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a b s t r a c t

The retrofitting of buildings for improved energy efficiency has been recognized as crucial for achieving
climate mitigation goals in Bosnia and Herzegovina (B&H). However, performing multi-objective
optimizations for retrofitting existing buildings poses challenges, as it requires balancing conflicting
objectives such as retrofit costs, energy savings, and CO2 reduction. To tackle this challenge, we
employed a multi-objective analysis approach that aims to identify Pareto-optimal solutions for
retrofitting, striking a balance between energy consumption, CO2 emissions, and retrofit costs. In
this study, we utilized a combination of Full Factorial Design (FFD) and the state-of-the-art NSGA-III
framework to evaluate energy-efficient (EE) retrofit strategies for residential buildings in B&H. The
analysis was based on the existing building database from the national TABULA study, serving as
a fundamental reference. By analyzing this data, we aimed to determine the optimal approach for
EE retrofitting in single-family homes (SFH). Key results indicate that upgrading external walls and
improving heating system efficiency are the most effective measures for reducing energy consumption
and CO2 emissions. However, these measures come with higher retrofit costs. A multi-objective
optimization approach identifies a set of non-dominated solutions representing energy efficiency
retrofit measures with the lowest specific final energy for heating, specific CO2 emissions, and overall
retrofit costs. The top-ranked set of measures achieves a Simple Payback Period (SPP) of 19.9 years.
The insights gained from this study are intended to provide valuable guidance to decision-makers
in formulating cost-effective and energy-efficient retrofitting strategies that simultaneously minimize
annual energy consumption, CO2 emissions, and retrofit costs.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Bosnia and Herzegovina (B&H) is a member state of the Energy
ommunity (EC) and is required to develop policies and imple-
ent specific measures in order to achieve greenhouse gas (GHG)
mission neutrality by 2050, as defined in various European en-
rgy and climate plans (European Parliament and Council of the
uropean Union, 2018; MOFTER, 2021). As B&H aims to align its
nergy policies with those of the European Union (EU), it is cur-
ently in the process of preparing its integrated National Energy
nd Climate Plan (NECP) for the period 2021–2030 (Energy Comu-
ity, 2020; Energy Community, 2022). According to NECP, Bosnia
nd Herzegovina must develop long-term strategic frameworks
or the implementation of energy-efficient (EE) retrofit measures
n its building stock (Energy Comunity, 2020; Energy Community,

∗ Corresponding author.
E-mail address: amar.aganovic@uit.no (A. Aganović).
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352-4847/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
2022). Given that residential buildings account for 41% of the total
energy consumption in the country, with space heating compris-
ing 72% of that total (Official Gazette of Bosnia and Herzegovina,
2017), prioritizing the reduction of energy consumption for do-
mestic space heating in future EE retrofit measures is crucial.
Therefore, retrofitting initiatives for buildings are considered to
be of strategic importance for achieving national energy-saving
targets in both the short and long term (European Commission,
2020; Publications Office of the European Union, 2019). Imple-
menting EE retrofit measures not only reduces the country’s
GHG emissions and overall energy consumption, but also offers
significant economic, environmental, and social benefits (Euro-
pean Commission, 2020; Nydahl et al., 2019; Tuominen et al.,
2012; Hashempour et al., 2020). This underscores the current
importance of EE measures, which may necessitate the renova-
tion of thousands of buildings each year, including single-family
houses, multi-apartment blocks, and high-rise buildings, based
on predefined EE measures. To accomplish such an ambitious
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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bjective, it is essential to encourage innovative approaches to
nhance the energy efficiency of buildings, focusing on aspects
uch as the building envelope, energy systems, and the utilization
f renewable energy sources (Ruggeri et al., 2020; Pajek et al.,
023).
A comprehensive examination of the cost structure associ-

ted with energy-efficient (EE) retrofit measures in the residen-
ial sector of B&H is presented in a study conducted by Kadrić
t al. (2022b). This study explores the potential of translating
E retrofit measures in the residential sector into a nationwide
conomic energy-saving policy, aimed at facilitating future sub-
idies and financial schemes for EE retrofit in B&H. The findings
rom this study emphasize the urgent need to develop a robust fi-
ancial subsidy program for homeowners in B&H. Another study,
tilizing an optimization model based on the Response Surface
ethodology, has identified the building parameters that have

he greatest impact on energy savings when implementing EE
etrofit measures in B&H (European Commission, 2020). How-
ver, the feasibility of large-scale deployment of these retrofit
easures may be hindered by economic constraints in low- and

middle-income countries (Kadrić et al., 2022b). However, eco-
omic constraints in low- and middle-income countries may
ose challenges to the large-scale deployment of these retrofit
easures (Kadrić et al., 2022b). To address this challenge, a
ombination of various energy efficiency measures needs to be
nalyzed to identify the ‘‘cost-optimal’’ package that minimizes
verall costs. The evaluation of EE retrofit measures can be based
n multiple criteria, including initial investment cost, operational
ost, energy consumption, environmental performance, and in-
oor environmental quality, among others (Kolokotsa et al., 2009;
lmeida and Ferreira, 2017; Dolšak, 2023). Achieving robust and
ffective cost-optimal solutions is therefore a critical task, consid-
ring the numerous variables involved in evaluating the perfor-
ance of building envelopes and energy systems. Consequently,
olving optimization problems is typically necessary for the EE
etrofitting of buildings, and multi-objective optimization (MOO)
echniques have been proven effective in this regard compared to
he conventional cost-optimal analysis approach (Ascione et al.,
017). When integrated with building performance simulation
ools, MOO techniques enable the consideration of additional EE
etrofit objectives beyond minimizing energy consumption (As-
ione et al., 2017; Hamdy et al., 2011; Fan and Xia, 2017; Lu
t al., 2015; Chantrelle et al., 2011; Mauro et al., 2015; Delgarm
t al., 2016b; Baghoolizadeh et al., 2021), such as reducing ther-
al discomfort (Ascione et al., 2017; Chantrelle et al., 2011),

otal costs (Lu et al., 2015; Baghoolizadeh et al., 2021), life-
ycle environmental impact (Chantrelle et al., 2011), and GHG
missions (Ascione et al., 2017; Hamdy et al., 2011; Fan and Xia,
017).
The process of selecting the most optimal solutions to support

nd guide decision-making for energy-efficient (EE) retrofitting
an be challenging due to trade-offs among different objectives
Costa-Carrapiço et al., 2020; Evins, 2013; Jafari and Valentin,
018b,a). In the past, decision-making models for building
etrofitting primarily focused on a single criterion prior to 2008
Hashempour et al., 2020). However, more recent models have
ncorporated multiple criteria (Chantrelle et al., 2011; Jafari and
alentin, 2018a), in line with the Energy Performance of Build-
ngs Directive (EPBD) Recast (European Parliament and Council
f the European Union, 2010), which mandates the selection
f energy design and retrofitting approaches based on ‘‘cost-
ptimality’’ (Ferrara et al., 2019) over a standard calculation pe-
iod of either 20 years (for non-residential buildings) or 30 years
for residential buildings) (European Parliament and Council of
he European Union, 2021). To minimize overall costs, it is neces-

ary to explore and combine several energy efficiency measures

1969
in order to identify the ‘‘cost-optimal’’ package. Therefore, it is
crucial to approach these strategies with careful consideration of
their cost-effectiveness and technical feasibility.

To address these challenges, numerous studies have adapted
multi-objective optimization (MOO) techniques to simultane-
ously address multiple objectives for EE retrofitting in build-
ings (Sharif and Hammad, 2019; Yong et al., 2020; Ascione et al.,
2019; Zhang et al., 2021; Shen et al., 2019; Roberti et al., 2017;
Rosso et al., 2017). For instance, Sharif and Hammad (2019) in-
tegrated genetic algorithms (GA) with Pareto solutions to reduce
energy consumption, life-cycle cost, and environmental impact in
institutional buildings.

Yong et al. (2020) developed a particle swarm optimization
tool to simultaneously minimize energy consumption and max-
imize thermal comfort levels in both office buildings and multi-
family homes. Ascione et al. (2019) investigated residential build-
ings across different Italian climates using a GA-based Pareto
optimization approach to minimize primary energy consump-
tion, global cost, and discomfort hours. Zhang et al. (2021) em-
ployed non-dominated sorting to identify Pareto-optimal solu-
tions for reducing CO2 emissions while increasing cost savings
in the retrofitting of Canadian residential buildings. Shen et al.
(2019) applied the non-dominated sorting differential evolution
(NSDE) approach to optimize the retrofit planning of a campus
building at the University of Pennsylvania (USA) using Pareto
fronts. Roberti et al. (2017) computed NSGA-II-based Pareto-
optimal retrofits considering thermal comfort, energy consump-
tion, and conservation compatibility for a medieval building in
Northern Italy. Additionally, Rosso et al. (2017) utilized an NSGA-
II optimization approach to identify Pareto optimal solutions ca-
pable of reducing annual energy demand, energy costs, and CO2
emissions by more than 40%, while maintaining nearly 60% lower
investment costs compared to other criterion-optimal solutions.

Wang (2023) employed a particle swarm algorithm to re-
duce the cost of energy consumption and improve the predicted
mean vote in self-built houses in northern China. Gao et al.
(2023) coupled a non-dominated sorting genetic algorithm with
Pareto solutions to reduce carbon emissions and energy con-
sumption while ensuring acceptable indoor thermal comfort. Liu
and Pouramini (2021) utilized the enhanced water strider opti-
mization algorithm to obtain the Pareto set of optimal solutions
for minimizing greenhouse gas emissions and improving thermal
comfort in residential buildings.

The findings presented in these studies demonstrate the
promising potential of integrating multi-objective optimization
(MOO) techniques with Pareto optimal solutions as a decision-
making tool for building retrofits in highly developed countries.
Among the MOO methods integrated with Pareto optimal solu-
tions, NSGA-II has been the most commonly utilized approach for
building retrofit optimization (Delgarm et al., 2016a; Sharif and
Hammad, 2017; Mostafazadeh et al., 2023). NSGA-II is renowned
for its flexibility and adaptability in solving various optimiza-
tion problems across different fields, including building retrofit
optimization. However, despite its widespread use in making
significant advancements in building retrofit, the latest develop-
ments in the field, such as NSGA-III, have been overlooked by
building performance researchers. NSGA-III, introduced by Deb
and Jain (2013) in 2013, is an extension of NSGA-II that addresses
its limitations and enhances performance, inheriting all the favor-
able mechanisms and features of its 12-year-old predecessor. The
primary advantage of NSGA-III over NSGA-II lies in its improved
ability to handle multiple objectives and achieve an enhanced
distribution of solutions (Emmerich and Deutz, 2018; Ishibuchi
et al., 2016; Ciro et al., 2016).

In this study, we apply a Full Factorial Design (FFD) inte-

grated NSGA-III framework to assess the energy-efficient (EE)
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etrofitting of residential buildings in B&H. Currently, there is a
ack of studies utilizing multi-objective optimization techniques
or EE retrofitting in low- or middle-income countries like Bosnia
nd Herzegovina. Our analysis builds upon the existing build-
ng database provided by the national TABULA study (Kadrić
t al., 2022b) and offers insights into the optimal EE retrofit
trategy for single-family homes (SFH). By employing the state-
f-the-art NSGA-III algorithm along with FFD, this study not only
romotes the use of NSGA-III but also provides valuable in-
ights into the optimal EE retrofit strategy for SFH in a low- or
iddle-income country—an aspect that has not been previously
xplored. Decision-makers in countries with similar economic
ackgrounds can leverage the findings of this study to develop EE
etrofit strategies that result in the lowest possible annual energy
onsumption, CO2 emissions, and retrofit costs.
The remainder of this paper is organized as follows. Sec-

tion 2 presents the methodology used, including details about
the developed building model, the FFD models employed to es-
tablish functional relationships between system responses and
various building parameters, as well as the cost structure of
energy efficiency (EE) retrofitting. Furthermore, in Section 2, the
multi-objective optimization method NSGA-III, utilized to obtain
Pareto front solutions, and the composite desirability function
used for ranking the Pareto front solutions, are discussed.

Section 3 presents the main results of the study, providing a
detailed analysis of the developed models for predicting specific
energy for heating, CO2 emissions, and costs of various EE retrofit
levels. Additionally, the results of the NSGA-III multi-objective
optimization and the top-ranked solutions for EE retrofit mea-
sures with their corresponding retrofit levels are presented. Sec-
tion 4 provides main conclusions of this study.

2. Methodology

The methodology employed in this study applies multi-
objective optimization to a specific category of buildings, aiming
to minimize building energy consumption for heating, CO2 emis-
ions, and retrofit costs by considering various combinations of
nergy-efficient (EE) measures and retrofit levels. The selected
uilding category represents a statistical sample of buildings
onstructed between 1970 and 1981, accounting for 24% of the
otal number of buildings in the housing stock and contributing
o 38% of the energy required for heating the entire building
tock (Arnautović-Aksić et al., 2016). This category of buildings
ncurs EE retrofit costs that are three to four times higher com-
ared to other building categories such as multi-family houses,
partment buildings, or high rises (Kadrić et al., 2022b).
To establish the functional relationship between building en-

rgy consumption and key building parameters, the design of ex-
eriment (DOE) technique is employed (Sadeghifam et al., 2015;
adrić et al., 2022a). A series of designed experiments is con-
ucted to determine the correlation between building parameters
nd the system response. The Response Surface Methodology
RSM) is utilized to provide valuable information for building
esigners to identify the most influential parameters and opti-
ize building design (Shao et al., 2014; García-Cuadrado et al.,
022). The selected building parameters reflect the impact of
ommon EE retrofit measures implemented in the residential
tock, such as installing thermal insulation on external walls and
eilings, replacing windows, and improving the existing heating
ystem (Arnautović-Aksić et al., 2016).
Energy consumption modeling utilizing RSM indicates that the

inear component of the model accounts for over 96% of the
ariation in specific final energy for heating (Kadrić et al., 2022a).
onsequently, FFD methodology enables the fitting of a linear
egression model and requires fewer simulations compared to
1970
RSM, which is used in the current analysis. The developed model
enables the prediction of energy consumption for heating and
CO2 emissions after implementing any combination of EE retrofit
easures. Considering that the selected building type represents

he majority of buildings in the total building stock, this study
olds high relevance in the field of building energy efficiency.
The estimated cost of the selected EE retrofit measures em-

loyed in energy consumption modeling is determined using a
ottom-up methodology (Kadrić et al., 2022b), which incorpo-
ates the cost of materials, equipment, labor, and other expenses.
he cost of implementing each EE retrofit measure is divided
nto fixed and variable costs. The fixed cost is applied for each
etrofit level, while the variable costs gradually increase with
igher retrofit levels. For instance, the installation of thermal
nsulation on external walls can be performed at various levels
ith different insulation thicknesses, affecting the total costs. The
ost analysis considers the fixed and variable costs associated
ith these measures and different levels of EE retrofit.
To determine the most effective EE retrofit measures, as well

s their combinations and levels, that result in the lowest energy
onsumption, CO2 emissions, and retrofit costs, multi-objective
ptimization techniques are employed. The non-dominated sort-
ng genetic algorithm (NSGA-III) is utilized to solve the given
ulti-objective optimization problem. After implementing the
omposite desirability function, the study identifies the top
anked solutions and subsequently provides an economic anal-
sis.

.1. Building model

The calculation of building energy consumption is conducted
sing DesignBuilder software, which incorporates the EnergyPlus
ynamic simulation module (US Department of Energy, 2022).
ig. 1(a) and (b) depict visual and thermographic representations,
espectively, of the selected single-family home (SFH) building
ype constructed between 1971 and 1980, along with the Design-
uilder model.
The analyzed building consists of a ground floor, a first floor,

nd an unheated attic, as described in the national TABULA
tudy (Arnautović-Aksić et al., 2016). The ground floor encom-
asses a bathroom, living room, kitchen, and hallway leading to
he first floor, which comprises three bedrooms. In the Design-
uilder software, each room represents a separate temperature
one (European committee for standardization, 2019). The zone
emperature, number of occupants, hourly occupancy rate, light-
ng schedule, electric equipment load, and working schedule
lign with our previous study (Kadrić et al., 2022a). The average
umber of residents per household, as well as data for model
alidation such as annual electrical energy consumption and
nnual final energy consumption for heating, are obtained from
he Agency for Statistics B&H (Agic et al., 2016). The climatic
ata used in this study corresponds to the northern climatic
egion where the majority of buildings are situated (Arnautović-
ksić et al., 2016). To calculate the energy needed for heating,
he EnergyPlus dynamic modeling tool is used. Eq. (1) is em-
loyed to determine the annual energy consumption for heating
fin,H(kWh/ann.) (Tootkaboni et al., 2021):

fin,H = QH,nd/η (1)

where, QH,nd (kWh/ann.) is annual energy need for heating and
η (−) is overall heating system efficiency.

Eq. (2) is used to calculate the energy performance indica-
tor (EP), specific final energy for heating EPH (kWh/m2 ann.)
(Jovanović-Popović et al., 2013):

EP = E /A (2)
H fin,H H,net
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Fig. 1. (a) Visual and thermographic presentation of the selected building, (b) DesignBuilder model.
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here AH,net = 65.4m2 is net heated area of the building.
Eq. (3) is employed to determine the annual CO2 emission

kg/ann.) (Wang et al., 2017):

CO2 = EPHfn,CO2 (3)

here, EPn,H (kWh/ann.) is the same as above expressed for
ifferent energy carriers, and fn,CO2 (kg/kWh) is GHG emission
actor for delivered energy, expressed for energy carrier (n). No
xported energy is analyzed in this study, therefore (3) is more
imple than in Wang et al. (2017).
Eq. (4) is used to calculate the CO2 emission indicator (EPCO2),

pecific CO2 emission EPCO2 (kg/m2 ann.) :

PCO2 = mCO2/AH,net. (4)

.2. Modeling of specific final energy consumption for heating and
O2 emission

The primary aim of this study is to establish a correlation be-
ween different building parameters and the system response. To
ccomplish this objective, FFD methodology is employed. Com-
ared to Response Surface Methodology (RSM) (Arnautović-Aksić
t al., 2016; Jovanović-Popović et al., 2013), the FFD requires
ewer simulations and allows for the fitting of a linear regres-
ion model. The developed model using this approach enables
he calculation of energy consumption after implementing var-
ous combinations of EE retrofit measures. The FFD generates
n experimental design matrix, which represents the individual
imulation runs incorporating specific levels of pre-selected fac-
ors. This matrix is designed to include the optimal number of
uns necessary to establish the relationship between the system
esponse and factors. The FFD methodology facilitates the fitting
f a linear regression model with cross-product terms of the
ndependent factors, defined as follows:

= β0 +

k∑
i=1

βixi +
k−1∑
i=1

k∑
j=2

βijxixj + ε (5)

here y is the predicted system response, xi and xj are indepen-
ent factors, β0, βi and βij are intercept, linear, and interaction
egression coefficients, respectively, k is the number of factors,
nd ε is random error.
In this study, data from regional national TABULA studies

Arnautović-Aksić et al., 2016; Jovanović-Popović et al., 2013) was
tilized, and considering the most commonly implemented EE
etrofit measures in B&H, four specific building design parameters
ere chosen for analysis to assess their influence on energy
onsumption and CO2 emissions. These selected parameters are
he heat transfer coefficient of external walls (A), the heat transfer
oefficient of windows (B), the heat transfer coefficient of the
eiling (C), and the overall system efficiency (D). In the modeling
f CO2 emissions, the overall system efficiency, which is associ-
ted with the heating system, is combined with the GHG emission

actor of the fuel used. Hence, factor D encompasses the combined o

1971
ffect of the overall system efficiency and the fuel GHG emission
actor for modeling CO2 emissions. To evaluate the impact of EE
etrofit measures, the values of these parameters are adjusted,
ncompassing a range of low to high energy-related proper-
ies. Table 1 provides a description of these building parameters
factors) along with their corresponding levels for conducting
nalysis of variance (ANOVA) and regression analysis.
An analysis of the country’s energy statistics (Agic et al., 2016)

ndicates that a substantial percentage (86%) of households in
he region depend on biomass and wood as their main fuel
ources for heating systems. Coal (10.4%), electricity (2.19%), and
atural gas (0.83%) are also utilized as alternative fuel sources,
lthough to a lesser degree. The GHG emission factor for these
uels and energy sources is 0.0199 kgCO2/kWh for biomass, 0.367
gCO2/kWh for coal, 0.793 kgCO2/kWh for electricity, and 0.202
gCO2/kWh for natural gas (US Department of Energy, 2022). The

given values are utilized to calculate the GHG emission factor for
the low levels of the factors, representing the national energy
mix, as presented in Table 1.

Table 2 displays the experimental matrix generated using
FFD, which presents the computed annual energy consumption
for heating, specific final energy for heating, and specific CO2
emission. The total number of simulation runs conducted is 16.
The specific final energy for heating EPH, values range from a
maximum of 278.3 kWh/m2 ann. for low energy-related proper-
ties to a minimum of 17.9 kWh/m2 ann. for high energy-related
properties. The specific CO2 emission EPCO2 values vary from a
maximum of 20.8 kg/m2 ann. for low energy-related properties to
a minimum of 0.4 kg/m2 ann. for high energy-related properties.
It is worth noting that, as per the country’s energy statistics (Agic
et al., 2016), the average CO2 emission per heated surface area
for households in B&H is 18.93 kg/m2 ann., derived from the
country’s average GHG emission factor and total surface area of
SFH (Arnautović-Aksić et al., 2016).

2.3. Cost of EE retrofit measures

The costs related to the implementation of EE retrofit mea-
sures are determined using a bottom-up methodology, which
takes into account the costs of materials, equipment, labor, and
other applicable expenses. The following equation is utilized to
calculate the total costs of implementing an EE retrofit mea-
sure (Kadrić et al., 2022b):

Cmeas = (Cmat + Clab + Cgen)(1 + VAT ) (6)

here, Cmat are the materials and equipment with all connected
osts in Euro e, Clab are labor and all connected costs in Euro e,
gen are general expenses e and VAT is Value Added Tax (%).
During the evaluation of each EE measure implementation,

abor engagement is carefully assessed in accordance with con-
truction and mechanical standards. Additionally, material re-
uirements are determined based on the specific characteristics

f the building undergoing retrofit, such as the dimensions of
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Table 1
Description of building parameters (factors) and their respective levels for ANOVA and regression analysis.
Factor Low level (−1) High level (+1)

A:
External wall heat transfer coefficient
Uwall (W/m2 K)

No thermal insulation
(δTI = 0 cm)

With thermal insulation
(δTI = 20 cm)

2.01 0.18

B:
Windows heat transfer coefficient
Uwin (W/m2 K)

Wooden frame with single
glazing

PVC frame/Triple
glazing/Low-E, Argon filled

5.00 0.96

C:
Ceiling heat transfer coefficient
Uceil (W/m2 K)

No thermal insulation
(δTI = 0 cm)

With thermal insulation
(δTI = 25 cm)

1.75 0.14

D:
Overall system efficiency
η (%)

Solid fuel-burning stove Central heating - high
efficiency

50 95
GHG emission factor
fCO2(kg/kWh) 0.075 0.019
Table 2
The experimental matrix and simulated energy consumption for heating and CO2 emission.
Run Factor values (coded) Simulated values

A B C D EFH
(kWh/ann.)

EPH
(kWh/m2ann.)

EPCO2
(kg/m2ann.)

1 −1 −1 −1 −1 18 198 278.3 20.8
2 1 −1 −1 −1 8 018 122.6 9.1
3 −1 1 −1 −1 15 085 230.7 17.2
4 1 1 −1 −1 5 158 78.9 5.9
5 −1 −1 1 −1 14 936 228.4 17.0
6 1 −1 1 −1 4 624 70.7 5.3
7 −1 1 1 −1 11 978 183.2 13.7
8 1 1 1 −1 2 224 34.0 2.5
9 −1 −1 −1 1 10 110 146.4 2.9
10 1 −1 −1 1 4 455 64.5 1.3
11 −1 1 −1 1 8 381 121.4 2.4
12 1 1 −1 1 2 866 41.5 0.8
13 −1 −1 1 1 8 298 120.2 2.4
14 1 −1 1 1 2 569 37.2 0.7
15 −1 1 1 1 6 655 96.4 1.9
16 1 1 1 1 1 235 17.9 0.4
c
e
i
T
a
T
i
a
f
a
r
i
C

C

the external walls and ceiling, and the quantity and dimensions
of windows, among others (European committee for standard-
ization, 2019). The analysis also takes into consideration various
tasks involved in the retrofit process, including demolition, as-
sembly, installation, and disposal of materials and equipment.
Material and equipment cost is calculated as follows:

Cmat =

n∑
i=1

qiui (7)

i is the quantity of the ith component installed and used during
he construction, and ui is the corresponding unit cost of the ith
omponent (e/component).
When estimating labor costs, several factors are considered,

ncluding the time required to complete each task, the qualifica-
ions of the workers involved, and the average salary correspond-
ng to those qualifications (Bosnia and Herzegovina Agency for
tatistic, 2022a). The total labor cost is determined by breaking
own the implementation of the measure into multiple tasks, and
t can be calculated using the following expression:

lab = 1.7Clab,nett = 1.7
n∑

i=1

TiLiWi (8)

here, Clab,nett is the labor cost after tax (e), Ti is the quantity
f work for the specific task i, Li is the working norm required
er unit of Ti (hours/task), and Wi is the average wage (e/hours)
ased on the required labor qualification level.
The qualifications of workers range from semi-skilled to

killed, according to the standards specified for each task (Bu-
ar, 2003). The total number of working hours is calculated
1972
by summing up the time spent and work completed for each
task, taking into account the professional qualifications required
for each task. The labor cost and total working hours are then
determined by adding up the costs for each task and multiplying
the sum by a coefficient of 1.7, representing the gross to net costs
(salary). General expenses, including the depreciation of fixed
assets, investments, ongoing maintenance of fixed assets, salaries
for overhead employees, field allowances, and business profit, are
all considered. Additionally, the value-added tax (VAT) at a rate
of 17% is calculated, along with the total expenditures for imple-
menting the EE retrofit measure using Eq. (6). The methodology
presented allows for an accurate determination of the total cost
of EE retrofit measures, considering various factor levels. At factor
level (−1), where no EE retrofit measure is implemented, the total
ost for all measures is zero. However, it is important to note that
ven at very low levels of EE retrofit, such as (−0.99), fixed costs,
ncluding materials, labor, and general charges, are still incurred.
hese fixed costs remain constant across all retrofit levels, while
dditional expenses are incurred for more extensive retrofits.
herefore, with the exception of level (−1), each retrofit level
ncurs fixed costs, while the variable costs gradually increase with
more extensive retrofit. This comprehensive approach accounts
or the costs incurred at different retrofit levels, providing valu-
ble insights for decision-makers and stakeholders evaluating EE
etrofit strategies. The total cost of combined EE retrofit measures
s determined by summing up the costs of each EE measure
meas,j:

t =

4∑
Cmeas,j (9)
j=1
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otal costs are computed for all combinations of factor values in
he range of −1 to +1.

2.4. Multi-objective optimization using genetic algorithm

The objectives of building retrofit optimization are to mini-
mize the specific final energy for heating (EPH) and the specific
O2 emissions (EPCO2) while achieving the minimum total cost
f EE retrofit measures (Ct). However, these objectives exhibit
ontrasting trends as more extensive EE retrofit measures are
mplemented. Specifically, the specific final energy for heating
nd specific CO2 emissions decrease, indicating improved en-
rgy efficiency and reduced environmental impact. On the other
and, the total cost of EE retrofit measures increases with the
mplementation of more comprehensive retrofit measures.

The optimization of these objectives is dependent on four
actors: the external wall heat transfer coefficient (A), windows
eat transfer coefficient (B), ceiling heat transfer coefficient (C),
nd the overall system efficiency coupled with the GHG emission
actor (D). Multi-objective optimization problem, mathematically
s defined as follows:

min
A,B,C,D

EPH (10)

min
A,B,C,D

EPCO2

min
A,B,C,D

Ct

ubject to:

− 1 ≤ A ≤ 1 (11)
− 1 ≤ B ≤ 1
− 1 ≤ C ≤ 1
− 1 ≤ D ≤ 1

In order to tackle the multi-objective optimization problem
escribed by Eqs. (10) and (11), we have employed genetic al-
orithms (GA) as our optimization approach. GA is a type of
volutionary algorithm known for its adaptability and versatility
n solving a wide range of optimization problems, including build-
ng retrofit optimization in various domains (Sharif and Hammad,
019; Ascione et al., 2019; Roberti et al., 2017; Rosso et al., 2017).
hile GA is a heuristic algorithm, it excels at generating solutions

hat are near-optimal, meaning they are sufficiently good, even if
ot guaranteed to be optimal.
To solve the multi-objective optimization problem, we have

tilized the NSGA-III genetic algorithm (Deb and Jain, 2013),
hich builds upon its well-established predecessor, NSGA-II, in-
eriting its beneficial mechanisms and features (Emmerich and
eutz, 2018). The key advantage of NSGA-III over NSGA-II lies
n its improved capability to handle multiple objectives, ensur-
ng a more enhanced distribution of solutions. Instead of using
rowding distance as in NSGA-II, NSGA-III employs the concept
f reference points. Through adaptive addition and removal of
predefined set of well-distributed reference points, NSGA-III

chieves better partitioning of the objective space, resulting in
mproved spread and distribution of solutions across the objective
pace (Ishibuchi et al., 2016).
By executing the NSGA-III algorithm, we obtain a set of solu-

ions that represent the Pareto front. This Pareto front comprises
ll the non-dominated solutions, meaning that no solution on
he Pareto front is better than any other solution in terms of all
bjectives. Therefore, the Pareto front obtained through NSGA-
II provides a comprehensive representation of the trade-offs and
ptimal solutions for our multi-objective optimization problem.
1973
.5. Desirability function and selection of best solutions

In order to handle the large number of non-dominated solu-
ions and assist decision-makers in selecting the most preferable
ptions based on their preferences, various methods can be em-
loyed. One such method is the use of multi-criteria decision
nalysis techniques like TOPSIS (Mostafazadeh et al., 2023; Pin-
on Amorocho and Hartmann, 2022). These methods allow for
he ranking of solutions based on decision-makers’ preferences.
nother approach is to utilize the desirability function (DF), com-
only used in the design of experiments for multi-objective
ptimization (Harrington, 1965; Derringer and Suich, 1980).
The desirability function transforms multiple objective func-

ions, which may be measured on different scales, into a scale-
ree value normalized between 0 and 1. By applying the DF,
higher value indicates a better solution, while a lower value

ndicates a less desirable solution. In our study, we propose
sing the DF method to rank the non-dominated solutions.Since
ach objective function in our study (EPH, EPCO2 and Ct) is to be
inimized, the DF for each objective can be defined as follows:

i =

⎧⎪⎪⎨⎪⎪⎩
1 yi < Ti(

Ui − yi
Ui − Ti

)si
Ti < yi < Ui

0 yi > Ui

(12)

where Ti is the target value of the objective (lower limit), Ui is
the upper limit of the objective, yi is objective value, and si is the
weight of each objective.

The assignment of weights, denoted as si, in the desirability
function reflects the decision-maker’s preferences or priorities.
These weights can be determined through subjective judgments,
expert opinions, or objective statistical methods. The weights si
an take on values of 1 or can be greater or less than 1, depending
n the desired emphasis on a particular objective.
When si is set to 1, the desirability function becomes linear,

ndicating equal importance given to each objective. On the other
and, when si is greater than 1 or less than 1, more or less
mphasis is placed on a specific target, respectively.
Once the individual desirability functions, denoted as di, for

ultiple objectives have been established, they are combined into
composite desirability function, denoted as CD. The compos-

te desirability function is calculated as the geometric mean of
he individual desirability functions. Mathematically, it can be
xpressed as follows:

D = (d1 × d2 × · · · × dn)
1
n =

(
n∏

i=1

di

) 1
n

(13)

where CD is composite desirability, di is the desirability func-
tion of individual objectives, n is the number of objectives. The
composite desirability function, CD, provides an aggregated mea-
sure of the overall desirability of a solution, taking into account
the preferences assigned to each objective. By evaluating the
composite desirability function, decision-makers can identify the
solutions that best align with their priorities and make informed
choices accordingly.

2.6. Cost-effectiveness analysis

To assess the economic feasibility of different EE retrofit levels,
a comprehensive cost analysis is performed, taking into account
both the upfront investment costs and the potential energy cost
savings. The evaluation is primarily focused on determining the
Simple Payback Period (SPP), which quantifies the time required
to recover the initial investment costs Ct through the anticipated
annual energy cost savings C .
sav
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Table 3
ANOVA for the specific final energy for heating EPH model.
Source DF SS Contribution Adj SS Adj MS F-Value p-Value

Model 10 92 174.6 99.99% 92 174.6 9 217.5 6 710.07 0.000
Linear 4 85 898.4 93.18% 85 898.4 21 474.6 15 632.94 0.000
A. Uwall 1 54 939.2 59.60% 54 939.2 54 939.2 39 994.29 0.000
B. Uwin 1 4 370.2 4.74% 4 370.2 4 370.2 3 181.38 0.000
C. Uceil 1 5 488.9 5.95% 5 488.9 5 488.9 3 995.78 0.000
D. η 1 21 100.1 22.89% 21 100.1 21 100.1 15 360.31 0.000

2-way interactions 6 6 276.2 6.81% 6 276.2 1 046.0 761.49 0.000
A · B. Uwall · Uwin 1 22.3 0.02% 22.3 22.3 16.25 0.010
A · C. Uwall · Uceil 1 0.1 0.00% 0.1 0.1 0.04 0.850
A · D. Uwall · η 1 5 291.4 5.74% 5 291.4 5 291.4 3 852.01 0.000
B · C. Uwin · Uceil 1 12.9 0.01% 12.9 12.9 9.38 0.028
B · D. Uwin · η 1 420.9 0.46% 420.9 420.9 306.41 0.000
C · D. Uceil · η 1 528.7 0.57% 528.7 528.7 384.85 0.000

Error 5 6.9 0.01% 6.9 1.4
Total 15 92 181.5 100.00%

DF — degrees of freedom; SS — the sum of squares; Adj SS — the adjusted sum of squares; Adj MS — adjusted mean
squares.
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The simple payback period is calculated by dividing the initial
investment costs Ct by the estimated annual energy cost savings
sav:

PP = Ct/Csav (14)

The calculation of the average price of final energy for house-
olds incorporates data obtained from the country’s energy statis-
ics (Agic et al., 2016), along with the average prices of energy and
uel. The input values considered are the respective proportions
f fuel in the country’s energy mix, which consist of 86% biomass
nd wood, 10.4% coal, 2.19% electricity, and 0.83% natural gas.
dditionally, the corresponding average costs of final energy are
aken into account.

Based on available information, the average cost of final en-
rgy for biomass and wood is determined to be 0.057 e/kWh,

while for coal it is 0.032 e/kWh. The average cost of final energy
for electricity is calculated to be 0.076 e/kWh, and for natural gas,
t is determined as 0.068 e/kWh (Bosnia and Herzegovina Agency
or Statistic, 2022b). As a result of these considerations, the av-
rage baseline cost of final energy for households is established
t 0.055 e/kWh. This value serves as a reference for evaluating
he cost-effectiveness of energy efficiency retrofit measures and
stimating potential energy cost savings.

. Results

.1. Analysis of specific final energy for heating and CO2 emission
odels

The model for predicting the specific final energy for heating
EPH) was developed using DesignExpert software, incorporat-
ng the simulated values of specific final energy for heating as
resented in Table 2. The model is defined as follows:

PH = 117.014 − 58.598 A − 16.527 B − 18.522 C − 36.315 D
+ 1.181 A B + 0.058 A C + 18.186 A D

+ 0.897 B C + 5.129 B D + 5.748 C D (15)

he model for predicting the specific CO2 emission (EPCO2) was
eveloped using DesignExpert software, utilizing the simulated
alues of specific CO2 emission as depicted in Table 2. The model
s defined as follows:

PCO2 = 6.5249 − 3.2675 A − 0.9216 B − 1.0328 C − 4.9124 D
+ 0.0659 A B + 0.0033 A C + 2.4600 A D

+ 0.0500 B C + 0.6938 B D + 0.7776 C D (16)
1974
he analysis of variance (ANOVA) is employed to evaluate the
tatistical significance of the factors and their interactions on
ystem responses. By examining the F-values and their corre-
ponding p-values, the significance of the effects of factors and
nteractions can be determined. The statistical tests are conducted
t a significance level of α = 0.05, allowing for an assessment of
he level of significance in the observed results.

Table 3 presents the ANOVA results for the specific final en-
rgy for the heating EPH model. The table includes information
uch as degrees of freedom, sum of squares, factor contributions,
djusted sum of squares, adjusted mean squares, and F and p val-

ues. The model used for predicting EPH is statistically significant
(p < 0.05), as are its linear and 2-way interaction components (p

0.05). All terms of the model (linear and 2-way interactions)
xcept AC are statistically significant (p < 0.05). The contribution
nalysis reveals that the linear component accounts for 93.18%
f the variations in EPH, while the 2-way interactions component
xplains 6.81%. Among the factors, the most influential one is the
xternal wall heat transfer coefficient Uwall (A), which contributes
9.60% to explaining the variations in EPH. The heating system
fficiency η and the fuel GHG emission factor fCO2 (D) follow, with

a contribution of 22.89%. The interaction term AD contributes
5.74%. On the other hand, the ceiling heat transfer coefficient Uceil
C) and the windows heat transfer coefficient Uwin (B) are the
least influential factors, with contributions of 5.95% and 4.74%,
respectively. These findings align with the main effect plot of the
factors shown in Fig. 2.

Table 4 presents the ANOVA results for the specific CO2 emis-
sion EPCO2 model. The model used to predict EPCO2 is statistically
significant, including its linear and 2-way interaction components
(p < 0.05). All main effects and 2-way interactions involving D in
he model are statistically significant (p < 0.05).

The contribution analysis reveals that the linear component
ccounts for 83.70% of the variations in EPCO2, while the 2-way

interactions component explains 16.28%. Among the factors, the
results indicate that D, which represents the combined effect of
the heating system efficiency η and fuel GHG emission factor fCO2,
is the most influential factor, contributing 55.0% to explaining the
variations in EPCO2. Following D is A, representing the external
wall heat transfer coefficient Uwall, with a contribution of 24.33%,
and the interaction term AD with a contribution of 13.79%. Factors
C and B, representing the ceiling heat transfer coefficient Uceil
and windows heat transfer coefficient Uwin, respectively, have
the least influence, with contributions of 2.43% and 1.94%, respec-
tively. These findings align with the main effect plot of the factors
shown in Fig. 2.

The models’ performance in predicting the responses is eval-
uated using adjusted R2 (R2 ) and predicted R2 (R2 ). For the
adj pred
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Table 4
ANOVA for the specific CO2 emission EPCO2 model.
Source DF SS Contribution Adj SS Adj MS F-Value p-Value

Model 10 701.902 99.99% 701.902 70.190 4 524.69 0.000
Linear 4 587.590 83.70% 587.590 146.897 9 469.49 0.000
A. Uwall 1 170.825 24.33% 170.825 170.825 11 011.95 0.000
B. Uwin 1 13.588 1.94% 13.588 13.588 875.95 0.000
C. Uceil 1 17.067 2.43% 17.067 17.067 1 100.19 0.000
D. η 1 386.109 55.00% 386.109 386.109 24 889.85 0.000

2-way interactions 6 114.313 16.28% 114.313 19.052 1 228.16 0.000
A · B. Uwall · Uwin 1 0.069 0.01% 0.069 0.069 4.47 0.088
A · C. Uwall · Uceil 1 0.000 0.00% 0.000 0.000 0.01 0.921
A · D. Uwall · η 1 96.827 13.79% 96.827 96.827 6 241.79 0.000
B · C. Uwin · Uceil 1 0.040 0.01% 0.040 0.040 2.58 0.169
B · D. Uwin · η 1 7.702 1.10% 7.702 7.702 496.51 0.000
C · D. Uceil · η 1 9.674 1.38% 9.674 9.674 623.61 0.000
Error 5 0.078 0.01% 0.078 0.016
Total 15 701.980 100.00%

DF — degrees of freedom; SS — sum of squares; Adj SS — adjusted sum of squares; Adj MS — adjusted mean squares.
Fig. 2. Main effect plot for the specific final energy for heating and specific CO2 emission.
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EPH model, the coefficients R2
adj and R2

pred are 99.98% and 99.92%
espectively, indicating a strong agreement between the model-
redicted and simulated data. Similarly, for the EPCO2 model, the

coefficients R2
adj and R2

pred are 99.97% and 99.89% respectively,
demonstrating the adequacy of the models in predicting EPH and
EPCO2.

Fig. 2 displays the main effects plot for EPH and EPCO2. In this
plot, the response is plotted against the lower and upper limits
of each design factor, illustrating the relationship between the
factors and the corresponding responses.

The external wall heat transfer coefficient (A) has the largest
impact on EPH. Changing the value of A from −1 to +1, corre-
ponding to a change in value from 2.01 to 0.18 W/m2 K, results
in a significant reduction in EPH. This is because in the studied
single-family house (SFH), which has a low window-to-wall ratio
of only 10%, a significant portion of the external walls is exposed
to the environment, making them a major source of transmission
losses before renovation. The overall heating system efficiency (D)
is the second most influential factor on EPH. Changing D from −1
o +1, representing a change in system efficiency from the lowest
alue of 50% to the highest value of 90%, leads to a significant
eduction in EPH. On the other hand, the impact of the heat
ransfer coefficient of the ceiling below the unheated attic (C) and
he windows (B) on EPH is relatively lower.

For EPCO2, the external wall heat transfer coefficient (A) has
he largest impact. The combined effect of the overall heating
1975
ystem efficiency and the fuel GHG emission factor (D) is the
econd most influential factor on EPCO2. The impact of the heat
ransfer coefficient of the ceiling below the unheated attic (C) and
he windows (B) on EPCO2 is relatively lower.

Overall, the findings highlight the significance of improving
he external wall insulation and enhancing the heating system
fficiency in reducing both EPH and EPCO2 in the studied SFH.
The combined influence of the two most influential factors, A

nd D, along with their interaction AD, on the variables EPH and
EPCO2, is depicted through a 3D surface plot in Fig. 3. The highest
values of EPH and EPCO2 are observed when both factors are set
to a low level (−1). As the factors are increased from −1 to +1,
here is a significant linear decrease in both responses. The lowest
alues of EPH and EPCO2 are observed when both factors are at a
igh level (+1). Thus, in order to minimize EPH, it is necessary
o decrease Uwall to 0.18 W/m2 K and increase the overall system
fficiency η to 95%. Similarly, to minimize EPCO2, it is required
o decrease Uwall to 0.18 W/m2 K, increase the overall system
fficiency η to 95%, and reduce the GHG emission factor fCO2 to
.019 kg/kWh.

.1.1. Model validation
The model used to predict building energy consumption, as

efined by Eq. (15), is validated using data reported from a
ational-scale survey that covered 7083 households in B&H (Agic
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Fig. 3. 3D response surface plot of EPH(left) and EPCO2 (right) as a function of A and D.
c
c
e
t
r
r
i
p
i

h
r
d
r
g

t
h
h
a
w
i
s
t

et al., 2016). According to the survey findings, the average an-
nual consumption of wood for space heating per household is
approximately 7.7 m3. To calculate the final energy consumption
for heating, the fuel quantity consumed is multiplied by the
respective lower calorific values. On average, the lower calorific
value for wood is 1950 kWh/m3 (Neufert and Neufert, 2012),
and the specific annual final energy consumption for wood-based
heating systems is 230 kWh/m2 ann.

To validate the model, the building envelope heat transfer
coefficients are adjusted to national typical values for SFH (single-
family homes), as provided in the national TABULA study
(Arnautović-Aksić et al., 2016). Specifically, the external wall heat
transfer coefficient is set to 1.64 W/m2 K, the ceiling heat transfer
coefficient to 1.75 W/m2 K, and the windows are double glazed
with a wood frame, having a heat transfer coefficient of 3.0
W/m2 K. The dominant heating system in these households is a
single stove, wood-based system, which has an overall efficiency
of 50% (Carvalho et al., 2016). By applying Eq. (15) and utilizing
the coded factor values (A = −0.5956, B = −0.0099, C =

1, and D = −1), the calculated specific final energy is 223.6
Wh/m2 ann. This value is in good agreement with the annual
pecific final energy for heating of households in B&H, which is
30 kWh/m2 ann.

.2. Analysis of EE retrofit measures cost

Fig. 4 illustrates the cost structure associated with the in-
tallation of thermal insulation on external walls, denoted as
meas,A, with the aim of providing a clear understanding of the
ncluded costs. This cost structure is presented for three different
evels of retrofitting: low, middle, and high. Across all retrofit
evels, certain costs such as general expenses and labor costs
emain constant. The material cost remains constant when im-
lementing the low retrofit level (−0.99). However, as deeper
etrofits are implemented, the required materials become more
xpensive, resulting in an overall increase in the total cost of
he measure. The total cost across the entire range of retrofit
evels can be represented as the sum of fixed costs, which include
eneral expenses, labor costs, and material costs at the lowest
etrofit level, and variable costs, which encompass the additional
xpenses associated with installing more efficient and higher
uality materials and equipment.
Fig. 5 presents the total costs of four energy-efficient (EE)

etrofit measures, namely Cmeas.A, Cmeas.B, Cmeas.C and Cmeas.D,

cross different retrofit levels ranging from −1 to +1. The total m

1976
Fig. 4. Cmeas,A cost structure (installing thermal insulation on external walls).

ost of each EE retrofit measure comprises fixed and variable
omponents. The fixed cost remains constant throughout the
ntire range of retrofit levels, regardless of the specific level. On
he other hand, the variable cost increases linearly as deeper
etrofit measures are implemented and reaches its maximum at
etrofit level +1. At retrofit level −1, where no retrofit measure
s implemented, the total cost of the measure is equal to 0. Im-
lementing any retrofit measure from level −0.99 to +1 results
n an increase in the total cost.

The contribution of the fixed cost to the total cost is relatively
igh at lower retrofit levels and gradually decreases at higher
etrofit levels, generally ranging between 60% and 84%. This in-
icates the importance of implementing more extensive building
etrofits to leverage both fixed and variable costs and achieve
reater energy and CO2 emission performance improvements.
Analyzing all four considered EE retrofit measures, it is evident

hat the installation of thermal insulation on external walls Cmeas.A
as the highest total cost. This measure affects the external wall
eat transfer coefficient (A), and at retrofit level +1, the total cost
mounts to 9939 =C. The second-highest total cost is associated
ith the installation of a central heating system Cmeas.D, which

mpacts the overall heating system efficiency and fuel GHG emis-
ion factor (D). At retrofit level +1, the total cost of implementing
his measure is 6374 =C. The retrofit measure for windows replace-
ent C , affecting the windows’ heat transfer coefficient (B),
meas.B



D. Kadrić, A. Aganović and E. Kadrić Energy Reports 10 (2023) 1968–1981

f
t

C

3

t
e
t
d
P
s
r
o
f
i

a
c
a
t
1
w
c
t
m
F

t
2
w

Fig. 5. EE retrofit measures total costs.
E

ollows with a total cost of 4407 =C at retrofit level +1. Lastly,
he installation of thermal insulation on the attic ceiling Cmeas.C,
which impacts the ceiling heat transfer coefficient (C), has the
lowest total cost of 876 =C at retrofit level +1.

EE retrofit measures total costs Cmeas.A, Cmeas.B, Cmeas.C and
Cmeas.D for different retrofit levels (−1 to +1) are calculated as
follows:

Cmeas.A =

{
0 A = −1

7402.64 + 1268.22(1 + A) −0.99 ≤ A ≤ +1
(17)

Cmeas.B =

{
0 B = −1

3482.53 + 462.65(1 + B) −0.99 ≤ B ≤ +1
(18)

Cmeas.C =

{
0 C = −1

534.62 + 170.81(1 + C) −0.99 ≤ C ≤ +1
(19)

meas.D =

{
0 D = −1

5367.69 + 503.02(1 + D) −0.99 ≤≤ +1
(20)

.3. Multi-objective optimization

The multi-objective optimization problem, as defined in Sec-
ion 2.4, is solved using the NSGA-III genetic algorithm. Upon
xecuting the NSGA-III algorithm, a set of non-dominated solu-
ions, also known as the Pareto front, is obtained. Figs. 6 and 7
isplay the theoretical solution space, NSGA-III population space,
areto front, and the top five ranked solutions. The theoretical
olution space is obtained by varying all factor values within the
ange of −1 to +1, using Eqs. (15) to (20). Since the components
f the total cost of combined EE retrofit measures (Ct) are de-
ined as piecewise-linear functions (17)–(20), the solution space
s discrete and discontinuous.

The NSGA-III population space and Pareto front are obtained
fter 100 generations with a population size of 500. The algorithm
onverges to a Pareto front consisting of 24 solutions (individu-
ls). The ranking of solutions in the Pareto front is achieved using
he composite desirability function (13), with weights of 6, 3, and
assigned to objectives EPH, EPCO2 and Ct, respectively. These
eights prioritize building retrofits that lead to a high energy
lass classification with low energy consumption, in line with
he recommendations in the ‘‘Rulebook on minimum require-
ents for energy performance of buildings’’ (Official Gazette of
ederation of Bosnia and Herzegovina, 2019).
The total cost of the combined EE retrofit measures (Ct) for

he solutions in the Pareto front ranges from 0 =C, with EPH =

78.20 kWh/m2 ann and EPCO2 = 20.70 kg/m2 ann., to 21597 =C,
ith EP = 19.25 kWh/m2 ann. and EP = 0.44 kg/m2 ann.
H CO2

1977
Fig. 6. NSGA-III optimization results projected on EPHC t plane.

These anchor solutions represent the extreme points with the
lowest composite desirability function value of 0 (highlighted
as red points in Figs. 6 and 7). Anchor solutions either have
the maximum EPH and EPCO2 values and the minimum Ct value
or vice versa. Other objectives of the Pareto front solutions are
partially satisfied, falling between the minimum and maximum
objective values. The top five ranked solutions possess the highest
composite desirability function values, ranging from 0.76 to 0.81.
These solutions are extensively discussed in detail in Section 3.4.

3.4. Pareto front solutions ranking

The developed methodology and conducted analysis allow
for the determination of the most favorable solutions, which
encompass energy efficiency retrofit measures and retrofitting
levels. These solutions are ranked based on composite desirability
functions, where higher values indicate better solutions. Figs. 6
and 7, display the non-dominated solutions with their compos-
ite desirability function values. Additionally, these solutions are
listed in Table 5. where solutions 23 and 24 represents anchor
solutions. Each solution includes optimal building parameters
(measures to be implemented), along with their respective EPH,
PCO2, Ct values, and composite desirability function.
Table 5 presents the non-dominated solutions, which encom-

pass all the considered energy efficiency (EE) retrofit measures:
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Table 5
Non-dominated solutions ranked by composite desirability (CD) function.
Rank Building parameters (coded) Objective function values CDa

A B C D EPH EPCO2 Ct
(–) (–) (–) (–) (kWh/m2ann.) (kg/m2ann.) (Eur.) (–)

Baseline −1.00 −1.00 −1.00 −1.00 278.2 20.7 0.0 –

Non-dominated
solutions

1 1.00 −1.00 1.00 1.00 37.7 0.7 17 189.1 0.81
2 1.00 0.47 1.00 −1.00 44.0 3.2 14 979.8 0.80
3 1.00 −1.00 1.00 0.54 45.7 1.7 16 959.5 0.79
4 0.53 −1.00 1.00 1.00 57.1 1.1 16 596.2 0.78
5 1.00 −0.25 1.00 −1.00 58.1 4.3 14 643.4 0.76
6 1.00 −1.00 −1.00 0.96 66.2 1.4 16 294.0 0.76
7 0.00 −1.00 1.00 1.00 79.2 1.5 15 921.6 0.74
8 0.92 −1.00 1.00 −1.00 79.0 5.9 10 712.6 0.73
9 −1.00 0.87 1.00 1.00 99.2 2.0 11 596.2 0.73

10 1.00 −1.00 1.00 −1.00 72.7 5.4 14 297.9 0.72
11 0.54 −1.00 −1.00 0.94 86.3 2.0 15 702.6 0.72
12 −1.00 −1.00 1.00 1.00 120.8 2.4 7 250.0 0.69
13 1.00 1.00 1.00 −0.38 29.2 1.8 20 904.0 0.68
14 −1.00 0.79 −1.00 1.00 124.1 2.4 10 683.7 0.66
15 0.64 −1.00 1.00 −1.00 100.9 7.5 10 355.6 0.66
16 −1.00 −1.00 0.56 0.87 134.0 3.5 7 110.4 0.64
17 −1.00 −1.00 1.00 0.59 142.8 5.4 7 044.4 0.60
18 0.38 −1.00 1.00 −1.00 120.7 9.0 10 034.1 0.59
19 −1.00 −1.00 −1.00 0.63 172.7 6.3 6 186.7 0.51
20 −1.00 1.00 1.00 −1.00 184.9 13.7 5 284.1 0.38
21 −1.00 −1.00 −1.00 0.15 204.2 10.6 5 944.7 0.37
22 −1.00 −1.00 1.00 −1.00 228.5 17.0 4 358.8 0.22
23 −1.00 −1.00 −1.00 −1.00 279.2 20.7 0.0 0.00
24 1.00 1.00 1.00 1.00 19.2 0.4 21 596.9 0.00

a CD = Composite desirability.
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Fig. 7. NSGA-III optimization results projected on EPCO2C t plane.

nstalling thermal insulation on external walls (A) and unheated
ttic ceiling (C), replacing windows (B), and implementing a cen-
ral heating system along with reducing the fuel GHG emission
actor (D).

For the top five ranked solutions the algorithm generally sug-
ests implementing high levels of thermal insulation on external
alls and attic ceilings across the obtained solutions, while the

mplementation levels of the other two measures vary.
Among the measures included in top five ranked solutions, the

nstallation of thermal insulation on external walls provides the
argest reduction in EPH and the second-largest reduction in EPCO2.
espite having the highest implementation cost, the algorithm
ecommends implementing it at a high level (+1). On the other
and, the installation of thermal insulation on attic ceilings is pre-
erred over windows replacement due to its slightly larger impact
n EPH and EPCO2, along with significantly lower implementation
osts. As a result, factor C is consistently set at level +1 in the
 o

1978
op-ranked solutions, while factor B is predominantly at a low
evel (−1).

The installation of a central heating system and fuel replace-
ent has the largest effect on EPCO2 and the second-largest effect
n EPH. However, its implementation cost is reasonably lower
han that of thermal insulation on external walls. Although it
ight be expected that this measure would be preferred at a
igh level, it is not the case. This is because the weight assigned
o EPH is twice as important as the weight assigned to EPCO2.
onsequently, the installation of thermal insulation on external
alls is preferred over the installation of a central heating system,
xcept in the solution ranked as 4. Furthermore, the weights
ssigned to EPH and EPCO2 are six and three times greater than
he weight assigned to Ct, respectively, indicating that Ct does
ot significantly influence the measure preference. Therefore,
he installation of a central heating system is used to balance
bjectives satisfaction and is only partially implemented.
Based on EPH values and recommendations proposed in Of-

icial Gazette of Federation of Bosnia and Herzegovina (2019),
he top three solutions can be classified as high energy building
lass with low energy consumption (class A), while the last two
olutions belong to class B.
The total investment costs Ct for the top five ranked solutions

ange from 14643 to 17189 =C, resulting in significantly lower EPH
nd EPCO2 compared to the baseline. The best ranked solution
chieves an 86.5% reduction in EPH and 96.8% reduction in EPCO2.
Table 6 displays the specific and absolute final energy for

eating, CO2 emissions, and energy cost savings for the top five
anked solutions. The best ranked solution achieves the highest
nnual energy, CO2, and energy cost savings. The SPP is calculated
sing Eq. (14) and the results are presented in Table 6. The
alues obtained from the country’s energy statistics, as well as
nergy and fuel prices, serve as the baseline for estimating energy
osts. It is estimated that the annual energy cost for the baseline
cenario, which does not involve any energy efficiency retrofit, is
pproximately 1004 =C.
As shown, the SPP ranges from 17.7 to 21 years for the top

ive ranked solutions, with the best ranked solution having SPP

f 19.9 years.
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Table 6
Cost-effectiveness analysis of the top five solutions.
Rank Savings Economic indicator

EPH EPCO2 Efin,H mCO2 Csav SPP
(kWh/m2ann.) (kg/m2ann.) (kWh/ann.) (kg/ann.) (Eur/ann.) (Year)

Optimal
solutions

1 240.5 20.0 15729.0 1310.6 862.8 19.9
2 234.2 17.5 15315.4 1145.4 845.2 17.7
3 232.5 19.0 15206.4 1239.9 832.9 20.4
4 221.1 19.6 14458.9 1283.9 790.1 21.0
5 220.0 16.4 14389.6 1074.1 794.1 18.4
4. Conclusion

This study specifically focuses on the building type that ex-
ibits the highest energy consumption among all building cate-
ories in the country. Consequently, the insights gained from this
tudy hold significant value for integration into national building
enovation strategies. The objective of this study is to establish a
unctional relationship between specific final energy for heating,
pecific CO2 emissions, and various building design parameters
or a specific residential building type within the country. This
s achieved through the use of Full Factorial Design (FFD), which
llows for the development of a linear model to predict the
pecific final energy and CO2 emissions based on the building’s
design characteristics. To validate the accuracy of the model, the
results were compared with those obtained from a national study
on average household energy consumption (Agic et al., 2016).

The findings of this study confirm earlier research, which
suggests that upgrading external walls and improving the effi-
ciency of the heating system are the most effective measures for
reducing energy consumption and CO2 emissions. However, it is
worth noting that these measures are also the most expensive to
implement compared to other retrofit options, resulting in higher
overall retrofit costs. In order to minimize specific final energy
for heating, specific CO2 emissions, and retrofit costs, a multi-
objective optimization approach is employed for the selected
building.

The key points derived from this study can be summarized as
follows:

• The FFD methodology enables the establishment of a func-
tional relationship between specific final energy for heating,
specific CO2 emissions, and various building parameters,
such as building envelope characteristics, overall system
efficiency, and fuel GHG emission factor.

• The analysis of the models indicates that installing ther-
mal insulation on external walls has the greatest impact
on reducing specific final energy for heating and specific
CO2 emissions, followed by improving the efficiency of the
heating system and utilizing fuels with lower GHG emission
factors.

• The cost of an energy efficiency retrofit encompasses ma-
terial and equipment prices, labor costs, and general ex-
penses, which can be categorized into fixed and variable
components. Fixed costs constitute the largest portion of the
overall costs, while variable costs fluctuate depending on the
level of retrofitting.

• To achieve multi-objective optimization, the NSGA-III ge-
netic algorithm is employed to identify the Pareto front of
non-dominated solutions. These solutions represent a set
of energy efficiency retrofit measures that yield the lowest
specific final energy for heating, specific CO2 emissions, and
overall retrofit costs.

• From the set of non-dominated solutions, the top five ranked
solutions with the highest composite desirability functions
are analyzed in detail. These solutions include all considered
energy efficiency (EE) retrofit measures: installing thermal
1979
insulation on external walls and unheated attic ceiling,
replacing windows, and implementing a central heating
system along with reducing the fuel GHG emission factor.
Implementing high levels of thermal insulation on external
walls and attic ceilings is always included, while the imple-
mentation levels of the other two measures vary in top five
ranked solutions. The best-ranked set of energy efficiency
retrofit measures achieves a Simple Payback Period (SPP) of
19.9 years.
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