ∝ exp
(
−τb

2
bTQb

)
,

where Q is the precision matrix with the values

Qij =


nδi , i = j

−1 , i ∼ j

0 , otherwise.

3.3.2 The Besag-York-Mollié (BYM) model

The Besag model assumes only the structured spatial effect based on the neighbourhood map. Any variability

in the regions that is not due to the geographical placement will be forced into the structured effect. This

may not be desirable. An improvement from Besag would be the Besag-York-Mollié (BYM) model (Besag

et al., 1991). It splits the spatial effect into structured and unstructured components, b = u + v. Here, u

is the structured effect captured by the Besag model with u ∼ N(0, τ−1
u Q−) where Q− is the generalized

inverse of Q (where QQ−Q = Q), and v is the unstructured effect with v ∼ N(0, τ−1
v I). So the covariance

matrix is

Var(b|τu, τv) = τ−1
u Q− + τ−1

v I. (3.4)

3.3.3 The Leroux model and the Dean model

Even though the BYM model is an improvement from the Besag model, the two spatial components still

cannot be seen independently. In addition, τu and τv do not represent variability on the same level. This

makes the choice of hyperpriors very challenging. Some modifications, such as the Leroux model and the

Dean model, have been proposed to address this problem.

The Leroux model introduces a mixing parameter, ϕ ∈ [0, 1], to capture the balance between the two

components (Leroux et al., 2000). More specifically, instead of the covariance matrix in equation (3.4), b
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now has the covariance matrix

Var(b|τb, ϕ) = τ−1
b (ϕQ+ (1− ϕ)I)−1. (3.5)

Not only does this give a simplification for the hyperpriors, it also allows us to interpret the strength of the

spatial component with the hyperparameter ϕ. When ϕ = 0 the model suggests no structured spatial effect

and when ϕ = 1 then the model is equivalent to the Besag model.

The Dean model proposes a reparameterization of the BYM model with τ−1
u = τ−1

b ϕ and τ−1
v = τ−1

b (1− ϕ)

(Dean et al., 2001). This gives us

b =
1

√
τb
(
√

1− ϕ v +
√
ϕu)

with the covariance matrix

Var(b|τb, ϕ) = τ−1
b (ϕQ− + (1− ϕ)I).

3.3.4 The BYM2 model

A further evolution of the BYM model, called the BYM2 model, proposes scaling the structured component,

u, in the Dean model so that the hyperpriors can be used and compared across multiple models (Riebler

et al., 2016). The generalized variance of u can be expressed as

σ2
GV (u) = exp

(
1

n

n∑
i=1

log

(
1

τb
[Q−]ii

))
=

1

τb
exp

(
1

n

n∑
i=1

log
(
[Q−]ii

))
.

To scale it we want σ2
GV (u) = 1

τb
, which can be interpreted as that τb represents the precision of the

marginal deviation from a constant level, regardless of the spatial structure. Let the scaled u be u∗, and the

corresponding precision matrix be Q∗, then we have

b =
1

√
τb
(
√

1− ϕ v +
√
ϕu∗) (3.6)

with the covariance matrix

Var(b|τb, ϕ) = τ−1
b (ϕQ−

∗ + (1− ϕ)I).

BYM2 model remains to have the intuitive interpretation of ϕ being the proportion of the marginal variance

explained by the structured spatial effect. Moreover, the scaled structured spatial effect u∗ results in a scaled

random effect b and standardized interpretation of the hyperprior τb across different models.

To apply the PC prior, we specify U1 and α1 for the precision parameter τb such that P (1/√τb > U1) = α1.

Note that the larger the U1 the more variability we are allowing in the distribution which results in a more

non-informative prior and allowing the data to dominate the model. Similarly, the prior for the mixing
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parameter ϕ, which controls the proportion of the marginal variance of the structured spatial effect u∗, can

be built by specifying U2 and α2 such that P (ϕ < U2) = α2.

3.4 Analysis on geographical variation in stroke incidence rates

In this section we perform 2 types of analysis. First we use hypothesis test within the frequentist framework

to see if there are any significant differences in the stroke incidence rates between the geographical areas. If

so, we investigate which areas are different. This is repeated at two different levels - starting off with a high

level view of 4 regional health authorities and progressing to a more detailed level with 21 hospital referral

areas. The other type of analysis is by using spatial models within the Bayesian framework. Instead of

testing and finding significance, we use a model to capture the underlying pattern in the data. We explore

models with different components to see which ones describe the data best. A model comparison is done at

the end of this section as a summary for the final model chosen.

3.4.1 Hypothesis tests in frequentist framework

Here we test if the incidence rates between the geographical areas are significantly different with an α level

of 0.01. As shown in the data section in figure 2, the age and gender make-up in each area is different and

affects the incidence rate. We therefore want to test with a block design. Each patient is assigned to one of

the 11 age blocks as defined in section 3.1. Moreover, the genders are also kept in separate blocks, thus 22

age and gender blocks all together in each geographic area. This allows the rates to be comparable across

the areas.

Regional Health Authorities (RHA)

Friedman test In the data section, we see the adjusted rates for the 4 RHAs differ slightly (figure 3).

Here we would like to perform hypothesis tests to see if they are significantly different. Since the underlying

data is count data (number of patients) and we have the age and gender blocks, we use a non-parametric

Friedman test (see section 3.2 for more details). The null hypothesis is that λ1 = λ2 = λ3 = λ4. The result

of the test gives us a p-value of 2.82 ∗ 10−6, which is much less than α, so we reject the null hypothesis and

conclude that the stroke incidence rates for the regions are significantly different.

Wilcoxon test To further study the difference, we perform paired tests to find out which of the regions

differ from each other. We use Wilcoxon signed-rank test for the count data. In addition, since there are

multiple tests, we need to adjust the resulting p-value with false discovery rate. Table 1 shows the adjusted
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p-value. There are no significant differences between the north and the central regions, as well as between

the west and south-east regions, with p-values of 0.1181 and 0.3880 respectively. There is however difference

between the two regions that are above the national rate (north and central) and the other two (west and

south-east). This result agrees with what we saw in figure 3.

RHA North Central West South-east

North 0.1181 0.0016 0.0016

Central 0.0011 0.0006

West 0.3880

South-east

Table 1: P-values from the Wilcoxon signed-rank test between the regional health authorities adjusted with false discovery rate.

Hospital referral areas (RA)

The 4 regions each cover very large geographical areas and could have much variation within. We are in-

terested in seeing if the difference is observed at a finer level, namely the hospital referral areas. Appendix

A.1 shows the referral areas that belong to each of the regions. Since the Friedman test at the regional

level shows significant differences, we can safely assume that the differences remain at a finer level and omit

performing the Friedman test. We go directly to the Wilcoxon signed-rank test and adjust the results with

false discovery rate to find out which pairs of RAs have significantly different incidence rates from each other.

Table 2 shows the 21 RAs down the left, as well as across the top. The RAs that belong to the same

RHA are grouped together with lines between the different RHAs. The crosses in the table indicate the pairs

with incidence rates significantly different from each other based on the Wilcoxon test.

Referral area Diakonhjemmet (RA 16) has the lowest incidence rate (see figure 3) but is statistically signifi-

cant from only 7 of the other 20 RAs. More specifically, it is not different from any of the 9 RAs that are also

below the national average. Referral area OUS (RA 14) has the highest incidence rate and is statistically

significant from 13 of the other 20 RAs, and not from 7 of the top areas. This indicates that while we see

differences, there are not that many, and not that pronounced. If we look at the RHAs, we can see that all

RAs within the north and central RHAs are not different from each other. Instead, they are more different

from the other regions, especially areas in south-east RHA. This suggests that there may be some spatial

pattern separating the northern and central regions from the rest of the country.
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RHA North Central West South-east

RA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1. Finnmark

2. UNN X X X X X X X X X X X

3. Nordland X

4. Helgeland X

5. Nord-Trøndelag

6. St. Olavs X X X X X X X

7. More-Romsdal X X X X X X X

8. Førde X X

9. Bergen X X X X X

10. Fonna X X

11. Stavanger X X

12. Østfold X X X

13. Akershus X X X X

14. OUS X X X X X X X X X X X X X

15. Lovisenberg X X

16. Diakonhjemmet X X X X X X X

17. Innlandet X X X X

18. Vestre Viken X X X X

19. Vestfold X X X X X X X

20. Telemark X X X

21. Sørlandet X X X X X

Table 2: ’X’ marks where there is difference in the incidence rate at the 0.01 significance level between the corresponding

hospital referral areas.

3.4.2 Spatial models in Bayesian framework

In this section, we investigate stroke incidence rates with models within the Bayesian framework. As the

data is the number of stroke patients in the different geographic areas in Norway, it is natural that we explore

with a spatial model to identify if there are any underlying spatial patterns.

As we saw from figure 1, the older the age group, the higher the stroke incidence rate. In addition, men

are generally more likely to get stroke than women. Just as when we calculate the age and gender adjusted

incidence rate in section 3.1, we need to take these differences into consideration and structure our model to

reflect this.

We set up a joint model (as described in section 2.2.5) with two response vectors - one for men and one

for women. Each of them will have their own intercept and age blocks in order to capture the variation we
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observed by age. However, they will have a shared random effect, namely place of residence (hospital referral

area), since regardless of age and gender, the patients that live in the same area are expected to be impacted

similarly. It is this spatial effect we are focusing on when doing a geographical study.

We will approach the model building process in a step-by-step fashion. First we start with an empty model

where we have just the responses and the intercepts. This gives us an idea of what the baseline is. Then we

include the age blocks as random effects to capture the patterns in the age groups. Lastly we explore the

spatial effects by using IID and BYM2 as the latent model component.

The models will be examined with the following output:

1. Posterior mean of the modelled rate, which is calculated by transforming the linear predictor with the

inverse of the link function, then multiplied by the offset. This is done for each of the age and gender

grouping within each RA, and then aggregated to get a total number of expected cases per 10 000

population per RA. This is visualized on a plot with the actual number of cases (also age and gender

adjusted) as a comparison.

2. Posterior mean and 95% credible interval (CI) for the random effect from the age blocks. If the CI

for the blocks from male and female overlap, then that is an indication that there is no significant

difference between the genders within the blocks. However if they don’t, then joint model with two

responses enables us to explain the gender differences separately.

3. Posterior mean and 95% credible interval for the random effect from the RAs. There are a few things

we can infer from this. First of we examine the length of the CIs, if they are quite long then that

means there is much uncertainty. Secondly we see if there is overlap of the CIs between the RAs. Just

as for the age blocks, if the CIs overlap, then they are not significantly different from each other, and

vise versa. Lastly, if the CI covers 0, then there is no significant spatial effect from the RA.

Model with intercepts

Here we are using the Poisson distribution as the likelihood function, and the population size as the offset.

We are therefore modelling the rate, λ, with logarithm as the link function. With i = 1, . . . , 21 for the areas,

j = 1, . . . , 11 for the age blocks and g = (m,w) for the genders, the model can be written as

ln(λgij) = βg + ln(Egij),

where βg are the intercepts for the two genders and Egij are the population size for each age and gender in

each RA as the offset.
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The posterior mean and 95% CI for the intercepts are -5.601(-5.632, -5.571) and -5.411(-5.439, -5.383)

for women and men respectively. Notice that the CIs do not overlap, which means that the effect of men

and women are significantly different from each other. This validates the need of modelling the genders

separately and setting it up as a joint model.

Figure 4 illustrates the crude rate from the original data compared to the modelled rate. Along the x-

axis are the RAs, with indications of the RHA groupings (RA 1-4 are in RHA north, RA 5-7 are RHA

central, RA 8-11 are RHA west, and RA 12-21 are RHA south-east). The top two figures illustrate the

results for women and men plotted separately. We see that women have lower crude rates and consequently

result in lower intercepts. Since the intercepts are constants and the model does not depend on any other

covariates, the overall modelled rate shown in the bottom figure is also constant and represent the national

average. We will further explore other factors that may help explain the gaps between the crude rate and

modelled rate.

Model with age blocks

As seen from the data chapter 3.1, we know that the stroke incidence rate is highly correlated with age.

Therefore as a next step from the model with only intercepts, we now add the age blocks for both genders.

Since figure 1 (right) suggests that there is a non-linear relationship between the age blocks and the percentage

of population with stroke, we use RW2 as the latent model for the random effects. This together with the

two response vectors make sure that the model is build for each age and gender group. The model then has

the form:

ln(λgij) = βg + bgij + ln(Egij),

where bgij is the random effects for the age blocks j and gender g in area i.

Figure 5(top and bottom left) shows the crude and modelled patient rate for each RA with the respec-

tive average rates as the reference lines. We see that since the sizes of age blocks vary in each RA, it already

gives us some guideline in bringing the modelled rates closer to the crude rates. Figure 5(bottom right)

shows the age effect with the red line for the women and blue for men. The grey areas around the lines mark

the 95% CI. It is worth noting that for most of the age groups, the CI do not cross, which means that men

and women have significantly different age effects. However, the lines do cross at around age group 75-79.

This indicates that there is a switch from men having a strong effect to women as the population age. Based

on figure 1(left), we can say that this is due to the higher volume of male patients in the younger age groups
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Figure 4: Model with intercepts. Crude incidence rate (black circle) compared with modelled rate (red cross). The top left

figure is for women. The horizontal reference line at 37 denotes the national average for women. The top right figure is for

men with the reference line at 44.75 denoting national average for men. The bottom figure is for the entire population with the

reference line at 40.74.
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Figure 5: Model with age blocks. (Top two and bottom left) Crude incidence rate compared with modelled rate for women,

men and overall respectively. (Bottom right) The age effect on the modelled rate by age block and gender. Red is for women

and blue is for men.

that switched to higher volume of female patients in the older age groups. This effect is observed by another

research as well (Roy-O’Reilly and McCullough, 2018).

Model with IID spatial effects

While the age effects noticeably improve the model in explaining the stroke incidence rate, there are still

large gaps between the crude rates and the modelled rates that remain unexplained. We are now ready

to explore if there are spatial effects to be capured. We do so by including the RAs as a random effect.

However, here we want to use it as a shared term between the genders in a joint model, and first investigate

unstructured spatial effect with an IID latent model. The model takes on the form:

ln(λgij) = βg + bgij + ui + ln(Egij), (3.7)

with an additional term ui representing the RAs as a shared effect between the genders following an IID

model. We use PC prior for the hyperparameter of ui with U = 1 and α = 0.01.
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Figure 6: Model with IID latent component for the RAs. (Top two and bottom left) Crude incidence rate compared with

modelled rate for women, men, and overall respectively. (Bottom right) The unstructured spatial effect (IID) of the RAs. The

dots are the posterior means and the lines mark the 95% CI.

Figure 6 shows that the modelled rate is much closer to the crude rate compared to the previous two

models. The age random effect is still present, but remains as before, therefore not shown on the figure. On

the bottom right of figure 6, we see the random effects of the RAs captured by the IID model. The dots

represent the posterior means while the lines span the 95% CI. Even though the means seem to vary between

the RAs, many of them overlap and most of them have a CI that includes 0. This means that there are no

unstructured spatial effect for most RAs. Some exceptions are OUS (RA 14), UNN (RA 2) and St. Olavs

(RA 6) with positive effects, and Akershus (RA 13) and Vestre Viken (RA 18) with negative effects.

Model with BYM2 spatial effects

So far we see that there are age effects as well as unstructured spatial effects in a few RAs on stroke inci-

dence rates. In addition to these, we want to see if there are any structured spatial effect that takes the

geographical structure into consideration by using the neighbourhood map (see appendix A.2). We have
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chosen to use the BYM2 model here to include both the unstructured and structured spatial effects. The

formulation of the model is the same as in equation (3.7), but with ui being a BYM2 model instead of

IID. We use a PC prior and specify for the two hyperparameters: the precision parameter τ and the mixing

parameter ϕ. After a sensitivity analysis, we ended up with U = 1, α = 0.01 for τ , and U = 0.5, α = 0.5 for ϕ.

We can see from figure 7 that there are only minor shifts in the modelled rates from the BYM2 model

compared to the model with IID effect (figure 6). The age random effect remains the same and there are

only minor shifts in the unstructured spatial effect, hence we do not repeat this plot and instead focus on

the structured spatial effect. Bottom right of figure 7 shows the spatial effect captured when using the

neighbourhood structure. The means suggest that RHA north and central (RA 1-7) have positive effects

while RHA west and south-east (RA 8-21) have negative effects. However, if we look at the 95% CI, we

see that there are a lot of overlap and all of the areas have a CI that covers 0. This means that there are

no structured spatial effect. Furthermore, the mixing parameter ϕ has posterior mean and 95% CI of 0.29

(0.03, 0.74). This indicates a weak spatial relationship.

3.4.3 Model selection

We have seen a progression of models and can now compare the models to choose the one that describes

the data best. While there are many different metrics that can be used to compare Bayesian models, we

choose to use DIC as described in section 2.2.6. Table 3 below shows that DIC for the intercept model is

high as expected. It dropped drastically for the model with age blocks, and even more with the IID spatial

component. However, introducing the structured spatial effect in BYM2 did not change the measure. The

BYM2 model introduces complexity without much improvement. Therefore we choose the IID model as our

final model and conclude that there are no structured spatial effects in stroke incidence rate.

Model DIC

Intercept 11944

Age block 2287

IID 2215

BYM2 2215

Table 3: DIC values for the models
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Figure 7: Model with BYM2 latent component for the RAs. (Top two and bottom left) Crude incidence rate compared with

modelled rate for women, men, and overall repectively. (Bottom right) The structured spatial effect (BYM2) of the RAs. The

dots are the posterior means and the lines mark the 95% CI.
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3.5 Remarks on geographical variation in stroke incidence rates

In this chapter we have examined the geographical variation in stroke incidence within Norway using hy-

pothesis tests from the frequentist framework and spatial models from the Bayesian framework.

The hypothesis tests show that there are no significant differences in the stroke incidence rate within the

north and the central regional health authorities. However these two regions are significantly different from

the other two regions in the country. Moreover, when we look at the country in a slightly finer geographical

detail with the hospital referral areas, the hypothesis tests suggest that most areas have incidence rates

significantly different from at least one other area. Of which the most noticeable are OUS and UNN which

are the two RAs with the highest incidence rates (table 2). On the contrary, the spatial models indicate that

there are no structured spatial effects (figure 7). When it comes to the unstructured spatial effects, most

areas have no significant effects, aside from OUS, UNN and St. Olavs with positive effects and Akershus

and Vestre Viken with negative effects (figure 6).

One may observe this to be contradictory results from the the different methods. However, they are not

directly comparable. The hypothesis tests assume independence between the areas, which we know is not

necessarily true. The people that live in each area as well as the environment they live in and the lifestyle

they have can very well be related to the other areas. The violation of the assumption may result in an

underestimation of the variance hence giving us shorter confidence intervals and therefore more likely for

significance. The spatial model on the other hand makes no assumptions and allows the model to capture

spatial effects, if any. Therefore we argue that the results from the spatial model reflect the data better.

While some of the details of the results from the hypothesis test and the spatial model differ, they both

indicate that OUS and UNN stand out as the two RAs with significantly higher incidence rates than the

other areas. We therefore conclude that aside from these two RAs, there are no significant geographical

variation in stroke incidence rate.

Norway is a very widespread country and dividing it into only 21 geographical areas is potentially too

coarse. Particularly when it comes to the structured spatial effect. Not only are there too few areas, since

Norway is a long country, the majority of the areas don’t have many neighbours. This means that we are

not taking full advantage of the neighbourhood structure and that some of the area specific details may be

hidden in the data. A logical next step is to subdivide the referral areas into even finer scale, for example at

the municipality level, in order to capture potential pockets that may have different patterns.
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4 Survival analysis

In the previous chapter, we looked at the incidence rate of stroke patients and explored if there are significant

spatial patterns to explain the geographical variation. In this chapter, we will further look at these patients

and study their survival rates. In particular, we aim to examine different factors to see if they contribute to

the survival rate. These factors include demographics, socioeconomic status, and geographical location.

We will first investigate the data in the aforementioned categories in section 4.1. Section 4.2 outlines the

theory behind survival analysis including the survival and hazard function, censoring, Kaplan-Meier analysis,

and Cox proportional-hazard models. Section 4.3 provides some background on the implementation of the

survival model in INLA. This is then followed by section 4.4 where we perform the Kaplan-Meier and Cox

proportional hazards (Cox PH) analysis on stroke patients and see which factors affect the survival. Finally

section 4.5 summarizes the results.

4.1 Mortality rates of stroke patients

For the survival analysis, we use the same patient population as described in section 3.1. Patients from the

Norwegian stroke registry (NHR) during 2014-2018 with no previous stroke incidence in the same period are

identified as stroke patients. These patients are subsequently matched with the Norwegian cause of death

registry (DÅR). The data from DÅR is from 2014-2020 so that each patient is followed for at least 2 years

before the end of the study period. We therefore have the information on which of these stroke patients did

not survive during the period, date of death, and cause of death. For the purposes of this thesis, we have

chosen to identify cause specific stroke mortality by using main cause as well as secondary causes. Those

that died within the study period and have the cause of death diagnosis codes I61, I63, I64 4 as one of the

causes are identified as ”stroke death”, and those that do not have stroke listed as one of the causes are

therefore identified as ”other death”. Figure 8 shows the mortality rate for each of the two groups by number

of weeks after the stroke incidence.

4ICD-10 code I61 is for Nontraumatic intracerebral hemorrhage, I63 is for cerebral infarction, and I64 is for stroke, not

specified as hemorrhage or infarction.
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Figure 8: Percent of death by week for stroke deaths and other deaths

There are 30 302 stroke patients from the stroke registry. Nearly 40% died before the end of 2020, of which

5 000 are stroke specific deaths and 6 000 are others. We are interested in seeing if there are any significant

factors within patient demographics, health characteristics, socioeconomic status, as well as geographical

differences, that contribute to mortality.

Demographics

First we look at patient demographics by age and gender. Age groups are set up the same way as in the

spatial model: 11 groups starting at the age of 45 with 5 years per group, and the last group being those

of age 95 and older. As expected, the mortality rate is higher for older stroke patients (shown in figure 9

(left)). We can also see that men and women have different mortality rate (figure 9 (right)) with women

having the higher rate. However, we know that there are more women in the higher age group (figure 1)

and consequently the stroke patient population would have more older female patients than older male pa-

tients. Furthermore, we know that older patients have a higher mortality rate. These in combination can

contribute to the result of a higher mortality rate for women when we use the entire stroke patient population.
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Figure 9: Mortality rate by patient demographics age (left) and gender (right)

In order to have a more comparable population, we create stratified samples of 30 patients from each age

group within each gender 5. This way the effect of age is removed and we can examine the mortality rates

between genders more clearly. In figure 10, we see that men between ages 70-85 (age group 6-8) have a

higher stroke mortality rate than women in the same age group. On the other hand, women younger than 70

or older than 85 have a higher mortality rate than their male counter-parts. However, for mortality caused

by reasons other than stroke, men have a higher rate in almost all age groups. This is especially pronounced

for 85 years and older.

Figure 10: Mortality rate by patient demographics in stratified sample - gender within age group

5We have chosen to sample 30 due to the limitation of some of the older age groups where there are less patients. According

to the central limit theorem, this is a large enough sample to represent the population.
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Next we look at the type of stroke - hemorrhagic (bleeding) or ischemic (blockage), as well as time spent in

the hospital, see figure 11. Hemorrhagic stroke is often a more serious condition than ischemic stroke and

therefore has a higher mortality rate. Time spent in the hospital is calculated by number of days between

arrival to the hospital and discharge or death. It is categorized 6 for the purpose of data exploration. Since

stroke is an acute condition and many die within a short time after the onset of the condition, there ap-

pears to be quite a high mortality rate for those that spent less than 3 days in the hospital, i.e. category

1. Previous studies have shown that about half of the death due to hemorrhage usually occurs within the

first three days (Fernando et al., 2021; Rymer, 2011). After the initial period, the rate seems to drop as

it can indicate that the patients who survived up to that point have decreased risk. However, as a patient

stays longer in the hospital, their conditions may have worsen and results in a higher mortality rate. Due to

this non-monotonic relationship, we will be using a random walk 2 model (see section 2.2.3) to capture the

non-linear pattern.

Figure 11: Mortality rate by patient health characteristics: type of stroke and time spent in hospital

Socioeconomic

For the socioeconomic status, we have income and education levels from Statistics Norway for each individ-

ual. Education level is put into 3 categories 7. From figure 12 (left), we see that the long-term mortality

rate decreases with higher education. Income level is determined by using after tax household income, in

Norwegian kroner (NOK). Since we have income for a span of 5 years, in order to take into account inflation

6Time spent in hospital categories: 1 = 0-3 days, 2 = 4-5 days, 3 = 6-9 days, 4 = 10-14 days and 5 = more than 14 days.
7Education levels: low = grades 1-10 (obligatory), medium = up to high school, high = bachelors and above.
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and make the numbers more comparable, we have adjusted with the consumer index 8. It is then put into 4

categories 9. In figure 12 (right), we see that there is a similar trend as education where patients with higher

income have lower mortality rate.

Figure 12: Mortality rate by patients’ socio-economic status: education and income

Geographic

Finally, we examine two variables to see the effect of geographical differences: place of residence and travel

time to the local hospital. The place of residence is the hospital referral area (RA) where the patient lives at

the time of stroke incidence. RA is defined the same way as in the spatial model (appendix A.2). According

to figure 13, there does not appear to be any clear relationship between where one lives and mortality rate.

Travel time is the number of minutes it takes by car from the center of the municipality the patient lives

into the nearest local hospital with acute care function. This is categorized into 5 groups 10. There seems to

be an increase in mortality rate for those that live between 0-90 minutes from the hospital, but a decrease

for those further than 90 minutes. This may seem a bit counter-intuitive. One possible explanation is that

since stroke is an acute condition, it is crucial that patients receive care as soon as possible. Therefore the

longer it takes to reach the hospital the higher risk of death. However, those who live further away are likely

not transported by car but instead by air, hence reaching the hospital faster which increases survival.

8Norwegian consumer price index from Statistics Norway https://www.ssb.no/en/priser-og-prisindekser/konsumpriser/

statistikk/konsumprisindeksen
9Income levels: up to 385 000 NOK, 385 001 - 570 000 NOK, 570 001 - 795 000 NOK, and lastly 795 001 and above.

10Travel time categories: 1 = 0-30 minutes, 2 = 31-60 minutes, 3 = 61-90 minutes, 4 = 91-120 minutes and 5 = more than

120 minutes.

41

https://www.ssb.no/en/priser-og-prisindekser/konsumpriser/statistikk/konsumprisindeksen
https://www.ssb.no/en/priser-og-prisindekser/konsumpriser/statistikk/konsumprisindeksen


Figure 13: Mortality rate by geographic: place of residence and travel time to hospital

In this section we have looked at one-dimensional data profile to get a better understanding of the data.

We have provided intuitive interpretations to the observed pattern in some cases. However, these do not

show the true effect of the potential risk factors. Often there are inter-relationships to the factors that

would change the significance of the final results. The survival analysis later on in section 4.4 will show if

the propositions are reasonable and if the effects are considered significant when all factors are modelled

together.

4.2 Theory on survival estimator and model

The main interest in survival models is the time to event. Let T be a random variable that measures time

to event and f(t) be the probability density function of T . The cumulative distribution function is then the

probability of an event occurring prior to time t and can be expressed as

F (t) = P (T ≤ t) =

∫ t

0

f(u)du, t > 0.

From here, we can then arrive at the probability of survival, which by definition is the probability of event

occurring after time t. The survival function is the complement of the cumulative distribution function and

can be written as

S(t) = P (T > t) = 1− F (t), t > 0.

Next we define the hazard rate as the instantaneous event rate. In other words, at time t, what is the

probability of the event occurring in the next instant (∆t) given that the subject has survived up until that
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point. This can be expressed mathematically as

h(t) = lim
∆t→0

P (T < t+∆t |T > t)

∆t

= lim
∆t→0

P (t < T < t+∆t)

∆t · P (T > t)

= lim
∆t→0

F (t+∆t)− F (t)

∆t · S(t)

=
f(t)

S(t)
.

Lastly, we can derive the cumulative hazard function which tells us the total number of events occurred up

to time t. By using the information we have from above, we now have

H(t) =

∫ t

0

h(u)du =

∫ t

0

f(u)

S(u)
du

=

∫ t

0

d
duF (u)

S(u)
du

=

∫ t

0

d
du (1− S(u))

S(u)
du

=

∫ t

0

−S′(u)

S(u)
du

= − log(S(t)). (4.1)

Additionally, it can be useful sometimes to express the survival function in terms of the cumulative hazard

function.

S(t) = exp(−H(t))

4.2.1 Censoring and truncation

Survival data is often incomplete in the sense that not all subjects would have necessarily experienced the

event within the study period. However, despite the potential incompleteness of the data, these observations

are still informative and do affect our interpretation of the survival rate. Hence, we do not want to simply

exclude them.

In order to capture the status of the data correctly, one of the methods often used is censoring. There

are many different types of censoring, depending on the situation. Some examples are right censoring, left

censoring, and interval censoring. To capture the censored data, 2 sets of information is required to describe

the dependent variable of a survival model. For each subject i, we capture event at time ti, as well as

censoring status δi. δi is 1 when the subject experienced the event, with time of event at time ti. δi is 0

when the subject was in the study population until then but exits the study at the corresponding time ti
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without experiencing the event, hence censored.

The difference between the above mentioned types of censoring is the time point at which the record is

censored relative to the actual, but unobserved occurrence of the event. Right censoring is the most common

type of censoring. This is when the unobserved event happens after the censored time point. This could be

due to reaching the end of study period, or other reasons that cause the subject to exit before the end of the

study period. For example, consider a study of cancer patient survival for a follow up time of 2 years. At

the onset of the study, all patients are alive. Those that did not die by the end of the 2 years are censored,

as well as those that emigrated and therefore can not be followed. In contrast, left censoring is for when the

event happened before the censored time point, and interval censoring is when the event happened between

two time points.

In addition to censoring, which is done at the individual record level, there may be situations when cer-

tain records are excluded from the data set. This is called truncation. When time-to-event is too short

and the data collection process or apparatus is unable to include the subject in the data, it is a case of

left truncation. However, a right truncation is when time-to-event is too long and the subject is excluded

due to the limitation of the study period. As we can see, truncation means that the data available is not

representative of the general population of the study and therefore introduces bias into the analysis. When

this happens, the analysis needs to be adjusted in order to have a more accurate estimate for the population

of interest.

4.2.2 Kaplan-Meier estimator

Kaplan-Meier estimator is a non-parametric statistic to estimate the survival rate. It is a piece-wise constant

function that measures the rate of survival at a point in time conditional on that the subject has survived

until the said time point. The total time span of the study is subdivided into K intervals such that 0 =

s0 < s1 < . . . < sK = max
i

(ti). Interval k is defined as (sk−1, sk]. The survival rate for each interval is

obtained empirically by calculating the proportion of the number of subjects that remained in the study by

the end of the interval, and the total number of subjects at the beginning of the interval. In interval k, it is

nk−dk

nk
, where nk is the number of subjects in the study at time sk−1, and dk is the number of subjects that

experienced the event during interval k. Since the Kaplan-Meier estimator is the conditional probability for

each time period, the survival rate from the current interval needs to be multiplied by the rates from all
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Figure 14: Kaplan-Meier estimator, step-wise function with sharp drop at each time points sk.

previous intervals to take into account the conditionality. This can be expressed as:

Ŝ(t) =
∏
tk<t

(1− dk
nk

), k = 1 . . .K

This estimator gives a step-wise function with sharp drop at each observed time tk (as illustrated in figure

14). The finer the intervals, the smoother the curve will become. It is nonetheless not very realistic, and

more importantly does not take into account covariates at the individual level.

4.2.3 Cox proportional hazards model

The Cox PH model is a semi-parametric model that describes the hazard function with the covariates. It

is the product of two components: a baseline hazard function and the exponential of a linear predictor and

can be expressed as

h(t) = h0(t) exp(β
Tx) (4.2)

where h0(t) is the baseline hazard function, x is the set of covariates and β is a vector of coefficients for the

covariates (Cox, 1972).

One of the most common methods for the baseline hazard function is a non-parametric, piece-wise con-

stant function (Breslow, 1972). It estimates the hazard of the population as a whole, assuming all covariates

to be zero. This means that the value of h0(t) is independent of the individuals. The baseline hazard can be

derived from equation (4.1) and a survival function. The survival time span is partitioned in the same way

as in the Kaplan-Meier estimator in section 4.2.2. Let the piece-wise constant function be

h0(t) = λk, for t ∈ (sk−1, sk], k = 1, . . . ,K. (4.3)
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As we can see from equation (4.2), in addition to h0(t), we also have a predictor as a linear combination

of the covariates at the individual level that contributes to the total hazard of each individual. This can

be extended as the general form of an additive model in equation (2.6) to include terms with fixed effect,

random effect, and spatial effect. The predictor is a function that may increase and/or decrease over time.

This allows the hazard to also increase and decrease over time. Unlike the Kaplan-Meier estimator which is

strictly decreasing, this is more flexible in reflecting the nature of the data.

Consider two subjects i and j, and their respective hazards as stated in equation (4.2). The hazard ra-

tio is

HR =
hi(t)

hj(t)
=

h0(t) exp(β
Txi)

h0(t) exp(βTxj)

= exp(βT (xi − xj)).

The baseline function is the portion that depends on time and is independent of individuals. The hazard

ratio is therefore invariant of time. In other words, it remains as the same proportion across time. For this

reason, the model is called a proportional hazard model. This is a fundamental assumption of the Cox PH

model, and data that is in violation of it should consider an alternative survival model.

4.3 Bayesian survival analysis

4.3.1 Survival model using Bayesian inference

Survival analysis performed within the Bayesian framework gives us posterior results in the form of probabil-

ity distributions. This gives us more insight into the parameters rather than relying solely on point estimates.

However, since the models tend to be more complex, traditional MCMC methods could be computationally

expensive and require checking of convergence. INLA as we saw in section 2.2.1 is a much more efficient

method.

Since the exponential function component in equation 4.2 is additive, it can easily be incorporated in the

framework of latent Gaussian models. In addition, it can then be combined with other model components

reflecting the data structure, such as random effects and spatial effects (Moraga, 2019). We will now examine

how a Cox PH model can fit into the INLA framework.
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4.3.2 Implementation in INLA

As seen in expression 4.3, the baseline hazard function is piece-wise constant. Therefore the hazard function

in equation (4.2) during the interval k can be written as

h(t) = λk exp(β
Tx)

= exp(bk + βTx) = exp(ηk) for t ∈ (sk−1, sk], k = 1, . . . ,K

where bk = ln(λk). So we have ηk = bk + βTx. By assigning Gaussian priors to the parameters bk as well as

the vector β, we end up with a Gaussian distributed linear predictor ηk given hyperparameters.

Consider the log-likelihood for the data pair (t, δ) (see section 4.2.1) in interval k, we have

l = ln(h(t)S(t)) = δ ln(h(t))−
∫ t

0

h(u)du

= δηk − (t− sk) exp(ηk)−
k−1∑
j=1

(sj+1 − sj) exp(ηj). (4.4)

Notice that this depends on the Gaussian latent field through the vector η1, . . . , ηk and does not fit in the

INLA framework. In order for us to use INLA for the Cox PH model, we need to rewrite the dependent

variable. Holford (1980) and Laird and Olivier (1981) independently noted that the log-likelihood above is

equivalent to the log-likelihood of a Poisson distribution. Equation (4.4) can therefore be regarded as the

log-likelihood of k Poisson distributed data points. k − 1 of these have the mean λ = (sj+1 − sj) exp(ηj)

and the observation equals 0. One data point has the mean λ = (t− sk) exp(ηk) with an observation equal

to δ (Martino et al., 2011). In other words, if the observation (represented by (t, δ)) is censored, then the

Poisson data point would have a value of 0, but if the event is observed, then it would have a value of 1.

To see this, let’s consider the log-likelihood of a Poisson distribution xi ∼ Poisson(λi)

l(λ;x1, x2, . . . , xk) =

k∑
i=1

(−λ+ xi ln(λ)− ln(xi!)) (4.5)

In the case where the there is censoring, we have xi = 0, ∀ i = 1, ..., k. Hence with the aforementioned

respective λs, equation (4.5) becomes

l = −(t− sk) exp(ηk)−
k−1∑
j=1

(sj+1 − sj) exp(ηj) (4.6)
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In the case where the event is observed, then we would have one observation with the value of 1 while the

others remain 0. Again with the aforementioned respective λs, equation (4.5) becomes

l = −(t− sk) exp(ηk) + ln((t− sk) exp(ηk))−
k−1∑
j=1

(sj+1 − sj) exp(ηj)

= −(t− sk) exp(ηk) + ln(t− sk) + ηk −
k−1∑
j=1

(sj+1 − sj) exp(ηj) (4.7)

Note that ln(t− sk) is a constant and can be disregarded. From equations (4.6) and (4.7), we can see that

equation (4.4) is equivalent to (4.5), where the term ηk in (4.7) is controlled by the value δ in the represen-

tation in (4.4). Extending this finding to our data pairs. Martino et al. (2011) proposed to rewrite the pairs

into K data points that are Poisson distributed which would then allow us to use INLA. These data points

have the value 0, except for the position that represents the time interval for ti which would have a value of

1 if the event was observed.

Now that we see that the Cox PH can fit into the INLA framework. This has the advantage of the flexibility

to use different components in the model. For example, random effects and spatial effects can be used just as

we do in a regression model. This allows us to work with complex data structures without much additional

effort or time.

4.4 Survival analysis results

We are interested in performing survival analysis on the stroke patients. The focus is to find out if there are

any geographical variations in the survival rate. Moreover, we would also like to examine other attributes

such as age, gender and socioeconomic status of the patients.

Since stroke patients often have other medical conditions, many die of reasons other than stroke. These

patients can be quite different from those that died of stroke and we would like to investigate them sepa-

rately. Additionally, men and women are considered separately since we are interested in seeing if there are

specific differences between the genders. Therefore we have 4 sub-populations: women with death by stroke,

women with death by other reasons, men with death by stroke, and men with death by other reasons.

In this section, we will first identify what type of censoring and truncation that applies to our data. Next

Kaplan-Meier estimator will be presented to give us a peek into the survival rate of the sub-populations.

Finally we will use INLA to build Cox proportional hazard models to investigate the baseline hazard as well

as the effect of the covariates.
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4.4.1 Censoring and truncation

Section 4.2.1 introduced the concept of censoring and truncation. Before doing the analysis, we first examine

the data closely so the models can be set up and adjusted appropriately.

Since the data is of patients from a predefined period of 2014-2018 with a follow-up time until the end

of 2020, there is censoring in the data. All patients would have been alive at the start of the study period,

so there is no left censoring. However, patients who survived beyond 2020 would be right censored.

Additionally, we are interested in cause-specific models, those that died of one cause within the study

period are also censored in the model for the other cause since that is the point in time they exit the study.

This censoring between the sub-models makes them competing risk models (Hoel, 1972). A competing risk

model incorporates more than one event in the model. These events are mutually exclusive and the subjects

can only reach at most one of the events, hence the name competing. Once the event occurs, it is terminal

and the risk of all other events become zero. Here we have the patients as the subjects and stroke death and

other death as the two competing events.

There could also be left truncation. Since the patient population is from the Norwegian stroke registry,

only patients that were sent to the hospitals after the onset of the incidence are available. This means that

those with extremely short survival time (for example, died at scene of stroke without having the opportunity

to reach the healthcare system) are excluded from the study. However, this is very poorly documented and

we are unable to estimate the frequency of the scenario. It is natural to assume that this is a very rare event

and we will proceed with the analysis without adjustment for truncation.

4.4.2 Kaplan-Meier estimator

We run the Kaplan-Meier method with the stroke patient population. The model (figure 15 (left)) shows a

piece-wise constant curve for the survival rate for each time interval given that the patient has survived up

until that point. We see that the curve starts at 100% survival rate at time 0 since all patients are alive at

the initial point. The interval of the piece-wise function is one month. In month 1 we observe the steepest

drop in survival rate, from 100% to about 90%. Since the patient population is from 2014-2018 and we have

survival information until the end of 2020, the first censored observation appears around month 24. This is

shown on the plot with a + sign. If we follow the curve to the endpoint, we see that the survival rate at

month 86 is roughly 50%.
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Figure 15: Kaplan-Meier estimator for all stroke patients on the left, and with a stratified sample for men and women separately

on the right.

In section 4.1, we created a stratified sample in order to look at the mortality rate by gender without the

effect of age. Here we use the same sample for the Kaplan-Meier estimator by gender. Figure 15 (right)

shows that male and female stroke patients have very similar survival rates up to 24 months after the onset

of stroke. Beyond that, the men’s survival rate drops at a faster rate than that of women’s.

Since we are interested in seeing the survival rate by the cause of death, we will further split the Kaplan-

Meier estimator by those that died of stroke, and those that died of other causes. Figure 16 (left) shows that

the sharp drop during the initial months is mostly attributed to stroke death. Also we observe that there are

minimal differences in the survival curves for men and women. On the other hand, the survival rate from

other causes in figure 16 (right) shows something quite different. There is not an initial drop, but rather

a steady decline. Moreover, men have a lower survival rate than women when considering death by other

causes than stroke. This explains the difference between genders that we saw earlier in figure 15. Another

thing to note in these figures is that the censoring starts much earlier than month 24 as it did in the two

previous estimators. This is because when we consider two mutually exclusive events, those who died of one

cause are censored at the time of death in the model for the other cause. This event can happen at any point

and need not be earliest at the end of the study period (end of 2020). As a result, the censoring naturally

constructs the two models that we will explore later - stroke death and other death - into competing risk

models.
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Figure 16: Kaplan-Meier estimator for stroke specific death (left), and other death (right).

4.4.3 Cox proportional hazards model

As an extension of the Kaplan-Meier model, we will now use the Cox PH survival model. In addition to

the piece-wise constant function to capture the baseline hazard, the Cox PH model also uses an exponential

function with covariates for each individual patient to see which of the attributes have an effect on surviving

stroke. The Cox PH model consists of the following covariates (see section 4.1 for more details): age groups,

type of stroke 11, time spent in hospital, income11, education11, travel time to hospital11, and place of resi-

dence. Categorical variables are set as factors in R, which by default uses the lowest category as the reference

category in the model and hence not part of the covariates. For example, income level 1 is the reference

category for the income variable, thus only income levels 2-4 are part of the covariates. Moreover, time

spent in the hospital (in days) was presented in section 4.1 as categories for the ease of understanding and

interpreting the data. In the modelling process, we transform it with the log function in order to minimize

the skewness of the data.

The linear predictor ηk is an additive model as seen in equation 2.6 and can easily incorporate different

components in the model in the INLA framework. In particular, we model time spent in hospital with RW2

since we know that there is an initial peak and that it is a non-linear relationship. We also use a BYM2

model for the place of residence to observe for spatial effects. A sensitivity analysis was conducted (see

appendix A.3) and the values U = 1 and α = 0.01 were chosen for the precision parameter for PC prior.

For the K baseline hazard function bk, k = 1, . . . ,K, since it is Poisson distributed piece-wise log-constant,

we stay with the default setting in INLA and model it with RW1. Furthermore, a PC prior with U = 0.3

11 Categorical variable
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and α = 0.01 is used for the precision hyperparameter which allows us to control the smoothness of the curve.

The Cox PH model can be written as

h(t) = h0(t) exp(β0 + βagexage + βtypextype + βtravxtrav + βeduxedu + βincxinc + utime + vplace)

The results for each of the 4 models are presented below first by looking at stroke death for each gender

separate, then for other death for each gender.

Stroke death

Women Figure 17 is for female stroke patients who died of stroke. The estimated baseline hazard function

on the top left of the figure shows the common hazard rate of dying from stroke for all female patients. Here

we use the log transform as it is on a scale that makes it easier to see the details from 5 months onward.

We see that the hazard is extremely high immediately after the onset of the stroke but declines steeply and

levels out after 5 months.

The rest of the 3 sub-figures are for the exponential function component. The figure on the top right

shows the coefficients for the fixed effects. This is also presented in table 4. Age has a positive effect on the

hazard; the older the patient, the more likely to die of stroke. When it comes to the type of stroke, since

the model uses hemorrhagic stroke as the reference group, a negative coefficient for the ischemic stroke type

means that it is less hazardous compared to hemorrhagic stroke. Both of the above-mentioned variables have

credible intervals that do not cross 0, which means that they are significant hazards. The next 4 variables are

for the different lengths of travel time to the local hospital (dist2 - dist5) and all of them have credible interval

that cross 0. Hence it is not a significant hazard to stroke death. For both education and income levels, we

see a slight decreasing trend, which suggests that the higher the education and income level, the lower the

hazard. However, for the education level, only the last category - university level and above - is significant

due to the strictly negative credible interval. This means that patients with university or above education

have lower hazards than those with the reference group: obligatory education level. For the income level, all

3 categories, which collectively refer to annual household income after tax above 385 000 NOK, are negative

and significant, but the credible intervals for these 3 overlap quite a lot, so we can not say that they have

different effects from each other. However, since the CIs do not cross 0, we can say that patients with income

higher than 385 000 NOK have decreased hazard compared to those with income lower than the said amount.

In section 4.1, we saw that the number of days spent in the hospital does not have a simple linear rela-

tionship with the mortality rate. Therefore we have chosen to model it as a non-linear random effect with
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a random walk 2 model. The figure on the lower left shows that similarly to what we saw in section 4.1

there is a non-linear pattern with a decrease at the beginning, and then an increase after a certain point.

Additionally, as part of the model exploration and validation, another model with time spent in hospital as

a linear effect was also done to be compared with the results of the non-linear effect. DIC is 20206 with a

linear effect as opposed to 20097 when assuming a non-linear effect. This confirms that the effect is better

captured as a non-linear function.

Lastly, we investigate the geographical effect in the survival model. As in the spatial model, we use a

BYM2 model (see section 3.3.4) to capture both the unstructured and the structured spatial effect of the

RAs for the patients. The two lower right figures show that the majority of the CIs clearly cover 0 hence

there are no spatial effects. The only exception is that RA12 (Østfold) shows sign of increased hazard. As

shown in appendix A.3, the result can depend on the prior chosen. The specific prior that we used gives us

a positive effect for one RA, but it is nonetheless still very close to 0 and in fact is not significant with other

U values for the prior. We therefore take note of it but conclude that there are no geographical effects to

the hazard of stroke death for female stroke patients.
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Figure 17: Death caused by stroke for women.

(Top left) The baseline hazard function in the log scale. (Top right) Coefficients of the fixed effects: age groups, blockage

(ischemic stroke), distance (travel time to hospital in categories), education, and income. (Bottom left) Random effect of time

spent in hospital. (Bottom right) Spatial effects from the BYM2 model component.

The 2 line graphs on the left have solid line showing the posterior mean and the dotted lines or shaded area for 95% CI. The 3

plots on the right have the black circle showing the posterior mean and the line segment for the 95% CI.

Men For male stroke patients to survive death by stroke, the baseline hazard function exhibits a similar

pattern as their female counterparts. Moreover, a combined model with gender as a fixed effect also shows

that gender does not have an effect on hazard rate. If we look at the other plots for the covariates, we

see that most of them have very similar results as in the model for women. The only notable difference is

income. In the case of men, it is more pronounced that the higher the income, the lower the hazard since

CIs do not overlap as much as in the model for female patients.
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Women, stroke death

Covariates Mean 95%CI

(Intercept) -5.88 (-6.19, -5.57)

Age group 0.35 ( 0.33, 0.37)

Block (ischemic) -0.80 (-0.88, -0.71)

Travel time (31-60 min) 0.01 (-0.10, 0.12)

Travel time (61-90 min) 0.15 (-0.01, 0.31)

Travel time (91-120 min) 0.08 (-0.15, 0.31)

Travel time (120+ min) -0.13 (-0.45, 0.18)

Education (high school) -0.06 (-0.14, 0.02)

Education (university) -0.21 (-0.34, -0.08)

Income (385-570K) -0.11 (-0.21, -0.01)

Income (570-795K) -0.20 (-0.36, -0.04)

Income (795K+) -0.30 (-0.51, -0.08)

Men, stroke death

Covariates Mean 95%CI

(Intercept) -5.71 (-6.04, -5.38)

Age group 0.34 ( 0.32, 0.36)

Block (ischemic) -0.83 (-0.92, -0.73)

Travel time (31-60 min) 0.02 (-0.11, 0.14)

Travel time (61-90 min) -0.08 (-0.27, 0.11)

Travel time (91-120 min) -0.09 (-0.36, 0.19)

Travel time (120+ min) -0.17 (-0.49, 0.15)

Education (high school) -0.04 (-0.13, 0.06)

Education (university) -0.20 (-0.33, -0.07)

Income (385-570K) -0.19 (-0.28, -0.09)

Income (570-795K) -0.39 (-0.53, -0.25)

Income (795K+) -0.61 (-0.80, -0.42)

Table 4: Posterior mean and 95% credible interval for the fixed effects in the survival models for stroke death.

Figure 18: Death caused by stroke for men. See figure 17 for detailed description.
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Other death

Women In a similar fashion, we can interpret the output shown in figure 19 of the model for female

stroke patients who died of reasons other than stroke. The baseline hazard function does not have the initial

hike, and has an even and stable hazard throughout the 80 months of the study period. This means that

the majority of the hazard is described by the covariates in the exponential model. Just like in the model

for stroke death, higher age also suggests heightened hazard. Ischemic stroke patients have a lower hazard

than hemorrhagic stroke patients, even though this concerns those who died of reasons other than stroke.

Travel time to hospital still has no significant effect. Medium and high level education have lower hazards

compared to those with obligatory level of education. Those with income levels 385 000 - 795 000 NOK have

lower hazards compared to those with income less than 385 000 NOK. There are a couple of RAs with CI

above or below 0, but are all very close. If we see the spatial effect as a whole, it is safe to say that there

are no geographical effects to hazard.

We see that the major difference between the models for stroke death and other death for women is the

underlying baseline hazard. There is a very high hazard for stroke death during the initial phase of the

stroke, but once a patient survives beyond 5 months, the baseline hazard is relatively flat. In comparison,

there is not such initial hazard for death by other causes. Most of the covariates have similar effects in both

models.
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Figure 19: Death caused by reasons other then stroke for women. See figure 17 for detailed description.

Men Lastly, we look at the male stroke patients to survive death caused by reasons other than stroke.

The baseline hazard is flat from the onset, as their female counterparts. For the covariates, 60-90 minutes

travel time to a local hospital has lower hazard than the others, but the credible interval is very close to 0.

Since none of the other 4 travel time categories are significant, even though this is technically significant,

the model most likely would not lose much strength without it. For the socioeconomic measures, higher

education and higher income have lower hazard.

When comparing male patients for stroke death and other death, we see the same pattern as for female

patients that the biggest difference is in the baseline hazard, and the covariates have very similar effects.
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Women, other death

Covariates Mean 95%CI

(Intercept) -5.23 (-5.50, -4.96)

Age group 0.35 ( 0.33, 0.37)

Block (ischemic) -0.15 (-0.26, -0.05)

Travel time (31-60 min) 0.01 (-0.10, 0.11)

Travel time (61-90 min) -0.17 (-0.34, 0.00)

Travel time (91-120 min) -0.13 (-0.35, 0.09)

Travel time (120+ min) -0.25 (-0.53, 0.03)

Education (high school) -0.19 (-0.26, -0.11)

Education (university) -0.35 (-0.47, -0.22)

Income (385-570K) -0.17 (-0.26, -0.08)

Income (570-795K) -0.24 (-0.39, -0.09)

Income (795K+) -0.16 (-0.35, 0.02)

Men, other death

Covariates Mean 95%CI

(Intercept) -5.06 (-5.32, -4.81)

Age group 0.36 ( 0.34, 0.38)

Block (ischemic) -0.26 (-0.36, -0.15)

Travel time (31-60 min) 0.01 (-0.09, 0.11)

Travel time (61-90 min) -0.18 (-0.33, -0.02)

Travel time (91-120 min) 0.07 (-0.13, 0.28)

Travel time (120+ min) 0.08 (-0.15, 0.31)

Education (high school) -0.10 (-0.18, -0.03)

Education (university) -0.25 (-0.36, -0.15)

Income (385-570K) -0.29 (-0.36, -0.21)

Income (570-795K) -0.45 (-0.56, -0.34)

Income (795K+) -0.52 (-0.66, -0.37)

Table 5: Posterior mean and 95% credible interval for the fixed effects in the survival models for other death.

Figure 20: eath caused by reasons other then stroke for men. See figure 17 for detailed description.
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4.5 Remarks on risk factors in stroke mortality rates

The most notable result from the models is that geographical differences do not affect the survival of stroke

patients. This confirms that stroke patients receive equal quality healthcare services regardless of where they

live in Norway. In addition, we also learn from the models that there is a heightened baseline hazard of

stroke death within the first 5 months of the stroke incidence. This is intuitive and to be expected as stroke

is an acute condition that is often quite fatal.

Aside from the baseline hazard that applies universally to all patients, each patient has specific attributes

that may increase or decrease their hazard rate. If we consider the effect of patient demographics - age and

gender - older patients have higher hazard while gender does not seem to play a major role.

When it comes to socioeconomic status, patients with an education level at or above university have a

lower hazard of stroke death compared to those with an obligatory educational level (grade 10). In addition,

patients with high school education also have a lower hazard compared to those with obligatory education

when it comes to other death. This is true for both men and women. The effect of income level is slightly

different for men and women. Female patients with household income greater than 385 000 NOK have a

lower hazard, for both stroke death and other death, than those with lower income. This is also true for male

patients, and in addition those with income greater than 570 000 NOK have an even lower hazard than those

with income less than 570 000 NOK. Such socioeconomic differences in stroke mortality is also observed in

other international studies (Avan et al., 2019; Addo et al., 2012).

In summary, gender and geographical placement have no effect on the hazard rate while type of stroke,

education and income do. Furthermore, the hazard of stroke death is higher during the first 5 months of the

incidence while the hazard of other death remains relatively unchanged over time.
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5 Conclusion

In the Norwegian healthcare system, one of the mandates is to provide equal and high quality healthcare

services to the residents no matter where they live and what their social status may be. In this thesis, we

looked at stroke patients and tackled two main questions: are there any geographical differences in the stroke

incidence rate in Norway, and are place of residence and socioeconomic status risk factors for stroke mortality?

We used two different methods to examine the stroke incidence rate. Hypothesis tests showed that many

geographical areas have significantly different stroke incidence rates. However, when we examined the data

with a Bayesian spatial model, we saw that places of residence have little to no effect on incidence rates.

The difference in the result is due to the analysis methods and the underlying assumptions. We see the

advantage of using a more sophisticated modelling technique that requires fewer assumptions and provides

a more data-driven result. This highlights the importance of careful consideration of the analytical methods

employed and whether they are suitable given the data and the situation.

For the mortality rate of stroke patients, we used the Cox PH model within the Bayesian framework to

explore the effect of geographical differences and socioeconomic status. This allowed us to measure if there

are significant variations in the health care provided. We see that place of residence has no effect on the

mortality rate, while higher income and education may reduce mortality.

Stroke mortality is a complex matter and may include many interrelated risk factors. Here we have only

explored some basic metrics, but there are many others that can be included. For example, numerous stud-

ies have shown that comorbidity (such as, but not limited to, high blood pressure and diabetes) and stroke

severity are also significant factors when it comes to stroke mortality (Rost et al., 2016; Phan et al., 2016;

Sarker et al., 2008). Moreover, as stroke is a serious acute condition, the timeliness and response from the

medical team can also play an important role. This in particular would enrich our understanding of the

geographical variation in the healthcare system. The advantage of the Bayesian Cox PH model is that we

can incorporate other factors as either fixed effects or random effects to capture extra layers that may be

present in the data. This can be done with minimal effort and can provide much more insight into the study

subject. Additionally with the INLA method, the efficiency of the model performance facilitates exploration

of the intricate relationship between the risk factors. Further study with an extended list of potential risk

factors could uncover more details or explain the results we have seen from the analysis in this thesis.
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A Appendix

A.1 Regional health authorities (RHA) and hospital referral areas (RA)

Number RHA RA

1 North Finnmark

2 North Tromsø

3 North Nordland

4 North Helgeland

5 Central Nord-Trøndelag

6 Central St. Olaves

7 Central Møre og Romsdal

8 West Førde

9 West Bergen

10 West Fonna

11 West Stavanger

12 South-east Østfold

13 South-east Akershus

14 South-east OUS (Oslo University Hospital)

15 South-east Lovisenberg

16 South-east Diakonhjem

17 South-east Innlandet

18 South-east Vest Viken

19 South-east Vestfold

20 South-east Telemark

21 South-east Sørlandet
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A.2 Neighbourhood map

In order to create a spatial model, we need to capture the information that is normally presented on a

map into a data format. Each area on the map is assigned a number, and we note down the number of

neighbouring areas, as well as the corresponding area numbers for the neighbours. The neighbourhood map

for Norwegian hospital referral areas is as follows. First line indicates total number of areas, in this case

21. As an example, the way to read the next line is: ”RA 1 (Finnmark) has 1 neighbour which is RA 2

(Tromsø)”.

21

1 1 2

2 2 1 3

3 2 2 4

4 2 3 5

5 2 4 6

6 3 5 7 17

7 3 6 17

8 4 7 9 17 18

9 3 8 10 18

10 5 9 11 18 20 21

11 2 10 21

12 3 13 18 19

13 6 12 14 15 16 17 18

14 5 13 15 16 17 18

15 3 13 14 16

16 4 13 14 15 18

17 6 6 7 8 13 14 18

18 10 8 9 10 12 13 14 16 17 19 20

19 3 12 18 20

20 4 10 18 19 21

21 3 10 11 20
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A.3 Sensitivity analysis for PC prior

This table shows the result of the sensitivity analysis with different U values in the PC prior for the precision

parameter in the BYM2 model, while keeping α fixed at 0.01. The first 21 rows represent the unstructured

spatial random effect for the hospital referral areas and last 21 rows represent the structured spatial random

effect for the RAs. The numbers in the table represent the posterior mean of the effect with the 95% credible

interval in the parenthesis. Notice that almost all credible intervals cover zero except for the unstructured

effect for RA 12 with U > 0.5. So the analysis is robust to the prior choices.
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RA U=0.05 U=0.1 U=0.5 U=1 U=2 U=5

Unstructured spatial effect

1 -0.03 (-0.17, 0.10) -0.02 (-0.19, 0.15) -0.00 (-0.21, 0.21) -0.00 (-0.21, 0.22) 0.00 (-0.21, 0.22) 0.00 (-0.21, 0.22)

2 -0.06 (-0.19, 0.02) -0.10 (-0.23, 0.02) -0.12 (-0.26, 0.02) -0.12 (-0.27, 0.02) -0.12 (-0.27, 0.02) -0.12 (-0.27, 0.02)

3 -0.05 (-0.17, 0.04) -0.07 (-0.21, 0.05) -0.08 (-0.24, 0.06) -0.08 (-0.24, 0.06) -0.08 (-0.24, 0.06) -0.09 (-0.24, 0.06)

4 -0.02 (-0.14, 0.07) -0.03 (-0.17, 0.11) -0.03 (-0.19, 0.14) -0.03 (-0.19, 0.14) -0.03 (-0.19, 0.15) -0.03 (-0.20, 0.15)

5 -0.03 (-0.13, 0.05) -0.04 (-0.17, 0.07) -0.05 (-0.19, 0.08) -0.05 (-0.20, 0.09) -0.05 (-0.20, 0.09) -0.05 (-0.20, 0.09)

6 -0.04 (-0.14, 0.03) -0.06 (-0.18, 0.03) -0.08 (-0.20, 0.02) -0.09 (-0.21, 0.02) -0.09 (-0.21, 0.02) -0.09 (-0.21, 0.02)

7 -0.01 (-0.10, 0.06) -0.02 (-0.13, 0.07) -0.03 (-0.15, 0.08) -0.03 (-0.15, 0.08) -0.03 (-0.15, 0.08) -0.03 (-0.15, 0.08)

8 0.01 (-0.07, 0.09) 0.01 (-0.10, 0.12) 0.01 (-0.12, 0.15) 0.01 (-0.13, 0.15) 0.01 (-0.13, 0.15) 0.01 (-0.13, 0.15)

9 0.01 (-0.06, 0.08) 0.01 (-0.09, 0.10) 0.01 (-0.10, 0.11) 0.01 (-0.10, 0.11) 0.01 (-0.10, 0.11) 0.01 (-0.10, 0.12)

10 0.02 (-0.04, 0.12) 0.04 (-0.06, 0.15) 0.05 (-0.07, 0.18) 0.05 (-0.07, 0.19) 0.05 (-0.07, 0.19) 0.05 (-0.07, 0.19)

11 -0.02 (-0.13, 0.06) -0.04 (-0.17, 0.06) -0.06 (-0.21, 0.06) -0.07 (-0.21, 0.06) -0.07 (-0.21, 0.06) -0.07 (-0.22, 0.06)

12 0.06 (-0.01, 0.18) 0.10 (-0.00, 0.23) 0.13 (0.01, 0.26) 0.13 (0.01, 0.27) 0.14 (0.02, 0.27) 0.14 (0.02, 0.27)

13 0.01 (-0.06, 0.08) 0.01 (-0.09, 0.11) 0.01 (-0.11, 0.12) 0.01 (-0.11, 0.12) 0.01 (-0.11, 0.12) 0.01 (-0.11, 0.12)

14 -0.00 (-0.08, 0.07) -0.01 (-0.11, 0.09) -0.01 (-0.13, 0.10) -0.01 (-0.14, 0.10) -0.02 (-0.14, 0.10) -0.02 (-0.14, 0.10)

15 0.01 (-0.09, 0.10) 0.00 (-0.13, 0.13) -0.00 (-0.16, 0.15) -0.00 (-0.17, 0.15) -0.00 (-0.17, 0.15) -0.01 (-0.17, 0.16)

16 -0.01 (-0.11, 0.07) -0.02 (-0.15, 0.09) -0.04 (-0.20, 0.10) -0.04 (-0.20, 0.10) -0.04 (-0.21, 0.10) -0.04 (-0.21, 0.10)

17 0.04 (-0.02, 0.14) 0.07 (-0.02, 0.18) 0.09 (-0.01, 0.20) 0.09 (-0.01, 0.21) 0.09 (-0.01, 0.21) 0.09 (-0.01, 0.21)

18 0.01 (-0.05, 0.08) 0.01 (-0.07, 0.10) 0.02 (-0.09, 0.11) 0.02 (-0.09, 0.11) 0.02 (-0.09, 0.12) 0.02 (-0.09, 0.12)

19 0.04 (-0.03, 0.14) 0.06 (-0.04, 0.18) 0.08 (-0.04, 0.21) 0.08 (-0.04, 0.22) 0.09 (-0.04, 0.22) 0.09 (-0.04, 0.22)

20 0.04 (-0.02, 0.15) 0.08 (-0.03, 0.20) 0.10 (-0.02, 0.24) 0.10 (-0.02, 0.25) 0.11 (-0.02, 0.25) 0.11 (-0.02, 0.25)

21 0.03 (-0.04, 0.13) 0.05 (-0.05, 0.17) 0.07 (-0.05, 0.19) 0.07 (-0.05, 0.20) 0.07 (-0.05, 0.20) 0.07 (-0.05, 0.20)

Structured spatial effect

1 -1.39 (-5.41, 2.82) -1.26 (-5.03, 2.40) -0.93 (-4.56, 2.42) -0.88 (-4.50, 2.42) -0.85 (-4.46, 2.42) -0.83 (-4.44, 2.43)

2 -1.63 (-5.05, 2.21) -1.63 (-4.73, 1.62) -1.38 (-4.29, 1.59) -1.34 (-4.23, 1.59) -1.32 (-4.20, 1.59) -1.30 (-4.18, 1.59)

3 -1.43 (-4.43, 1.92) -1.44 (-4.17, 1.41) -1.23 (-3.81, 1.38) -1.20 (-3.76, 1.39) -1.18 (-3.74, 1.39) -1.17 (-3.71, 1.39)

4 -1.06 (-3.68, 1.75) -1.05 (-3.50, 1.43) -0.87 (-3.22, 1.43) -0.84 (-3.18, 1.44) -0.82 (-3.16, 1.44) -0.81 (-3.14, 1.44)

5 -0.78 (-2.95, 1.51) -0.82 (-2.86, 1.29) -0.72 (-2.68, 1.28) -0.71 (-2.65, 1.28) -0.70 (-2.64, 1.28) -0.69 (-2.62, 1.28)

6 -0.37 (-1.95, 1.26) -0.45 (-1.94, 1.14) -0.45 (-1.88, 1.11) -0.44 (-1.87, 1.10) -0.44 (-1.86, 1.10) -0.44 (-1.85, 1.10)

7 -0.01 (-1.56, 1.56) -0.06 (-1.53, 1.47) -0.09 (-1.51, 1.40) -0.10 (-1.50, 1.39) -0.10 (-1.50, 1.38) -0.10 (-1.50, 1.38)

8 0.30 (-1.13, 1.71) 0.28 (-1.07, 1.64) 0.23 (-1.08, 1.55) 0.22 (-1.08, 1.53) 0.21 (-1.08, 1.53) 0.21 (-1.08, 1.52)

9 0.40 (-1.20, 1.96) 0.39 (-1.09, 1.88) 0.32 (-1.09, 1.77) 0.31 (-1.09, 1.75) 0.30 (-1.09, 1.74) 0.29 (-1.09, 1.73)

10 0.54 (-1.04, 2.04) 0.56 (-0.88, 1.96) 0.49 (-0.87, 1.84) 0.48 (-0.87, 1.82) 0.48 (-0.87, 1.81) 0.47 (-0.87, 1.80)

11 0.26 (-1.81, 2.36) 0.18 (-1.74, 2.21) 0.07 (-1.74, 2.07) 0.05 (-1.73, 2.05) 0.05 (-1.73, 2.04) 0.04 (-1.73, 2.04)

12 0.84 (-0.99, 2.52) 0.93 (-0.77, 2.48) 0.87 (-0.77, 2.35) 0.86 (-0.77, 2.33) 0.85 (-0.77, 2.31) 0.85 (-0.78, 2.31)

13 0.42 (-0.95, 1.73) 0.40 (-0.86, 1.65) 0.32 (-0.87, 1.53) 0.31 (-0.88, 1.51) 0.30 (-0.88, 1.50) 0.29 (-0.88, 1.50)

14 0.32 (-1.09, 1.71) 0.28 (-1.03, 1.62) 0.19 (-1.05, 1.50) 0.18 (-1.05, 1.48) 0.17 (-1.05, 1.47) 0.17 (-1.06, 1.47)

15 0.32 (-1.41, 2.04) 0.27 (-1.38, 1.94) 0.17 (-1.42, 1.81) 0.15 (-1.42, 1.79) 0.14 (-1.42, 1.78) 0.14 (-1.42, 1.77)

16 0.30 (-1.24, 1.84) 0.24 (-1.22, 1.73) 0.13 (-1.27, 1.60) 0.11 (-1.27, 1.58) 0.10 (-1.28, 1.57) 0.09 (-1.28, 1.56)

17 0.33 (-0.90, 1.52) 0.34 (-0.82, 1.47) 0.30 (-0.83, 1.38) 0.29 (-0.83, 1.37) 0.29 (-0.83, 1.36) 0.29 (-0.83, 1.36)

18 0.49 (-0.71, 1.59) 0.49 (-0.57, 1.52) 0.42 (-0.58, 1.40) 0.41 (-0.58, 1.39) 0.40 (-0.58, 1.38) 0.40 (-0.58, 1.37)

19 0.80 (-1.03, 2.49) 0.88 (-0.81, 2.45) 0.81 (-0.81, 2.31) 0.80 (-0.81, 2.29) 0.79 (-0.81, 2.27) 0.79 (-0.81, 2.26)

20 0.74 (-0.98, 2.32) 0.82 (-0.76, 2.27) 0.76 (-0.75, 2.15) 0.75 (-0.75, 2.13) 0.75 (-0.75, 2.12) 0.74 (-0.75, 2.11)

21 0.62 (-1.31, 2.45) 0.65 (-1.12, 2.37) 0.59 (-1.10, 2.23) 0.58 (-1.10, 2.20) 0.57 (-1.10, 2.19) 0.57 (-1.10, 2.18)
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