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Ambulatory blood pressure 
as risk factor for long‑term kidney 
function decline in the general 
population: a distributional 
regression approach
Bjørn O. Eriksen  1,2*, Matteo Fasiolo 3, Ulla D. Mathisen 1,2, Trond G. Jenssen 1,4, 
Vidar T. N. Stefansson 1,2 & Toralf Melsom 1,2

The results of randomized controlled trials are unclear about the long-term effect of blood pressure 
(BP) on kidney function assessed as the glomerular filtration rate (GFR) in persons without chronic 
kidney disease or diabetes. The limited duration of follow-up and use of imprecise methods for 
assessing BP and GFR are important reasons why this issue has not been settled. Since a long-term 
randomized trial is unlikely, we investigated the association between 24-h ambulatory BP (ABP) and 
measured GFR in a cohort study with a median follow-up of 11 years. The Renal Iohexol Clearance 
Survey (RENIS) cohort is a representative sample of persons aged 50 to 62 years without baseline 
cardiovascular disease, diabetes, or kidney disease from the general population of Tromsø in northern 
Norway. ABP was measured at baseline, and iohexol clearance at baseline and twice during follow-up. 
The study population comprised 1589 persons with 4127 GFR measurements. Baseline ABP or office 
BP components were not associated with the GFR change rate in multivariable adjusted conventional 
regression models. In generalized additive models for location, scale, and shape (GAMLSS), higher 
daytime systolic, diastolic, and mean arterial ABP were associated with a slight shift of the central 
part of the GFR distribution toward lower GFR and with higher probability of GFR < 60 mL/min/1.73 
m2 during follow-up (p < 0.05). The use of a distributional regression method and precise methods for 
measuring exposure and outcome were necessary to detect an unfavorable association between BP 
and GFR in this study of the general population.

High blood pressure (BP) is the leading risk factor for death and loss of disability-adjusted life years globally 
and is an important risk factor for end-stage kidney disease (ESKD)1. Whereas randomized controlled trials 
(RCTs) have established hypertension as a cause of cardiovascular disease beyond a reasonable doubt, similar 
high-quality evidence does not exist for the prevention of chronic kidney disease (CKD) by treating primary 
hypertension in persons without diabetes2–6. Indeed, at least two RCTs have found an adverse effect of intensified 
antihypertensive treatment on the glomerular filtration rate (GFR)4,5. Although this may have been caused by 
short-term hemodynamic changes that may ultimately lead to beneficial long-term effects, this remains unproven 
because of the limited duration of follow-up in the RCTs2–5.

The lack of definitive evidence for the causal association between high BP and loss of kidney function has 
raised doubts about whether nonmalignant primary hypertension is a cause of CKD in persons without diabe-
tes. In a study of kidney biopsies from live kidney donors by Denic et al., mild hypertension was not associated 
with the number of nephrons, the single-nephron glomerular filtration rate (GFR), or the total GFR7. In the 
longitudinal population-based Renal Iohexol Clearance Survey (RENIS), we did not find an association between 
elevated BP and accelerated mean GFR decline in the general middle-aged population over a median follow-up 
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of 5.6 years8,9. We hypothesized that additional genetic and environmental factors are necessary for elevated BP 
to cause CKD in some individuals after an even longer observation period.

In the present study, we investigated this hypothesis by analyzing baseline 24-h ambulatory blood pressure 
(ABP) as a risk factor for change in the GFR measured as iohexol clearance after a follow-up of more than ten 
years. Since conventional least squares regression methods only analyze changes in the mean of the GFR dis-
tribution while assuming its other properties to be constant, we used distributional regression to analyze the 
associations between ABP and the time change of different percentiles of the GFR distribution10.

Methods
Study population.  The Renal Iohexol Clearance Survey (RENIS) is a substudy of the Tromsø Study. The 
Tromsø Study has invited random samples of the general population of the municipality of Tromsø in northern 
Norway to a series of repeated health surveys11. The RENIS cohort was recruited from all persons between 50 
and 62 years of age examined in the sixth Tromsø Study. All persons without self-reported cardiovascular dis-
ease, kidney disease or diabetes mellitus were invited, and 1627 persons were included in random order until 
a prespecified target was met. The cohort underwent measurements of plasma iohexol clearance at baseline in 
2007–2009 (RENIS-T6), in 2013–2015 (RENIS-FU) and in 2018–2020 (RENIS-3) (Fig. 1). The inclusion process 
has been described in detail previously12. All included persons were invited to ABP measurement at baseline, 
and everybody with a valid measurement was eligible for the present study (Fig. 1). The GFR measurements of a 
small random sample who had an extra GFR measurement for the purpose of assessing day-to-day variation in 
RENIS-FU were also included in the analyses.

This study complied with the Declaration of Helsinki and was approved by the Regional Committee for 
Medical and Health Research Ethics of Northern Norway. All subjects provided a written informed consent.

Data.  The investigations were performed at the Clinical Research Unit of the University Hospital of North 
Norway. The participants answered questionnaires that included questions about previous diseases, alcohol use, 
smoking habits, and current medication. Alcohol use was analyzed as a dichotomous variable for the weekly use 
of alcohol or not. Smoking was analyzed as the number of cigarettes per day currently used. Antihypertensive 
medication was analyzed as separate dichotomous variables for the use of ACE inhibitors, A2 receptor blockers, 
beta-blockers, calcium blockers, diuretics or other antihypertensives.

Study population (n=1589) 

RENIS-T6 (n=1627)
(2007-2009)

RENIS-3 
(n=1154)
(2018-2020)

RENIS-FU 
(n=1299)
(2013-2015) Excluded: 

No valid 
ABP (n=19), 

missing
value for 

study
variable 
(n=19)

1154

1299

1069

230

85

205

38

Figure 1.   Persons from the Renal Iohexol Clearance Survey (RENIS) cohort were included in the present 
investigation. The numbers in ovals represent the numbers of persons from one wave of the investigation 
included in the next. RENIS-T6 the baseline investigation; RENIS-FU, the first follow-up; RENIS-3, the last 
follow-up; ABP, ambulatory blood pressure.
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Measurements.  Iohexol clearance.  GFR was measured as single-sample plasma iohexol clearance, which 
has been validated against gold standard methods13,14 and has been described in detail previously12,15. Five mil-
lilitres of iohexol were injected intravenously and a sample obtained for iohexol measurement at the optimal 
sampling time for each person calculated by Jacobsson’s equation16. GFR was calculated by a numerical solution 
of Jacobsson’s three equation 16. To avoid confounding from changes in body size, absolute GFR in mL/min was 
used. Body surface area-indexed GFR was analyzed in a sensitivity analysis17. Body surface area was estimated 
by the equation of DuBois and DuBois17.

Blood pressure measurements.  Twenty-four-hour ABP was initiated at the day of the baseline GFR measure-
ment using the Spacelab 90207 (Spacelab Inc., Redmond, Washington, USA) as described previously18. The 
criteria for a valid ABP measurement were adopted from the International Database on Ambulatory Blood 
Pressure in Relation to Cardiovascular Outcome study19. Attended office BP was measured after 2 min of rest 
in the seated position with an automated device (model UA 799; A&D, Tokyo, Japan) by a study nurse18. The 
daytime to nighttime systolic and diastolic dips were analyzed as one minus the ratio of the mean nighttime 
to daytime systolic BP (SBP) or diastolic BP (DBP). Ambulatory mean arterial pressure (MAP) was defined as 
DBP + ((SBP − DBP)/3).

Office hypertension was defined as office SBP ≥ 140 mmHg or office DBP ≥ 90 mmHg or the use of antihyper-
tensive medication according to the guidelines of the European Society of Hypertension20.

Other baseline measurements.  Fasting serum glucose, creatinine, cystatin C, triglycerides, and LDL- and HDL-
cholesterol were measured with standard methods as described previously18. The urine albumin-creatinine ratio 
(ACR) was measured as the median of ACR measured on three separate days21. Serum creatinine was meas-
ured using an enzymatic assay standardized to the isotope dilution mass spectrometry method (CREA Plus, 
Roche Diagnostics, GmbH, Mannheim, Germany). Cystatin C was measured by a particle-enhanced turbidi-
metric immunoassay (Gentian, Moss, Norway) calibrated to the international reference ERM-DA471/IFCC as 
described previously22. Estimated GFR (eGFR) was calculated using the original Chronic Kidney Disease Epide-
miology Collaboration equations published in 2009 and 2012 (eGFRcrea, eGFRcys and eGFRcyscrea)23,24.

Statistical methods.  The baseline characteristics of the cohort are given as the mean (standard deviation) 
or median (interquartile range) for ABP < or ≥ 130/80, the threshold for hypertensive 24-h ABP according to the 
European Society of Hypertension20. Differences across the ABP levels were analyzed with two-sample t-tests, 
Wilcoxon rank-sum tests or tests of proportion as appropriate.

We first investigated the relationship between mean GFR and the BP components with general additive 
mixed models (GAMM)25,26. GAMMs are a generalization of linear mixed models where nonlinear effects of the 
independent variables can be modeled. The reason for using GAMMs and not linear mixed models was that a 
previous investigation in the RENIS cohort found sex-specific nonlinear relationships between mean GFR and 
time12. Accordingly, we adjusted for these relationships in the GAMMs.

The GAMMs had GFR as the dependent variable and a linear term for each BP component as the independent 
variable in separate models. The models included a random intercept and slope and an unstructured covariance 
matrix. We analyzed office and ambulatory daytime and nighttime SBP, DBP, and MAP as well as the systolic 
and diastolic nighttime BP dips. We included both the linear main effects of these BP components and their 
interaction with time. The coefficient for this interaction represented the association between the component 
and the GFR change rate. A negative sign for the coefficient signified a steeper GFR decline. The time variable 
was defined as years since baseline. In addition to the sex-specific nonlinear time variables, we included two 
sets of linear baseline adjustment variables, including their interactions with time: Model 1: sex and sex-specific 
variables for baseline age, body weight, height, and dichotomous variables for each class of antihypertensive 
medication. Model 2: As Model 1 with the addition of pulse frequency, fasting glucose, triglycerides, LDL- and 
HDL-cholesterol, number of cigarettes currently smoked per day, and a dichotomous variable for weekly alcohol 
use. Model 3: As Model 2 with the addition of ACR. All study participants were included in the GAMM analyses 
regardless of whether they were examined at follow-up because mixed models allow for missing observations 
at one or more points in time27,28.

Next, we analyzed the associations between ABP and the time change of the GFR distribution in general-
ized additive models for location, scale, and shape (GAMLSS). Conventional least squares regression methods 
analyze the effect of exposures on the mean of outcomes, whereas other aspects of their probability distributions 
are assumed to be independent of the exposures. GAMLSS relaxes these assumptions and analyzes the effects 
of the exposure on the total outcome distribution25,26,29. The GFR distribution used in this investigation was the 
sinh-arcsinh (SHASH) distribution30, which is specified by the four parameters location, scale, skewness, and 
tailweight. Variations of these four parameters permit greater flexibility in the probability distribution that can 
be modeled than the usual normal distribution (see Online Resource and Fig. S1). The GAMLSS models each of 
the four parameters as a nonlinear function of the ABP component and of their interaction with time as inde-
pendent variables. Accordingly, the main difference between GAMLSS and conventional regression methods is 
that GAMLSS analyzes four dependent variables (location, scale, skewness, and tailweight) simultaneously in 
one model, whereas other methods only analyze one dependent variable (the mean). The location, scale, and 
tailweight parameters are related (but not exactly equivalent) to the mean, standard deviation, and kurtosis (see 
Online Resource and Fig. S1). In the function for the location, we included a random intercept and adjustments 
as in Model 2 in the GAMM above, except that we used one dichotomous variable for the use of any antihyper-
tensive medication to simplify the model. For the same reason, we restricted adjustments in the functions for 
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scale, skewness, and tailweight to sex-specific nonlinear functions of the time variable. We investigated day- and 
nighttime SBP, DBP, and MAP in separate GAMLSS.

To find the simplest model consistent with the data, we compared the fit of models with the four SHASH 
parameters specified above with models where one or more of the nonlinear functions for scale, skewness or 
tailweight were replaced by a constant. Models with all eight possible combinations of replacement by a constant 
for these three parameters were examined. The Akaike Information Criterion (AIC) was used to compare the fit 
of the models31. The p-value for the nonlinear interaction between the ABP component and time for each SHASH 
parameter in each best-fitting model was used to judge whether there was a time-dependent association between 
the ABP component and the development of the GFR distribution. The finding of an association implied that 
the corresponding ABP component was a risk factor for time change in the GFR distribution. The p-value for 
the nonlinear main effect of an ABP component in each best-fitting model was used to judge whether there was 
a time-independent cross-sectional association between the BP component and GFR.

STATA/MP 17.0 (www.​stata.​com) and R version 3.6.3 (www.r-​proje​ct.​org) were used for the analyses in this 
study. The mgcv and mgcViz packages of R were used for the analyses with GAMM and GAMLSS25,26. Statistical 
significance was set at p < 0.05.

Results
Valid ABP measurements were obtained for 1608 (99%) of the 1627 persons included at baseline. Because of 
missing values for some of the adjustment variables for 38 persons (Table S1), the study population consisted of 
1589 (98%) complete cases (Table S1, Fig. 1). Of these 1589 persons, 1299 had repeated GFR measurements in 
RENIS-FU and 1154 in RENIS-3. In addition, a random sample of 85 of the participants in RENIS-FU had an 
extra measurement to measure the day-to-day variation in GFR. Accordingly, the total number of GFR measure-
ments was 4127. Reasons for not attending and comparisons of investigated persons with all eligible persons have 
been published previously12. The median (IQR) (range) follow-up was 10.7 (6.4–11.3) (0–12.8) years.

Most baseline characteristics (Table 1), including mGFR, differed between the two categories of ABP 
(p < 0.05), but not eGFRcrea, eGFRcys, eGFRcyscrea, smoking, alcohol use or LDL-cholesterol.

Associations of blood pressure components with the mean GFR change rate.  There were no 
statistically significant linear associations of any of the investigated BP components with the mean GFR change 
rate in the GAMMs in the fully adjusted model (Table 2). Sensitivity analyses after excluding observations with 
self-reported incident CVD during follow-up, after excluding persons with antihypertensive treatment and with 
body surface area adjusted GFR gave similar results (Supplementary Results, Tables S2 and S3).

Nonlinear associations of ambulatory blood pressure with the time change in the GFR distri‑
bution.  GAMLSS with nonlinear functions for location, scale, and skewness, but with a constant tailweight 
parameter, had the lowest AIC and best fit for all of the ABP components except nighttime DBP (Model G, 
Table S4). For nighttime DBP, a model with both constant skewness and tailweight had the lowest AIC (Model 
C, Table S4).

In these best fitting models, the daytime but not the nighttime ABP components, were associated with non-
linear time changes in the GFR distribution (p < 0.05) (Table 3). Accordingly, only daytime ABP was a risk fac-
tor for the time change of GFR. The predicted time changes of the four SHASH parameters at the mean of the 
adjustment variables for daytime ABP are plotted in Fig. S2, and the complete GFR probability density functions 
at baseline and the maximum follow-up of 13 years are shown in Fig. 2.

In contrast, all of the ABP components demonstrated cross-sectional time-independent associations with 
the location and scale parameters (p < 0.05) (Table 3). The daytime and nighttime SBP were also associated with 
the skewness parameter (p < 0.05). This indicates that high ABP was associated with a wider GFR distribution, 
which was skewed toward a lower GFR for systolic ABP at baseline (Figs. 2, 3 and Fig. S2).

The corresponding predicted time change of the 10th, 25th, 50th, 75th and 90th percentiles of the GFR 
distribution for daytime ABP at the mean of the adjustment variables are shown in Fig. 3. The figure includes 
separate curves for the 5th and 95th percentiles of the ABP components (110 and 152 mmHg for daytime SBP, 
68 and 96 mmHg for daytime DBP and 83 and 114 mmHg for daytime MAP). The difference between the GFR 
percentiles for these two ABP levels vs. time is plotted in Fig. 4.

At baseline, Fig. 4 demonstrates that the central part of the GFR distribution between the 25th and 75th 
percentiles is greater for high than for low daytime SBP. Over the follow-up period, the differences decreased 
for high vs. low daytime SBP, DBP and MAP by approximately 2 to 5 mL/min. This indicates a modestly steeper 
GFR decline for most persons with high daytime ABP. The largest difference between the ABP levels was found 
for the 10th percentile of the GFR distribution, but this effect was fairly constant over time, except for an increas-
ingly negative difference in daytime SBP in men (Fig. 4). This means that high ABP confers a higher probability 
of GFR lower than the 10th percentile but that this risk increases over time only for daytime SBP in men. The 
increasingly positive difference between the 90th percentiles of the GFR distribution for all three daytime ABP 
components indicates that some people with high daytime ABP developed higher GFR than people with low 
ABP (Figs. 3 and 4).

Sensitivity analyses with office BP components in the best fitting GAMLSS in Table 3 found no statistically 
significant associations with the time change of the SHASH parameters (Supplementary Results, Table S5). 
Sensitivity analyses after exclusion of persons with antihypertensive treatment demonstrated the same pattern 
of statistically significant time-dependent associations with change in the daytime ABP SHASH parameters as 
in the total cohort (Supplementary Results, Table S6, Fig. S3).

http://www.stata.com
http://www.r-project.org
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Ten‑year probability of incident GFR less than 60 mL/min/1.73 m2.  Based on the best fitting 
GAMLSS for daytime ABP, the predicted ten-year probabilities of a GFR lower than 60 mL/min/1.73 m2 are 
shown in Fig. 5. For this purpose, the GFR used in the GAMLSS was indexed for the sex-specific mean body 
surface area. Simulating 5000 samples from the posterior distribution of the regression coefficients was used 
to construct 95% credible intervals (CI)25. For women, the difference in probability between the 95th and 5th 
percentiles for daytime SBP was 0.05 (95% CI 0.03 to 0.09), for daytime DBP 0.03 (95% CI 0.002 to 0.07) and for 

Table 1.   Baseline characteristics of the RENIS cohort according to baseline ambulatory blood pressure. RENIS 
the Renal Iohexol-clearance Survey. Estimates are given as mean (standard deviation), median (interquartile 
range) or n(percent). a GFR estimated with equations published by the Chronic Kidney Disease Epidemiology 
Collaboration (reference 21).

Baseline characteristic

24 h ambulatory blood pressure

All (n = 1589) ≥ 130/80 (n = 604)  < 130/80 (n = 985) P-value

Age, years 58.1 (3.8) 58.3 (3.8) 57.9 (3.9) 0.10

Male gender, % 779 (49%) 409 (68%) 370 (38%)  < 0.001

Body weight, kg 79.7 (14.4) 84.0 (14.3) 77.0 (13.9)  < 0.001

Height, cm 170.6 (8.7) 172.9 (8.5) 169.2 (8.6)  < 0.001

Body surface area (m2) 1.91 (0.20) 1.98 (0.19) 1.87 (0.19)  < 0.001

Body mass index, kg/m2 27.3 (4.0) 28.0 (3.8) 26.8 (4.1)  < 0.001

Body mass index ≥ 30 kg/m2, n(%) 360 (23%) 161 (27%) 201 (20%) 0.004

Current smoker, n (%) 337 (21%) 120 (20%) 217 (22%) 0.31

Use of alcohol at least weekly, n(%) 433 (27%) 179 (30%) 254 (26%) 0.09

LDL cholesterol, mmol/L 3.7 (3.1) 3.7 (3.2) 3.6 (3.0) 0.06

HDL cholesteroll, mmol/L 1.5 (1.2) 1.4 (1.1) 1.5 (1.3)  < 0.001

Fasting triglycerides, mmol/L 1.00 (0.80 to 1.50) 1.20 (0.80 to 1.60) 1.00 (0.70 to 1.30)  < 0.001

Fasting glucose, mmol/L 5.30 (5.00 to 5.60) 5.40 (5.10 to 5.70) 5.20 (4.90 to 5.60)  < 0.001

Ambulatory blood pressure, mmHg

 24 h systolic 123.3 (12.3) 134.7 (9.7) 116.4 (7.7)  < 0.001

 24 h diastolic 76.5 (8.1) 84.0 (6.1) 71.8 (5.2)  < 0.001

 24 h mean arterial 92.1 (9.0) 100.9 (6.3) 86.7 (5.4)  < 0.001

 Daytime systolic 130.2 (13.2) 141.9 (10.6) 123.0 (8.7)  < 0.001

 Daytime diastolic 82.1 (8.7) 89.7 (6.8) 77.4 (6.0)  < 0.001

 Daytime mean arterial 98.1 (9.6) 107.1 (7.0) 92.6 (6.3)  < 0.001

 Nighttime systolic 111.0 (12.4) 121.2 (11.1) 104.8 (8.5)  < 0.001

 Nighttime diastolic 66.4 (8.5) 73.3 (7.3) 62.2 (5.9)  < 0.001

 Nighttime mean arterial 81.3 (9.3) 89.3 (7.8) 76.4 (6.2)  < 0.001

Office blood pressure, mmHg

 Systolic 129.6 (17.7) 142.2 (15.9) 121.9 (13.9)  < 0.001

 Diastolic 83.4 (9.8) 90.2 (8.5) 79.2 (8.1)  < 0.001

 Mean arterial 98.8 (11.8) 107.5 (9.9) 93.4 (9.4)  < 0.001

Office hypertension, n(%) 676 (43%) 439 (73%) 237 (24%)  < 0.001

Antihypertensive medication, n(%) 295 (19%) 158 (26%) 137 (14%)  < 0.001

ACE inhibitor, n(%) 29 (2%) 20 (3%) 9 (1%) 0.001

A2 blocker, n(%) 136 (9%) 69 (11%) 67 (7%) 0.001

Betablocker, n(%) 72 (5%) 30 (5%) 42 (4%) 0.51

Diuretic, n(%) 146 (9%) 76 (13%) 70 (7%)  < 0.001

Calcium blocker, n(%) 81 (5%) 47 (8%) 34 (3%)  < 0.001

Other antihypertenives, n(%) 2 (0%) 1 (0%) 1 (0%) 0.73

Urinary albumin-creatinine ratio

 0–29, mg/g 1566 (99%) 592 (98%) 974 (99%) 0.18

 30–299, mg/g 22 (1%) 11 (2%) 11 (1%)

 ≥ 300 mg/g 1 (0%) 1 (0%) 0 (0%)

Absolute measured GFR, mL/min 104.0 (20.1) 109.2 (20.8) 100.8 (18.9)  < 0.001

Measured GFR, mL/min/1.73 m2 93.9 (14.4) 95.5 (14.7) 93.0 (14.2) 0.001

Creatinine-based estimated GFRa, mL/min/1.73 m2 94.9 (9.5) 94.6 (9.5) 95.0 (9.5) 0.41

Cystatin C-based estimated GFRa, mL/min/1.73 m2 105.4 (12.4) 105.5 (12.4) 105.4 (12.4) 0.85

Creatinine and cystatin C-based estimated GFRa, mL/
min/1.73 m2 103.0 (11.4) 102.7 (11.3) 103.2 (11.5) 0.37
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daytime MAP 0.05 (95% CI 0.02 to 0.09). For men, the same differences were 0.04 (95% CI 0.02 to 0.07), 0.02 
(95% CI -0.01 to 0.04) and 0.03 (95% CI 0.01 to 0.06).

Sex.  We compared the fit of GAMLSS for daytime ABP in Table 3 with and without sex-specific nonlinear 
functions for the interaction between ABP components and time. The AIC improved slightly only for daytime 
SBP (32,636 vs. 32,640), but the effects of the sex-specific terms were not statistically significant. Accordingly, we 
did not find evidence of sex-specific effects of ABP on the time change of the GFR distribution.

Associations between BP and the time change of estimated GFR.  Substituting eGFRcrea, eGFRcys 
or eGFRcyscrea for GFR as the dependent variable in the fully adjusted GAMM and GAMLSS models demon-
strated substantial differences between measured GFR and eGFR, and between the three different eGFRs (see 
Supplementary Results, Tables S7 and S8, Fig. S4).

Discussion
This study found no association between elevated baseline BP and long-term mean GFR in the multivariable-
adjusted conventional regression models (Table 2). With a distributional regression method, higher baseline 
daytime ABP was a risk factor for the development of a more unfavorable GFR distribution (Figs. 2, 3 and 4). 
We found an increased risk of a modestly accelerated decline in the central part of the GFR distribution and a 
small increase in the absolute risk of a low GFR between the 95th and 5th percentiles of daytime SBP (Fig. 5). 
Accordingly, elevated baseline daytime ABP contributed to a slightly steeper GFR decline in most people and to 
a small increase in the absolute risk of chronic kidney disease, defined as a low GFR.

Table 2.   Linear associations between the mean GFR change rates and baseline blood pressure components 
in generalized additive mixed models. The RENIS cohort. Each line for each model in the table represents the 
linear association between the blood pressure component in the first column and the GFR change in a separate 
generalized additive mixed model. Model 1 was adjusted for sex and sex-specific variables for baseline age, 
body weight, height, dichotomous variables for each class of antihypertensive medication and sex-specific 
non-linear terms for the time variable. Model 2: As model 1 and in addition pulse frequency, fasting glucose, 
triglycerides, LDL- and HDL-cholesterol, number of cigarettes currently smoked per day, and a dichotomous 
variable for the weekly alcohol use. Model 3: As model 2 and in addition the urinary albumin-creatinine ratio. 
RENIS the Renal Iohexol-clearance Survey, GFR glomerular filtration rate, CI confidence interval. *Calculated 
as one minus the ratio of the mean nighttime to daytime systolic or diastolic blood pressure.

Blood 
pressure 
component

Model 1 Model 2 Model 3

Beta coefficient, mL/min/year (95% CI) P-value Beta coefficient, mL/min/year (95% CI) P-value Beta coefficient, mL/min/year (95% CI) P-value

Ambulatory blood pressure, per 10 mmHg increase

 24 h

  Systolic − 0.07 − 0.13 to − 0.01 0.03 − 0.05 − 0.11 to 0.01 0.10 − 0.05 − 0.11 to 0.02 0.14

  Diastolic − 0.07 − 0.16 to 0.02 0.13 − 0.06 − 0.15 to 0.03 0.21 − 0.05 − 0.15 to 0.04 0.28

  Mean 
arterial 
pressure

− 0.08 − 0.16 to 0.00 0.06 − 0.06 − 0.15 to 0.02 0.13 − 0.06 − 0.14 to 0.03 0.18

 Daytime

  Systolic − 0.04 − 0.10 to 0.01 0.12 − 0.03 − 0.09 to 0.03 0.29 − 0.03 − 0.08 to 0.03 0.37

  Diastolic − 0.03 − 0.12 to 0.05 0.43 − 0.03 − 0.11 to 0.06 0.56 − 0.02 − 0.11 to 0.07 0.66

  Mean 
arterial 
pressure

− 0.05 − 0.12 to 0.03 0.23 − 0.03 − 0.11 to 0.04 0.40 − 0.03 − 0.11 to 0.05 0.50

 Nighttime

  Systolic − 0.07 − 0.13 to − 0.01 0.02 − 0.05 − 0.11 to 0.01 0.08 − 0.05 − 0.11 to 0.01 0.12

  Diastolic − 0.08 − 0.17 to 0.00 0.06 − 0.08 − 0.16 to 0.01 0.09 − 0.07 − 0.16 to 0.02 0.12

  Mean 
arterial 
pressure

− 0.09 − 0.17 to − 0.01 0.03 − 0.07 − 0.15 to 0.01 0.07 − 0.07 − 0.15 to 0.01 0.10

Daytime to nighttime blood pressure dipa, per 0.10 increase

 Systolic − 0.07 − 0.18 to 0.04 0.22 − 0.06 − 0.17 to 0.05 0.30 − 0.06 − 0.17 to 0.05 0.32

 Diastolic − 0.08 − 0.17 to 0.02 0.12 − 0.07 − 0.16 to 0.03 0.17 − 0.06 − 0.16 to 0.03 0.19

Office blood pressure, per 10 mmHg increase

 Systolic − 0.05 − 0.09 to − 0.01 0.03 − 0.04 − 0.08 to 0.00 0.07 − 0.04 − 0.08 to 0.01 0.10

 Diastolic − 0.06 − 0.14 to 0.02 0.13 − 0.06 − 0.14 to 0.02 0.15 − 0.05 − 0.14 to 0.03 0.19

 Mean arterial 
pressure − 0.06 − 0.13 to 0.00 0.05 − 0.06 − 0.13 to 0.01 0.08 − 0.05 − 0.12 to 0.01 0.11
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To our knowledge, the only other longitudinal investigation of ABP and kidney function in a population-
based study was McMullan et al.’s study of ABP and eGFRcrea

32. The authors found no association between SBP 
and incident CKD but did not report results for DBP. Several differences between the study population and meth-
odology may account for the differences from our study, of which the most important were a low participation 
rate, the use of estimated GFR and the lack of any adjustment for antihypertensive medication32.

Considerable uncertainty exists about the effects of BP on GFR. Although most longitudinal observational 
studies have found an association between BP and subsequent GFR decline, incident CKD or ESKD33–52, there 
is no conclusive evidence from RCTs that antihypertensive treatment prevents kidney dysfunction, except in 
patients with CKD or diabetes2–5. In a meta-analysis of RCTs with 78,931 participants, BP-lowering treatment 
had no effect on the risk of kidney failure6. However, the short median follow-up of only 3.4 years of the included 
studies was a major limitation, which may explain why beneficial effects were difficult to detect.

We found different predicted time changes in the GFR for women and men (Figs. 3 and 5), even if there was 
no evidence of sex-specific BP effects on time change in the statistical models. This is a consequence of the overall 
nonlinear sex-specific trajectories of age-related GFR decline, which have been discussed in a previous paper12. 
Because this effect was included as an adjustment in the GAMLSS in this investigation, its predictions differed 
between the two sexes due to the nonlinearity of the models, although the overall pattern of changes was the same.

The time change in the GFR distribution showed a paradoxical high GFR with an increasing trend for high 
daytime ABP (Fig. 4). In addition to the role of high GFR or hyperfiltration as a pathogenetic factor in diabetic 
kidney disease53, there is also evidence of an association between hypertension and hyperfiltration from a recent 
Mendelian randomization study54 and from the initial drop in GFR when antihypertensive treatment is started in 
RCTs55–57. This drop has been interpreted as a beneficial effect of reducing hyperfiltration58. Our results suggest 
that hyperfiltration may persist longer than previously thought in some persons. The ultimate consequences of 
this are unclear.

Whereas the aim of this study was to study the time change in the GFR distribution, there were statisti-
cally significant cross-sectional time-independent associations between all of the ABP components and SHASH 

Table 3.   P-values for the non-linear associations between ABP components and parameters of the SHASH 
distribution in the best fitting GAMLSS models for GFR and ABP-data in the RENIS cohort. Each row in the 
table represents the p-value for the non-linear association between the corresponding ABP component and 
SHASH parameter in Model G of Table S5 for all ABP components except nighttime DBP, where Model C had 
the best fit. RENIS the Renal Iohexol-clearance Survey, ABP ambulatory blood pressure, SHASH distribution 
sinh-arcsinh distribution, GAMLSS generalized additive models for location, scale and shape, RENIS the Renal 
Iohexol-clearance Survey, GFR glomerular filtration rate.

ABP component SHASH parameter

P-value for association

Time-independent level Time-dependent change

Daytime ABP

 Systolic

Location 0.01 0.02

Scale  < 0.001 0.28

Skewness 0.002 0.13

Tailweight Constant Constant

 Diastolic

Location  < 0.001 0.004

Scale 0.01 0.21

Skewness 0.59 0.02

Tailweight Constant Constant

 Mean arterial pressure

Location 0.006 0.006

Scale  < 0.001 0.17

Skewness 0.06 0.13

Tailweight Constant Constant

Nighttime ABP

 Systolic

Location 0.04 0.49

Scale  < 0.001 0.22

Skewness 0.01 0.68

Tailweight Constant Constant

 Diastolic

Location 0.001 0.17

Scale  < 0.001 0.08

Skewness Constant Constant

Tailweight Constant Constant

 Mean arterial pressure

Location 0.004 0.23

Scale  < 0.001 0.07

Skewness 0.09 0.27

Tailweight Constant Constant
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parameters (Table 3, Figs. 2, 3 and Fig. S2). This indicates that the associations between ABP and GFR were 
established at ages younger than the baseline age of our study. The association between nephron endowment 
and hypertension found by others suggests a congenital association but does not explain these findings59. The 
associations between ABP and GFR in younger people could have important implications for antihypertensive 
therapy and should be explored further.

The current study illustrates how different methods influence the results of an observational study of BP and 
GFR. In addition to the regression model, the method for assessing GFR is decisive: the results when using the 
eGFRs differ from the measured GFR and between each other (Tables S7 and S8). The explanation is probably 
confounders that influence both the production rate of creatinine and cystatin C and the GFR60–65. Accordingly, 
caution should be applied when using eGFR in studies of BP and GFR. Also, office BP did not identify time-
dependent associations with the GFR distribution (Table S5). This suggests that ABP is a better predictor of GFR 
than office BP, similar to what has been found for cardiovascular outcomes. Current hypertension guidelines 
recognize that ABP gives important additional information for the diagnosis of hypertension both in the general 
population66,67 and in CKD patients68.

The most important strengths of the present study are its use of iohexol clearance and ABP, which are gold 
standard methods for assessing GFR and BP. To our knowledge, the duration of follow-up also exceeds all 
previous observational studies and RCTs studying the association between BP and GFR decline, except for 

Figure 2.   Sex-specific predicted probability density distributions of GFR at baseline (solid curves) and the 
longest follow-up (dashed curves) for daytime ABP components. Probability density distributions based 
on GAMLSS are used to show the association of ABP with the complete GFR distributions in addition to 
association with the mean, as in conventional regression. Separate curves are shown for the 5th (blue) and 95th 
(red) percentiles of the corresponding ABP component (110 and 152 mmHg for daytime SBP, 68 and 96 mmHg 
for daytime DBP and 83 and 114 mmHg for daytime MAP). GFR is indicated on the x-axis, and the probability 
density is indicated on the y-axis.
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two studies with a follow-up of 30 years50,52. Comorbidities that could mediate an indirect effect of BP on GFR 
may inflate the BP effect, but few previous studies excluded subjects with CVD or diabetes or adjusted for these 
conditions33,35,37,38. We studied a representative sample of the general population without CVD or diabetes, which 
is a further strength of our investigation.

The main limitation of this study is that inferences about causality cannot be made from observational studies. 
The direction of any causal connection between ABP and GFR is also uncertain, as subclinical kidney damage has 
been suggested as a cause of primary hypertension69. Although there were no linear associations between BP and 
GFR change in fully adjusted GAMMs, a larger study with greater statistical power may have been able to detect 
the small effects found with GAMLSS. ABP was only measured at baseline, and we did not consider changes 
in BP during follow-up. A sensitivity analysis after excluding observations with antihypertensive medications 

Figure 3.   Sex-specific distributions of predicted GFR as functions of follow-up. For each plot, separate curves 
for the 5th (blue) and 95th (red) percentiles of the corresponding ABP component are shown (110 and 152 
mmHg for daytime SBP, 68 and 96 mmHg for daytime DBP and 83 and 114 mmHg for daytime MAP). Plots 
for the ABP components with a statistically significant association with the time change of the GFR distribution 
and time are shown. The dotted lines represent the 10th and 90th percentiles, the dashed lines represent the 25th 
and 75th percentiles, and the solid line represents the 50th percentile of the GFR distribution. The predictions 
are based on the best fitting GAMLSS model in Table 3 with adjustment variables set at their baseline means and 
random effects set at zero.
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did not indicate that changes in antihypertensive medication during follow-up were important for the results. 
The study participants were of European ancestry, limiting the generalizability. Since we are not aware of any 
other population-based cohorts with ABP and serial measurements of GFR, external validation of our findings 
is currently not possible.

We conclude that investigations of the relationship between BP and kidney function depend critically on the 
methods for assessing BP and GFR as well as on the statistical methods. By using measurements of GFR and 
ambulatory BP in a model that relaxes the restrictive assumptions of conventional regression methods, we found 
that elevated daytime ABP was associated with a shift in the GFR distribution toward lower GFR. This will only be 

Figure 4.   Sex-specific differences between the percentiles of GFR presented in Fig. 3 for the 95th and 5th 
percentiles of ABP components as functions of time. The dotted lines represent differences between the two ABP 
levels for the 10th and 90th percentiles, the dashed lines for the 25th and 75th percentiles and the solid line for 
the 50th percentile of the GFR distribution. E.g., the solid line (50th percentile of GFR) for systolic ABP in men 
is positive at baseline and declines with follow-up to negative values corresponding to the red solid curve (high 
systolic ABP) declining faster and crossing the blue solid line (low systolic ABP) in Fig. 3.
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associated with a modest acceleration of GFR decline in most people but increases the risk of CKD. The genetic 
and environmental causes of low GFR in a minority of persons with high ABP are clinically important and should 
be the subject of further research. The potential for preserving GFR in these persons through antihypertensive 
treatment should also be explored, ideally in a long-term RCT with change in measured GFR as the endpoint.

Data availability
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