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Abstract

This thesis explores the prospect of a waveguide device for optical trap-
ping and Raman spectroscopy of single biological nanoparticles. The aim
of the work is to trap and measure particles in parallel, exploiting a multi-
channel spectrometer to collect measurements from the particles separately,
drastically increasing the throughput of the method. The challenge of in-
duced Raman background in the waveguide is investigated, it is found that
UV-written SiO2 waveguides produce a Raman background lower than -
107.4 dB, which is 15 dB lower than in Si3N4. The Raman background in
UV-SiO2 waveguides is shown to be without prominent features in the bio-
logical fingerprint region (800-1700 cm−1).
Furthermode, it is shown that a convolutional neural network can be de-
veloped for analysis of tomographic scans of silicon boules, with the goal of
developing a general machine learning platform.The developed method suc-
cessfully detected the quality of the crystalline structure of the silicon from
the tomographic scans, achieving an accuracy of 98.7%. It is shown that
the method remains accurate despite a reduction in signal-to-noise ratio in
excess of 10 dB, demonstrating good robustness to noise.
An autoencoder architecture constructed from the previous convolutional
neural network is shown to be able to recovering the Raman spectra of ex-
tracellular vesicles from spectra contaminated by the background generated
by SiO2 waveguides. The method is shown to be able to recover the spec-
tra with very high fidelity, increasing the signal-to-noise ratio from -18±3
dB to 5.4 dB. Furthermore, the model is demonstrated to be capable of dif-
ferentiating the spectra of particles with different biological origins well,
using learned components corresponding to chemical elements in the parti-
cles.
Further developments of this autoencoder design demonstrates that it can
also be made capable of adapting to variations in noise level, frequency dis-
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tortions, and spectral resolution, making it able to accept spectra from dif-
ferent measurement systems. The features extracted by the autoencoder
demonstrate good differentiation of biological nanoparticles by their Ra-
man spectra. The differentiation is verified by an external classifier net-
work, which is demonstrated to achieve a sensitivity of 92.2% and a speci-
ficity of 92.3% in detecting the biological origins of the spectra. The model
is demonstrated to both de-noise the spectra and to be robust against noise
and distortions in the spectra, demonstrated by the classification accuracy
remaining over 80% for spectra with noise, frequency distortions, and with
up to 80% of the spectra missing.
The combination of UV-written SiO2 waveguides with integrated optics is
promising for a high-throughput Raman-on-chip device capable of parallel
trapping and measurement. Further augmentation of the method with ma-
chine learning is shown to solve the challenge of induced background in the
waveguides. The machine learning methods developed for this purpose also
demonstrate the ability to differentiate nanoparticles with high accuracy
and significance in the presence of noise and distortion.
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Chapter 1

Introduction

1.1 Background

In fields from biology and medicine to chemistry and material science, the
chemical composition of materials and substances defines what they are
and how they interact with the world. Therefore, determining the chem-
istry and structure of something is paramount to understanding it and
deciding what to do with it. In many ways, the endeavor to measure just
this can be considered as one of the fundamental motivations behind the
scientific process, leading from alchemy and the four elements to modern
chemistry and quantum mechanics. Modern chemistry as we know it came
into maturity as late as 1669 when the German chemist Hennig Brandt dis-
covered phosphorus [75], filling in the first box in the periodic table.Since
then, chemistry has come a long way, both in filling the periodic table, and
understanding the nature of the elements on it. However, as the field of
chemistry slowly evolved into what we know today, as did the field of op-
tics. As the fields of chemistry and optics matured, they began crossing
more and more into each other, starting with the idea presented by Irish
physicist Sir George Stokes in 1864 [67] in using fluorescent chemical tags
to enable chemistry to be imaged. While this idea spawned a plethora of
powerful techniques that remain at the forefront of biological and chemical
imaging even today, the concept of fluorescent imaging remains limited by
the selection of fluorophores used to chemically label the sample, and this
selection is again limited by the pre-existing knowledge of the chemistry of
the sample. Thus, a method that would allow such imaging without this
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burden of chemical labeling has been sought after since this limitation was
uncovered. A mechanism that enabled such a method began to emerge in
the 1920’s, first as an idea by Austrian physicist Adolf Smekal in 1923[66]
and then later observed in 1928 by Indian physicist C. V. Raman[61], with
the latter giving it its name: Raman scattering. Through Raman scatter-
ing, the bonds between atoms can be interrogated using only light, thus
making it possible to investigate the chemistry of a sample by analysing
the spectrum of the scattered light. Because this effect works directly on
the molecules of the sample, no chemical modification or labeling is re-
quired. The method of analysing the Raman scattering, or Raman spec-
troscopy, of a sample is therefore a completely label-free method, making
it a powerful investigative method and a viable contender to more tradi-
tional chemical imaging like fluorescent imaging. In addition to not requir-
ing pre-existing knowledge of the sample chemistry or specially designed
fluorophores, the use of label-free Raman spectroscopy also preserves the
chemistry of the sample. This solves another challenge observed in fluores-
cent imaging, namely toxicity in the sample, making the act of measuring
the chemistry detrimental to the sample.
Because of its ability to perform label-free analysis, and to do so non-invasively
and non-destructively, Raman spectroscopy has become a method of in-
terest in systems of complex chemistry, notably biology[50, 69, 47]. While
there are many methods of analysing the chemistry of biological materials,
the fact that Raman spectroscopy uses only light affords it a unique ad-
vantage of being able to analyse the chemistry in very small volumes. Be-
cause the analysis is conducted using light, the size of the volume that can
be interrogated is in principle only limited by the diffraction limit of the
system, which through modern optics can readily be made as small as 200
nm in width. With the progress of modern instrumentation, with increas-
ingly higher sensitivity and resolution, along with powerful and spectrally
pure lasers, Raman spectroscopy is capable of measuring the chemistry of
individual cells[33, 58] and even measuring the chemistry at different loca-
tions within a single cell. This enables chemical imaging down to the sub-
micron level, opening the internal chemistry of cells for researchers to see.
Similarly, Raman spectroscopy can be used to chemically analyse objects
smaller than cells, such as biological nanoparticles. When used in combi-
nation with optical tweezers[38, 51] it becomes possible to isolate, confine,
and measure the chemistry of nanoparticles smaller than 100 nm on a per-
particle basis. One such type of nanoparticle that is of special interest is
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the extracellular vesicle (EV), which are ”messenger” particles emitted
by cells. The communication between cells, facilitated by EVs, has been
shown to play a significant role in the function of cells in groups[11], and
it has been demonstrated that the chemical makeup of EVs can be used as
a biomarker for a myriad of conditions[56, 12, 76, 3, 71]. Optical trapping
and Raman spectroscopy therefore enables us to analyse EVs and detect
these biomarkers, and provides a promising avenue for detecting[19] and
diagnosing various conditions.
The ability to measure single nanoparticles enables Raman spectroscopy to
be a powerful tool in research and diagnostics, but this selectivity comes
with its own challenges. The principal challenge stems directly from one of
its principal advantages, namely that it analyses few or single particles at
a time. Because nanoparticles like EVs exist in the millions pr. millilitre,
making a statistically significant inference on the state of cells they orig-
inate from require the analysis of a large amount of particles. With only
a few of them being measured in each acquisition, this leads to very low
throughput, making the method slow and cumbersome. So, to make Ra-
man spectroscopy of EVs a viable method for diagnosis, the throughput
must be increased. One way this can be achieved is to forego the single
particle selectivity, and instead measure the particles in bulk, thus increas-
ing the throughput. However, this gives limited information on the distri-
bution of the particles by reducing it to a mean measurement, which re-
duces the available information and thus the quality of the inference made
from it. Another approach to increase the throughput is through paral-
lelization of the acquisition, collecting Raman scattering from multiple par-
ticles at the same time without mixing the generated spectra. To achieve
this, the measurement system must be designed such that it has multi-
ple sample sites, each capable of trapping one or few nanoparticles, and
collecting the scattered light from each of the sites separately. A way of
achieving such a design is through the use of integrated optics, by using a
photonic chip with waveguides to replace the lenses in a traditional Raman
system, it becomes possible to create an array of micron-sized structures.
Through careful design, these structures can be made to serve as trapping
sites for single nanoparticles, and by adapting the collection system to a
multi-channel spectrometer, it becomes possible to project the light gen-
erated from each of the structures onto individual channels. Thus, we in-
vestigate if a waveguide chip can be fabricated into a Raman-on-chip de-
vice capable of facilitating Raman spectroscopy of multiple nanoparticles
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in parallel, which can be further combined with microfluidics to provide
high-throughput, single particle Raman spectra.
Once collected, the Raman spectra contains a wealth of information on the
sample that generated it, but for this information to be usable, it must be
analysed and interpreted. With the level of complexity of such information,
and the amount of data generated by a Raman-on-chip device, this analysis
becomes a significant challenge. To realize the goal of using Raman spec-
troscopy of EVs as a tool for research and diagnostics, the physical method
must be complemented by a method of analysis that can translate the Ra-
man spectra into usable information. With the available processing power
of modern computers, machine learning is a strong contender for such an
analysis method. The flexibility, adaptability, and ability to detect com-
plex patterns in data has made machine learning methods powerful tech-
niques for a wide range of applications. To apply machine learning to the
Raman spectra of EVs, a suitable method must be developed. To do this,
we first consider tomographic scans of Silicon as a test case. The goal is to
recognize the quality of the crystalline structure from the transmission of
infrared light through the structure. This data contains complex features
similar to features in Raman spectra, and because the ground truth of the
crystalline structure is readily available, this serves as a good test bench to
develop a machine learning architecture through supervised learning. This
architecture is then used as the basis for the Raman analysis method by
making the model capable of self-supervised learning. The resulting archi-
tecture is capable of label-free learning from the label-free Raman spectra
of EVs and other nanoparticles, and able to extract valuable information
from a large number of spectra, and thus complement the high throughput
of the waveguide Raman-on-chip device.

1.2 Scope of the thesis

In this thesis, the prospects of a waveguide-based Raman-on-chip device
for extracellular vesicles are investigated, and a machine learning method
is developed for this application. The focus of the thesis will be on three
main areas: 1) Investigation of a waveguide device for trapping and excit-
ing Raman scattering from nanoparticles approximately 100 nm in size. 2)
Development of a machine learning architecture for determining the qual-
ity of presumed monocrystalline silicon by recognizing features in infrared
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transmission tomography scans of silicon boules. 3) Expansion of the ma-
chine learning architecture into a model capable of extracting information
from Raman spectra of biological nanoparticles through self-supervised
learning.

1.3 Structure

The the thesis is divided into four main chapters, with the last three cover-
ing the themes outlined in the scope of the thesis.
Chapter 2 of the thesis will present an overarching view of the theory and
state of the art of Raman spectroscopy and some select current techniques.
This chapter also introduces optical trapping.
Chapter 3 of the thesis will focus on waveguide-based Raman spectroscopy.
An overview of waveguide-based Raman techniques will be presented and
its advantages and challenges introduced. The potential of Raman on waveg-
uide will be illustrated here and the approach for the project will be pre-
sented.
Chapter 4 of the thesis will describe the development of the fundamental
elements of the machine learning architecture. In this chapter, tomographic
scanning by infrared transmission through monocrystalline silicon boules
will be presented. A machine learning architecture is developed for deter-
mining the quality and intactness of the crystalline structure from the to-
mographic scans.
Chapter 5 of the thesis will describe the adaptation of the machine learning
architecture to consider Raman spectra of biological nanoparticles. The
machine learning architecture developed in chapter 4 will be expanded into
a specialized autoencoder architecture that is capable of self-supervised
learning from the Raman spectra of nanoparticles.

1.4 Publications

Paper I
M. N. Jensen, James C. Gates, Alex I. Flint, and Olav Gaute Hellesø, ”Demon-
strating low Raman background in UV-written SiO2 waveguides”, Optics
Express, vol. 31, no. 19, pp. 31093-31107, Sep. 2023. Author contri-
butions: Mathias N. Jensen performed all experimental work and data
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analysis. James C. Gates and Alex I. Flint developed the UV-writing pro-
cess and fabricated the waveguide chips. Olav Gaute Hellesø conceived the
idea and oversaw the work. Mathias N. Jensen wrote the initial draft and
Olav Gaute Hellesø finalized the manuscript for submission. All authors
contributed to revision of the manuscript before publication.

Paper II
M. N. Jensen and Olav Gaute Hellesø, ”Evaluation of crystalline structure
quality of Czochralski-silicon using near-infrared tomography”, Journal of
Crystal Growth, vol. 581, no. 1, pp. 126527, Apr. 2022. Author contri-
butions: Mathias N. Jensen conceived the original idea, performed all
experimental work and data analysis. Olav Gaute Hellesø suggested and
oversaw the work and oversaw the work. Mathias N. Jensen wrote the ini-
tial draft and Olav Gaute Hellesø finalized the manuscript for submission.
Both authors contributed to revision of the manuscript before publication.

Paper III
M. N. Jensen, Eduarda M. Guerreiro, Agustin Enciso-Martinez, Sergei G.
Kruglik, Cees Otto, Omri Snir, Benjamin Ricaud, and Olav Gaute Hellesø,
”Identification of extracellular vesicles from their Raman spectra via self-
supervised learning”, submitted to Nature Scientific Reports. Author
contributions: Mathias N. Jensen concieved the idea and implemented
the method. Eduarda M. Guierreiro and Omri Snir prepared and provided
samples for data generation. Agustin Enciso-Martinez and Sergei G. Krug-
lik conducted the experimental work. Cees Otto conducted and oversaw
parts of the experimental work. Benjamin Ricaud oversaw the develop-
ment of the architecture. Olav Gaute Hellesø oversaw the work. Mathias
N. Jensen wrote the initial draft, Olav Gaute Hellesø and Benjamin Ricaud
finalized the manuscript for submission.
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Chapter 2

Raman spectroscopy

2.1 History of Raman spectroscopy

The concept of what we now know as Raman scattering has appeared mul-
tiple times through scientific history, receiving significant attention in the
early 1900’s. One of the initial discussions that inspired the discovery of
Raman scattering was published by Sir Joseph Larmor [41] in 1919, who
deliberated on the findings of Lord Rayleigh regarding the scattering of
light by particles. He explored the implications of such scattering, how
Rayleigh explained the blue hue of the daytime sky as an effect of scatter-
ing from molecules in air, and how or if this or similar effects could arise
in liquids and solids. This deliberation served as a primer for the then
still young C. V. Raman, who would incubate his own ideas on the phe-
nomenon in the years following the publication of Larmor. Raman even-
tually began to express these ideas, among others in a brief monograph in
1922 [61], where he brought up the relationship between the quantum me-
chanics of light and those of molecules.
As Raman explored and refined his idea of quantum mechanics in scatter-
ing, he also supervised students working experimentally, some of which be-
gan reporting unexpected scattering from liquids. From 1923 to 1925, two
of his students, K. R. Ramanathan and K. S. Krishnan, observed scatter-
ing in liquids where the scattered light and the incident light had different
color. This provided one of the earliest concrete answers to the deliber-
ations of Larmor that primed Raman’s investigations. Until early 1928,
Raman and his students continued their experimental work, eventually ex-
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panding the investigation from liquids to solids, including glass and ice.
Having realized that they had discovered a significant new phenomenon,
Raman wasted no time communicating their findings which were published
in May of 1928[62]. With the observation that scattering interactions could
result in wavelength shifts between the incident and scattered radiation,
and that the amount of shift and intensity distributions varied significantly
between chemicals, a new method of chemical analysis was born.

2.2 Fundamental mechanism

Molecules as elastic bodies

Molecules were previously considered as point masses with no internal
structure of mechanics due to their small size. But while they are indeed
very small, they are in fact not as rigid as classical physics consider them
to be. Quantum mechanics has revealed that molecules are actually very
complex and can have a number of fluctuations in their internal struc-
ture. Raman scattering is one of the physical consequences of this. From
the structure of a particular molecule, for instance ethanol as depicted in
fig. 2.1, we can consider a certain level of motion for each of the atoms in
the molecule relative to the rest of the molecule. These vibrations can be
described as a collection of harmonic oscillators with the stiffness of each
oscillator given by the atomic bond it corresponds to. The motion of an os-
cillator can be considered sinusoidal at resonance: x (t) = Acos (ωt+ ϕ),
with A denoting the amplitude of the oscillation, ω denoting the frequency
of the oscillation, and ϕ denoting the phase of the oscillation. Such an os-
cillation will have a resonance frequency at ω =

√
k/m and a total en-

ergy of E = k · A2. In the model of the molecule, the stiffness k is given
by the mutual electric fields of the atoms involved. The stiffness will also
be directional as the fields, and thereby the reciprocal forces on the atom
are anisotropic. This gives rise to multiple modes of molecular vibrations
depending on the number of atoms involved and their configuration. For
instance, the -CH2- in the middle of the ethanol molecule shown in fig. 2.1
exhibits a scissoring mode, one of six modes of vibrations such a group can
assume. As each mode interacts differently with the overall electric field of
the molecule, each mode has a unique stiffness and thus a unique resonance
frequency.
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Figure 2.1: Conceptual sketch of the effects of molecular vibrations in a
molecule of ethanol. a) Purely elastic interaction between the incoming
photon and the electric field of the molecule, resulting in Rayleigh scat-
tering. b) Mix of elastic and inelastic interaction between the photon and
the molecule with three vibrational energy states (Ev), resulting in Raman
scattering at three longer wavelengths. c) Conceptual sketch of a measure-
ment system and the resulting spectrum showing the elastic (Rayleigh)
scattering at wavelength λ0 and the inelastic (Raman) scattering at longer
wavelengths λ1, λ2 and λ3.
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Atomic groups as dipoles

While the mechanism behind Raman scattering can be conceptualized as
a mechanical oscillator, the true nature of the mechanism is better de-
scribed as a quantum harmonic oscillator formed by dipole fields in the
molecule. In the Rayleigh regime, the entire molecule can be though of as a
dipole that resonates with the exciting field. As illustrated in fig. 2.2, this
interaction causes the electron cloud to ”swing” around the molecule, in-
ducing a global dipole in the molecule. This perturbation then resonates
with the exciting field and produces a wave with the same frequency. In
Raman scattering, the perturbation of the electron cloud upsets the equi-
librium of the molecule, this results in the perturbation of the structure of
the molecule as it responds to the shift in the electron field. The shift in
the structure of the molecule then creates a local asymmetry in parts of
the molecule. Due to differences in electronegativity, certain atoms (such
as carbon) attract electrons to a higher degree than other atoms (such as
hydrogen). Thus, even though the electrons are shared between them in a
covalent bond, the electrons are more likely to be near the atom with the
higher electronegativity. When a local asymmetry occurs, this effect makes
one side of the pair/group more negative than the other, and thus a dipole
is induced. Compared to the Rayleigh dipole, the Raman dipole typically
has a much lower dipole moment and resonates at frequencies much lower
than the exciting field.
To evaluate the effect of the dipoles on the electric field, and thus on the
emitted radiation, we must first quantify the magnitude of the dipole mo-
ments. The dipole moment d induced by an external field E depends on
the polarizability of the particle(s) α:

d = αE. (2.1)

In a true three dimensional system, the polarizability takes the form of a
3x3 tensor:

α =

αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 , (2.2)

where αvu denotes the polarizability of the particle along the unit vec-
tor v when subjected to an electric field with polarization u. In a quan-
tum harmonic oscillator, like a Raman-active molecule, the polarizability
is additionally dependent on the state that the molecule is in and will be
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Figure 2.2: Conceptual sketch of the dipole effects in Rayleigh and Raman
scattering. In Rayleigh scattering, the electron cloud of the molecule is per-
turbed by the exciting field, creating a dipole with a given moment. In Ra-
man scattering, the perturbation of the electron cloud creates perturba-
tions in the structure which makes the molecule locally asymmetrical. This
also creates a local dipole which resonates at a lower frequency and has a
smaller moment than the global dipole.
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in after it has been polarized. In a simplified setting, we assume that the
molecule is at rest in its ground state, denoted as |0⟩, in the beginning
of the process. As a photon of energy h̄ωI interacts with the molecule,
the molecule transitions to a virtual vibronic state |n⟩ of higher energy.
The molecule will then transition back to a lower energy state |f⟩ and
emit a photon of energy h̄ωS. This can be described using a rewrite of the
Kramers-Heisenberg formula for a second order system[53]:

[αvu]f0 =
1

h̄

∑
|n⟩

[⟨f |µv|n⟩⟨n|µu|0⟩
ωn0 − ωI − iγn

+
⟨f |µu|n⟩⟨n|µv|0⟩
ωn0 + ωS + iγn

]
, (2.3)

which describes the polarizability for a transition from the ground state |0⟩
to a single vibrational state |f⟩. The full expression of the polarizability
given in eq. 2.3 normally then simplified through approximation. Under
the assumption that the excited state lifetime γn is much longer than the
period of either of the frequencies involved, the complex term iγn can be
neglected. Furthermore, we can assume that the photon energy of the inci-
dent field is larger than, or equal to, the band-gap energy of the molecule
such that the intermediate state |n⟩ is always an excited electronic state,
thus we can omit summation over the ground states in eq. 2.3. Lastly
we can assume that the transfer to and from the intermediate state |n⟩ is
equal to the electronic transfer to and from that state such that the tran-
sition frequencies ωn0 and ωfn can be said to equal to the electronic tran-
sition frequencies ωe

n0 and ωe
fn. Using these three approximations, and by

using the Born-Oppenheimer approximation to separate the motion of the
nuclei from the electrons, the polarizability described in eq. 2.3 can be ap-
proximated as:

[αvu]f0 = ⟨f |αe
vu (ωI ;Q) |0⟩, (2.4)

where αe
vu (ωI ;Q) denotes the frequency dependent electic polarizability

operator for the molecule given the normal coordinates Q. In polyatomic
molecules, αe is commonly expressed by its Taylor expansion to the linear
order:

[αvu]f0 =

√
h̄

2ω|f⟩

(
∂αe

vu

∂Q|f⟩

)
, (2.5)

where Q|f⟩ is the normal mode coordinates of the vibrational mode corre-
sponding to the state |f⟩. In discrete terms, this can be transformed into
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the sum operation:

αvu =
3N−6∑
i=1

[
h̄√
2ωi

∂αe
vu

∂Qi

]
, (2.6)

such that the Raman spectrum can be expressed where each Raman mode
Qi exists at an energy level given by ωi with an intensity given the polariz-
ability αe

vu depending on that state. The Raman spectrum I (ν̃) can there-
fore be seen as expressed by:

I (ν̃) = I0

[
δ (ν̃) +

3N−6∑
i=1

Aiδ (Ei − hc0ν̃)

]
, (2.7)

where mode i occurs at at energy Ei, dependent on ωi, with an amplitude
of Ai depending on the polarizability as well as the density and Raman
cross-section of the sample. Though, in the practical case, the observed
spectrum will be the result of convolution with the spectral distribution of
the incident field and convolution of the Raman mode states with diffuse
states, resulting in a smooth, continuous expression.

2.3 Conventional methods

2.3.1 Raman imaging

One of the typical applications of Raman spectroscopy is as an imaging
technique, analagous to fluorescence microscopy as shown in fig. 2.3. Flu-
orescence imaging normally acquires the fluorescent light using band-pass
filters in the imaging system, only allowing the known emission wavelengths
of one specific fluorophore through to the camera sensor at one time. While
a similar approach can be used for Raman imaging, there are other consid-
erations that must be made when attempting to image the Raman scat-
tering, such as the signal strength and the number of wavelengths to be
probed. Because of this, Raman imaging often employs a much more com-
prehensive hyperspectral imaging scheme to acquire the necessary signal
to make chemical determinations. In Raman imaging, as shown in fig. 2.4,
the images are instead collected as a more complete stack of images, where
each image is an image of the sample plane for one specific wavelength.
Due to the intrinsically weaker Raman scattering in comparison to fluores-
cence, the exciting field must be made significantly stronger. One common
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Figure 2.3: Conceptual sketch of fluorescence imaging of a cell. The en-
hanced contrast and specificity of fluorescence imaging compared to bright-
field imaging is shown in the bottom row.
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method of achieving this without bleaching or otherwise damaging the cell
is to use a point scan method. In this approach, a confocal microscope con-
figuration is often used. The use of a confocal system allwos for the exci-
tation of and collection from volumes in the sample plane with sizes down
to the diffraction limit. The high out-of-focus rejection performance of a
confocal geometry also improves contrast in the images while also directing
the exciting field such that the delivered dose in the cell is highly localized.
Acquiring the images on a pixel-by-pixel basis also makes the configuration
flexible in terms of resolution, allowing for the images to be acquired with
any desired resolution down to the diffraction limited resolution of the sys-
tem. This also makes it possible to use an arbitrary method of collecting
the spectral information, enabling the use of high-performance spectrome-
ters for this application such that the spectra can be collected over a wide
range and with sub-nanometer spectral resolution. A significant drawback
in the use of confocal Raman microscopy, similar to conventional confocal
microscopy, is that the point scanning method is much slower than wide-
field imaging and is therefore not well suited to live samples. This can be
remedied to a degree by hybridizing the point scanning method of confocal
Raman with the methods employed with fluorescence imaging, for instance
by limiting the spectral range that is aquired such that more light can be
collected per pixel per time, allowing for shorter acquisition times. Other,
more advanced methods of exciting Raman scattering can also be employed
to increase the signal strength to facilitate wide-field Raman imaging.

2.3.2 Plasmonic enhancement

One of the more advanced methods of exciting Raman scattering is through
the use of plasmonic enhancements in the sample plane. In such a case, a
surface is partially or completely clad in a material that can support sur-
face plasmons, such as gold or silver, against which the sample is placed.
When such a surface is exposed to an incident field with a frequency be-
low the plasma frequency, the incident photons couple with the electron,
producing oscillations in the cloud and forming surface plasmons. The os-
cillations of the electron cloud near the surface thus creates a very strong
electric field in the near-field region around the plasmonic material, thus
the Langmuir waves create a highly localized volume with significant field
enhancement. This field can then couple to other molecules and atoms sim-
ilar to how it would in a far-field region and thus also excite effects such
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Figure 2.4: Conceptual sketch of Raman imaging of a cell. The unstained
cell is exposed to a high intensity monochromatic light to excite Raman
scattering. The images are then collected as a hyperspectral stack with
each pixel of the stack forming a comprehensive spectrum corresponding to
the Raman scattering in a small volume of the image plane.
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as Raman-scattering. The principle of Surface Enhanced Raman Spec-
troscopy (SERS), as shown in fig. 2.5, is to exploit this property to pro-
duce enhanced Raman signals from a sample material, allowing for a lower
detection threshold and purer signals from the material. Because of the
increase in field strength surrounding the plasmonic material, the gener-
ated Raman scattering will also be increased up to a factor of 1012[60], but
due to the use of surface plasmons as an intermediary, the increase in sig-
nal will not be uniform across the spectrum. Since the field that interacts

Figure 2.5: Conceptual sketch of plasmonic enhancement. The incident
wave induces oscillations in the electron cloud of a metallic nanoparticle,
producing a surface plasmon. The plasmon localizes the energy of the inci-
dent wave and acts as an enhanced field, coupling the incident wave to the
sample particle in the near-field.

with the analyte is almost exclusively from the plasmons, the strength of
the exciting field will depend on the enhancement of the incident field,
which depends on the characteristics of the incident field and the char-
acteristics of the surface plasmons. The greatest field enhancement oc-
curs when the frequency of the incident field becomes equal to the natural
plasmon frequency of the material, thus adding a consideration to which
excitation wavelength to use and which plasmonic material to use. An-
other complication is the fact that the generated Raman scattering must
also interact with the surface plasmons before the generated waves can
couple back to the far-field region, thus making the enhancement of the
field vary across the spectrum. This means that certain regions of the Ra-
man spectra, close to the plasmon frequency, will be significantly more
enhanced than other regions, resulting in the spectra becoming distorted.
This can make it challenging to compare the results of SERS with results
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from other, non-enhancement methods such as confocal Raman microspec-
troscopy and can give the illusion of a higher presence of certain chemical
features while the higher amplitude is actually caused by fluctuations in
the enhancement.

2.3.3 Stimulated scattering

In addition to enhancing the exciting field, as is done in SERS, the gener-
ation of Raman scattering can also be enhanced. As discussed in chapter
2.2, the Raman modes can be considered oscillators that are powered by
the incident field, and like most oscillators, they can be driven either by
random perturbations or deliberately by a resonating source. The latter
is the principle of stimulated Raman scattering (SRS), where two waves
are used to deliberately drive the oscillators, thereby generating more Ra-
man scattering. One effect of the stimulated driving compared to the spon-
taneous driving of the mode(s) is that the modes oscillate in a coherent
manner in the stimulated case, resulting in them having a uniform phase
and polarization. These effects, and the increased directionality of the gen-
erated light, allows SRS to generate signals several orders of magnitude
stronger than spontaneous Raman spectroscopy.
While the SRS effect can be invoked using a single wavelength pair, as
shown in fig. 2.6, with great effect on the signal amplitude, doing so only
reveals the amplitude of one specific vibrational mode with an energy equal
to the difference between the photon energies. This is one drawback, as
spontaneous excitation produces a response for all modes while stimulated
excitation must use light sources that deliberately probe the spectrum.
The probing of the frequency spectrum can be achieved using two main
principles:

• Narrowband probing: Using at least one tunable laser source, ei-
ther as stokes or pump source, such that the energy difference can
be swept over the desired range.

• Broadband probing: Using one narrowband source, usually the pump,
and one broadband source, usually as a stokes probe, to probe the
spectrum in one shot.

In the narrowband setting, the fundamental method is to use a fixed con-
tinuous wave pump beam and a tunable continuous wave stokes beam that
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Figure 2.6: Conceptual sketch of SRS. As the photon energy difference be-
tween the incident pump field and stokes field becomes equal to the energy
of a Raman mode, the transition between the vibrational ground state and
the Raman active state is strongly driven. The driving of the transitions
is observed by an energy transfer between the pump and stokes beams in
SRS or from the stokes to the pump in CARS.

intersects in a common volume in the sample. In order to separate the two,
at least one beam is modulated such that the output light intensity can
be measured using a photodiode, or similar device, when both pump and
stokes are active, and when only one of the beams, normally the pump, is
active. The gain of the signal can be improved can be further improved
by using a pulsed source, such as a picosecond laser source [68] modulated
at megahertz frequencies, such that more excitation power is delivered
to the sample volume within each modulation period and thus generat-
ing more signal. To maintain coherence and synchronize the pulses, both
the pump and stokes beams are often generated from the same picosec-
ond source using a non-linear optical device, such as an optical parame-
teric oscillator[78], which often provides the tuning of the stokes beam as
well. Even though these methods can be used to accelerate the scanning of
multiple Raman modes, narrowband SRS still suffers from slow acquisition
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since it is still limited to a spectral point scan method. The requirement
of high quality laser pulses with fixed field distributions also necessitates
the use of high quality picosecond lasers and optical modulators, which are
often specific use products and are relatively expensive in comparison to
continuous wave lasers.
By comparison, in the broadband setting, the excitation does not require a
tunable source, but requires that one of the sources, commonly the stokes,
produces a consistent broadband spectrum. As with the narrowband set-
ting, the spectrum is detected by distortions in the stokes beam while us-
ing modulation of the pump beam to separate the stokes beam spectrum
and the stimulated Raman spectrum. This is often achieved by using a
broadband femtosecond laser as the stokes probe and using a picosecond
narrowband source as the pump source to achieve broadband femtosecond
stimulated Raman scattering (FSRS)[39]. The excitation of the Raman
modes is primed by the picosecond pump beam before the stimulated emis-
sion is driven by the broadband femtosecond stokes beam. Because of the
relatively ”long” picosecond duration of the pump beam in comparison to
the ”short” femtosecond stokes pulse, the modes excited by the pump are
allowed to interact with the full spectrum of the pump before the vibra-
tional modes dephase and degrade. The Raman spectrum of the sample
is then observed by distortions in the probe spectrum, and can be quanti-
fied by observing the spectrum of the probe in the presence of the pump
and in its absence such that the pure spectrum can be isolated from the
stokes probe spectrum. Compared to the narrowband setting, this gives
much more information in each acquisition, as the entire spectrum is ac-
quired in one shot, while still exploiting the signal gain given by the stim-
ulated scattering effect. One downside of this approach, in addition to the
additional cost associated with having both a picosecond and a broadband
femtosecond laser source, is that measuring the Raman spectrum requires
a full fledged spectrometer, while the narrowband excited SRS can be mea-
sured using only a point source such as a photodiode with a lock-in ampli-
fier.
These approaches can also be combined with other techniques such as sur-
face enhanced FSRS [23] and can be made to exploit the temporal as-
pects of the vibrational mode transitions to extract additional information.
Again, FSRS is an example of this, where the difference in pulse length be-
tween the pump and stokes beams makes the output spectrum vary in time
(see figs. 3 and 5 in [39]). This allows the extraction of more data from
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each measurement, making the combination more powerful in collecting in-
formation, particularly regarding the internal mechanics of the vibrational
mode transitions and lifetimes [49].

2.4 Optical trapping

As mentioned earlier, one of the principal advantages of Raman spectroscopy
in comparison to other chemical analysis methods is that Raman spectra
can be acquired from significantly smaller volumes. The smallest volume is,
in the general sense, only limited by the diffraction limit of the collection
system. The diffraction limit can readily be made smaller than 300 nm in
diameter with Rayleigh lengths shorter that 500 nm, resulting in volumes
smaller than 0.05 µm3. However, most results and works don’t exploit the
potential of Raman spectroscopy when it comes to single particles in the
micron regime and below. To exploit this potential, both the exciting field
and the collection spot must be diffraction limited in the same spot, which
can be achieved with a confocal Raman microscope. By combining a confo-
cal design with optical trapping, single particles of sub-micron size can be
confined, isolated, and measured with accuracy.
In optical trapping, the optical field itself is used to affect a force onto a
particle such that it can be isolated from the other particles in the analyte,
and thus allowing it to be measured separately from the rest. The principle
of optical trapping revolves around the interaction between four forces on
the particle:

• Brownian motion

• Drag forces from flow

• Optical forces

Browninan motion is a well known phenomenon where a particle sponta-
neously moves as a result of its temperature. The direction of the sponta-
neous motion is random at each instance, and the distance of the motion
∆x is a stochastic quantity described by a Gaussian probability distribu-
tion:

∆x = N
(
0,

kBT

3πrη
∆t

)
, (2.8)
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where kB denotes Boltzmann’s constant, T denotes the temperature, η de-
notes the viscosity of the surrounding medium, and r denotes the particle
size. Thus, the smaller the particle, and the higher the temperature, the
more intense the Brownian motion will become. To achieve stable trapping
of a particle subject to Brownian motion, the trapping force must be suffi-
cient to overcome the Brownian motion. Thus, to attain a stable trap, the
total potential of the trap must be at least ten times the kinetic energy of
the Brownian motion [4]:

U (r, r) ≥ 10kBT. (2.9)

In addition to Brownian motion, a particle suspended in a medium is also
subject to the flow of the medium, which must also be considered. Flow in
the suspension medium can either be deliberately induced, such as through
microfluidics, or it can be accidental, such as thermally induced convective
flow. Ideally, the flow in a trapping system is zero, but if there is flow then
the drag force F must be accounted for:

F = 6πηrv, (2.10)

where η denotes the dynamic viscosity of the medium, r denotes the par-
ticle size, and v denotes the local flow of the medium. Optical traps typi-
cally give a trapping force of less than 1 pN/mW[52]. Thus, 1 µm sphere
suspended in water and trapped using a field delivering 10 mW of power
can tolerate up to 260 µm/s of flow.
The optical forces acting on the particle must thus be strong enough to
overpower the force of flow in the suspension medium and provide a po-
tential well significant enough to counteract the Brownian motion of the
particle. In terms of the interaction between the field and the particle, the
description of the interaction is determined by the refractive index and size
of the particle. For particles whose size is comparable to the wavelength λ
of the field, Mie theory is applicable to describe the interaction. However,
in the case of EVs, with a typical radius r of 50 nm[59], the particles are
significantly smaller than the wavelengths useful in Raman scattering (¿500
nm). Thus, with a relatively low refractive index np of 1.4[25], they fulfill
the requirement of a Rayleigh particle:

r <<
λ

4π|np − 1| , |np − 1| << 1. (2.11)
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Figure 2.7: Conceptual sketch of optical trapping. A particle is suspended
in a medium, where it randomly moves due to the force of Brownian mo-
tion FBrown. Once the particle approaches the beam, it will be affected
by the radiation force Frad, pushing the particle along the optical axis,
and the gradient force Fgrad, pushing the particle towards the focus of the
beam. If the gradient force Fgrad is sufficiently strong, the particle moves
towards a a stable trapped position close to the beam waist.

In contrast to Mie theory, a particle subject to Rayleigh theory scatters
homogeneously from its surface. The interaction between the field and the
particle surface can thus be considered isotropic and uniform for a Rayleigh
particle.
The optical forces acting on a Rayleigh particle can be divided into two
forces: the scattering force and the gradient force. The scattering force oc-
curs due to the incident field being scattered by the boundary of the par-
ticle, thus a force will be applied directly on the particle by the incident
field along the fields propagation vector. The scattered radiation will then
diverge based on the properties of the surface, resulting in further force
being affected on the particle. The net force depends on the scattering ge-
ometry of the particle, and may not be symmetrical about the optical axis
in cases where the scattering geometry on the particle is not symmetric.
For a Rayleigh particle of radius r with a refractive index np suspended
in a medium with a refractive index nm the scattering force Fscat can be
described[30] as:

Fscat (r) =
8πnpk

4r6

3c0

(np/nm)
2 − 1

(np/nm)
2 + 2

I (r) ẑ, (2.12)

when subjected to a field I (r) propagating along a vector ẑ with a wavevec-
tor k. This requires that the refractive index of the particle np be greater
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than the refractive index of the medium nm. For a focused field, the plane
wave field I (r) with a uniform energy flux along the propagation vector
ẑ is replaced by a field I (r,v) with a directional energy flux along v. The
energy flux is given by the averaged Poynting vector ⟨S (r,v)⟩ = 0.5Re [E (r,v)×H∗ (r,v)].
For a focused Gaussian beam with a beam waist w0, the flux through the
focal plane becomes I0 = P/πw2

0 for a given power P and the time-averaged
Poynting vector in the focal plane becomes:

⟨S (r,v)⟩ = P

w2
0

e−2|r|2/w2
0 ẑ, (2.13)

such that the scattering force from a focused Gaussian beam can be ex-
pressed as:

Fscat (r,v) =
8πnpk

4r6

3c

m2 − 1

m2 + 2

P

w2
0

e−2|r|2/w2
0 ẑ, (2.14)

at the focal plane where the propagation vector v becomes equal to the
optical axis vector ẑ.
For a non-uniform beam, the particle will also be subject to a force acted
upon it by the gradient of the beam. The principle of the gradient force
is that a dielectric particle, behaving as a dipole, will be attracted up the
gradient of the optical field, pulling it towards the point of highest inten-
sity which occurs at the focus of the beam. The gradient force acting on a
Rayleigh particle can be described[30] by the expression:

Fgrad (r,v) =
2πnpr

3

c

(np/nm)
2 − 1

(np/nm)
2 + 2

∇I (r,v) , (2.15)

where ∇I (r,v) is the gradient of the field intensity at position r along di-
rection v. When the refractive index np of the particle is greater than the
refractive index nm of the medium, (np/nm)

2 − 1 becomes positive, thus the
force Fgrad will push the particle up the gradient towards the highest in-
tensity. The total optical force on a Rayleigh particle will therefore be the
sum contribution of the scattering and gradient forces:

FΣ (r,v) = Fgrad (r,v) + Fscat (r,v) . (2.16)

In the absence of other forces, the particle will thus settle into a stable po-
sition where FΣ = 0, as shown in fig. 2.7. meaning that the point where
a particle settles into a stable position is where the two forces cancel each
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other out. Since the scattering force always acts along the direction of the
local wavefront, i.e. ẑ near the beam waist, and the gradient force will al-
ways attract the particle to the focus of the beam, we see that the position
where this occurs must be on the optical axis and slightly away from the
beam waist such that the gradient force ”pulls” on the particle as much as
the scattering force ”pushes” on the particle. Negating all other forces, a
Rayleigh particle acted upon by a focused gaussian beam will therefore set-
tle at a point in the field where the gradient force Fgrad (r,v), drawing the
particle towards the focus, and the scattering force Fscat (r,v), pushing the
particle away from the focusing aperture, become equal:

Fgrad (r,v) = −Fscat (r,v) , (2.17)

which allow us to substitute in Eqs. (2.15) and (2.12):

2πnpr
3

c

m2 − 1

m2 + 2
∇I (r,v) =

8πnpk
4r6

3c

m2 − 1

m2 + 2
I (r) ẑ, (2.18)

which can be simplified into:

∇I (r,v) =
4k4r3

3
I (r) ẑ. (2.19)

As the field is known to be Gaussian, the field can be expressed as:

I (r) =

(
2P

πw2
0

)
1

1 + (2z̃)2
e

−2(x̃2+ỹ2)
1+(2∗z̃)2 , (2.20)

using the normalized coordinates x̃ = x/w0, ỹ = y/w0, and z̃ = z/kw0 for a
known beam waist w0, wave vector k and power P . Under the assumption
that the stable site will occur at x̃ = ỹ = 0, Eq. (2.19) can be written as:

−8z̃/(kw2
0)

1 + (2z̃)2
1

1 + (2z̃)2

(
2P

πw2
0

)
ẑ = −4k4r3

3

1

1 + (2z̃)2

(
2P

πw2
0

)
ẑ, (2.21)

which yields the trap position:

z̃ =
k5w2

0r
3

3− 4k5w2
0r

3
. (2.22)

This imposes a limit k5w2
0 > 3/4r3 for trapping to occur in the absence of

other forces. As mentioned earlier, the forces of the optical trap must also
be stronger than the sum force of the flow and the Brownian motion for
trapping to occur. As stated, the potential of the trap U =

∫
r
FΣ (r,v) dr is

generally required to be larger than 10kbT for the trapping to be stable.
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Chapter 3

Waveguide devices for trapping
and Raman spectroscopy

While what we now think of as waveguides are a relatively new phenomenon,
the concept of them has been discovered multiple times through history,
going as far back as the notion of an acoustic waveguide dating back to the
1700’s. The first demonstration of optical guiding in a material in 1842 by
Swiss physicist Jean-Daniel Colladon [13] and the first waveguides began
slowly coming into existence through the 1930’s [54]. From there, interest
in optical guiding saw a resurgence in the 1960’s with the invention of the
laser and the following interest in using optical guiding for communication
purposes. The modern notion of the dielectric optical waveguide was pre-
sented in 1966 by Charles Kao[36], where a cylindrical glass waveguide was
developed and the guided modes were observed.
In modern waveguides, the scale, losses, and cost have all been significantly
reduced, getting well into the nanometer scale and allowing for the con-
struction of controllable optical devices only tens of micrometers across
[2]. This has allowed a multitude of integrated optics devices, from com-
paratively simple devices, such as Mach-Zehnder interferometers [24], to
complex devices, such as spectrometers [79], and even devices to facilitate
super-resolution microscopy [31]. This development has also enabled the
expansion of waveguide based sensors for spectroscopy, such as infrared
spectroscopy [72] and its neighbour, Raman spectroscopy.
In this chapter, the concept of waveguide enhanced Raman spectroscopy
(WERS) is explored along with the most common techniques used to achieve
this. The prospect of using waveguides to facilitate optical trapping is
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also be introduced and how this can be used in conjunction with WERS-
techniques. The challenge of Raman-background in waveguides, being a
significant limitation in WERS, is explored and experimentally evaluated
to determine a viable waveguide material. Lastly, the design of a multi-
trap Raman-on-chip device is considered and evaluated.

3.1 Waveguide enhanced Raman spectroscopy

Many methods of implementing waveguide enhanced Raman spectroscopy
(WERS) have been investigated[20, 70, 73]. Two types form the bulk of
the approaches to the technique:

• Evanescent field interaction

• Structure on chip

These two approaches differ in their goals, with evanescent field interac-
tion focusing on relatively large sample volumes to achieve high sensitivity
while using a structured chip design generally focuses on small volumes to
achieve high selectivity.

Evanescent field interaction

The practice of using the evanescent field of a waveguide to interrogate an
analyte is the most widely used method of WERS. The principle of the
method, as shown in fig. 3.1, is that the waveguide projects its evanescent
field into the analyte, where it interacts with the matter and its vibrational
modes. The generated Raman scattering from this is then coupled back
into the waveguide, causing the incident field and the fields containing the
Raman signal to co-propagate in the waveguide. The principal advantage
of using the evanescent field to interrogate the analyte is the significant in-
crease in the interaction length, and thus the interaction volume. While a
focused beam can achieve much higher intensities and can collect the gen-
erated scattering more efficiently by producing a tight envelope, the same
factor also limits the interrogation volume and thus the signal. Thus, by
replacing the conventional lens-based path, with a spot volume of a few cu-
bic micrometers, with a waveguide, the length of the interaction path can
be increased by several orders of magnitude. Using a high refractive in-
dex step in the waveguide design, the waveguide can be made to project a
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Figure 3.1: Conceptual sketch of evanescent field WERS. The evanescent
field of the waveguide interacts with the analyte, generating Raman scat-
tering. The scattered light is then partially coupled back into the waveg-
uide.

strong evanescent field several hundred nanometers away, and by giving the
analyte access to the space both above, on the sides, and sometimes below
the waveguide, the interaction cross section can readily be made well over
a square micrometer, allowing the excitation and collection from a large
volume surrounding the waveguide. Thus, with only one millimeter of ex-
posed waveguide, the interaction volume can easily be made to be as much
as 1 000 cubic micrometers, increasing the volume by two to three orders of
magnitude in comparison to a lens-based system. Since the Raman scatter-
ing of each interaction couples back into the waveguide where it propagates
with the incident field, the total signal increases linearly with each interac-
tion, thus with the length of its path. Furthermore, another advantage of
using a high refractive index waveguide is that it allows for the path to be
curved across the device. Curving the path, or even making it into a spiral
pattern, makes it possible to further increase the path length, from a few
millimeters to several centimeters[16].
Another benefit of exciting and collecting Raman scattering at the sur-
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face of a waveguide is the Purcell effect which occurs due to coupling of
the quantum oscillations of the analyte with those of the near field of the
waveguide, producing a local enhancement of the spontaneous emission
rate of the Raman scattering[15]. Thus, even with a reduction in field in-
tensity due to the relatively weak evanescent field, the overall signal can be
enhanced by as much as 500 times per centimeter of waveguide compared
to a confocal system[16].
However, while the potential of using this setting of waveguide enhance-
ment is very high, there are also significant challenges to it. One of the
principal challenges is regarding the loss in the waveguide as both the in-
cident and Raman fields propagate along it. As stated previously, the en-
hancement theoretically scales linearly with length, but it also scales with
the intensity of the field, and when there is loss in the waveguide the field
will decrease exponentially with length. This is also the case for the Ra-
man fields that propagate in the waveguide, which will eventually also
decay towards zero with length. Thus, the loss in the waveguide gives a
fundamental limit to the length and achievable enhancement as the expo-
nential decay eventually becomes larger than the linear enhancement. One
solution to this is to operate the waveguide in back-propagation mode, by
reading out the Raman signal from the facet where the incident light cou-
ples in. While this does not overcome the limit, it allows the waveguide to
be longer than the loss limit without risking that the propagation loss com-
promises the signal.
Another significant issue with using WERS, both in this setting and in
others, is that the waveguide itself will also produce Raman scattering,
which will co-propagate with the incident and the sample Raman in the
waveguide. This signal will thus produce a significant background in the
measurements, and will need to be corrected for in post-processing. This
challenge will be further addressed later in this thesis.

Structure on chip

Another approach to enhancing the Raman signal is to use more deliberate
designs to invoke a stronger Raman response. Plasmonic structures can be
fabricated on the chip in order to localize the field and produce nanometer
scale near field enhancement[37]. This combination of plasmonic enhance-
ment and WERS enables the best of the two to be exploited more fully.
By using the long interaction length afforded by the waveguide, as well as
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the high field enhancement given by the plasmonic effects, such devices can
thus detect substances with an even lower detection threshold than either
one alone[28, 57]. However, in this setting the weaknesses of both meth-
ods build on top of each other as well, resulting in the resonance distortion
and the transmission/coupling distortion with wavelength compounding on
each other, and may easily produce false impressions from the spectra. The
increased interaction with the plasmonic structures in this setting also sig-
nificantly increases the potential for heating along the waveguide surface.
The plasmonic enhancement is also non-selective, the result being that any
material in close proximity to the plasmonically active material will also
experience an enhancement of its Raman scattering. Unless careful design
is used, this can result in undesired elements, such as the waveguide mate-
rial surrounding the plasmonic structure, contaminating the spectrum.
Plasmonic enhancements are most commonly achieved by depositing nanopar-
ticles of a material that forms surface plasmons, commonly gold or silver,
onto a substrate, which in this case is a waveguide as shown in fig. 3.2.
This can be enhanced further by creating more deliberate structures on, in
or around the waveguide, such as nanoantennea[1] or metasurfaces[5]. The
use of precision electron-beam lithography also enables the construction of
such structures with much more predictable geometries, thus giving a more
reliable enhancement effect. One challenge with this approach is the need
for this precision, as both nanoantennae and metasurfaces are highly sen-
sitive to deviations in their geometry. This makes fabrication much more
challenging than the more common evanescent field WERS, and makes
the device much more vulnerable to breakage and wear in the structure.
This also presents an issue with biological samples, as the device would
have to be cleaned and disinfected after each trial to preserve bio-safety.
If the structure cannot withstand the cleaning process, then the chip es-
sentially becomes a single-use product, which makes the device unpractical
and gives rise to problems regarding repeatability.
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Figure 3.2: Conceptual sketch of three approaches in waveguide enhanced
Raman spectroscopy. Left: simple plasmonic enhancement using stochasti-
cally deposited gold nanoparticles, creating strong local field enhancements
around the beads. Center: plasmonic enhancement using gold nanoanten-
nae, a strong field enhancement is created at the tips of the antennae en-
abling the generation of strong Raman scattering from the sample parti-
cle. Right: projecting the field of the waveguides into a cavity holding the
sample, the size of the cavity can be designed to fit one or few particles,
enabling trapping and Raman spectroscopy of single particles.

Another approach to WERS revolves around the use of the waveguides
more as conduits instead of devices by using the micro/nanometer scale ge-
ometry of the waveguides to project the guided field into small volumes[8]
as shown in fig. 3.2, exploiting the fact that integrated optics can be used
to create microscopic devices with multiple functions. The principal ad-
vantage of this setting is the prospect of miniaturization of the desired
function, allowing for a device to be created with the ability to measure
a specific characteristic with smaller unit cells than what is achievable us-
ing a lens-based system[45]. While this setting does not give a direct en-
hancement similar to the other settings presented here, it does have the
advantage of confining the volume to a micrometer size, while the other
two methods generally considers a much larger volume. The trade off be-
tween enhancement through increased volume and the ability to interrogate
small volumes pays off by making this setting capable of performing spe-
cific measurements rather than a bulk measurement of the analyte. Thus,
if the analyte is heterogenous in nature, both evanescent field and plasmon-
ically enhanced WERS approaches would not be intrinsically able to detect
or characterize this heterogenity while the tip projection setting would.
This give the tip projection setting access to more information regarding
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the sample, and can reveal aspects of the sample that is of high value, es-
pecially in the field of biology[29].

3.2 Optical trapping on with waveguide de-

vices

Optical trapping using a lens-based system is a well tested method, and
has been in use for decades for analyzing particles down to less than 10
nanometers [51], and can thus be considered a reliable method of micro/nanomanipulation.
However, these methods are fundamentally diffraction limited, meaning
that even with a short wavelength excitation and a high NA immersion
objective, the focused spot is still several hundred nanometers in width.
This means that both the confining force and the expected volume of con-
finement for a particle in the order of 100 nm in size is quite poor, espe-
cially for biological nanoparticles with low refractive index. One significant
advantage of using a waveguide design for creating this trapping field is
that the waveguide can be made to have a relatively high refractive index,
thus reducing the diffraction limit compared to free-space or water-based
suspension fluids. It has been demonstrated that waveguide-based optical
traps can be made to trap particles below 100 nm in size using slot waveg-
uides, enabling trapping of objects as small as DNA strands[77]. Going
even further, through the use of photonic crystal waveguides it is even pos-
sible to trap objects down to the atomic size[46]. Thus, using waveguide
devices it is possible to trap particles much smaller than what is possible
using free-space optical systems.
By combining the optical trapping with Raman spectroscopy on a waveg-
uide it becomes possible to create devices that can readily trap, excite, and
collect Raman scattering from nanoparticles. A distinct advantage of using
a waveguide device in lieu of free-space optics is the microscopic size of the
traps. As a waveguide trapping device generally has a trap whose size is
in the order of a few microns, it becomes possible to create multiple sites
on a single chip. By combining multiple sites with a deliberate design and
waveguide circuitry, such as Y-junctions, the device can be made to have
multiple traps active at the same time. With an appropriately powerful
laser source coupled to the device, it is thus possible to create a Raman-on-
chip device that can trap a particle in each of the traps at the same time,
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and induce Raman scattering in the process.

33



3.3 Raman scattering in waveguides

As with conventional WERS, a Raman-on-chip device using single parti-
cle optical trapping is also susceptible to the induced Raman scattering in
the waveguide itself. The magnitude of the Raman scattering in the waveg-
uide is dependent on the path length of the waveguide circuitry, thus re-
ducing the Raman scattering in the waveguide is crucial for the viability of
a Raman-on-chip device. To evaluate the significance of the Raman scat-
tering, a suitable theoretical framework must be introduced.

3.3.1 Theory of Raman scattering in guided modes

The theory explored earlier in chapter 2.2.2 illustrates the Raman scatter-
ing of single molecules, free from each other. For the Raman scattering in
waveguides, this theory must be carried over into solid materials. In ad-
dition to the waveguide being a solid material, be it amorphous or crys-
talline, it is also carrying an electric field, therefore the interaction between
the field and the material must also be considered. Therefore, the spectrum
of the light created by a wave propagating in a waveguide can be divided
into three elements: Fluorescence, Raman scattering by the molecules of
the material, and distortions caused by fluctuations in the material proper-
ties.
The first, and strongest, of the observable effects produced in the waveg-
uide by a propagating wave is fluorescence. Unlike Raman scattering, fluo-
rescence is determined by the electron structure of the atoms in the mate-
rial, thus the wavelengths of the emissions are fixed while in Raman scat-
tering it is dependent on the excitation wavelength. The wavelengths that
can excite fluorescence are also fixed, and are generally in the higher en-
ergy end of the visual spectrum, making it possible to avoid this effect by
using lower energy excitation. Therefore, by using a laser source in the
lower energy range of the visual spectrum, such as wavelengths longer than
600 nm, fluorescence can often be avoided.
In contrast to fluorescence, the emission energies of Raman scattering are
not fixed, but are instead dependent on the excitation energy. While the
magnitude of generated Raman scattering is dependent on the excitation
wavelength, becoming stronger with higher photon energies, it is not pos-
sible to eliminate it in the same manner as fluorescence. However, by ap-
propriately selecting the material of the waveguide, it is possible to isolate
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the strongest Raman features of the waveguide from those in the sample
to be analysed. Furthermore, as discussed in chapter 2.2.2, the number of
Raman active modes in a material is directly dependent on the chemical
complexity of the material, with molecules of N atoms supports 3N − 6
vibrational modes. In a solid material, there will be additional modes due
to the bonds between molecules that makes the material a solid, causing
weaker and more diffuse Raman features to appear in the spectrum. There-
fore, by selecting a waveguide material with few atoms in its molecules it
is possible to make the Raman spectrum of the material have few, sparse
features.
Using a chemically simple material to form the waveguide makes it possi-
ble to make the Raman scattering in the waveguide have sparse features,
which through proper selection of the material can be made to exist out-
side the frequency range of interest for the samples Raman spectrum. How-
ever, the spectrum in the waveguide will also contain an underlying profile
caused by variations in the material parameters resulting in spectral noise.
In terms of optical waves, the most significant material property that af-
fects the waves is the refractive index, both the real and imaginary. Thus,
perturbations of the material, primarily through temperature fluctuations,
will perturb optical waves propagating in the material through variations
in the refractive index. The temperature fluctuations in the waveguide can
be considered as weak distortions caused by spontaneous heat fluxes. By
considering these heat fluxes, which can be considered to be stochastic, we
form the basis for the stochastic noise in the propagating waves.
The Raman scattering in guided modes has been explored in several works
[7, 22, 21], but has largely been limited to the lower frequency ranges due
considering thermal diffusion as the principal mechanism of heat flux af-
fecting the temperature field. A newer work[42] has instead considered the
stochastic fluctuations in the high-frequency regime, where the spontaneous
heat fluctuations in the material have a lifetime much shorter that the
propagation time given by diffusion. In this context, the diffusion rate of
the temperature fluctuation can be considered to be negligible, thus mak-
ing the perturbations of the thermal noise entirely dependent on the spon-
taneous heat fluctuations. This allows the spectral noise induced by the
thermal field to be modelled[42] as:

I (Ω) /I (0) =

(
4π2 L

λ0
2

)(〈
δn2

〉 ℓ3

ℓ2 + 2W 2
γ

)
e−γ|Ω|, (3.1)

35



where λ0 denotes the exciting wavelength, L denotes the length of the
guided mode, W denotes the mean width of the mode,

〈
δn2

〉
denotes the

expected variance of the refractive index changes due to the thermal fluc-
tuations, ℓ denotes the spatial correlation length of the thermal field, and
γ denotes the temporal correlation time of the thermal field. The spatial
correlation factor ℓ =

√
τκ/ρCV can be considered an extended material

property, in the sense that it is largely defined by the thermal conductiv-
ity κ, density ρ, and heat capacity Cv of the material. The factor τ , is the
relaxation time of the heat fluctuations, which depends on the motion of
the elementary charges in the material and is related to the overall inter-
nal energy in the material. The temporal correlation time γ must then be
non-zero and dependent on the spatial correlation length ℓ to account for
the assumed zero rate of diffusion in the high-frequency regime. To link
the two, the velocity of the heat fluctuations must be included, but as the
velocity is itself a stochastic variable, it is modelled by a Gaussian distri-
bution function with a determined standard deviation σv. The temporal
correlation time can then be defined by the length of the spatial correlation
and the width of the mode as: γ =

√
(ℓ2 + 2W 2)/

√
2σv.

From eq. 3.1, we can see that a material whose spatial correlation length ℓ
is as short as possible and whose temporal correlation time γ is as long as
possible is most beneficial, as this would reduce the overall noise produced
in the waveguide. From the definition of ℓ we see its square root depen-
dence on the thermal conductivity κ and the inverse square root depen-
dence on the density ρ and the heat capacity Cv, meaning that a mate-
rial with low thermal conductivity, high density and high heat capacity is
poised to have a short correlation length ℓ. Given that the correlation time
γ is positively dependent on both the correlation length ℓ and the mode
width W , a material with a short correlation length should have a large
mode to produce a long correlation time γ. Under the constraint of using a
single-mode waveguide, this implies that the best waveguide material is one
with low refractive index contrast.
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3.4 UV-written silica waveguides

3.4.1 Motivation

As described in chapter 3.3, the potential of a waveguide based Raman de-
vice is strongly tied to the induced Raman scattering in the device itself.
Thus, the investigation into the viability of such a device must begin with
an investigation into the Raman scattering induced in the waveguide by a
propagating wave. As illustrated in chapter 3.3.3, the principal contribut-
ing factor to the intensity of the Raman scattering, and the features in the
scattered spectrum, is the material of the waveguide, and thus the selection
of this material is of principal importance.
To meet the outlined goal of having a low spatial correlation length ℓ and
high temporal correlation time γ in the model described in eq. 3.1, we in-
vestigate a candidate material previously used in Raman spectroscopy to
consider it as the platform for a single particle Raman-on-chip device. It is
known that Raman spectroscopy using SiO2 optical fibers is viable, both
for bulk measurements in-vivo[14] and for single microparticles[18, 17],
thus we investigate if a waveguide built from the same material can achieve
similar performance. Given the fact that SiO2 has a thermal conductivity
more than 13 times lower[40] and a thermal capacity more than 4 times
higher[32] than Si3N4 despite having almost the same density[55], we ex-
pect the correlation length ℓ to be significantly shorter for SiO2 than for
Si3N4. Also, considering that SiO2 has a low refractive index of 1.44[43] rel-
ative to 2.0 [6] for Si3N4, it is possible to create much larger single-mode
waveguides, thus increasing the temporal correlation time γ. The resulting
spectrum generated in a waveguide of SiO2 should have a lower magnitude
than that of Si3N4 according to eq. 3.1.
Based on this, we have chosen to investigate the use of SiO2-based waveg-
uides fabricated with low refractive index steps and large modes through
the use of UV-writing, as shown in fig.3.3. These waveguides are fabricated
by Dr. James Gates and his group at the University of Southampton and
they are designed to emulate the properties of optical fibers, but on a chip.
The waveguides are fabricated by first growing a layer of thermal oxide
onto a silicon wafer, which forms the bottom cladding of the waveguide.
A layer of silica is deposited onto the thermal oxide by means of flame hy-
drolysis deposition. This layer is doped with germanium and either boron
or, less commonly, phosphorous, and will serve as the core of the waveg-
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Figure 3.3: Sketch of the fabrication procedure for UV-written silica waveg-
uides. The process is shown in four fabrication steps where the layers are
first created onto a silicon substrate before a 244nm UV-laser is used to
write the waveguide into the core layer.

uide. Lastly, a layer of silica doped with boron and phosphorous is de-
posited on top of the core layer, serving as the top cladding of the waveg-
uide. The dopant concentration in the top layer is selected such that the
top layer and the core have the same refractive index, which regularizes
the vertical and horizontal mode field profiles. The waveguide itself is cre-
ated in the last step, where a UV-laser is used to induce a refractive index
change in the core, which occurs due to the photorefractive properties of
the germanium and boron dopants. The result is an approximately rectan-
gular waveguide core, surrounded on all sides by silica with approximately
the same refractive index.
Due to choice of doping levels and the weakness of the photorefractive ef-
fect, the refractive index contrast between the written waveguide and the
surrounding cladding is less than 1.7%[44, 26], which is similar to that of
an optical fiber. This gives the waveguide a large single mode waveguide
with a very weak evanescent field. The embedded nature of the waveguide
makes the evanescent field unavailabe to any particles on the surface of
the chip. The high transparency of silica in combination with the low re-
fractive index contrast has the benefit of low propagation losses well below
1dB/cm[44].
The combination of low in-coupling and propagation losses as well as the
known low background of silica allows for high power to be delivered along
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the waveguide and for the Raman background to be low, making the UV-
written silica waveguides promising for single particle Raman spectroscopy.
To determine the significance of the background and to fine-tune the de-
sign of the waveguide, the precise background must be measured and its
absolute intensity evaluated such that the UV-written silica waveguides can
be compared to other platforms. This is the topic of the next section and
Paper I. As the evanescent field is inaccessible to particles on the surface
of the chip, structures must be etched into the waveguide to allow sample
particles access to the field. This is the topic of chapter 3.3.5.

3.4.2 Experimental design and findings

Measuring the Raman spectrum of a given material, or in this case a waveg-
uide, in arbitrary units is rather trivial. All that is needed is a pure enough
laser, a spectrometer that is sensitive to the relevant wavelength range, and
some coupling optics to connect them to the sample. However, to deter-
mine if silica is a better material than others, we must make the resulting
spectra comparable. To achieve this, the intensity cannot be expressed in
arbitrary units, but must be expressed in absolute units. To do this, the
acquisition must be calibrated to express the power of the spectrum rela-
tive to the input power, which requires a more complicated measurement
scheme.
In the work presented in Paper I, this is achieved by the setup illustrated
in fig. 3.4 by using a second laser source with a wavelength in the pass-
band of the longpass filter, which allows for the spectrometer to be cal-
ibrated to absolute units. The power of the second laser source, which
can be measured using a powermeter at key points in the system (P1-3 in
fig.3.4), also after the longpass filter (LP in fig.3.4). The acquired spectra
can be calibrated to absolute units compatible with the expression in eq.
3.1. The calibration method and the resulting spectra are detailed in Paper
I.
To summarize the results from Paper I, the UV-written waveguides were
found to have a Raman spectrum with no pronounced features, populated
purely by broad, weak peaks. The power level of the Raman spectrum gen-
erated by the UV-written SiO2 was found to have a maximum of -107 dB
at 425 cm−1 when excited by a 785 nm pump source and a maximum of
-106 dB at 436 cm−1 when excited by a 660 nm pump source. By compar-
ison, the power level of the Raman spectrum generated by a Si3N4 exhib-
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Figure 3.4: Sketch of the setup used to measure the Raman spectrum in
absolute units. The Raman spectrum of the waveguide is collected using an
in-line configuration where the outcoupled light is passed through a long-
pass filter and coupled to a spectrometer. A second laser source, acting as
a power reference, is coupled into a common path with the main source
and measured both by power meter and by spectrometer to provide the
calibration.

ited a sharp peak centered around 2323 cm−1 with a maximum power of
-99 dB and an overall maximum power of -93 dB at 188 cm−1. The results
reveals that the UV-written SiO2 waveguides produce Raman scattering
with 8 dB lower power level overall and 15 dB lower power level in the bio-
logical fingerprint region (800-1700 cm−1) compared to Si3N4, demonstrat-
ing that the UV-SiO2 are well suited for a Raman-on-chip device. Com-
parison with a commercial SiO2 fiber reveals that the UV-written waveg-
uides have a power level 10 dB higher than the fiber, demonstrating that
the waveguides are still not as suitable as fibers.
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3.5 Status of on-chip trapping and Raman

spectroscopy

3.5.1 Motivation

To trap particles, the waveguide chips are designed such that two counter-
propagating beams are guided by waveguides leading to a trapping site,
as shown in fig. 3.5. The trapping site is formed by a trench intersecting
the waveguide where the two beams interfere, the standing waves produced
by the interference create one or more potential wells where a particle is
trapped. An orthogonal aperture above the trench collects the Raman scat-

Figure 3.5: Design of a simple waveguide trap. The two counter-
propagating modes are projected into a narrow open space intersecting the
waveguides, where the particle is suspended in a solution. The standing
waves of the counter-propagating beams produce the gradient for trapping
while exciting Raman scattering from the particle. The generated Raman
scattering is collected using an orthogonal collection aperture.

tering from the trapped particle. The orthogonal configuration reduces the
amount of background from the waveguide collected by the aperture. How-
ever, some of the Raman scattering of the waveguide will inevitably cou-
ple into the aperture through crosstalk between it and the waveguide, as
illustrated in fig. 3.5. Thus, given the Raman-background of the waveg-
uides and the Raman spectrum of a PS-bead reported in Paper 1, we can
infer the signal given a set crosstalk, as shown in fig. 3.6. In the case of
-10 dB crosstalk between the waveguide and the collecting aperture, the
signal a 500 nm particle is barely detectable, with only the ring breathing
mode at 1001 cm−1 being slightly visible. With a crosstalk of -20 dB, the
features of the polystyrene particle begin to manifest more clearly, with
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both the breathing mode at 1001 cm−1 and the stretching modes at 1527
and 1604 cm−1 of the rings visible. With a crosstalk as low as -30 dB, the
full spectrum of the polystyrene becomes apparent, demonstrating that a
crosstalk between -20 and -30 dB produces spectra with a usable signal-to-
noise ratio. The geometry of the trapping sites, and the overall design of

Figure 3.6: Inferred signal of a 500 nm diameter particle trapped in a SiO2

waveguide trap. It is shown that a crosstalk of -30 dB between the waveg-
uide and the aperture makes the signal of the particle clearly distinguish-
able from the background. The signal is still visible with a crosstalk of -20
dB, but is significantly obscured by the background. With a crosstalk of
-10 dB, the signal of the particle is barely detectable and difficult to distin-
guish from the background without signal processing.

the waveguides as well as the measurement system, must therefore be de-
signed such that the crosstalk between the waveguides and the collection
system be kept as low as possible. In addition, the field projected by the
waveguides must also be sufficiently powerful and free of distortions such
that particles can be trapped by it.
While single trapping sites have been shown to be viable[8], the true pur-
pose of creating a trapping chip is to create multiple traps on the same
chip, thereby enabling the trapping of multiple particles as shown in fig.
3.7. Using the single trap design and a chip with multiple waveguides, a
device with multiple trapping sites can be fabricated. As with the single-
trap design, the multi-trap design uses a single orthogonal aperture to col-
lect the Raman scattering from the particles. To differentiate this method
from bulk methods, such as conventional WERS, the collection system is
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Figure 3.7: Sketch of waveguide chip with multiple trap sites. The chip
design replicates the trap sites shown in fig. 3.5, expanding the single trap
design to a trapping array. Through low losses, multiple trap sites can be
chained on a single waveguide such that multiple particles can be trapped
and excited by the same beam.

designed such that the Raman scattering from each trapping site is indi-
vidually collected. This can be achieved by having the collecting aperture
image the trapped particles on separate channels of an optical spectrum
analyzer, as shown in fig. 3.8.

3.5.2 Prototype 1

The first prototype design uses a traps formed by etching trenches orthogo-
nally into the waveguide chip, as shown in fig. 3.9. The chip was fabricated
at the University of Southampton and characterized in the work described
in chapter 3.4.2 and in Paper I. Once characterized, the trap designs were
etched at the Norwegian University of Science and Technology (NTNU) by
Dr. Marek Vlk also working on this project. The design uses the etched
walls of the trenches to act as the projecting facets of the waveguides for
trapping. The sidewalls are thus required to be especially smooth and
steep. The design of the trenches require a width of 1.5 µm and a depth
sufficient to penetrate the core layer of the waveguides. The combination
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Figure 3.8: Sketch of a setup using the multi-trap waveguide chip to trap
and excite multiple particles in parallel. By having the collecting aperture
be part of an imaging system that projects an image of the trapped par-
ticle on the entrance slit of an OSA. With the individual particles being
imaged at separate points along the entrance slit, the light from each of the
particles will be projected on separate channels of the OSA, allowing them
to be analyzed separately.

of these requirements made it challenging to achieve an etched structure of
sufficient quality for the device to function. The intrinsic resistance of SiO2

to etching agents further complicated the process, making it impossible to
use a simple resist mask for etching. The process instead required the use
of a deposited chromium mask that itself required a silicon mask, resulting
in a process of three deposition steps, followed by lithography of the resist,
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Figure 3.9: Sketch of the trap site design for the first prototype chip. The
trenches and the reservoir are shown in dark grey with the waveguides
shown in blue. The traps are formed by 1.5 µm wide trenches across the
waveguides. The chip is designed such that some waveguides have single
trenches, some double trenches and one with triple trenches.

and etching via three stages of reactive ion etching to produce the trenches
shown in fig. 3.10 of the prototype chip. Testing of the prototype chip re-

(a) Brightfield image of a waveguide
crossing a single trench.

(b) Brightfield image of a waveguide
crossing a double trench.

Figure 3.10: Microscope images of the fabricated prototype 1 chip showing
the trenches. The waveguides are weakly visible as horizontal lines in the
images.

vealed an expected drop in transmission across the trenches (≈ 5dB), but
otherwise with the same transmission characteristics as previously mea-
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sured. During testing, it became clear that several of the waveguides ex-
hibited a variable drop in transmission, despite being etched with the same
trench design. Due to the absence of a top cladding on these waveguides,
it was initially suspected that this variable change in transmission was due
to chipping along the input facets of the waveguide. This was solved by
thoroughly polishing the chip. Polishing reduced some of the losses, but
the variance was still present and high loss persisted for some of the waveg-
uides on the chip.
Several attempts were made at trapping 1 µm and 0.5 µm polystyrene
beads using the prototype chip, but only one attempt yielded results. Fur-
ther attempts revealed a progressively increasing propagation loss and
a degradation in the lateral confinement of the guided mode, eventually
rendering the waveguides inoperative. As this effect was also noticed in
the un-etched waveguides without a top cladding, but not in the top clad
waveguides, it is speculated that the absence of the top cladding may have
lead to chemical degradation of the core layer.

3.5.3 Prototype 2

The second prototype design deviates from the trench-design for the trap-
ping sites by using tapers at the end of the waveguide in lieu of the blunt
endings of the waveguides, as shown in fig. 3.11. This allows for the medium
surrounding the taper (water) to act as the side-cladding in the final mi-
crometers of the waveguide leading up to the trapping site. The local in-
crease in refractive index step allows for the mode to be narrowed down
to approximately 1.5µm by the time it reaches the trap instead of the full
5µm width of the embedded waveguide. Together with a thinner core layer,
this allows for better coupling to a particle smaller than the width of the
waveguide. The second prototype chip was manufactured in the same pro-
cess as the first, but due to a technical issue during fabrication the first
chip with this design was damaged.

3.5.4 Prototype 3

The third prototype design expands on the taper design by leaving thin
sections of the waveguide in the gap between them, these will hence be
referred to as wires. By using the suspension of the particles as the side
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Figure 3.11: Sketch of the trap design for the second prototype chip.

(a) Brightfield image of a trapping
site in the second prototype chip.

(b) Brightfield image of a trapping
site near the tip of the tapers in the
second prototype chip.

Figure 3.12: Microscope images of the fabricated prototype 2 taper design.

cladding of the waveguides, giving a higher refractive index step, the lat-
eral mode size in the wires can be reduces, thus projecting a denser field
onto the particles in the trap. These wires will then be chained together,
separated by gaps that form the trap site, as shown in fig. 3.13. Due to
the small size of the wire structures, fabrication is challenging and the di-
mensions of the resulting wires are thus not as designed. Furthermore, the
same problem as in prototype 2, being the misalignment of the tapers, still
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Figure 3.13: Sketch of the trap site design for the third prototype chip.

presents a significant challenge. Due to the poor visibility of the waveg-
uides, the tapers were misaligned, rendering the first prototype 3 unviable.
As the equipment required to fabricate more became unavailable shortly
after this, no further attempts could be made.

(a) Brightfield image of a trapping
site in the third prototype chip with
three wire elements.

(b) Brightfield image of a trapping
site in the third prototype chip with
nine wire elements.

Figure 3.14: Microscope images of the fabricated prototype 3 wire design.
The chip was fabricated with three and nine wire segments on different
waveguides to evaluate the losses of multiple wires in series.
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Chapter 4

Convolutional neural network
for quality control of silicon
ingots

4.1 Introduction

The challenges presented by the background in waveguide-based devices
can be significant, as illustrated in chapter 3, but there are ways to miti-
gate its effects on the signal. This can be achieved by altering the design of
the waveguide, both in terms of geometry, in the choice of material, and
in the fabrication process. However, there are limits to what can be re-
liably achieved in a physical device, thus the background will always be
present and is likely to pose a challenge regardless of the design. Another
area where this can be mitigated is in the post-processing of the data, rely-
ing on powerful signal processing techniques to mitigate the presence of the
noise in the signal. In simple terms, the acquired signal can be considered
a superimposed signal onto a background:

Isig = Ibackground + Isample,

where the background can ideally be removed by simple subtraction of the
background. The background can often be approximated using previous
measurements of the material, as shown in chapter 2, but the precise per-
turbations in the signal and variations in its intensity cannot be so easily
measured. A subtraction using a background such as this will leave distor-
tions in the signal and given the magnitude of the background relative to
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the expected sample signal, these distortions are likely to be large in com-
parison to the sample signal.
We must therefore move to more advanced, adaptive filtering methods to
remove the background without introducing such distortions. In the cur-
rent state of the art, the epitome of such methods is machine learning,
which can be designed to adapt to a very wide range of patterns and is
capable of discerning signals from highly mixed data. Because such al-
gorithms are highly capable at separating out data in this manner, they
have significant potential for their use in separating the Raman spectra of
a nanoparticle from the Raman background of the waveguide.
In order to implement a machine learning algorithm for Raman spectroscopy,
a suitable algorithm must be developed. To achieve this, the attention of
the project was temporarily shifted to another project: infrared tomogra-
phy, which was an extension on the topic of my master-thesis[34]. The goal
of this is to use the tomography setting as a testing ground for developing
a machine learning algorithm that can later be transferred over for use in
Raman spectroscopy.
The tomography project exploits the infrared transparency of silicon to ob-
serve the internal structure of a silicon ingot using laser scanning tomogra-
phy. The goal of the project was to see distortions in the crystalline struc-
ture of the ingot using the transmission scan data. Because the intended
use of such silicon ingots is in high-quality photovoltaic cells, there are
strict requirements to the crystal quality, notably that it must be monocrys-
talline. In the case of significant distortions in the crystalline structure
during production, the monocrystalline rapidly breaks down into mul-
ticrystalline structure. Because of the overlapping crystal structures in
multicrystalline material, the electron mobility, and thus the overall elec-
trical properties of the material becomes inhomogeneous. The result is that
the efficiency, and predictability of the local electrical properties of the cell.
Thus, the cell loses its practical and commercial value.
The distortions are challenging to detect during production and are there-
fore often not noticed until the product approaches the wafer stage near
the end of the production line. The result of this is that faulty material
passes through a significant length of the process before detection and thus
costs time, resources and effort while not returning a usable product. The
aim of the master-project was to detect defects in the crystalline structure
during production[34, 35], while the aim for this chapter, and Paper II, is
to detect defects in the silicon boules post-production. This chapter de-
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scribes the production process for monocrystalline silicon boules, and the
tomographic scanning method. The topic of tomographic scanning and sil-
icon production is quite far from the topic of the thesis, but the methods
developed for this topic, as presented in Paper II, contribute significantly
to the main topic of this thesis.

4.2 Czochralski process

To produce monocrystalline ingots from materials like silicon, special fab-
rication processes are required and the most widely used process for this is
the Czochralski process. This process is focused on using a template crys-
tal, referred to as a seed, that the ingot is grown onto such that the ingot
becomes an extension of the seed. This method allows for the growth of
monocrystalline ingots up to several hundred kilograms each, while main-
taining the original high-quality crystal structure of the seed throughout
the material.
The core of the growth process is that a small rod of crystalline silicon,
referred to as the seed, is used as a template for the silicon boule. This
is achieved by keeping the seed crystal below the melting temperature of
the material, which for silicon is 1 687 K, and introducing it to a body
of molten silicon, which is kept just above the melting temperature. The
boule is then produced by allowing the melt to freeze onto the seed crys-
tal, thus using the structure of the seed to provide the nucleation points
for the silicon as it freezes onto the seed, resulting in the newly frozen ma-
terial assuming the same crystalline structure. As the melt begins freez-
ing onto the seed, the seed is slowly retracted from the melt, as shown in
fig. 4.1, such that the newly solidified melt takes its place as a nucleation
source. By controlling the rotation of the seed, and its rate of retraction,
relative to the temperature gradient at the contact surface, the crystal can
be grown to produce a cylindrical ingot of desired diameter. This process
is then continued until the melt is nearing depletion, when the growth pro-
cess undergoes a controlled termination by gradually reducing the diameter
of the interface to produce a conical section at the end of the ingot, often
referred to as a “tail”.
While this process is well tested and is generally quite reliable, it is also
sensitive to a wide range of conditions during production, from contamina-
tion to temperature anomalies or vibrations. Because the potential of the
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Figure 4.1: Sketch of the production a monocrystalline silicon boule
through the Czochralski process. The boule is produced in four stages,
starting with the dipping of the seed into the melt. The crystal is then
widened during the shoulder section by reducing the pull rate while con-
trolling the rotation of the crystal. Once the desired width has been
achieved, a cylindrical section called the body is pulled. The body section
contains the usable material of the boule and comprises the majority of the
mass of the boule. When the melt is nearing depletion, the diameter of the
crystal melt interface is reduced to produce a conical section, called the
tail, which allows for controlled termination of the growth process.
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nucleation into the crystal structure is low in comparison to nucleation to
any point, small disruptions can cause crystal structures other than those
of the seed to begin growing in the ingot during the process. Once this pro-
cess begins, it cannot be reversed and the multicrystalline structure will
begin to spread laterally until the entire cross section of the ingot is mul-
ticrystalline, as shown in fig. 4.2. Therefore it is important to determine
the location where the multicrystalline structure begins to grow, such that
the section of the boule which is multicrystalline can be removed with as
little loss of monocrystalline material as possible.

Figure 4.2: Illustration of the segments of a silicon boule with structure
loss and the symptoms of structure loss. a) Photograph of a 36kg prema-
turely terminated silicon boule used as a sample in Paper II. b) Sketch of
the sections in a boule with structure loss, illustrating the formation of slip
lines at the onset of internal structure loss and eventually the disappear-
ance of the nodes at the onset of full structure loss.

The detection of the interface between the mono- and multicrystalline ma-
terial is a significant challenge in quality assurance of such ingots, largely
because its occurrence produces subtle signs. The clearest of these signs
is the disappearance of the “nodes” of the ingot, which are four equally
spaced ridges following along the length of the ingot as a result of the cu-
bic nature of silicon crystals. Thus, once the bulk material stops being
one large crystalline structure, the nodes will also stop appearing. Using
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the nodes as an indicator of structure loss is a reliable and widely used
method, but it also yields limited information. As the multicrystalline
growth begins near the center of the cross section before spreading out-
wards in a conical pattern, the onset of multicrystalline growth always pre-
cedes the disappearance of the nodes and other surface phenomena. The
length between the onset of surface phenomena and true loss of structure
is often estimated in quality assurance, but the accuracy of this estimate is
relatively low.

4.3 Infrared transmission of silicon

The purpose of this work is to investigate a possible tool for measuring
properties of the material below the surface of the ingot. The chosen tool
for this is laser scanning of the ingot.
An initial work[34] explored infrared laser scanning as a method of mea-
suring the deflection of the crystal-melt interface during production of
monocrystalline silicon. Because the magnitude of the deflection of the
interface is indicative of the temperature surrounding the crystal during
growth, it is also tied to the induced thermal stress, which is a significant
factor in the generation of crystal defects. Thus, by monitoring the deflec-
tion of the interface, it becomes possible to monitor the state of the process
and estimate the likelihood that defects will be generated in the crystal.
The transparency of silicon in the infrared spectrum permits the trans-
mission of an infrared laser beam through the material, which can then
be exploited to probe the internal volume of the silicon boules. In the work
presented in this chapter, and in Paper II, the concept of laser scanning is
expanded from monitoring the interface deflection to monitoring the crys-
talline structure through the transmission of the infrared beam. A mid-
infrared laser source is used to generate the scanning beam which is trans-
mitted through the ingot and detected on the opposite side. By introduc-
ing rotation of the crystal and translation of the laser and detector along
the axis of rotation, a full tomographic scan of the boule can be made.
Because silicon is a semiconductor material, there exists a region of ”for-
bidden” electron energy states between the valence band and the conduc-
tion band. This means that for an electron to transition between bands,
the electron must be provided with sufficient energy to cross this gap. If
provided with a lower energy than this, the electron will be motivated to
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go into the band gap, and since there are no actual states that correspond
to the energies in the band gap, this transition cannot occur and thus the
electron cannot accept the energy. When this energy is provided by a pho-
ton, the result is that a threshold energy, and thereby wavelength, exists
where no band-to-band transitions can be induced by the photon. In in-
direct band gap materials, which also includes silicon, the lowest energy
transition between the valence and conduction bands also involves a mo-
mentum change provided by a phonon, requiring a joint event between a
photon and a phonon for a band-to-band transition to occur, which reduces
the rate of such occurrences when the photon energy is below the required
energy for a photon only transition. This results in three main spectral
ranges for the absorption in silicon, as shown in fig. 4.3:

• Ad: Where the photon energy is above the threshold for a photon
only transition, occurring in Silicon for a photon energy of 3.2 eV or
higher[74].

• Ai: Where the photon energy is above the band gap energy but re-
quires a phonon assist to make the electron transition, occurring in
Silicon for photon energies between 1.11 eV and 3.2 eV[74].

• B: Where the photon energy is lower than the required energy for
an electron band transition, occurring in Silicon for photon energies
below 1.12 eV at room temperature.

Thus, for wavelengths longer than 1.11 µm, the electrons are not provided
enough energy to transition between bands, thus the electrons cannot ab-
sorb the photons and the absorption of the photons is low. The absorp-
tion spectrum of Silicon measured by Schinke et al.[64] shown in fig. 4.3,
demonstrating how the absorption is strongest above the direct band gap
energy (Ad), weaker between the indirect and direct band gap energies
(Ai), and drops dramatically below the intrinsic band gap energy (B). It
has been shown that the absorption spectrum can be modeled[34] using the
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Figure 4.3: Absorption spectrum of silicon[64]. The spectrum is shown di-
vided into the

expression:

αEx,B+Ai
(ν, T ) = χ (hν)

{
C1 (T )
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2[hν − Eg,D (0, T )]2

+

C2 (T )
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2[hν − Eg,D (p0, T )]

2 +
C3 (T )

Ea
2 (T ) [hν − Ea (T )]

2

}
×Dη (p0, T ) (hν − Eg (T ))

2hν + CFCA (ν, T ) ν−2N

, (4.1)

where Cn (T ) denotes the coupling between the photon/phonon event and
the transition of the electrons, E (T ) denotes the energies of the transi-
tions, η (T ) denotes the phonon energies, and CFCA (ν, T ) denotes the ab-
sorption coefficient for photons by free carriers created by the dopants in
the material.

4.4 Experimental design

The experiment is uses a mid-infrared laser source (λ = 1.6µm) mounted
on a vertical translation stage to project a beam into the sample ingot.
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Figure 4.4: Sketch of the setup used in the infrared tomography of silicon
boules. The laser and detector assemblies move independently along the
vertical axis to maintain alignment with the beam transmitted through the
boule. A lens is used to collect thetransmitted beam and a neutral density
(ND) filter is used to prevent saturation of the detector.

The transmitted beam emerging from the other side of the ingot is col-
lected by a lens and focused into a detector, also mounted on an identi-
cal vertical translation stage. The set-up is shown in fig. 4.4. The sample
can be scanned vertically by moving the laser and detector independently,
which together with rotation of the sample ingot enables tomographic scan-
ning of the sample. The material of the sample is evaluated by the relative
transmission of the beam, which is collected in vertical slices as the sam-
ple rotates to reconstruct two dimensional transmission maps of the cross
section.
In the case of an ideal bulk material, the transmission map is expected to
be homogeneous with the transmission being independent of the angle of
the azimuth. However, due to the high refractive index of the silicon (3.44

57



Figure 4.5: Expected transmission profile for a cross section of bulk
monocrystalline silicon. The transmission is given by eq. 4.1 in the bulk
material but is deflected by the nodes N , resulting in no transmission.

[9]), it is expected that the protrusions of the nodes shown in fig. 4.2 will
deflect the incident beam and disperse the output beam, resulting in the
transmission map having four equally spaced sections of low/no transmis-
sion resulting in a transmission map similar to what is shown in fig. 4.5.
To investigate if the measured transmission maps can be used to evaluate
the integrity and quality of the crystalline structure, transmission maps of
the cross sections through the lengths of the samples are acquired, both in
the known multicrystalline and presumed monocrystalline sections of the
samples. The transmission maps are filtered with the goal of classifying the
structure as intact or not intact, and to quantify the quality of the struc-
ture, by using machine learning methods.

4.5 Convolutional Neural Networks

Machine learning has been progressively becoming a more and more pow-
erful alternative to traditional signal processing, and has proven itself effi-
cient and capable at analysing complex patterns in data. The most com-
monly used machine learning method is the neural network, which uses
simple computational units, called neurons. The neurons perform simple
multiplication of the inputs with learned weights in order to determine
their outputs. These neurons are generally combined in large numbers,
with some acting in parallel to produce layers with a ”width” given by the
number of neurons in parallel, and some in subsequent layers that act in
series to give the network ”depth”. By increasing the width of a network,
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Figure 4.6: Sketch of a general CNN model. The input data is passed
through layers of convolutional filters that re-represent the data in increas-
ingly abstract ways. The size of the data is reduced by eliminating the
weakest responses after each level of filtering such that the abstract infor-
mation is concentrated.

it is possible for the network to react to more unique cases of its input, and
by increasing the depth of the network, it becomes capable of reacting to
more abstract combinations of cases. While such neural networks are can
be adapted to a variety of tasks, they are also limited by the way they in-
teract with the data.
One of the principal limitations of conventional neural networks is the re-
quired size of the network for a given size. As each neuron must learn a
weight for each input data point, processing a large continuous vector,
such as a spectrum, or matrix, such as an image, the number of weights
quickly becomes large and the model becomes computationally expensive.
An alternative to this is to replace the initial neurons with learned filters
and convolving the input with these filters as shown in fig. 4.6. By using
convolutional filters to process the data before passing it to the fully con-
nected neurons, the model can concentrate the information in the data
to make it more compatible with fully connected neural layers, thus re-
ducing the required number of neurons. This also makes the model able
to recognize specific patterns in the data and react to them regardless of
where in the data these patterns occur. Neural networks that use this, re-
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ferred to as Convolutional Neural Networks or CNN’s, have been proven
superior to conventional neural networks when fed data that is naturally
continuous[27], such as those observed in the tomographic scans of the Sili-
con ingots measured in Paper II.
The variant of CNN used in this work is based on the well known VGG16
architecture[65] but it is modified to accept vector instead of matrix inputs.
The chosen architecture consists of a convolutional pre-processing block
followed by two parallel neural network heads that produce the outputs
of the network. One of the heads is a regression head with linear activa-
tion, designed to yield a numeric quality number between zero and one.
This should reflect the quality of the structure, with one indicating perfect
structure and zero indicating total breakdown to multicrystalline struc-
ture. The other neural network head is a classification head, intended to
classify the structure as either good, lost structure, or noise only, based on
the transmission map. The convolutional layers in the model allows for the
transmission profiles to be re-represented such that the features that are
indicative of multicrystalline structure are enhanced, as shown in fig. 4.7.
The concentrated features are then processed by the classifier and quality
regressor heads to evaluate the structure.

4.5.1 Modular architecture and evolution

To make the architecture as flexible as possible, it is designed to be modu-
lar, meaning that the architecture is built from a set of arbitrary build pa-
rameters, as shown in fig. 4.8a. This allows the architecture to be altered
at will, with the structure, such as the number of convolutional layers, size
of the filters, number of neurons in each head etc., being decided by a total
of 13 hyper-parameters. The optimal selection of these hyper-parameters
presents an additional challenge, as the parameter space becomes large
and the connection between the hyper-parameters and the performance
are poorly known. To meet this challenge, evolution is implemented to con-
verge the hyper-parameters towards optimal values. This treats the hyper-
parameters as genes, allowing the networks to be created in groups to form
a population in each generation, as shown in fig. 4.8b). As each generation
is trained on a common data set, they are also tested on a common set to
evaluate their performance. The way their hyper-parameters are passed to
the next generation is, much like genes in nature, determined by the per-
formance of the network possessing those parameters. By allowing the best
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Figure 4.7: Representation of transmission profiles through convolutional
layers in the model. The representations enhance the features that differ-
entiate the good and bad structure, passing only the most valuable infor-
mation to the neurons. This allows the neurons to estimate the likelihood
that the structure is either good or bad, and to predict a numerical quality
value that reflects how good the observed structure is.
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Figure 4.8: Schematic of the CNN and its use of hyper-parameter ”genes”.
a) The model is designed as a framework without a predetermined archi-
tecture, instead using the hyper-parameters, or ”genes”, to construct the
network with the architecture determined by the genes. b) The evolution
process using a genetic algorithm. The initial generation is created from
a gene pool which is then passed to the evolution loop. The generation is
trained and evaluated such that the best performing networks are sepa-
rated from the rest and used as a base for the next generation.

performing network to pass its ”genes” to the next generation, the best
in each subsequent generation is at least as good as in the previous gen-
eration. By allowing the ”genes” of the best 60% networks to mix, con-
vergence towards optimal set of hyper parameters is encouraged. And, by
making 25% of the next generation from randomly selected genes, ”muta-
tions” and thus exploration of the hyper-parameter space are encouraged.
The CNN is allowed to evolve over five generations using this data be-
fore converging to an optimal architecture with 20 convolutional layers, 5
neuron layers in the classifier, and 6 neuron layers in the quality regres-
sor, giving a network with a total of 40.3 million parameters. The optimal
network architecture is then trained on a subset of the data for 40 epochs
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before testing in a separate subset. The classification of the cross sections
demonstrated a 98.7% accuracy on the test set, showing a good ability to
detect the loss of structure. Testing also revealed that the classification re-
sults are robust to noise, tolerating a reduction in signal-to-noise ratio from
23dB down to 5dB without a change in predicted class. The quality num-
ber given by the regressor conforms to expectations with high contrast and
low noise. The regressor is shown to be robust towards noise by tolerating
up to 9.9dB of noise with less than a 5% deviation in prediction. Further
details and results are given in Paper II.
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Chapter 5

Self-supervised processing by
Raman autoencoder

5.1 Introduction

While machine learning methods like CNN’s are indeed powerful and ver-
satile, they are also fundamentally limited by the information available to
them. In order for them to learn, they must be fed a large amount of ex-
ample data for them learn from. The network attempts to predict a quality
of the data, such as its class. The model learns by numerically quantify-
ing how wrong the predictions are, producing what is referred to as the
“loss” of the predictions. From the computed loss, the model estimates the
gradient map of its parameters from such that following down the slope
of the gradient minimizes the loss, and thus leads to the optimal param-
eters. This is referred to as supervised learning, where the data used for
training comes with metadata, or labels, that describes the underlying
truth about the aspects of the data we are interested in. As an example:
If a CNN is tasked with recognizing a house or a car from a picture, it is
trained on a set of thousands of images of houses and cars where, for each,
it predicts the likelihood that the image is of a house or a car. This pre-
diction, say 82% chance of a house and 18% chance of a car, is compared
with the ground truth, that the image is of a house. If the prediction of
“house” had been higher, then the loss for would be lower, and vice-versa.
Such supervised learning is therefore only applicable when the features are
well known and can be provided along with the data as reliable labels. In
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other cases, where this information is unknown or poorly known, super-
vised learning cannot be applied as it has no basis for determining the loss
of a prediction. Raman spectra can be considered an example of this, as
conducting supervised learning on Raman spectra would require knowl-
edge of the chemicals of interest in the samples that generated the spectra.
To achieve this, a dataset would have to be constructed by measuring a
variety of samples containing known concentrations and mixtures of the
chemicals of interest. While this can be achieved, training an algorithm to
be sufficiently robust for biological applications would require thousands of
such measurements, which would take considerable time and effort to pre-
pare, acquire, process, and verify, in order to create the necessary dataset
to train a supervised method.
The ideal alternative is an algorithm that can learn from data without la-
bels, instead learning from the data itself. This is widely referred to as un-
supervised learning, as the algorithm is not provided any metainformation
about the data. There are different ways this can be achieved, depending
on the desired function of the algorithm and what types of predictions one
wishes to have the algorithm make. One of these methods is referred to as
an autoencoder, which consists of two neural networks joined together, as
shown in fig. 5.1. The function of an autoencoder is that the first network,
referred to as the encoder, accepts some training data which it processes
into an output. This output forms an internal data space referred to as the
“latent” space. The second network, referred to as the decoder, takes in-
formation in the latent space as an input and attempts to reconstruct the
original data. Learning is achieved by comparing the reconstructed data
from the decoder to the original input to the encoder. The goal is for the
encoder to learn to recognize significant features or patterns in the input
data such that the information in the input data can be described using
only the comparatively small latent space. The latent space can therefore
be considered analogous to the labels a CNN would use to train, except
that the latent space representations are generated purely by the network.
The overarching goal of using an autoencoder on Raman spectra of EV’s is
therefore to have the algorithm determine and detect important features of
the spectra, with the ideal case being that it manages to determine latent
representations where each dimension corresponds to a chemical of interest
in the EV. This is where the CNN developed for the silicon-project comes
into play. As an autoencoder is conceptually two neural networks, such as
CNN’s, connected by a latent space, a convolutional autoencoder[48] can
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Figure 5.1: Schematic of a generic convolutional autoencoder. The encoder
network functions in the same way as a conventional neural network, ex-
cept instead of predicting classes, it predicts abstract latent information
from the input. The integrity of the information is verified by the decoder,
which attempts to recreate the input from the latent information. Learning
is achieved by comparing the recreated data to the original data, thus en-
abling self-supervised learning that does not require labels.
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Figure 5.2: Raman spectrum of an EV derived from blood platelet in its
natural state. The spectrum can be shown to consist of densely packed Ra-
man modes from approximately 700 cm−1 to 1400 cm−1.

be built using the same structure as was developed for the silicon-project
in chapter 4. Thus, by relying on the modular nature of the already devel-
oped CNN and adding certain features, a powerful autoencoder algorithm
can be built to handle unlabeled Raman spectra.
Through measurement systems like confocal Raman microscopes, the spec-
tra of EV’s can be determined and from this, information can be extracted.
However, because of the complex chemical makeup of EV’s, these spectra
, as shown in fig. 5.2, are also relatively complex compared to the sparse
peaks normally observed in materials consisting of a single molecule. Thus,
using only a few select peaks to evaluate the spectra omits the majority of
the information in the spectra, giving a poor description of the samples.
To fully exploit the richness of the information in the spectra, and to make
the analysis method capable of detecting patterns in the spectra, a special-
ized autoencoder is developed to analyze the spectra. The goal of this work
is to produce an autoencoder that is capable of decomposing the spectra
of EV’s such that EV’s can be differentiated using biochemically signifi-
cant factors. To motivate the algorithm to learn these factors, we wish to
encourage the model to learn to recognize features belonging to the same
chemical group, such as proteins, as a single factor. While accomplishing
this would require reference information, such as spectra of pure proteins,
we can motivate the model towards this goal by modifying its learning out-
come. For the learned components to be true representations of the chem-
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Figure 5.3: Illustration of the effect of using Gaussian re-sampling to gen-
erate the latent information in variational autoencoders. By motivating the
network to represent the latent information as uncorrelated Gaussian vari-
ables, the network is motivated to learn the latent information as linearly
independent.

ical elements of the spectrum, they must be independent, while this is dif-
ficult to accomplish, it can be approximated. By modeling the latent space
representations using uncorrelated Gaussian distributions, the dimensions
of the latent space can be motivated to be linearly independent[63]. This
is achieved by using a a variational autoencoder[10] which uses Gaussian
re-sampling to generate the latent space representations such that they are
uncorrelated, as illustrated in fig. 5.3. This is motivated through the loss
function, where the Kullback-Leibler divergence between the distribution
of the latent space representations and uncorrelated Gaussian distribu-
tions is an element. The more the latent representations resemble uncor-
related, and thus linearly independent, variables, the lower the loss is. How
strongly this affects the learning process is managed by a prescribed pa-
rameter β in the autoencoder to give the architecture flexibility to exploit
this feature more fully. In terms of chemistry, this means that the model
is encouraged to associate Raman features that correlate strongly, such as
those belonging to a specific chemical, with one specific dimension of the
latent space rather than representing this information over multiple dimen-
sions. This give the autoencoder an advantage over simpler decomposition
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methods, such as principal component analysis.

5.2 De-noising autoencoder

In addition to decomposing input data, effectively training the encoder as a
feature extractor network, autoencoders can also be trained to make mod-
ifications to an input. This is readily achieved by modifying the data be-
fore passing it to the encoder, while comparing the reconstruction from the
decoder with the unmodified data. By using the known spectrum of SiO2

waveguides, as described in chapter 3.4.2 and Paper I, as a source of ad-
ditive noise we can train the model to remove the waveguide background,
as shown in fig. 5.4. The architecture is constructed from the CNN devel-
oped for the silicon-project in chapter 4 and Paper II, albeit with differ-
ent hyper-parameters. The CNN is repurposed to serve as the encoder,
and a reversed version, replacing the convolution and MaxPool elements
with deconvolution and upsampling, is made to serve as the decoder. Thus,
the same features that gave good performance for the CNN in the silicon-
project are inherited by the Raman autoencoder. It also inherits the same
modular construction and its use of hyper-parameters as genes. This also
enables it to evolve as the CNN did, albeit with 23 hyper-parameters de-
scribing the deeper autoencoder.
The autoencoder is further augmented by the introduction of a Fourier ele-
ment in the loss function. When the data passes through the autoencoder,
especially the narrow latent space, some information is invariably lost, re-
sulting in a difference between the reconstruction and the original. When
the loss of the reconstruction is based purely on the reconstructed vector,
for instance the root mean square of the difference between the reconstruc-
tion and original, most of the lost information is in the sharp features of
the data, effectively making the process a low-pass filter. This degrades
sharp features in the spectra, such as the sharp peak of the Phenylalanin,
which occurs at 1006.3 cm−1 and is commonly used as a protein indica-
tor. Potentially significant information is thus vulnerable to degradation.
The Fourier element compares the Fourier transform of the reconstruction
to the original. This motivates the autoencoder is to preserve information
that presents with either a high amplitude in the data or in the Fourier
transform of the data, or both. Sharp features, which with high amplitudes
in Fourier space, will contribute stronger to the loss if degraded. Using
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Figure 5.4: Schematic of the training of a de-noising autoencoder. The
original data, being Raman spectra of EVs, is combined with noise cor-
responding to the background of SiO2 waveguides before being fed to the
encoder. The reconstructed spectra are compared with the original Raman
spectra such that the model learns to remove the introduced noise.
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both the normal and Fourier loss therefore encourages the reconstruction
to preserve both sharp and blunt features better, allowing the autoencoder
to learn a wider variety of patterns in the spectra.
The architecture shown in fig. 5.5 is created from the described framework
through evolution. The model is trained on a dataset created from 279 Ra-
man spectra of blood platelet derived EVs. The dataset is augmented with
randomly generated Gaussian white noise, reducing the signal-to-noise ra-
tio to from approximately 22 dB to 13 dB, or a factor of eight reduction.
This emulates a condition where the particle size is halved, or if the power
density of the field at the particle is reduced by a factor 8, equating to a
mode width of 1 µm. A randomly selected background level is added to
the noisy signal, bringing the mean signal-to-noise ratio down to -18±3 dB.
This is done to emulate the expected background level in a waveguide trap
as described in chapter 3.5 and shown in fig. 3.6.
The trained network is subsequently tested on 81 isolated spectra to verify
the quality of the reconstructed spectra, as shown in fig. 5.6. The recre-
ations are quite similar in comparison to the true noise-free original spectra
and they clearly express the features in the spectra, both the low-frequency
complexes and the high-frequency peaks. The increase in SNR is signifi-
cant, increasing by an average of 20.5dB, or a factor of 105 from the noisy
input spectra to the reconstructed spectra. With the exception of one peak
due to numerical error in the data, the performance is reliable and excel-
lent, increasing the signal-to-noise ratio from -18±3 dB to 5.4 dB.
The de-noising performance of the autoencoder shows that the background
spectrum induced in a SiO2 waveguide can be overcome. Demonstrating
that the Raman spectra of EVs can be recovered with high fidelity, despite
being heavily contaminated by a waveguide background with a random
magnitude. The models ability to overcome Gaussian noise in addition to
the background also demonstrates that Raman spectra of EVs can be col-
lected with a significant reduction in the delivered power to the particle,
showing that sufficient Raman scattering can be generated with a large
mode size.
By passing artificially created latent representations to the decoder and
observing the created spectra, we can determine the spectral components
the autoencoder associates with each dimension. It was found that one of
the components agree well with what is expected for a protein, and one of
the components agree well with what is expected from a lipid, as shown in
fig. 5.7. Using the latent dimensions considered to be associated with lipids
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Figure 5.5: Schematic of the de-noising autoencoder. The encoder takes
a noisy spectrum as its input and runs it through six blocks of convolu-
tional filters with a total depth of 26 filter layers. The filtered spectrum is
then passed through four layers of fully-connected neurons that predict the
mean and variance of the latent Gaussian distributions. The latent space
data is sampled from the described Gaussian PDFs. The decoder takes the
latent data and runs it through three layers of fully-connected neurons fol-
lowed by three blocks of up-sampling with convolutional filters. The recon-
structed spectrum generated by the decoder is compared with the noise-
free original spectrum to compute the loss.
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(a) Comparison between the noisy spectrum (black), the
original spectrum (blue), and reconstructed spectrum
(red).

(b) Plot of the signal-to-noise ratio of the original, noisy,
and recreated spectra.

Figure 5.6: Graphs showing the performance of the autoencoder. The spec-
tra are reconstructed with a high level of accuracy in the presence of noise.
The autoencoder is able to reconstruct the spectra with a mean SNR of
5.4dB, an increase of 20.5dB from the noisy input spectra.

and proteins, we investigate the distribution of the EV spectra in the la-
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(a) Lipid associated component with assignments.

(b) Protein associated component with assignments.

Figure 5.7: Components created by probing the autoencoder latent space.
The component shown in a) exhibits features consistent with both lipids
and carotenoids, therefore it is considered to be associated with lipid con-
tent in the EVs. The component shown in b) exhibits features consistent
with proteins and nucleic acids (NA), notably the clear Phenylalanin-peak
at 1006.3 cm−1 (here 1005 cm−1), and is therefore considered to be associ-
ated with the protein content in the EVs.

tent space. By passing the spectrum of an EV through to the encoder and
intercepting the latent space representation, we form a datapoint in the la-
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tent space, reflecting how the model views the spectrum. By specifically
looking at the lipid and protein associated dimensions, we see that the
model recognizes differences that correspond with the nature of the EVs, as
shown in fig. 5.8. The platelet and THP-1 derived EVs form two distinct
clusters that are well separated. This indicates that the model sees a clear
difference in the EVs originating from the two sources, which agrees well
with expectations as platelets and monocytes, like THP-1 cells, have very
different biological functions. Perhaps most interesting is the results from
the platelet derived EVs where we see that the unactivated platelet derived
EVs in fig. 5.8a form a wide distribution with some registering strongly in
the lipid associated dimension and some in the protein associated dimen-
sion. In contrast, we see that the activated platelets, both with thrombin
and calcium, form a much tighter cluster in the high-lipid end of the con-
trol distribution. This indicates that the model sees them as both more
homogeneous and that they consistently agree more with the lipid associ-
ated component. This is in agreement with the expectation, as we expect
that the activated platelets will begin producing EVs sending a common
signal, and thus their EVs will become more homogeneous. It also agrees
with the expectation that the activated platelet derived EVs should con-
tain little protein. Fig. 5.8b shows the latent representations of the same
EVs, but with the same type and magnitude of noise as we expect to see
in the waveguide. The distributions are smeared out compared to the dis-
tributions in fig. 5.8a, taking on an ”L”-shape. However, the THP-1 and
platelet derived EVs are still well differentiated, and the same trend is
present in the platelet derived EVs as seen in fig. 5.8a.

5.3 Differentiation model for EVs

A new model was created to specialize in the differentiation of EVs using
their Raman spectra, building on the de-noising autoencoder architecture.
To achieve this, a larger sample set was required as the current set only in-
cluded 281 spectra. It would be too time consuming to significantly expand
the set using an existing confocal setup, both due to preparation of the
sample and the measurement time. Instead, additional measurements from
another lab (Medical Cell BioPhysics, University of Twente, The Nether-
lands) were included in the set, increasing the number of spectra to 2667.
While this significantly increased the sample size, it also introduced chal-
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lenges due to the separate origins of the measurements. Uncertainty re-
garding the chemical status of the samples and the influence of the prepa-
ration on it also introduced challenges to the work.

5.3.1 Adaptive frequency architecture

The most significant differences between the datasets from the two labs are
the spectral range and resolution of the measurements. The measurements
used for the de-noising autoencoder have a common spectral range of 1726
cm−1 (from 306 cm−1 to 2032 cm−1) while the measurements from Twente
have a range of up to 3371 cm−1 (from 304 cm−1 to 3675 cm−1). The sam-
ple set is thus highly heterogeneous. There is also a significant difference
in the noise level of the two measurements, which pose a further challenge
for the model. Thus, to be able to use datasets from both sources in train-
ing the same autoencoder, the training scheme must be configured such
that these system/lab-dependent factors do not influence the learning. One
way of achieving this is to normalize the spectra, for instance by truncat-
ing and interpolating the spectra to the same spectral range and resolution.
However, the strength of neural networks is their ability to adapt to dif-
ferent conditions. Applying efforts to clean the dataset fails to exploit this
strength. Thus, instead of altering the dataset to make it palatable to the
network, we instead investigate making the network able to adapt to differ-
ences in the datasets.
The primary way of achieving adaptability is by having the network con-
sider the spectral range explicitly rather than implicitly, by passing infor-
mation about the spectral range and resolution explicitly to the network,
as is described in Paper III. By allowing it access to the spectral infor-
mation, the network is provided with the information needed to adapt to
changes in the spectral range such that information from different sources
can be processed by the same algorithm. This is achieved by passing the
spectra to the autoencoder on two parallel channels, one that contains the
intensities of the Raman spectra and one that contains the wavenumber
shifts corresponding to the intensities. As the wavenumber shifts follow a
predictable form, a fourth degree polynomial, this can be parameterized
instead of passing each the entire vector through the network. The param-
eters bypass the convolutional portion of the network and are merged with
the intensity-related information in the neuron section of the network. The
two forms of information can then intermingle in the neuron section before
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being passed to the latent space by the encoder. The decoder processes the
mixed information in order to reconstruct and separate the two informa-
tion streams again, with the intensity-related information passing through
deconvolution layers and the wavenumber-related information passing into
a polynomial function to reconstruct the wavenumber vector originally
passed to the encoder. Further details and results on application to EVs
and other nanoparticles are presented in Paper III.
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(a) Scatter plot of the latent space representations of
the Raman spectra of EVs without the presence of arti-
ficial noise in the spectrum, as shown in fig.5.2.

(b) Scatter plot of the latent space representations of
the Raman spectra of EVs in the presence of Gaussian
noise and waveguide background, as shown in fig.5.4.

Figure 5.8: Scatter plots of EV spectra in the latent space of the de-noising
autoencoder. The scatter plot in a) is generated using the source spectra,
without any added noise, resulting in two well differentiated clusters corre-
sponding to the THP-1 and platelet derived EVs. It is shown that the the
EVs from activated platelts form a distinct sub-cluster in the larger cluster
of the un-activated control platelets. In b) the same source data is used,
only with added Gaussian noise and waveguide background, resulting in
”L”-shaped clusters. The same behaviour is demonstrated in b) as in a)
with the THP-1 and platelet derived EV distributions remaining differenti-
ated, albeit with less separation. The same sub-clustering of the activated
paltelet derived EVs is also present in b).
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Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis studies the prospect of using Raman spectroscopy as a tool
for analysing extracellular vesicles and other biological nanoparticles, and
presents a machine learning architecture for the analysis of the spectra.
UV-written SiO2 waveguides are evaluated as a candidate for a waveguide-
based Raman-on-chip device. The UV-written SiO2 waveguides are char-
acterized, with focus on the background generated by the induced Raman
scattering and how the background impacts measured spectra of nanopar-
ticles, to evaluate the viability of a SiO2-based Raman-on-chip device. A
variational autoencoder model is developed to compensate for the gener-
ated noise and background in a waveguide device such that the spectrum of
a measured nanoparticle can be recovered independent of the background
level. The autoencoder is developed further to allow it to consider Raman
spectra with variable resolution and noise, and is shown to be able to dif-
ferentiate nanoparticles well.
In Paper I, waveguides fabricated by UV-writing in SiO2 are character-
ized to evaluate their induced Raman scattering. The Raman scattering of
several waveguides with different fabrication parameters is measured us-
ing two different excitation wavelengths. The generated Raman spectra
are calibrated using a secondary laser source such that the magnitude of
the spectra is expressed in absolute units. Measurements reveal a signifi-
cantly lower Raman background in UV-written SiO2 waveguides compared
to Si3N4, but that the SiO2 waveguides still produce a stronger background
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than comparable fibres. Measurements of a particle analogue give an es-
timated achievable signal-to-noise ratio of -15 dB for a 100 nm diameter
particle when trapped by a SiO2 waveguide device.
In Paper II, a convolutional neural network model is developed for deter-
mining the quality of monocrystalline silicon from infrared transmission
tomography. Three samples of silicon boules are subjected to a full tomo-
graphic scan using a near infrared laser source. The measured transmission
profiles for each step along the longitudinal axis of the boule is processed
by a convolutional neural network to determine the quality of the crys-
talline structure of the silicon. The network is created through a process
of evolution using a genetic algorithm to determine the architecture of the
network. The developed model achieved a 92.2% accuracy in predicting the
intactness of the monocrystalline structure of the silicon.
In Paper III, the convolutional neural network of Paper II is expanded into
a variational autoencoder designed for feature extraction from Raman spec-
tra of biological nanoparticles. The developed autoencoder uses a convolu-
tional encoder to compress the spectra into a 100 dimensional latent space
containing the extracted features. The novelty of the autoencoder is the
explicit consideration of the frequency aspect of the spectra, allowing the
model access to both the intensity at each point in the spectra as well as
the wavenumber at each point. This allowed the model to accept spectra
with variable spectral resolution and range, enabling it to use data from
two different laboratories with different measurement systems. The model
is also shown to be robust against noise and distortions in the spectra,
demonstrating significant de-noising capabilities. The extracted features of
the Raman spectra are used to classify the spectra to the biological origin
of the particles, achieving an accuracy of 92.2% and the ability to discern,
among others, particles from prostate cancer patients from non-cancer con-
trols with very high accuracy.

6.2 Future work

Due to technical challenges, the fabricated prototypes for the Raman-on-
chip device were not viable, and due to limited access to fabrication facili-
ties, further prototypes could not be fabricated. The future work on these
devices would therefore include the fabrication of new chips with the pro-
totype 3 trap design (wires). Once fabricated, the devices will be tested
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using 1 µm and 0.5 µm polystyrene beads before continuing to biological
nanoparticles, primarily extracellular vesicles. With successful trapping of
nanoparticles in a single trap, the set-up will be modified to collect from
multiple traps on the chip.
The developed machine learning method, using an adaptive frequency au-
toencoder, can be expanded by introducing more samples from additional
laboratories. The goal of this work is to expand its capabilities beyond the
samples it has been trained on, including larger particles such as staphylo-
coccus aureus bacteria and cellular elements, such that its applicability can
be broadened to cover more biological samples. Future work on this model
also includes an expanded study into its potential to de-noise spectra with
very low signal levels and its capabilities in reconstructing spectra from in-
complete input spectra.
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Abstract: Raman spectroscopy can give a chemical ’fingerprint’ from both inorganic and
organic samples, and has become a viable method of measuring the chemical composition of
single biological particles. In parallel, integration of waveguides and microfluidics allows for the
creation of miniaturized optical sensors in lab-on-a-chip devices. The prospect of combining
integrated optics and Raman spectroscopy for Raman-on-chip offers new opportunities for optical
sensing. A major limitation for this is the Raman background of the waveguide. This background
is very low for optical fibers but remains a challenge for planar waveguides. In this work, we
demonstrate that UV-written SiO2 waveguides, designed to mimic the performance of optical
fibers, offer a significantly lower background than competing waveguide materials such as Si3N4.
The Raman scattering in the waveguides is measured in absolute units and compared to that of
optical fibers and Si3N4 waveguides. A limited study of the sensitivity of the Raman scattering
to changes in pump wavelength and in waveguide design is also conducted. It is revealed that
UV-written SiO2 waveguides offer a Raman background lower than −107.4 dB relative to a
785 nm pump and −106.5 dB relative to a 660 nm pump. Furthermore, the UV-written SiO2
waveguide demonstrates a 15 dB lower Raman background than a Si3N4 waveguide and is only
8.7− 10.3 dB higher than optical fibers. Comparison with a polystyrene bead (in free space,
diameter 7 µm) reveal an achievable peak SNR of 10.4 dB, showing the potential of UV-SiO2 as
a platform for a Raman-on-chip device capable of measuring single particles.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Waveguide enhanced Raman spectroscopy (WERS) offers long interaction lengths and strong
interaction with an analyte by using the evanescent field of a high-index contrast waveguide.
Coated nanophotonic silicon nitride waveguides have been used for detecting traces of chemical
warfare agent stimulants down to 5 ppb [1]. Micromolar levels of cyclohexane have been probed
in aqueous solutions with slot waveguides, again coated and made of silicon nitride [2]. This
demonstrates the applicability to both gasses and liquids. The waveguides can be made by
standard fabrication methods, are robust and can easily be integrated with microfluidics to make
a lab-on-a-chip. Optical components like directional couplers, wavelength filters and grating
input couplers can be fully integrated, and further integration or hybrid assembly with lasers and
detectors is possible. As a first step towards integration, a packaged, fiber-coupled sensor has been
demonstrated, with an integrated directional coupler for splitting the forward-propagating pump
and the backward-propagating signal [3]. A recent and excellent review of WERS gives more
details about the technique [4]. For biological applications, Raman spectroscopy offers label-free
detection and chemical analysis. Currently, confocal Raman microscopy is gaining importance in
the fields of biochemistry and microbiology [5–7] due to its ability to selectively sample cells and
smaller volumes. For biological particles, the combination of Raman microscopy with optical

#498795 https://doi.org/10.1364/OE.498795
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trapping can analyse particles down to the nanoscale [8]. The extension of WERS to applications
in microbiology and for the analysis of biological nanoparticles may significantly increase the
capabilities of lab-on-a-chip systems for these field. As a first step in this direction, the use
of TriPleX waveguides has been proposed [9]. However, there are some significant hurdles to
overcome. WERS is an alternative to surface enhanced Raman spectroscopy (SERS), which
gives significantly higher Raman enhancement. A comparison of the two methods is beyond the
scope of this article and we refer to the many good reviews of SERS, e.g. [10–12].

Among the limitations and challenges for waveguide enhanced Raman spectroscopy are
propagation losses that limit the interaction length and the Raman background of the material.
The Raman background induced from the waveguide material acts as a noise-signal that overlays
the signal from the analyte/sample, thus the detection performance of a WERS device is
fundamentally limited by the characteristics of the waveguide material. The application of
waveguides for Raman spectroscopy can be divided into three general concepts:

• Evanescent field interaction: Interaction between the evanescent field and a homogeneous
analyte along the waveguide length gives a large interaction volume and high sensitivity.

• Direct field interaction: Employing a slot or porous waveguide allows the analyte to
intersect with the centre of the guided mode, again potentially giving high sensitivity for a
homogeneous analyte.

• Field projection: To analyse a nanoparticle, high intensity at a point is necessary. This
can be obtained with a hole in the waveguide, a trench across it or a structure that focus
the mode onto the particle. Light is thus not guided, but projected onto the analyte for
interaction in a small volume.

While both evanescent and direct field interactions give high coupling efficiencies and
sensitivity, they are both most efficient for homogeneous analytes. Our work is focused on
nanoparticles, for which field projection into a micron-sized volume is suitable. Thus, an
embedded waveguide with negligible evanescent field interaction and high transmission is
optimal. Optical fibers have extremely low propagation losses and it has been demonstrated that
they also have a very low Raman background [13]. In this work, we investigate silica-based
waveguides that are designed and fabricated to mimic the performance of silica fibers. The
waveguides are made by UV-writing in doped silica, as will be described later. The waveguides
have low refractive index contrast, a relatively large core, low propagation losses and low losses
when end-coupling to an optical fiber [14–16]. However, as the waveguides are buried, with
silica on all sides, there is no evanescent field available to do Raman spectroscopy of an analyte.
Our approach will be to etch structures into the waveguide core (e.g. holes or trenches) for
access to the field, for analysis of biological nanoparticles. Using a waveguide to project the
trapping/exciting rather than using the evanescent field to excite Raman scattering enables the
creation of a compact chip device with one or more micron-scale trapping sites suitable for
nanoparticles.

In this article, we investigate the intrinsic properties of the waveguides for Raman scattering,
without an etched interaction volume and without an analyte. The waveguides are measured using
an in-line measurement scheme with a high-power laser acting as pump and a secondary, low
power laser acting as a reference to obtain measurements on an absolute scale. The measurements
are repeated for two pump wavelengths (660 nm and 785 nm) to evaluate the wavelength sensitivity
of the background. This information will decide the choice of pump laser for future applications.
Raman scattering increases with 1/λ4, possibly making a shorter wavelength favourable, but
the background from the waveguide also depends on the wavelength. Thus, an experimental
study is necessary to find which wavelength gives the best signal-to-noise ratio for a given
waveguide and sample. The results are compared with Raman scattering in an optical fiber and in
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a polystyrene bead (diameter 7 µm), with the first serving as a ’gold’ standard and the second to
estimate the achievable signal-to-noise ratio for an easily reproducible case. The results are also
compared with a model and with published values. A limited study of the influence of waveguide
dimensions, composition, and cladding material is included for the UV-written silica waveguides.

The Raman background of four common waveguide materials, Al2O3, Si3N4, Ta2O5, and TiO2,
has been compared previously [17], and its wavelength dependence for Si3N4 and Ta2O5 was
studied by D. Coucheron et al. [18]. Only N. Le Thomas et al. [13] has previously reported
absolute values for the Raman background (of Si3N4). Here, we report the absolute values for the
Raman background of UV-written silica waveguides in comparison to previous measurements of
Si3N4. Given the similarity between the silica waveguides and silica fibers in terms of mode size
and composition, the absolute values for the Raman background of select fibers are also reported
here.

The UV-written silica waveguides studied here have a low index contrast relative to those
considered in previous works. The relative similarity between the investigated silica waveguides
and silica fibers, which have been successfully implemented as Raman-probes, promotes such
waveguides as an integrated optics platform for on-chip Raman spectroscopy.

Membrane waveguides has recently emerged as a new waveguide geometry [19], with a thin
core surrounded by an analyte. The results presented here are also relevant for silica membrane
waveguides, where the index contrast is between (undoped) silica and water. Thus, although the
present results are for burried silica waveguides, several approaches can be envisioned to exploit
the low Raman background measured by modifying the waveguide geometry locally or along the
entire length, by making a membrane waveguide.

2. Model and expectations for Raman background in waveguides

Waveguide enhanced Raman spectroscopy requires the pump laser to propagate through a
waveguide core made of a dense material with small cross-section, and it is thus expected that this
propagation will generate substantial Raman scattering in the device itself. As a consequence,
the Raman scattering collected from an analyte will also contain the Raman scattering from
the waveguide as a background signal. This background represents the fundamental noise limit
for Raman spectroscopy of the analyte, as stated in the introduction. The Raman spectrum of
SiO2 is readily available [20,21], but its intensity relative to the pump laser is necessary, for the
waveguide considered, to compare it with the spectrum of an analyte. Before preceding to this
measurement, a model for the background is useful for interpreting the results, although several
of the parameters must be obtained by fitting to the measurements. N. Le Thomas et al. have
proposed a model for the Raman scattering in optical waveguides [13]. The main equation of
the model will be described and used here. The model aims to express the fundamental level
of the Raman scattering in a dielectric waveguide by considering the stochastic fluctuations of
the induced thermal field and the subsequent noise induced in the guided wave. In contrast to
previous models based on standard diffusion [22,23], this model is derived from the concept of
"frozen" thermal diffusion, where the decay time of a diffusion-driven heat flux is considered to
be significantly longer than the decay of spontaneous heat fluxes induced in the medium. The
shift in perspective from the "slow" diffusion to the much faster stochastic heat fluxes allows the
effect of the fluctuations at higher frequencies, such as those relevant to Raman spectroscopy, to
be considered. The fundamental level of frequency noise induced in a wave propagating through
a medium can then be predicted using knowledge of the behaviour of the stochastic heat fluxes
through their temporal and spatial correlation in the medium. The model is given by Eq. (10) in
[13]:

I (Ω) = A0
2
{︃
δ (Ω) + 4π2 ⟨︁δn2⟩︁ Lℓ

λ0
2

ℓ2

ℓ2 + 2W2 γe
−γ |Ω |

}︃
, (1)
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where A0 denotes the initial field amplitude, δ (Ω) the spectrum of the initial field,
⟨︁
δn2⟩︁ the

variance of the refractive index due to thermal fluctuations, L the length of the mode, λ0 the
excitation wavelength, and W the mode width. The additional variables ℓ and γ describe the
spatial and temporal correlations of fluctuations in the temperature field, respectively.

As shown in Eq. (1), the inverse square dependence of the Raman intensity on the radial
frequency shift Ω as seen in Eq. (35) in [23] is replaced by an exponential dependence due
to the explicit consideration of temporal correlations in the thermal field. In the case of low
frequency shifts Ω, the thermal fluctuations in the mode are assumed to be governed primarily by
diffusion in the guiding medium. This results in an approximation of the Raman spectrum that is
proportional to the inverse square of the frequency shift Ω. However, when Ω becomes large, the
period of the propagating wave becomes much shorter than the correlation time of the diffusion,
i.e. the inducing field oscillates faster than diffusion can propagate the generated heat. Using this
assumption, the diffusion can be considered as a steady state phenomenon rather than reactive to
the propagating wave. In this setting, both the temporal and spatial correlations of the thermal
field can be considered as strong influences. Pursuing this assumption leads to an approximation
of the Raman spectrum that is exponentially dependent on Ω when Ω is large. The influence of
the temporal correlation is accounted for through the introduction of the characteristic time γ
of the correlations. Similarly, the spatial correlations are accounted for through a characteristic
length ℓ which has a linear dependence on γ (see Eq. (9) in [13]). Using these variables, along
with the length L and width W of the guided mode, the thermal field δT can be modeled and
connected to the optical field through the expected variance of the refractive index change

⟨︁
δn2⟩︁.

As we intend to filter out the pump wavelength (Ω = 0), we see that the dirac-delta term δ (Ω)
becomes zero for all relevant Ω, allowing us to remove it from the expression. By also allowing
the exciting field intensity A2

0 to be an input variable, the model in Eq. (1) can be rewritten as:

I (Ω) /I (0) =
(︃
4π2 L
λ0

2

)︃ (︃⟨︁
δn2⟩︁ ℓ3

ℓ2 + 2W2 γ

)︃
e−γ |Ω | . (2)

As the waveguide length L and pump wavelength λ0 are known a priori, these can be collapsed
into a known quantity α = 4π2L/λ2

0 for convenience. Of the four remaining variables, all but the
mode width W are strongly dependent on the characteristics of the temperature field T and its
fluctuations δT . Given the known dependencies on the material parameters listed in Table 1,
it is possible to estimate these variables given the findings of N. Le Thomas [13]. However,
as the exact characteristics of the thermal field fluctuations δT are not known, the variables
dependent on it are collapsed into a fit parameter β. For convenience, the unknown characteristic
time γ is replaced by a fit parameter ϵ such that the model can be expressed as a function of
the wavenumber shift ν̃ in cm−1 rather than the radial frequency shift Ω in rad/s. The model in
Eq. (2) is thus rewritten as:

I (ν̃) /I (0) = αβe−ϵν̃ , (3)

with
β =

⟨︁
δn2⟩︁ ℓ3

ℓ2 + 2W2 γ and ϵ = 2 · 102πcγ.

The model can then be fitted to the experimental results using the known parameter α and the
fit parameters β and ϵ . Together with the model for Raman scattering in waveguides, N. Le
Thomas et al. presented measurements of the Raman background in Si3N4-waveguides. The
results showed a peak of −91.9 dB (normalised to 1 cm length, see Fig. 4 in [13]) with a decay
given by a the characteristic time γ = 13 fs. Considering the material parameters of Si3N4 [13],
as shown in Table 1, we see a number of differences between the parameters of Si3N4 and those
of SiO2. In the following, these differences will be described to find expectation values for the
Raman background of UV-written silica waveguides.
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Table 1. Material parameters for SiO2 [25–29] and Si3N4 [13]: thermal
conductivity κ0, density ρ, heat capacity CV , thermal expansion

coefficient αL, thermo-optic coefficient ∂n/∂T , and refractive index
nphi . (*Mean values)

κ0
(︂

W
mK

)︂
ρ
(︂

g
cm3

)︂
CV

(︂
J

gK

)︂
αL

(︂
K−1

)︂
∂n
∂T

(︂
K−1

)︂
nφ

SiO2 1.9 2.2* 0.73 5.4·10−7 1.1· 10−5 1.5

Si3N4 25 2.5 0.17 3.9·10−6 5·10−5 1.8

Ratio 9.3·10−2 0.88 4.4 0.14 0.2 0.80

The thermal conductivity of SiO2 is substantially lower than for Si3N4, which is expected
to shorten the characteristic length ℓ of SiO2 due to its square root dependence on thermal
conductivity [13]. Factoring in the slightly lower density ρ and significantly higher heat capacity
CV we estimate the thermal diffusivity of SiO2 to be 55 times weaker than for Si3N4, implying a
correlation length ℓ that is 86.5% shorter for the same relaxation time τ. Considering that both
the thermal expansion coefficient α and thermo-optic coefficient ∂n

∂T of SiO2 is almost an order of
magnitude smaller than for Si3N4 as well as the lower refractive index nφ , it is implied that the
variance of the refractive index <δn2> is approximately 96% smaller for SiO2 than for Si3N4.

These material properties of SiO2 compared to Si3N4 implies that the induced background
of SiO2 is significantly lower than for Si3N4. Factoring in the significantly larger mode field
diameter of the UV-SiO2 waveguides [15], it is implied that the Raman intensity of the UV-SiO2
waveguide which is 18.3 dB weaker than for Si3N4, further implying a peak Raman intensity of
−113.5 dB at ν̃ = 530cm−1. This is in agreement with the measurements made by N. Le Thomas
et al. on the PM-fiber (see Fig. S1 in [24]), as its peak corresponds to ≈ −114 dB when scaled to
the same length.

As the materials of a PM-fiber and the silica waveguides are very similar, it is expected that the
Raman spectrum of the waveguide will follow the same pattern as the PM-fiber as shown in Fig.
S1 in the supplementary work of N. Le Thomas et al. [24]. However, given that the PM-fiber has
a stated mode field diameter (MFD) of 5.3 µm while the UV-written waveguide has a MFD of
approximately 5 µm, and since it is assumed that ℓ ≪ W, it is expected that the αβ-scalar for
the waveguide is approximately 12% smaller than for the PM-fiber and its characteristic time
≈ 6% longer, assuming all other factors are equal. From this it is expected that the fiber and
the waveguides will perform approximately the same, with the waveguide having a peak that is
implied to be 1.1 dB lower than the fiber.

Regarding wavelength dependence, the equation derived by N. Le Thomas shows an inverse
square dependence on the pump wavelength which implies a 1.5 dB stronger Raman background
induced by a 660 nm pump compared to a 785 nm pump.

3. Experimental design

3.1. Waveguide fabrication

As depicted in Fig. 1, the fabrication begins by growing an oxide layer on a 150 mm diameter,
1 mm thick silicon wafer using a wet thermal process, common in microfabrication. On all
the devices presented in this work, this layer is at least 15 µm thick and is high-purity silica.
This layer will eventually serve as the bottom cladding of the waveguide, isolating the guided
mode from the silicon underneath. Flame hydrolysis deposition (FHD) is then used to deposit
a thick layer of doped silicate glass to serve as the core layer of the waveguide. The core is
doped with germanium to provide UV photosensitivity, which is further enhanced by adding
boron. Germanium and boron co-doping is conventionally used in UV-photosensitive optical
fibers and planar waveguides. However, in this work, we have also investigated germanium and
phosphorous co-doping. Lastly, an optional layer is added on top of the core to serve as a top
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cladding to the waveguide. This layer is doped with phosphorus and boron to match the refractive
index of the bottom silica-clad layer. The wafer is then diced into dies of approximately 10 x 20
mm and hydrogen loaded at 120 bar for several days to further enhance the UV photosensitivity
[15,30]. The chip is then irradiated with two focused beams from a frequency-doubled argon-ion
laser operating at a wavelength of 244 nm, see Fig. 1. UV exposure induces a localised increase
in refractive index, thereby forming a channel waveguide.

Fig. 1. Fabrication process for UV-SiO2 waveguides

Due to the weakness of the photorefractive effect, the ∆n of the waveguide is low (typically
5 · 10−3 [31] ), resulting in a large mode and low NA, similar to standard optical fibers. The low
∆n, along with the intrinsic smoothness of an etch-free waveguide, contribute to low propagation
losses in the guided mode. The low loss, combined with the low NA (≈ 0.1 [15]) allows
these waveguides to project light with high power and low divergence into free space, but with
lower intensity than a waveguide with high ∆n. The low NA gives low loss across a gap in
the waveguide, e.g. a hole or a trench, enabling several gaps in series for analysis of several
samples along the waveguide. The large mode of these singlemode waveguides (MFD ≈ 5 µm)
contributes to a low background in itself, as described in sec. 2.

3.2. Samples

Five waveguide chips are considered in this work to give a limited study of the sensitivity to
waveguide design, all waveguides are of length ≈ 20 mm and are single mode for 660/785 nm
wavelengths:

• Chip A: ≈ 5 µm Ge+B doped core layer with 17 µm B+P doped top cladding, MFD
≈ 5 µm @ 780 nm

• Chip B: ≈ 3 µm Ge+B doped core layer with ≈ 15 µm B+P doped top cladding, MFD
≈ 5 µm

• Chip C: ≈ 3 µm Ge+P doped core layer with no top cladding, MFD ≈ 5 µm

• Chip D1 & D2: ≈ 3 µm Ge+B doped core layer with no top cladding, MFD ≈ 5 µm

3.3. Experimental setup

The experimental setup, depicted in Fig. 2, consists of three main sections (a-c) and one auxiliary
section (d).
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Fig. 2. Sketch of experimental setup for acquiring power Raman spectra of a sample
waveguide. The path of the pump beam (red) moves through the entire setup untill removal
by a long pass filter (LP) after out-coupling from the waveguide. A longer wavelength
reference laser (brown) is joined to the pump path by a beam-splitte (BS 1) such that it
bypasses the long pass filter and can be recorded by the spectrometer for calibration.

Section a

Section a is the origin of the pump beam, containing a high-power laser along with beam
conditioning optics. To achieve best coupling to the waveguide, the output beam of the pump
laser is expanded and collimated by a Galilean beam expander (L1 and L2) such that it yields a
plane wave field with gaussian profile and width that is compatible with the back aperture of the
in-coupling objective. The beam is also passed through a narrow band-pass filter (BP) such that
the side-bands of the laser are suppressed, with special attention to the longer wavelengths.

Section b

Section b is the origin of the reference beam, accepting a fiber coupled laser source of wavelength
longer than the pump beam and merging it to a common path with the pump beam. The fiber
output is collimated by an appropriate lens (L3) such that it yields a gaussian plane wave that is
coupled to a common path with the pump beam by a 90:10 beam splitter (BS 1).

Section c

Section c is the central part of the setup, containing the waveguide as well as the in-coupling (obj.
1) and out-coupling (obj.2 ) objectives. The output of the waveguide is, after collimation by the
out-coupling objective, passed through a long-pass filter (LP) that removes the transmitted pump
beam, leaving the Raman scattering and the reference beam. The filtered output is then coupled
to a fiber by a final objective (obj. 3) and passed to the spectrometer.

Section d

Section d is a microscope for imaging the surface of the chip and for assisting in coupling to
and from the waveguide, thus is an auxiliary section of the setup and does not contribute to
the Raman measurements. This tower consists of a white light source (WLS) focused on the
back focal plane of the imaging objective (Im. Obj.) by a lens (L5) relayed via a pellicle beam
splitter (BS 2). Images are obtained by focusing the backscatter by a tube lens (L4) onto a camera
(CMOS) for acquisition.



Research Article Vol. 31, No. 19 / 11 Sep 2023 / Optics Express 31099

Components

• Pump: 660 nm DPSS (HüBNER, Cobolt 05-01) or 785 nm DPSS (CrystaLaser, DL785-100)

• Reference: 686 nm diode laser (ThorLabs, LP685-SF15) or 826 nm diode laser (ThorLabs,
LPS-830-FC)

• Spectrometer: Multi-grating spectrometer (300/g, 600/g & 1200/g), focal length 320 mm
(Teledyne Princeton, IsoPlane SCT320) with deep depletion CCD (Teledyne Princeton,
BLAZE 400BR)

• Obj. 1: 10x objective (Olympus PLN10X, 10x 0.25NA) mounted on three axis stage with
closed loop piezo (ThorLabs, MAX331D/M)

• Obj. 2: 10x objective (Olympus PLN10X, 10x 0.25NA) mounted on three axis stage
(ThorLabs, MAX313D/M)

• Obj. 3: 10x objective (Olympus PLN10X, 10x 0.25NA) mounted on three axis stage
(ThorLabs, 313D/M)

• BP: 660 ± 13 nm band-pass for 660 nm pump (Semrock, BrightLine FF01-660/13-25),
785 ± 3 nm for 785 nm pump (Edmund optics, 64-257)

• LP: 664 nm ultrasteep long-pass for 660 nm pump (Semrock, RazorEdge LP02-664RU-25)
or 785 nm ultrasteep long-pass for 785 nm (Semrock, RazorEdge LP92-785RE-25)

3.4. Power calibration

Determining the spectrum of the Raman scattering induced in the waveguide is a relatively trivial
task, requiring only subtraction of the background and correcting for the spectral sensitivity
of the setup. However, in order to compare different waveguides and infer the intensity of the
background in a Raman-on-chip device built from those waveguides requires a more thorough
calibration such that the spectra can be expressed in absolute intensity rather than arbitrary units.
This is why the reference laser (see Fig. 2) is necessary, providing a power reference that bypasses
the long-pass filter such that it can be used as an intermediate bridge to compare the Raman
spectra with the pump intensity. This requires a set of common measurement points (P1 and P2
in Fig. 2) where the pump and reference beams can be compared and a common point where the
reference beam and the Raman scattering can be compared (P3 in Fig. 2). The goal of this is to
obtain a calibration spectrum C (ν̃) such that the intensity spectrum I (ν̃) can be expressed from
the measured spectrum S (ν̃) as:

I (ν̃) = C (ν̃) S (ν̃) (mW). (4)

In order to express the measured spectrum as a calibrated spectrum, the measured spectrum
must first be corrected for spectral background and sensitivity. As the background spectrum
SBG (ν̃) introduces a constant bias to the measured spectrum S′ (ν̃), this must first be subtracted.
The spectral sensitivity A (ν̃) of the setup must also be accounted for such that the spectrum
is not distorted. This is done by measuring a known source (Teledyne Princeton Halogen
calibration lamp) and determining the relative response of the setup. The spectral sensitivity
A (ν̃) is then determined from the curve such that it scales to 1 at the reference laser wavelength
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(A
(︁
λ = λRef

)︁
= 1). The true spectrum can then be approximated by the unbiased and distortion-

free estimate spectrum:
Ŝ (ν̃) = A−1 (ν̃) [S′ (ν̃) − SBG (ν̃)] , (5)

allowing Eq. (4) to be expressed as:

I (ν̃) = c1A−1 (ν̃) · (S′ (ν̃) − SBG (ν̃)) , (6)

where C (ν̃) is replaced by c1A−1 (ν̃).
With the spectral elements of C (ν̃) being separated into the sensitivity curve A−1 (ν̃), the

remaining calibration coefficient c1 can be obtained by measuring the intensity of the pump
and reference laser at in-coupling to the waveguide (P1 in Fig. 2) and at the fiber output (P3 in
Fig. 2). This is done by first determining the scaling between mW and CCD counts through the
coefficient c0 using the measured intensity of the reference laser at the spectrometer (P3 in Fig. 2)
P3Ref and a measured spectrum of the reference laser SRef (ν̃) along with the known attenuation
factor AND of the neutral density filter (ND in Fig. 2). The coefficient c0 can thus be expressed as:

c0 =
P3Ref

AND
∑︁N

n=0] Ŝ [ν̃n]
,

where Ŝ [ν̃n] is the discrete spectrum of the reference laser source.
Finally, since the setup will have a difference in coupling and propagation losses for the pump

and reference beams, this must also be taken into account. Using measurement points P1 and P3,
the pump transmission can be expressed as:

Tpump =
P3pump

P1pump
,

and the reference transmission as:
TRef =

P3Ref

P1Ref
,

such that the calibration coefficient c1 can be expressed as:

c1 = c0 ·
TRef

TPump
. (7)

We can then substitute Eq. (7) into Eq. (6) to express the calibrated spectrum in Eq. (4) using
measurable factors:

I (ν̃) = TRef

TPump

P3Ref

P1PumpAND
∑︁N

n=0] Ŝ [ν̃n]
· A−1 (ν̃)

(︂
Ŝ (ν̃) − SBG (ν̃)

)︂
. (8)

3.5. Composite spectra

To fully take advantage of the spectrometer’s capabilities and the fact that the fiber-coupled input
(ThorLabs, SM-830) gives an effective slit width of approx. 5 µm, we choose to use the finest
grating available (1200g/mm) to achieve a dispersion of 2.30 nm/mm at the focal plane. With a
CCD pixel size of 20 µm, this yields a per pixel resolution of 0.05 nm but limits the spectral range
of each acquisition to 52.3 nm. Therefore, the entire range of the Raman scattering (240 − 365
nm) cannot be captured in a single acquisition without compromising resolution. A one-shot
acquisition also demands the dynamic range of the spectrum is within the dynamic range of the
CCD (48.2 dB) and above the noise floor. Given the expected exponential decay of the signal
with increasing wavenumber shift, as discussed in Sec. 2 a uniform spectral sensitivity risks
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either over-saturating the CCD at low wavenumber shift, where the signal is strong, or losing the
signal to noise at high wavenumber shift, where the signal is weak.

To solve this, we propose dividing the spectral range into segments that can be individually
measured and later be merged in post-processing to obtain a composite spectrum covering an
arbitrary spectral range. This allows us to acquire the entire spectral range without sacrificing the
resolution afforded by the fine grating. This also allows us to dynamically select the exposure
time and number of repeat exposures for each segment separately such that the SNR and dynamic
range usage can be normalized for each segment separately.

This method is implemented through an automated script (Python 3.8.10) that partitions the
desired range into a set of overlapping segments, each with their own exposure time te and number
of averaged acquisitions navg. The acquisition parameters te and navg are then estimated using an
initial guess for the exponential decay of the spectra such that the expected signal fills ≈ 10%
of the dynamic range of the CCD. A test acquisition of three spectra per segment is then made
such that the parameters SNR and dynamic range usage can be estimated. This is achieved by
a rough separation of the signal and CCD noise by low-pass filtering the measurement, using
the low-frequency elements as a signal estimator and the high-frequency elements as a noise
estimator. The signal estimator is then used to tune the dynamic range usage through the exposure
time te while the noise estimator is used to tune the SNR to an acceptable level (≥ 10dB) through
increasing the number of averaged spectra navg in that segment. Using the determined parameters,
the spectra of each segment is acquired and cleaned for background and cosmic rays. Using a
least squares fit of their overlap, the segments are adjusted for their varying sensitivity and level
of dark signal such that they are brought to a uniform scale with the first segment and can then be
merged to form the composite spectrum.

4. Results

4.1. Pump wavelength: 600 nm vs. 785 nm

As previously mentioned in Sec. 1, one of the objectives of this work is to evaluate the sensitivity
of the Raman scattering of the UV-SiO2 waveguides to the wavelength of the pump lasers. To
this end, the experiment is repeated with two sets of pump and reference lasers, first using a 660
nm pump complemented by a 686 nm reference and then using a 785 nm pump complemented
by a 826 nm reference. These two pump wavelengths were chosen because of the availability of
high-power lasers with high spectral purity and that both wavelengths are commonly used in
Raman spectroscopy.

As described by N. Le Thomas et al. [13] and shown in the α component in Eq. (3), the
intensity of the Raman scattering in the guided mode is expected to have an inverse square
dependence on the pump wavelength λ0. From this, it is expected that using λ0 = 660 nm will
induce Raman scattering approximately 1.5 dB stronger than using λ0 = 785 nm, indicating
that 785 nm may be favourable for a Raman-on-chip device. The use of 785 nm may also help
reduce undesirable fluorescence in the waveguide and/or analyte compared to 660 nm, thus
separating the Raman spectrum from the flourescence spectrum. However, the signal from
a particle intersecting the beam path is expected to be proportional to λ−4, implying a 3 dB
increase in signal when using 660 nm instead of 785 nm as the pump wavelength, potentially
compensating for the increased background in the waveguide. Another benefit of using a 660 nm
pump is that it allows a longer range of wavenumber shift to be measured using a high-quality
silicon-based CCD.

This enables us to acquire measurements up to 5 400cm−1 without exceeding the useful range
of the spectrometer camera (λ ≤ 1025 nm) while using 785 nm only allows for measurements up
to 3 000 cm−1. A pump of 660 nm thus allows for measurement of features in a wavenumber
range where the background from the waveguide is expected to be negligible. One significant
challenge with using shorter pump wavelength is the increased potential to induce fluorescence,
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both from the analyte and the waveguide material, which would mask the Raman signal. The
measurements are obtained from two waveguide chips, chip A for 785 nm and chip B for 660
nm. For reference, the same fiber as used by N. Le Thomas et al. [24] is measured with both
pump wavelengths, as is a 7 µm polystyrene bead to demonstrate the achievable SNR compared
to a particle. As shown in Fig. 3, both the waveguides and the PM-fiber exhibit stronger Raman
scattering when excited with 660 nm, notably so with the appearance of a flattening of the spectra
as the shift exceeds ≈ 1500 cm−1. Given that this flattening forms a wide bulge and is only
present when excited with 660 nm, this is more consistent with fluorescence than Raman. Aside
from this, we can see that the levels and features of the two pairs remain almost identical prior to
the flattening and that the features of the PS-bead are almost identical.

Fig. 3. Raman background spectra for waveguide chips A and B (with top cladding)
compared to a PM-fiber with a single 7 µm polystyrene bead for reference, measured for two
separate pump wavelengths (660 nm and 785 nm).

In terms of features, we see that both waveguides exhibit a peak at ≈ 920 cm−1 that is absent
in the spectrum of the fiber, this can be readily assigned to the stretching mode of Ge-O-Si [32]
due to the known high concentration of germanium in the waveguide cores. We can also observe
that both waveguides produce peaks at ≈ 1310 cm−1 that corresponds well with B-O− [33] as is
also expected due to the boron-doping of the core. The remaining features at ≈ 1440 cm−1 and
≈ 1710 cm−1 may also be due to B-O-B and [BO3]+ modes, but due to the ambiguity of features
near those shifts, we are hesitant to make the assignment. One other noteworthy observation in
the Raman spectra is the significantly weaker feature at ≈ 580 cm−1 in the waveguides compared
to the fiber. This is commonly assigned as a defect mode of Si-O-Si [34], which diminishes with
increasing dopant concentration as observed here.

Because of the higher background produced by the waveguide when excited using 660 nm
compared to 785 nm and the fact that the PS-bead, serving as an analogue for future particles,
shows only a weak increase in feature intensity when excited using 660 nm, it is concluded that
785 nm is the preferred pump wavelength for this type of waveguide device.

4.2. Dependence on doping and cladding

Another objective is to determine the sensitivity of the Raman scattering on the doping of the
core layer and the use of a top cladding. In this section, three additional chips (C,D1 and D2) are
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measured using a 785 nm pump. For reference, both the fully clad NIR-waveguide (chip A) and
the PM-fiber shown in Fig. 3 are included. As mentioned in Sec.3.2, both chips C and D are
manufactured without top cladding while chips A and B are manufactured with a top cladding
(>10 µm B+P doped SiO2). Chip C is doped with phosphorous instead of boron while chips D
are doped similarly to chips A and B. As shown in Fig. 4, the results from chip A and chips D1
and D2 match well, as expected, and it can be seen that the measurements obtained from two
waveguides from D1 and two from D2 group well, supporting consistency of the power calibration.
We also see that the phosphorous doped chip C performs significantly poorer than the other chips,
producing a noticeably flatter Raman spectrum with a higher baseline than the other samples.
The measured transmission through chip C was up to 5.6dB lower than either chip D and the
mode at the output was poorly defined with significant slab guiding in the core layer relative to
the guiding in the UV-written waveguide. The high degree of slab guiding indicates poor lateral
confinement, likely due a low ∆n being induced by the photorefractive effect without the presence
of boron doping. Several of the chips, notably chip D1, also displayed a significant variance
in transmission between waveguides, varying as much as 5.4dB. The variance in transmission
among the topless waveguides suggests chipping or defects at the facet because of a lack of the
protective top cladding. The low and varying transmission for some of the waveguides may thus
be due to poor in-coupling and surface defects, rather than absorption or scattering in the core
itself.

Fig. 4. Measurement of all chips with PM-fiber for comparison. Previously reported
measurements of Si3N4 and similar PM-fiber are also included for reference.

4.3. Fitting the spectra to the model

In this section, the measured spectra are fitted to the model described in eq. (3) and the parameters
of the fit are compared between the measured waveguides and previously reported measurements.
The fits are shown in Fig. 5. The general level of the measurements follow the model in Eq. (3)
well, with the majority of deviance being due to specific features in the Raman spectra. We also
see from the parameters and peak intensity in Table 2 that our measurements of the PM-fiber
agree with those made by N. Le Thomas et al. [24] in both profile and intensity. From the listed
intensities we see that all of the Ge+B-doped SiO2 (Chips A, B, D1 and D2) have a negligible
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difference in peak amplitude, while the P+Ge-doped SiO2 (Chip C) has a peak 6 dB higher than
the rest, emphasizing the negative effect of phosphorous in the core. Lastly, we see that the
Raman scattering in our UV-SiO2 waveguides is more than 12 dB weaker than what is reported
for Si3N4, reinforcing their advantage for Raman-applications.

Fig. 5. Fit of the model in eq. (3) to measurements of chips A, B, C, D1 and D2 with a
similar PM-fiber measured in this work and in the work of N. Le Thomas et al. as a reference.
The fit of reported measurements of a Si3N4 waveguide is also added for comparison with
the UV-written SiO2 waveguides.

Table 2. Table of fit parameters for spectra in Fig. 5 to Eq. (3) as
described in Sec. 2. *All measurements are scaled to emulate a length of

1cm

Sample\Parameter α*
(︂
m−1

)︂
β (ms) ϵ (m) Imax (dB) RMSe (dB)

Chip A 6.4e">+27 2.3e-32 2.2e-5 −107 2.2

Chip B (660nm) 9.1e">+27 5.2e-33 5.7e-6 −106 3.8

Chip C 6.4e">+27 5.8e-32 3.7e-6 −100 0.3

Chip D 6.4e">+27 1.5e-32 1.9e-5 −107 2.4

PM780-fiber 6.4e">+27 5.2e-33 4.0e-5 −116 2.6

PM780-fiber [24] 6.4e">+27 1.0e-32 4.1e-5 −114 2.9

Si3N4 [13] 6.4e">+27 1.0e-30 2.4e-5 −94 4.3

5. Conclusion

The Raman background of UV-written silica waveguides has been measured and compared
to other platforms, notably Si3N4 waveguides and (silica) optical fibers. To obtain results in
absolute terms, the acquired spectra were calibrated to the input intensity. This was achieved
using a separate laser source, acting as a reference and coupled into a common path with the
pump laser, such that both the Raman spectra and the reference laser could be measured with the
same configuration. Furthermore, by combining the spectrum of a reference source measured by
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a spectrometer with the power of the pump and reference source measured by a photodiode power
meter, the acquired Raman spectra were calibrated to absolute terms. To take full advantage
of the setup, a high-resolution grating (1200 lines/mm) is used and the spectra are acquired in
adjoining segments, allowing the full spectral and dynamic range of the spectrometer to be used.
The acquisition time and number of repetitions was set independently for each section, to exploit
the full range of the CCD spectrometer and to tailor the sensitivity to the expected intensity for
the section. This allowed a high signal-to-noise ration for a very large dynamic range (from −100
to −160 dB relative to the pump laser).

The background of the UV-written SiO2 waveguides was measured for two excitation wave-
lengths, 660 nm and 785 nm. Waveguides written into five chips were characterized, and for
reference two optical fibers and a 7 µm polystyrene bead were also measured. This revealed a
Raman intensity of less than −107.4 dB in the biochemical fingerprint region for a waveguide
excited by 785 nm, and less than −106.5 dB when excited by 660 nm (normalised to 1 cm
length). The difference increased for increasing wavenumber shifts, leading to the conclusion
that 785 nm is better suited than 660 nm when using these waveguides. This conclusion depends
on signal-to-noise ratio, which depends on the analyte, and it was shown that it holds for a
polystyrene bead as it gave the same Raman signal for both wavelengths. The largest peak in the
Raman spectrum of a 7 µm PS-bead was 10.4 dB higher than the waveguide background. This
shows that a good signal-to-noise ratio can be obtained for microparticles with all the background
from a 1 cm long waveguide collected as noise. The signal scales with the intensity and the
interaction volume, with the first depending on the waveguide structure for illuminating the
particle (e.g. hole, trench or taper) and the second on the diameter of the particle. The noise
depends on how much of the waveguide background is collected (e.g. by a microscope objective
or a collection waveguide). The achievable signal-to-noise ratio for nanoparticles thus depends
on the interaction structure and the collection method. We will investigate this in future work.

The background induced in the best waveguide was 8.7− 10.3 dB higher than for optical fibers
and approximately 15 dB smaller than for Si3N4 waveguides [13]. UV-written waveguides thus
present a very promising alternative for on-chip Raman spectroscopy, but there is still room for
improvement when comparing with optical fibers.

A limited study of the impact of doping was made, with phosphorous doping giving significantly
higher background than boron, with −100.0 dB and −106.5 dB, respectively, for a wavenumber
shift of 410 cm−1 and 436 cm−1. In addition, the phosphorous doping resulted in a significant
flattening of the spectrum and poor waveguide confinement. This may have influenced the result.
The presence or not of a top-cladding did not influence the background significantly (for boron
doped samples). The background of four top-clad waveguides from two chips deviated by less
than 5.7 dB over the entire fingerprint region, showing good repeatability considering the mean
level of −121 dB.

This work has only considered the noise related to Raman background of the waveguides,
and the logical next step will be to modify the waveguides to obtain signals from an analyte.
Several procedures will be tested, notably etching trenches across the waveguides. Approaches
for incorporating more complex structures, such as tapers and/or nanoantennas will also be
explored.
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A B S T R A C T   

In this work, three silicon samples are subject to tomographic scans using a 1.6μm laser. The samples were 
prematurely terminated due to anomalies during the Czhochralski-process. They are taken as analogues of the in 
situ crystal, where one sample has known aberrant structure in its lowermost 45 mm. The results of the tomo-
graphic scans show a distinct difference in transmission profile between the material of known poor mono- 
crystalline structure and assumed good structure. Three different analysis tools are constructed and applied to 
quantify the quality of the structure from the results of the tomographic scans. The first two analysis tools are 
applied as correlation filters constructed from patterns resembling the indicative transmission profiles of high- 
quality structure, one pattern being an ideal square wave and the other being experimentally determined 
from the measurements. Both correlation filters yield clear differentiation of low- vs. high-quality material. The 
final analysis tool is a deep convolutional neural network (deep CNN) evolved from a predetermined architecture 
configuration using a genetic algorithm. The trained CNN is shown to differentiate the usable high-quality 
material from the unusable material with a 98.7% accuracy on a testing set of 76 profiles and successfully as-
signs quality factors to the material that are in good agreement with the correlation filters and previous 
observations.   

1. Introduction 

In the production of silicon crystals, a mono-crystalline ingot, or 
boule, is ”pulled” from a crucible of molten material. This process relies 
on strict control of the thermal conditions surrounding the growth 
interface as even small deviations can cause the formation of anomalies, 
such as crystal dislocations or, in extreme cases, a complete loss of 
mono-crystalline structure[1]. This results in the material forming 
intersecting crystal lattices of various sizes and orientation, producing 
material with non-homogeneous macroscopic properties. As the goal of 
this type of growth process is to obtain high quality material with a 
homogeneous structure throughout, such deviations are detrimental for 
the outcome. For an intact mono-crystalline structure, four ridges par-
allel to the growth axis can be observed along the crystal sidewall. These 
ridges, or nodes, are caused by the cubic nature of the silicon crystal and 
can be used as indicators for an intact structure. Inversely, their disap-
pearance can also be taken as the indicator for a loss of mono-crystalline 
structure[2]. However, this can only be observed after the structure has 
been lost throughout the cross section of the crystal, making it poorly 

suited both for determining the precise point where the usable mono- 
crystalline material ends and for predicting the occurrence of structure 
loss. This work aims to explore the use of tomographic scanning through 
the center of such crystals using a near-infrared laser to detect variations 
in transmission related to crystal abnormalities such as dislocations or 
aberrant structure. Three crystal samples that have been prematurely 
separated from the melt due to process anomalies are used. One of the 
samples, having a clear loss of structure, has been shown in a previous 
work[3] to have an anomalous transmission vs. angle profile when 
compared to the other two. The transmission vs. azimuth profiles 
through the aforementioned samples are obtained over a range of scan 
heights and analysed using three pattern recognition methods to provide 
a measure of the quality of the mono-crystalline structure (degree of 
homogeneity) and determine the starting point of the unusable material 
(lost macroscopic structure). The outcome is assessed for quality 
assurance applications and as an in situ monitoring tool during the 
production of mono-Si in the Czochralski-process. 
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2. Hypothesis and expectations 

Given that pure silicon has an intrinsic band gap energy of 1.12eV at 
300K[4], no direct band-to-band electron transitions can occur for 
photon energies lower than 1.12eV, and therefore the material is ex-
pected to be highly transparent for wavelengths exceeding 1.1μm[5]. 
Because of this, a laser of wavelength 1.6μm (0.775eV) is used in this 
work. However, as the material of the samples is extrinsic in nature, 
absorption can still occur through electron transitions to and from free 
carrier states induced by the presence of the dopant (Boron). The 
magnitude of this absorption is given from the work of Schroder et al. 
[6]: 

α =
q3λ2p

4π2ε0c3nm∗2μ ≈ 2.7⋅10− 18λ2p (1)  

The dopant concentration specified by the manufacturer is 1.45⋅1016⩾ 
p⩾2.70⋅1016 atoms pr. cm3 for a main section positions 0⩾z⩾1500mm. 
Assuming a constant diameter of 200mm, this gives an expected ab-
sorption of − 13 ± 4dB for a full length sample. Accounting for the 
reflective loss, assuming normal angle of incidence and a refractive 
index of 3.44[7], the expected transmission is − 16 ± 4dB for the sam-
ples used in this work. 

As explored in a previous work[3], the geometry of the protruding 
ridges of the nodes is expected to obscure the beam of the laser, resulting 
in no detected transmission for the azimuth of the nodes. In the case of 
high-quality mono-crystalline structure, it is expected that the trans-
mission should remain mostly constant between the nodes, producing a 
transmission cross-section similar to what is shown in Fig. 1. In the 
findings of the previous work, it was also noted that while samples with 
”good” overall structure (highly ordered) yielded profiles that corre-
sponded well with the expectation, a sample with known ”bad” overall 
structure (high defect density) yielded a very different profile. In the 
regions where the mono-crystalline structure was compromised, the 
profile exhibited sparse, but intense peaks, in lieu of flat transmission in 
the ”clear” sections between the node azimuths. The profile was shown 
to have eight dominant peaks at azimuths leading and lagging the four 
nodes by approximately 15◦ for the low-quality material, in contrast to 
the four wide plateaus observed for high-quality material[3]. From the 
work of Meyer et al.[8], it is known that the slip planes between ho-
mogeneously structured lattices exhibit highly anisotropic scattering, 
resulting in a ”smearing” effect on the transmitted radiation image (see 
Fig. 7 of Meyer et al.[8]) with a scattering direction parallel to the slip 
plane. It is postulated that the eight distinct peaks in the profile are 
artefacts produced by a similar effect except that there are, in our case, 
multiple slip planes formed by the interfaces of the pseudo-randomly 
oriented lattices that form after a loss of mono-crystalline structure. 
From this, it is hypothesized that this abnormal transmission profile may 
be used as an indicator for the presence of such chaotic structure and 
may therefore be used as a measure of the quality of the mono- 
crystalline structure in cylindrical silicon ingots. 

3. Experimental method 

3.1. Samples 

The samples shown in Fig. 2, conforming to the same specification 
and originating from the same foundry, are p-type (Boron doped) crys-
talline silicon boules manufactured to a specified diameter of 200 mm, 
with their dimensions, mass and bottom surface deflection (h) listed in 
Table 1. All three samples are the result of premature separation from 
the melt, resulting in the growth process being abruptly terminated such 
that they are effectively ”snapshots” of the crystal during growth, and 
may therefore be used as analogues for the material in situ. 

While all samples are expected to have some anomalies due to the 
separation shock, sample 1 shows clear indication (node termination) of 
unexpected loss of structure. These indications are not present in neither 
of two other samples. The loss of structure in sample 1 is evident by the 
absence of node lines in the lowermost 45 mm of the sample, see Fig. 3, 
and is supported by the presence of slip lines at varying positions sur-
rounding the node lines higher up on the sample, see Fig. 3. Sample 1 is 
thus taken as an example of having ”bad” material in its lower section, 
while samples 2 and 3 are taken as having mostly ”good” material. 

3.2. Experimental setup 

The experimental setup is shown in Fig. 4, for a sample with lost 
structure similar to what is expected from sample 1. The central part of 
the setup consists of a rotating platform upon which the sample is 
placed. The platform is belt-driven and actuated by a DC motor 
providing a total gear ratio of 1:180. The laser (New Focus, Velocity set 
to 1600nm) is mounted on a vertically oriented motorized translation 
stage (Standa, 8MT50-150BS) with a half-wave plate (Thorlabs, 
WPLH05M) on its output to control the beam polarization. A detector 
(Electro-Optical Systems, IGA-010-TE2-H) is mounted on an identical 
translation stage (Standa, 8MT50-150BS) such that it can travel parallel 
to the laser over a range of 140mm along the z-axis. Due to the small 
active area of the detector (1mm diameter), a focusing lens (L) is added, 
increasing the pupil diameter of the detector to 25.4mm with an NA of 
0.03. Due to the high and fixed sensitivity of the detector amplifier 
(9⋅107V/W), an ND-filter (effective OD 3.0 for λ = 1.6μm) is added to 
avoid saturation. This gives a high signal-to-noise ratio and matches the 
detectable intensity range with the observed transmission intensity, 
allowing better use of the detector range. 

The signal from the detector is collected using a DAQ (National In-
struments, USB-6009). An ad hoc timing system is implemented to serve 
as feedback for the DC motor, feeding a clock signal to the DAQ with a 
frequency of one pulse per rotation. The speed of the DC motor is 
manually set using a constant voltage source, while control of the 

Fig. 1. Cross section of idealized transmission profile shown with nodes (N0− 3).  Fig. 2. Picture of silicon samples 1–3, from the left.  
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translation stages, as well as data capture and processing, is automated 
(Python, V3.9.4 X64). 

3.3. Scanning procedure 

The scanning procedure is initiated by a mapping of optimal align-
ment for a predetermined set of scan positions (z-axis). This is conducted 
by setting the laser position to a predetermined scan position and 
moving the detector z-position in a range ±5mm about the laser position. 

For each detector position, data is acquired over a set number of 
rotations (1 by default), which is analyzed and assigned a score value. 
This score is determined as the mean of the upper 25th percentile of the 
data, encouraging the finding of a high transmission alignment, divided 
by the standard deviation in the percentile, discouraging the finding of 
an alignment that favours one or few peaks. The optimal alignment 
associated with each laser position is then set as the detector position 
with the highest score value. 

Once a map of the optimal alignment positions has been obtained for 
a sample, the tomographic scan begins. The algorithm acquires a data set 
from each of the scan positions, henceforth referred to as a ”slice”. Each 
slice consists of data from a set number of revolutions (3 by default) 
acquired at maximum sampling frequency (24 kHz). The ad hoc timing 

system is used to ensure that each data-point in the slice is accurately 
mapped to the true azimuth at the time of acquisition. This is performed 
by using the clock pulse from the ad hoc timing system to confirm the 
rotation frequency of the crystal and setting the acquisition time 
accordingly. Using the clock pulse as a fixed reference for the acquisi-
tions ensures that all slices begin at the same azimuth, and thus use a 
common coordinate system. To maintain accurate tracking of the rota-
tion frequency and azimuth, the timing system periodically re-calibrates 
after a set number of revolutions (10 by default), in addition to the initial 
calibration. 

4. Experimental results 

The lowermost section of the samples include the concave bottom 
surfaces, with deflections listed in Table 1. No transmission is expected 
due to reflection by the bottom surface[3]. Therefore, a starting scan 
height of 10.5mm is selected. All three samples are scanned at 166 z- 
positions with a resolution of 0.5mm from 10.5mm to 35.5mm above the 
separation plane (bottom edge), and a resolution of 1mm from 35.5mm 
up to 150.5mm. 

As depicted in Fig. 5, the transmission profiles for samples 2 and 3 
(Figs. 5b and c, respectively) remain largely constant throughout the 
samples, as expected. However, sample 1 exhibits a very different pro-
file, that changes drastically from the sparse, sharp peaks for the lower 
slices to a wider plateau for the highest slice, approaching the profiles 
seen in samples 2 and 3. In terms of total transmission, the peaks of the 
profiles through samples 1 and 2 appear to remain in the vicinity of 
− 20dB, which is at the lower end of the expected range. Transmission 
through sample 3 is somewhat lower than for the other two samples, 
with peaks around − 23dB. While the absolute intensity is lower than 
expected, the signal-to-noise ratio is high, at 25 ± 2dB, and the profiles 
of the slices clearly distinguishes high-transmission azimuths from low- 
transmission azimuths. 

The images shown in Fig. 6 are reconstructions of the transmission 
map through the crystals, obtained from the data presented in Fig. 5, 
using a simplified inverse Radon transform with one data-point per az-
imuth. The intensity of the images is given by the magnitude of the 
transmission for a given azimuth, but is subject to normalization and 
Gaussian smoothing on a per-slice basis. The images thus show the 
relative transmission throughout the cross section, separate from the 
absolute scale shown in Fig. 5. 

As can be seen in the top row of Fig. 6, all three samples produce 
patters similar to the predicted pattern illustrated in Fig. 1, showing four 
clear sectors with relatively high and uniform transmission. In the next 
row down, this is no longer the case, as sample 1 exhibits sparse peaks 
with azimuths approximately symmetric around the nodes. Both sam-
ples 2 and, especially 3, continue to display a transmission profile 
similar to the predicted profile. In the lowermost row, the same di-
chotomy is present, albeit the signal-to-noise ratio for all samples is 
reduced. As previously stated in Section 3.1, sample 1 shows clear evi-
dence of abnormal crystalline structure, both from the termination of the 
nodes and the presence of slip lines as shown in Fig. 3. From this 
knowledge and the observed patterns in transmission for the slices 
intersecting these areas, a correlation between quality of the mono- 
crystalline structure and the transmission profile is implied. 

5. Data processing and analysis 

5.1. Correlation filtering 

The simplest method of differentiating two underlying patterns is 
through the use of correlation filtering by using a target pattern (i.e. 
transmission profile of high-quality material) and determining the 
conformity of a separate pattern to the target (i.e. quality factor) by the 
cross-correlation of the two. As we are interested in a scalar value for 
this, the peak cross-correlation between the target and measured profiles 

Table 1 
Sample specifications.   

Length (mm) Diameter (mm) Mass (kg) h (mm) 

Sample 1 276 ± 1  213 ± 1  23.7  19.7 ± 0.1  
Sample 2 162 ± 1  211 ± 1  10.1  11.0 ± 0.1  
Sample 3 389 ± 1  212 ± 1  34.4  13.8 ± 0.1   

Fig. 3. Picture of sample 1 showing node termination (blue arrow) and slip 
lines (red frames). 

Fig. 4. Outline of setup for measuring a sample with macroscopic dislocations 
(slip lines) and complete collapse of mono-crystalline structure (SL). 
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are taken as the raw output. The raw output of all slices considered are 
then normalized to a range [0,1] to make them easily comparable. 

Correlation filtering is computationally inexpensive, especially in the 
case of a single dimension as here, which allows for easy integration as a 
real time feedback mechanism. A significant disadvantage, however, is 
the low order of complexity and thus limited ability to model complex 
patterns. Another shortcoming of such filters is that they are sensitive to 
background levels, scale and noise/distortions. These factors must 
therefore be attenuated by pre-processing the input passed to the filter, 
but the effectiveness of this is limited and often relies on assumptions 
regarding the properties of the factors. 

5.1.1. Ideal filter 
As previously stated, the transmission profile through a high quality 

crystal is expected to form two wide, pseudo-flat plateaus that are well 
distinguished from the underlying noise and background, as is the case 
throughout samples 2 and 3 (see Figs. 5 and 6). 

The obvious candidate for modelling such a profile is a square wave 

as shown in Fig. 7a, producing a slice cross-section as shown in Fig. 1. 
From this target profile, a filter is constructed and applied to the data as 
a correlation filter, producing the results shown in Fig. 7b. It is clear that 
the filter responds quite well to samples 2 and 3, returning a relatively 

Fig. 5. Absolute transmission through the three samples at the lowermost 
(Bottom), intermediate (Middle,z = 35.5mm), and the uppermost common 
height (Top, z = 140.5mm). (a) Sample 1 (b) Sample 2 (c) Sample 3. 

Fig. 6. Reconstruction of transmission cross-sections obtained from the mea-
surements, with normalized linear scale indicating dark red as maximum 
transmission. 

Fig. 7. Ideal correlation filter used to determine crystal quality. (a) Target 
profile (b) Filtering result. 
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high and constant value for all slices above the interface peak. Contrary 
to this, the filter responds relatively poorly to sample 1, returning a low 
response that increases towards that of samples 2 and 3 as the scan 
position increases. The response of this filter agrees well with the hy-
pothesis and the observations made previously regarding the condition 
of the crystalline structure in sample 1 versus that of samples 2 and 3. 
The results of this filtering are encouraging and differentiates the known 
high-quality structure from the known low-quality structure with good 
separation of the filter response of sample 1 from that of samples 2 and 3. 
However, the filter response, and thus assigned quality factor, contains a 
high degree of noise, especially for samples 1 and 2, introducing un-
certainty in determining whether the material is of usable quality or not. 

5.1.2. Experimentally obtained filter 
Another target profile is constructed based on the experimentally 

determined profiles of the known high-quality material of samples 2 and 
3. The target profile is defined as the mean profile of all slices above the 
apex of the bottom surface (transmitted beam is detected) for samples 2 
and 3. The target profile is shown in Fig. 8a normalized to [ − 1,1]. This 
filter is applied in the same manner as the ideal filter and the result of the 
correlation filtering is shown in Fig. 8b. The filter response of the 
experimental filter to the data is highly similar to the response of the 
ideal filter in regards to its differentiation of sample 1 from samples 2 
and 3. However, it appears to give a slight reduction in the noise of the 
response, but also gives slightly poorer separation of sample 1 from 
samples 2 and 3. In contrast to the ideal filter, the experimental filter 
better illustrates the change in transmission profiles in the slices of 
sample 1 as the scan height increases, showing a gradual increase until it 

merges with samples 2 and 3. However, in terms of differentiating the 
high-quality and low-quality structure, the experimental filter shows 
inferior performance compared to the ideal filter as the separation be-
tween sample 1 and samples 2 and 3 is small compared to the noise, 
giving an unfavourable overlap between them. 

5.2. Neural network 

As the underlying mechanisms causing the difference in the profiles 
of sample 1 from samples 2 and 3 are currently not well known, the 
features of the profiles may include complexities that are not immedi-
ately evident. While the results from both the ideal and experimental 
filter illustrate a clear contrast between the lower sections of sample 1 
and the remaining slices, these filters may be overly simplistic and the 
results may therefore be, to a degree, circumstantial. 

An alternative to the use of a predetermined target profile for cor-
relation filtering is to design a filtering mechanism that adapts itself to 
the observed data, namely a machine learning model. The most logical 
type of machine learning model to use for this kind of analysis is a 
convolutional neural network (CNN). 

The use of models such as CNNs, and other variants of neural net-
works[9], is becoming increasingly popular in the field of data analysis, 
especially for patterns that are not well known or subject to distortion/ 
noise. The driving reason for this is that, contrary to the stiffness of 
correlation filters, CNNs are highly flexible and can learn to adapt to a 
wide range of patterns and features. Deep convolutional neural net-
works, with their increased depth (number of layers), are also able to 
learn highly abstract and complex patterns, making them able to model 
any pattern (given sufficient depth and width) and can learn to adapt to 
high degrees of distortions/noise in the data. 

However, contrary to correlation filters, neural networks, and espe-
cially deep networks, rely on a longer sequence of operations that 
involve many more parameters, often several million, rather than the 
single operation of correlation filtering. Neural networks must also be 
taught how to determine its output, which requires a sizable pool of 
examples with known attributes (quality factor) and a time-consuming 
training phase, before it can be implemented. This makes then both 
computationally expensive and requires data with known properties to 
learn from, making them challenging to implement in real-time. 

5.2.1. Architecture 
A CNN consists of two main sections, the convolutional sub-network 

and a fully connected sub-network. The convolutional sub-network 
usually contains many, relatively small, learned filters and, as the 
name suggests, forms an output by discretely convolving the input with 
the filter. Such networks usually have many layers of such filters in se-
ries to form an abstract representation of the input and each layer 
commonly uses multiple independent filters in parallel to produce 
multiple output channels containing different representations of the 
input. A CNN normally uses this convolutional sub-network as a pre- 
processing mechanism that reduces the input to a concentrate which is 
then fed to the fully connected (FC) sub-network. The fully connected 
sub-network is a classical neural network consisting of a determined 
number of layers (depth), each with a determined number of neurons 
(width). After the input has passed through the fully connected sub- 
network, it reaches the head of the network, which produces the final 
output of the network based on the output of the last layer of the fully 
connected sub-network. The architecture of the chosen deep CNN is 
shown in Fig. 9. 

As the input to the network is a one dimensional vector, all of the 
convolutional filters are also vectors. As shown in Fig. 9, this architec-
ture also employs connections that directly bypass the filters, so-called 
”skip-connections” common to the ResNet architecture[10]. The use of 
skip-connections encourages the network to learn filters that modify the 
input to produce the output, rather than creating an entirely new rep-
resentation. This added bypass helps the network learn faster by Fig. 8. Experimental correlation filter. (a) Target profile (b) Filtering result.  
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smoothing out the loss surface[11], allowing the gradient descent al-
gorithm to more easily converge to the optimal network parameters. 

The overall structure of the network is designed to be highly 
modular, by grouping the layers into blocks that can be configured as 
needed. The convolutional sub-network contains M convolutional 
blocks, each terminated by a maxpool layer to reduce the size of the 
block’s output. For each block m ∈ [1..M], there are Nm convolutional 
layers, and each layer n ∈ [1…Nm] has a defined filter size Sn,m and 
number of parallel filters Cn,m that can be configured individually, as 
needed. 

Once the input has been passed through all convolutional blocks, it is 
returned as the output of the convolutional sub-network and passed to 
two parallel, fully-connected sub-network. The two sub-network are 
independent and may be configured separately with any chosen depth 

(Lc and Lq) and width (Wck for k ∈ [1..Lc] and Wql for l ∈ [1..Lq]). The 
classification sub-network aims to learn a way of predicting if the input 
originates from a noise-only signal (N), the profile of a slice with low- 
quality structure (SL), or the profile of a slice with high-quality struc-
ture (OK). This is achieved using three terminating neurons that take the 
final layer of the classification sub-network as input, weighting them 
and summing them before passing the result to a softmax activation 
function that redefines the raw output of the neurons into a probability 
distribution. The predicted class is then taken as the class with the 
highest probability given by the softmax output. The regression sub- 
network assigns a numerical value to the quality of the structure, 
based on the input profile, to create an output that is comparable with 
the filter responses shown in Figs. 7b and 8b. The output of this sub- 
network is determined as the weighted sum of the last layer in the 
sub-network and returned as a number (Q). 

5.2.2. Configuration and evolution 
Given that the presented data is in the form of single-dimension 

vectors, a small network should be sufficiently detailed, but the bal-
ance between the size and complexity of the convolutional, classifica-
tion, and regression sub-networks must be chosen carefully. Due to the 
unknown complexity of the underlying features and their distribution in 
the data set, a larger network with many parallel convolution filters may 
provide greater performance than a small one. However, such a large 
network would require more example profiles to learn from and may be 
prone to over-fitting to the data without learning the underlying pattern. 
Conversely, a small network with more convolutional layers, but few 
parallel filters, would be superior in forming abstract patterns due to the 
extensive transformation of the input through many convolutional 
layers. This may help the network learn the underlying pattern better, 
especially on small training sets, but the lack of parllel representations of 
the input may limit the level of complexity the network can account for. 

Because of this challenge, further inspiration is taken from nature by 
introducing the concept of evolution through a genetic algorithm[12], 
loosely based on the method employed by Dahou et al.[13]. This algo-
rithm defines 13 hyper-parameters (”genes”) that define the structure of 
the networks, these then define:  

• Number of convolution blocks and layer configurations within each 
block  

• Size of convolution filters in each block  
• Number of parallel filters in each block  
• Width and depth of classification and regression FC layers, separately  
• Drop out rate for convolution, regression, and classification sub-nets 

separately  
• Activation function for convolution, regression, and classification 

sub-nets separately 

This algorithm then creates a population of five networks from a 
predetermined pool of configuration hyper-parameters using a random 
combination of the hyper-parameters. These five networks (generation 
zero) are then partially trained over 10 epochs on a common training set 
before evaluation on a separate common test set, defining the fitness 
score as the inverse of the loss (cross-entropy). To prevent devolution, 
the fittest network is always passed to the next generation such that the 
best of every subsequent generation is always as good or better than the 
previous one, driving the ”survival of the fittest”-mechanism. The top 
two networks of the previous generation are then hybridized to produce 
two new networks. This process randomly combines the hyper- 
parameters (”genes”) of the ”parents” to produce ”offspring” with a 
configuration containing only those ”genes” that prove most advanta-
geous, while providing a mechanism for mutation. The remaining two 
slots of the next generation are filled by producing two random networks 
from the original pool of configurations and hybridizing them with the 
two top performing networks from the previous generation. This is done 
to increase the genetic diversity of the population, increasing the 

Fig. 9. Generalized architecture of deep CNN with modular convolutional 
blocks, taking the transmission profiles as its input and returning a quality 
factor and prediction of the usability of the material (OK vs. N or SL). 
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likelihood that advantageous ”genes” outside those of generation zero 
are introduced into subsequent generations. After six generations of 
evolution, the process is terminated and the best performing network is 
taken as the ”apex”-network, giving the configuration listen in Table 2. 

In addition to the evolved configuration shown in Table 2, the 
convolution sub-network employs a rectified linear (ReLU) activation 
function with dropout rate 0.4, the classification sub-net employs a 
ReLU activation with dropout rate 0.5, and the classification sub-net 
employs a sigmoid activation with dropout 0.3. 

5.2.3. Training and results 
The original data set used to generate Figs. 7b and 8b contains 166 

profiles for each of the three samples (498 in total). This is not sufficient 
to train the CNN, especially since the true nature and quality of the 
material in sample 1 is unknown. Therefore the data set is augmented by 
adding profiles obtained from earlier phases of the experiment, when 
polarization sensitivity was investigated. These profiles showed no 
discernible sensitivity to polarization but are taken at different scan 
heights from the final phase. Thus, they are not evaluated in parallel to 
the main set, but can be considered to represent the same patterns, 
bringing the total number of profiles to 996. Due to the true nature and 
quality associated with certain profiles from sample 1 being unknown, 
these are omitted, reducing the number of profiles viable for training to 
675. To encourage the network to learn the underlying pattern instead of 
specific features of the profiles, the data set is augmented by creating 
synthetic profiles from the measured real profiles. These synthetic pro-
files are randomly selected from the expanded set of 675 profiles and a 
random selection of these are again modified with added Gaussian noise 
(mean of zero and standard deviation − 13dB of profile amplitude) to 
emulate measurements with a lower signal-to-noise ratio. Since the 
transmission for a given azimuth is assumed to be independent of pre-
ceding measurements, a change in direction of rotation is emulated by 
time-reversing (reversing the mapping of data-points to azimuth) a set of 
randomly selected profiles from the expanded set. The augmentation 
generated 508 synthetic profiles (75.3% of real profiles), giving 1183 
profiles usable for training the CNN. 

The profiles in the data set are then randomly shuffled to homogenize 
the set, increasing the likelihood that the subsets of it used by the CNN 
during training and testing are representative of the whole. The profiles 
in the set are also given a class label and a quality label for the CNN to 
use as reference during training. As the exact numerical value of the 
material quality is not well known, noise is added to the quality labels to 
encourage the model to learn a more abstract quantification rather than 
a discrete binary one. 

The shuffled and labeled data set is then randomly separated into a 
testing and a validation set containing 10% of profiles each, while the 
remaining 80% is reserved for training. 

As training during the evolution phase uses the same source data as 
here, there is a risk of overlap between the training set used during 
evolution and the testing or validation sets used here, which would bias 
the results. To prevent this, the ”apex”-network is rebuilt such that its 
hyper-parameters (”genes”) are kept, but all parameters learned from 
training are reset. 

The ”apex”-network is then trained on the generated training set over 
a total of 40 epochs using an Adam optimizer with a learning rate 

reducing from 10− 2 to 10− 5 over four steps (10 epochs per learning rate). 
The regression sub-network is subsequently trained on top of the main 
network, using the same training data and procedure. 

Once trained, the performance of the network is evaluated using the 
testing set, giving an overall prediction accuracy of 92.2% and the 
confusion matrix shown in Table 3. The CNN predicted 98.7% of the 
known ”good” material profiles (OK) as ”good” (ÔK) while none of the 
known ”bad” (SL) or pure noise (N) are misclassified as ”good”. How-
ever, there is some misclassification between the pure noise and the 
”bad” material as shown by 38.5% of the true ”bad” being misclassified 
as noise and 13.3% of true noise being misclassified as ”bad” material. 
The pure noise case is only present for prematurely separated samples 
(due to the concave bottom surfaces) and not in a complete boule. Thus, 
the important factor is the overlap between the ”bad” and ”good” pre-
dictions, which can be argued to be taken as less than or equal to the 
1.3% overlap between OK and N̂. 

While the performance of the network in differentiating the noise 
only (N) from the ”bad” structure (SL) is not optimal, its capability in 
differentiating the unusable (N or SL) from the usable material (OK) is 
shown to be excellent with one misclassification among 75 true good 
profiles. Upon investigation, it is found that the misclassified profile is a 
weak signal with artificially added noise, making it appear as pure noise. 
It can also be observed that the CNN responds to the synthetic and real 
data in the same manner, predicting the same class and approximately 
equal quality for both real data and the derived synthetic data. This 
confirms that the synthetic data contains the same underlying pattern as 
is present in the real data and that the CNN is able to recognize the 
pattern in the presence of modifying factors such as noise or a change in 
direction of rotation. 

Applying the network to the data set presented in Figs. 7b and 8b 
yields the classification shown in Fig. 10a and the quality factor shown 
in Fig. 10b. As seen in Fig. 10a, the network returns a high degree of 
certainty that there is no bad structure in samples 2 and 3, but that there 
is a high density of such occurrences in the lower section of sample 1. 
The quality factor shown in Fig. 10b, agrees with the results of corre-
lation filtering shown in Figs. 7b and 8b, but shows better separation of 
the low-quality material of sample 1 and the high-quality of samples 2 
and 3, while also exhibiting significantly less noise. Both the quality 
factor and the classification of ”good” vs. ”bad” structure agrees well 
with what is inferred in Section 2 regarding the quality and viability, of 
the material in sample 1 increasing with distance from the onset of 
structure loss. 

5.2.4. Robustness of the trained model 
The purpose of using a CNN instead of the simpler forms of filtering, 

such as described in Section 2, is its lower sensitivity to noise in the input 
signal. To illustrate this, the trained CNN is fed two previously unseen 
profiles, one with known low quality and one with known high quality, 
while observing the class (N, SL or OK) and quality factor predicted by 
the CNN. 

The two profiles are replicated 100 times and contaminated with 
randomly generated noise before being passed to the CNN, the robust-
ness of the network is then evaluated by increasing the severity of the 
added noise until the output of the CNN is affected by either a change in 
predicted class (ΔC) or a 5% change in assigned quality-factor(ΔQ). For 
fairness, three types of noise are used: Gaussian (N (0, σ)), Poisson 
(A⋅P (λ)), and noisy sine (B⋅Sin(∝1/p) + N (0,B/10)). These noise types Table 2 

Configuration of CNN.  

Block Layers Size Channels Parameters 

Conv 1 5 5 32 21 k 
Conv 2 5 5 64 92 k 
Conv 3 5 5 128 369 k 
Conv 4 5 5 256 1.5 M 
FC Class 5 700 - 22.2 M 
FC Regr. 6 512 - 16.1 M    

Total 40.3 M  

Table 3 
CNN confusion matrix for test data set.   

N̂  ŜL  ÔK  

N 86.7%  13.3%  0.0%  
SL 38.5%  61.5%  0.0%  
OK 1.3%  0.0%  98.7%   
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are then tried for all combinations of their parameters (1000 points pr. 
parameter) and are considered for the extremes of the noise types, 
returning the signal-to-noise thresholds listed in Table 4. As shown from 
the noise testing, the CNN is quite robust against all three types of noise, 
showing robust predictions for input profiles with an induced signal-to- 
noise ratio down to 5dB, compared to the measured SNR of > 23dB as 
mentioned in Section 4. 

The regression sub-network is shown to be more robust than the 

classification sub-network, being able to withstand 1.4 − 9.9dB lower 
SNR without deviating more than 5% in predictions. Notably, it is also 
observed that all the noise-induced misclassifications are on the low- 
quality profile while the high-quality profile is not misclassified, 
implying a higher false positive rate than false negative rate. Albeit not 
shown, both classification and regression outputs of the CNN exhibit a 
slightly higher (1.0 − 1.7dB) tolerance to sinusoidal noise if the period of 
the noise is a whole fraction of a rotation (360◦,180◦,120◦…36◦). 

6. Conclusion 

Three samples of mono-crystalline silicon with diameters of 212 ±

2mm are observed to have a transmission of − 21 ± 2dB for a near- 
infrared laser of wavelength 1.6μm. Tomographic scanning is per-
formed on all three samples over a lateral range of 140mm from 10.5mm 
to 150.5mm above the separation plane. A total of 498 transmission 
profiles, measured as a function of transmission vs. crystal azimuth, are 
obtained for the three samples. 

The transmission profiles are shown to produce a consistent pattern 
for a given vertical slice (z-position) of the crystal. All recorded trans-
mission profiles from all three samples exhibit the same four blackout- 
zones due to beam refraction/obstruction by the node geometries. The 
profiles are also shown to exhibit unique features for slices intersecting 
material of known defective crystalline structure that differs notably 
from the profiles for slices intersecting intact mono-crystalline structure. 

A quality-score can be determined from the transmission profile of a 
slice using targeted correlation filtering. An idealized square wave, with 
negative amplitude around the node azimuths, is used as the target 
profile to assign a quality factor to the measured profiles to produce a 
quality factor that is in agreement with observations and expectations 
regarding the samples. A second target filter is obtained from the mea-
surement as the mean profile of assumed intact material from two of the 
samples. This filter also produced a viable quality factor in the presence 
of suspected poor/no structure, albeit with a higher degree of overlap 
between the known poor- and high-quality material compared to the 
idealized square wave filter. 

A deep convolutional neural network (CNN) is also investigated as an 
analysis tool. The CNN is implemented as a modular architecture with a 
configuration determined by a set of 13 hyper-parameters that define 
the properties of each of its elements. The hyper-parameters of the CNN 
are determined by a process of evolution using a genetic algorithm to 
create a CNN whose configuration is best suited to learning the patterns 
observed in the profiles. The evolved CNN is configured with 20 con-
volutional layers, preceding a fully connected classification head of five 
layers and a fully connected regression head of six layers, giving a total 
depth of 20+5/6 layers and 40.3 million parameters. 

The CNN is then trained over a total of 40 epochs and tested on a 
separate testing set of 118 profiles, achieving an accuracy in differen-
tiating the assumed intact structure from the known defective structure 
(or noise) of 98.7%. The predictions of the CNN results in a quality factor 
consistent with the results of both correlation filters, albeit with signif-
icantly reduced noise and vastly improved contrast between low- and 
high-quality material. The CNN also successfully classifies all slices of all 
three samples, yielding a map of lost vs. intact structure that agrees well 
with observations and expectations regarding the samples. 

The observations and results of this work show that a consistent 
pattern in the transmission profiles coincide with the state of the crys-
talline structure, and that this can be used to quantify the quality of the 
structure. As these experiments are conducted at room temperature, it is 
feasible that these methods could also work for complete boules under 
the same conditions. The non-destructive nature of this method allows 
for quality testing to be conducted on every produced boule without the 
need for slicing, and subsequent loss of material. The method also make 
it possible to determine the precise boundary between usable and un-
usable material, enabling smaller margins to be used when removing the 
unusable material, thus improving material yield. 

Fig. 10. Result of deep learning filter. (a) classification of low- vs. high-quality 
predictions (b) Assigned quality factor of material vs. slice height. 

Table 4 
CNN noise threshold.  

Noise type Parameter Threshold ΔC  ΔQ  

Gaussian - σ− 1  2.6dB  − 5.2dB  

Poisson λ = 0.2  A− 1  − 7.0dB  − 16.9dB   

λ = 20  A− 1  − 6.3dB  − 7.7dB  

Sine p ∈ [0,10] B− 1  5.0dB  − 7.7dB   
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Because the temperature of the material during production is 
significantly higher than for the conducted experiments, it is unknown if 
these methods can be adapted as a real-time feedback system. Further 
investigations on near/mid-infrared transmission through silicon at high 
temperatures (⩾1400K) are required. 

Validation of the method proposed in this work would require 
additional material samples and added measurements of these, pre-
sumably through destructive methods such as carrier density imaging 
and/or lateral photovoltaic scanning of the sliced samples, to provide a 
more detailed reference point for the assessment of the method and 
analysis. Future work on this concept would also include investigations 
of other deep-learning architectures, both more comprehensive evolved 
networks and known established architectures such as ResNet, VGGXX, 
and GoogLeNet. 
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ABSTRACT

Extracellular vesicles (EVs) and nanoparticles released from cells attract interest for their possible role in health and diseases.
The detection and characterization of EVs and other biological nanoparticles is challenging due to the lack of specialized
methodologies. Raman spectroscopy, however, has been suggested as a novel approach for biochemical analysis of
nanoparticles. To extract information from the spectra, a novel deep learning architecture is explored as a versatile variant of
autoencoders. The proposed architecture considers the frequency range separately from the intensity of the spectra. This
enables the model to adapt to the frequency range, rather than requiring that all spectra be pre-processed to the same frequency
range as it was trained on. It is demonstrated that the proposed architecture accepts Raman spectra of nanoparticles from
multiple biological origins and laboratories. High reconstruction accuracy is maintained despite large variances in frequency
range and noise level. It is also shown that the architecture is able to cluster nanoparticles by their Raman spectra and
differentiate them by their origin without pre-processing of the spectra or supervision during learning. The model performs
label-free differentiation of nanoparticles from 13 biological sources with high fidelity, including separating extracellular vesicles
from activated vs. unactivated blood platelets and nanoparticles from prostate cancer patients vs. non-cancer controls. The
differentiation is evaluated by creating a neural network classifier that observes the features extracted by the model to classify
the samples according to their origin. The classification reveals a test sensitivity of 92.2% and selectivity of 92.3% over 769
nanoparticles measured at two different labs with two different measurement configurations.

Introduction
Extracellular vesicles (EVs) are nanostructures confined by a lipid bilayer, produced by all types of cells, and released into the
extracellular space. EVs play crucial roles in cell-to-cell communication and coagulation. Given their abundance in biological
fluids and circulation, they have been identified as biomarkers for various inflammatory diseases and cancer1–4. This has
increased the interest in EVs and the development in the field, as documented in recent reviews5, 6. The biochemical composition
of extracellular vesicles (EVs) is highly heterogeneous. The nanoscale size of EVs and other biological nanoparticles poses a
significant challenge regarding analysis, and the field still lacks standardized analytical approaches. Currently, researchers
employ several methods, including nanoparticle tracking analysis (NTA)7, transmission electron microscopy (TEM), flow
cytometry8, and various chemical/biological techniques9. NTA measures the size distribution of EVs by tracking their Brownian
motion. While it provides valuable size information, it does not offer insights into the biochemical properties of EVs, and size
distribution alone is not sufficient to attribute EVs to their cellular origin. To use EVs as a biomarker for various diseases,
suitable characterization and data analysis methods must be found.

Raman spectroscopy is a label-free methodology providing information about the chemical composition of Evs at the
single, or near-to-single EV level. Thus, Raman spectroscopy is a viable alternative to established chemical analysis tools,



such as magnetic resonance and mass spectrometry10, 11. By combining Raman spectroscopy with optical trapping, single
particles down to nanoscopic sizes can be isolated and measured independently12, 13. This combination is very promising for
characterization of EVs. However, it is a challenge to decode the Raman spectra into the corresponding chemical mixture. For
simple materials, such as polymers, decomposing the Raman spectra is often a relatively trivial task due to the inherent sparsity
of vibrational modes in such materials14, 15. For more complex samples, such as biological materials, their features are both
numerous and often overlapping16–18. As an example, the true proportion of each biomolecule in EVs is rarely available, and
there is thus no benchmark for decoding the Raman spectra. As Raman scattering is very weak, the spectra contain various
amounts of noise (on y-axis) and the wavelenth shift (along x-axis) can be stretched or shifted, depending on the optical
spectrometer and the calibration of it. To further complicate the picture, different labs have different set-ups, giving Raman
spectra with different range for the wavelength shift.

Our aim is to have a flexible model that can extract high-quality, chemically significant information from the spectra and
use this information to classify EVs and other biological nanoparticles in the presence of noise and variations in wavelength
calibration using data from multiple sources. The complex challenge of using Raman spectra of biological nanoparticles to
classify and, ultimately, use the spectra of the nanoparticles as a biomarker for diseases, requires a flexible analysis method that
can handle large variations in the input, but still extract information that reflects the chemical composition of the EVs and other
nanoparticles.

Common approaches to analyse Raman spectra are signal processing and analysis methods that decompose the spectra into
their more fundamental components, which can, in some cases, be associated with known biochemicals. Principal component
analysis19 and k-means clustering20 are two common methods applied for this purpose. They are often complemented by a
classification method, such as linear discriminant analysis21 or a support vector machine22. A method has also been proposed
for relating Raman spectra to the biomolecular composition of the sample, called biomolecular component analysis?. Some of
the data presented here (from Sorbonne University) has been analysed by biomolecular component analysis23. While these
methods have demonstrated their usefulness, they are limited by their relatively simple function and thus their limited ability
to consider complex patterns and dependencies in data. Neural networks and deep learning are very efficient methods for
analysing data. The ability to learn underlying aspects in the data and make inferences based on highly non-linear relations has
made neural networks, and derivative architectures such as convolutional neural networks, prevalent in the field of data analysis
and they have been successfully applied on spectral information1, 24, 25. Another significant advantage of neural networks
is their adaptability to noise in the data and variations in the signal background1, 26. However, these methods often require
several thousand examples to learn from and these examples have to be rigorously curated to avoid biasing the model. The last
requirement often implies that the setting of the data must be made uniform, with the same frequency range and resolution for
all spectra. This puts strict restrictions on the data that can be used, and calibration drift is a common problem which is not
acceptable to such a model. For data from multiple sources with differences in range and resolution, the solution becomes
pre-processing of the data by truncation, interpolation and normalization, in an attempt to emulate uniform settings.

We propose a neural network architecture specially taylored to handle Raman spectra from samples for which we only have
a few labels. It is based on a self-supervised training approach. The architecture and training take care of the specificities of
the spectra, of the noise properties from the measurements and on the variability of the recording from different places and
devices. The general achitecture is based on a Variational AutoEncoder27 (VAE). However, since the data from multiple sites
can have different ranges, the autoencoder uses a novel formatting. It considers the signal (y-axis) and the frequency range
(x-axis) separately in order to handle both noise (on y-axis) and changes in wavelength calibration (x-axis). This split is also
useful for equalizing the input data size by applying a resampling step with interpolation. The architecture further includes a
suitably sized latent space and a loss function adapted to picking-up the significant spectral information.

We adopt the standard approach in self-supervised learning28. First, we train the autoencoder in a self-supervised manner,
i.e. without labels. Training data are generated by adding Gaussian noise, wavelength shift and clipping of the original spectra.
In addition, the training data contains spectra from other types of particles (liposomes) and pure noise. The task of the network
is to recover the original spectra from the artificially corrupted ones. While training on this data, the network will identify
important information29 in the input that enables it to recover the original spectra. The network will build an inner representation
of the data, in what is called a latent space. Data encoded in this latent space should contain only the essential information to
reconstruct the original spectra, without any noise, and this information will ideally approximate the chemical information in
the particles.

In the second stage of the learning process, we take advantage of the latent space and use it as the input of a second deep
neural network which will learn to associate the data to labels given by the origin of the EVs. The latent representations used as
input should reflect the chemical information of the particles, contained inside the spectra and be free from noise. This is the
advantage of using the latent representation of the first, self-supervised, network. The classification task is then made easier,
allowing the use of a smaller network and a reduced need for labelled data. Further details are given in the next section.

Raman spectra from two laboratories, at University of Twente (Netherlands) and at Sorbonne University (France), are used
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to train and test the model. For simplicity, the two datasets are referred to as ’Twente’ and ’Paris’. The Twente dataset was
larger than the Paris dataset, which gives an imbalance when training the model. Variations in measurement method, notably
excitation wavelength and acquired wavelength range, and in sample preparation can give features and distortions in the data
that the model should learn to disregard, thus recognizing the particles more by their chemical information rather than the
condition of the data. For one case the two laboratories analysed EVs derived from the same, single cell type: blood platelets.
For this case, it is important to see if the model recognizes the origin of the EVs or at which lab they were analysed.

The performance of the model regarding reconstruction of spectra, extraction of information-rich features, and classification
is evaluated. The classification of EVs based on the information extracted by the model is used to verify the quality of the
information and the viability of using Raman spectra of EVs as biomarkers for a range of conditions. The analysis methodology
proposed in this article will be a valuable tool in that process, as it can handle data from several laboratories with variations in
measurement settings. These problems and differences between datasets can be found for many applications, including other
types of spectroscopy and in general for one-dimensional datasets from different sources.

Methods

Sample preparation
The samples considered in this work are EVs and nanoparticles from 13 biological origins, acquired with two different
measurement systems in two different laboratories. Out of the 13 origins, three are comercially available cell line cultures, two
are from bulk human blood, two are from extracted platelets, two are derived from sampled human cells, and the last four are
lipoproteins. See Table S1 in Supplementary Information for an overview.

The three cell lines used are LNCaP, PC3 and THP-1, these are used to investigate if they are recognized as different from
the human derived samples and how they are grouped relative to each other. The two samples from bulk blood are EVs taken
from blood plasma and red blood cells (hence RBC) to investigate how the model perceives their similarity and difference. The
two samples from blood platelets are isolated from the other elements of blood and are presumed to be from pure cultures.
These are included to investigate whether Raman of their EVs can be used to determine if the platelets are activated (clotting)
or not. The platelet derived EV data comes from three datasets:

• 1. Control: platelet EVs from untreated platelets from donors

• 2. Activated A23: EVs from artificially activated platelets using a calcium-activator (A23187) prepared by and measured
at the Sorbonne Université

• 3. Activated Trap: EVs from artificially activated platelets using a thrombin-activator (TRAP6) prepared by and measured
at the Sorbonne Université

• 3. Mixed: platelet derived nanoparticles from platelet concentrate prepared by and measured at the University of Twente

The two human cell derived samples originate from two groups, one from patients afflicted with prostate cancer and one from
non-afflicted controls. This data is included to investigate if the model can determine if the biological nanoparticles originate
from a healthy or afflicted person and to investigate how these two are clustered relative to each other. Lastly, the four types of
lipoproteins (CM, HDL, LDL and VLDL) are included to investigate how the model reacts to something that is not an EV,
but chemically similar. This also poses a special challenge for the model as the number of datapoints from lipoproteins is
comparatively low and, due to their small size, also has a very low signal to noise ratio.

Data acquisition
The Raman spectra of the various EVs are collected with optical tweezers using two separate measurement systems12, 30. In
both systems, the trapping and excitation of the Raman scattering is performed by a single high power laser relayed by a high
NA objective. The same objective also collects the Raman scattered light in backpropagation mode. In system 1, the laser
source is an Ar-ion pumped Ti:Sapphire laser delivering approximately 100mW at 780nm to the sample volume via a water
dipping objective (Olympus LUMFL, 60X, NA = 1.1). The backpropagated response is collected by the objective and passed
to a 500mm focal length grating spectrograph with a liquid nitrogen cooled detector and a 50µm slit aperture, acquiring the
spectra over a range of 309-2035cm−1. In system 2, built by Ing. Aufried Lenferink at University of Twente, the laser source
is a Krypton-ion laser (Coherent, INNOVA 90-K) delivering 70mW at 647nm to the sample volume via a non-immersion
objective (Olympus, 40x NA = 0.95). The backpropagated response is collected by the objective and passed to a prism-based
spectrometer built in-house with a Peltier-cooled detector, acquiring the spectra over a range of 301-3655cm−1.
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Datasets
The data used in this work consists of 2667 spectra from 13 origins as described previously in Sec. and listed in Table S1. One
of the challenges is that the wavenumber range and center varies from spectrum to spectrum, especially since the ’Paris’ dataset
originates from a system with a much shorter wavenumber range than the ’Twente’ dataset. The difference in the wavenumber
range is shown in fig.1, and the figure also shows the difference in the signal-to-noise ratio between the two datasets. There is
also a significant variation in the preparation of the samples, particularly the activation of the platelets, as the protocols and
concentrations vary between the two labs.

Figure 1. Spectra of the dataset divided into two main groups by the wavenumber range. The top graph shows the spectra
from Sorbonne, with a wavenumber range of 307-2041cm−1 and the bottom graph shows the spectra from Twente, with a
wavenumber range of 300-3674cm−1

Machine learning methodology

Figure 2. Schematic of the autoencoder. The encoder takes the vector of noisy and / or clipped Raman spectra as input which
it processes into a compressed representation in the latent space containing the extracted features of the spectra. The decoder
then takes the latent representations of the spectra as input and attempts to reconstruct the original Raman spectra using this
information. Learning occurs by computing a loss between the original Raman spectra and the reconstructed spectra and
passing the gradient to the encoder and decoder.

The desired outcome of the self-supervised deep neural network is to be able to extract chemically relevant information
from the Raman spectra of sample particles, and for the quality of that information to be sufficient to reliably group particles
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by their chemical nature. To achieve this, we apply an autoencoder27, 31 to the Raman spectra, as shown in fig. 2 and 3. The
goal of the encoder is to learn to extract the most valuable information from the spectra and pass this on to the latent space,
which would ideally be a representation of the chemical nature of the sample. The quality of this information is verified by the
decoder, whose purpose is to reconstruct the original spectra using only the information available in the latent space. If the
quality and completeness of the information passed to the latent space by the encoder is high, then the decoder should be able
to reconstruct the spectra with high accuracy.

In order to focus on the important information, spectra are first clipped at random positions with the beginning and/or end
removed. This forces the network to be robust to input with different spectral range. Secondly, noise of different amplitude is
added to the clipped spectra. The loop for the self-supervised phase 1 learning is achieved by computing a loss, quantifying the
amount of lost information, between the original (possibly clipped) spectra and the reconstructions produced by the decoder.
Once this phase of learning is complete, the autoencoder should have learnt to reject noise and be robust to clipping; whatever
spectra is passed to the encoder should produce an approximately equivalent representation in the latent space, containing high
quality chemically related information. Phase 2 learning can then commence by interfacing the classifier with the latent space
of the autoencoder and passing the training data through the encoder such that a training set is generated in the latent space.
The classifier then relies on this training set and the known origins of the EVs as labels for its learning.

Variational autoencoder
Since the Raman spectra are naturally continuous along the frequency axis, we base our autoencoder architecture on convolu-
tional layers. To facilitate better learning of a deep model, we also implement skip connections across the convolutional layers,
akin to those introduced in the ResNet architecture32, which allows the gradient to bypass the layers during learning. We also
implement Gaussian re-sampling as is used in variational autoencoders33 to encourage the learning of uncorrelated features in
the latent space.

As the goal of the autoencoder is to learn features in the Raman spectra that correspond to chemical aspects in the sample,
we wish to make the information regarding one chemical group to be represented in a single dimension of the latent space. By
using a variational autoencoder, which attempts to learn the latent features as uncorrelated gaussian variables, we motivate
the model to express the observed chemical features such that they are as independent as possible. Our hypothesis is that it
motivates the network to express patterns that correlate strongly, such as the CH2 peaks and lipid complexes, in one latent
space dimension and other spectral signatures that correlate weakly, such as the amino and carotenoid complexes, into separate
dimensions. The end goal of this is to make the learned representations of a single chemical be expressed in a single latent
dimension instead of being spread out over multiple dimensions. That way, we hypothesise that the latent space will form a
more realistic, and thus valuable, map of the chemical features in the sample, and where the different classes of EVs can be
easily separated.

Adaptive frequency range
A variational autoencoder based on convolution is very capable of processing data such as Raman spectra when expressed as a
numerical vector of intensities, but it will lack essential information about the frequency range. When interpreting the Raman
spectra of a sample, be it by a human or by a machine, identifying both the peak intensity and its position in the spectrum are
crucial. Since our data arises from multiple sites with different frequency ranges, if only the shape of the spectrum is made
available to the model, then it is poorly equipped for inferring purposeful information from the spectrum. Conventionally,
this information is passed to the model implicitly by pre-processing the dataset such that each index of the spectrum vector
corresponds to the same wavenumber shift. This way, the model learns to associate a peak with an underlying component (i.e. a
chemical) by where the peak appears in the vector rather than its wavenumber shift. In our context, this is not possible.

Instead, we propose making information regarding the frequency range available to the model such that it can be considered
explicitly. This is implemented in the encoder as shown in fig. 3a by passing both the intensity and frequency vectors to the
model on two separate channels, and allowing them to pass through two information pipelines through the model. The intensity
vector passes through convolutional filters that extract the spectral features while the frequency vector is fitted by a fourth
degree polynomial. The parameters of the frequency polynomial are then pre-processed by a feed forward block before being
concatenated with the feature information and processed together in the main feed forward block of the encoder. Similarly
as shown in fig. 3b, the decoder extracts the frequency related information from the last ten dimensions of the latent space,
processes it through two feed forward blocks, and reconstructs the frequency range using a fourth degree polynomial whose
parameters are given by the feed forward block. The intensity vector is reconstructed by passing the frequency and intensity
related information from the latent space to a feed forward block whose output goes through a series of up-sampling convolution
filters. The reconstructed frequency and intensity vectors are then concatenated to produce an output of the same format as the
input. The final architecture has a total depth of 36 layers including the adaptive frequency neurons, making the model quite
deep. Further details on the architecture are available in Table S2.
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(a) Schematic of the encoder architecture. The
input, consisting of both an intensity vector
I [n] and a wavenumber vector ν̃ [n], is split to
follow two paths. The two paths separate the
frequency (x) and intensity (y) axes of the
spectra. They only meet in the main feed
forward networks of the encoder and the
decoder, as well as the latent space.

(b) Schematic of the decoder architecture. The
latent space data is again split to follow two
paths. The frequency vector is reconstructed
by a polynomial whose parameters are given
by feed forward layers and the intensity vector
is reconstructed by convolutional filters.

Figure 3. Schematic of the encoder and decoder of the autoencoder architecture.

Loss function
During training, the learning outcome of the autoencoder is to reconstruct the data as accurately as possible. Phase 1 learning
must therefore use a loss function whose metrics reflect this and motivates the learning to extract chemical information from the
spectra. To achieve this, Fourier loss is added to the more standard spatial and Kullback-Leibler loss. The spatial loss function
describes the difference between the clipped original spectra and the reconstruction in the most direct manner and serves as the
most fundamental loss function for the autoencoder during phase 1 learning. The metric of this loss is the root mean square
error between the original and the reconstruction. The Kullback-Leibler loss function describe the difference between the
discrete distributions in the latent space and a gaussian distribution. The need for this loss arises from the gaussian re-sampling
in the last layer of the encoder and is described by the Kullback-Leibler divergence between the output of the last feed forward
layer in the encoder, which produces the means µ and variances σ2 for the re-sampling, and a a gaussian distribution with
a mean of zero and a variance of 1. Thus, the more the latent representations approximate uncorrelated gaussian distributed
variables, the lower the KL loss will become. The Fourier loss function describes the difference between the original and the
reconstruction in Fourier space. The metric of this loss function is the sum of the mean square difference of the frequency
and phase between the input and the reconstruction. The reason for including this loss is to counter unwanted effects of the
simple spatial loss function, namely that the spatial loss is most sensitive to low-frequency features34 such as large, smooth
slopes. This effect encourage the autoencoder to consider the low-frequency elements more strongly, thus implicitly learning
to low-pass filter the input35. By adding a Fourier loss, the autoencoder is forced to consider the higher frequency elements
as well and, by adding a mask that attenuates frequencies outside the relevant bandwidth, encourage it to learn to preserve
high-frequency elements of the spectra, such as sharp peaks.

The total loss function is a composite loss formed by these losses to form a total function :

LΣ = (1−α) · (LRMS,I + γLRMS,ν̃ +βLKL)+αLFourier,

where LRMS,I is the RMS difference between the original and reconstructed intensity vectors, LRMS,ν̃ is the RMS difference
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between the original and reconstructed frequency vectors, LKL is the Kullback-Leibler loss, and LFourier is the Fourier loss. The
balancing parameters α , β and γ are used to moderate the relative strength of the losses. The parameter α balances the ratio of
the Fourier loss relative to the other losses, this is set to 0.3 during training to make the spatial and KL losses slightly dominant
over the Fourier loss. The parameter β determines the strength of the KL loss and is set to 5 to ensure the KL loss is significant
during learning, but not strong enough to be clearly dominant. The parameter γ is used to balance the strength of the loss of the
intensity and frequency reconstructions, to compensate for the lower order of magnitude in the frequency vector compared to
the intensity vector.

Classifier head
The classifier head exists outside the autoencoder and only passively interacts with it through observing the latent space. This
performs classification of the spectra through a conventional feed forward-approach where the latent space is passed to a series
of feed forward networks with dropout, batch normalization, and skip connections. Due to the high level of pre-processing
by the encoder, this network can be made relatively small, consisting of five layers of 128 neurons only. The output of this
processing is passed to a classification head consisting of a feed forward layer with a softmax activation which produces a
one-hot encoded class prediction.

Figure 4. Schematic of the classifier head.

Training scheme
Artificial noise in training
As shown in fig. 1, the available spectra forms two distinct datasets, one from Paris and one from Twente. The most distinct
differences between these two datasets are: the difference in signal-to-noise ratio, the difference in frequency range, and
the difference in calibration drifts. For the autoencoder to function as intended, it must be trained to be robust against these
differences, and thus the presence of these factors and their magnitudes must be more homogeneous in the training set. To
achieve this, we augment the training set with three types of noise to emulate these conditions: noise in the intensity to emulate
variations in the signal-to-noise ratio, clipping of the frequency range to emulate different acquisition ranges, and distortions in
the frequency axis to emulate calibration drift.
The intensity noise is implemented as additative gaussian noise in the intensity of the spectra. The magnitude of this noise is
calculated from the root mean square of the intensity before noise such that the variance of the gaussian noise is a prescribed
amount of the RMS of the intensity. In training, the variance is decided to be equal to -5dB of the RMS of the intensity,
calculated on a per-spectrum basis to make the significance of the noise more equal between the spectra. The range clipping is
implemented by selecting a random start and stop for the range then removing the parts of the spectrum that is outside this
range. The start of the new range is determined by random selection from the beginning of each spectrum to a prescribed
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maximum, which is set to 800cm−1. The stop of the new range is determined similarly as a random point between a prescribed
minimum and the end of each spectrum, the minimum is set to 1500cm−1 in training. This results in up to 79 % of the
spectrum being clipped. The frequency noise is implemented by first fitting a fourth degree polynomial to the frequency vector:
P4[I, ;β ] = β4I4 +β3I3 +β2I2 +β1I+β0 ≈ ν̃ [I]. For each of the parameters βn, a random amount of distortion β̂n equivalent to
2% of βn is selected to create a distorting polynomial P̂[I, β̂ ]. The distorting polynomial is then added to the frequency vector
to create distortions in the vector that emulate poor calibration of the spectrometer: ν̃N [I] = ν̃ [I]+ P̂[I, β̂ ].

A last addendum to the training set is a set of randomly selected spectra whose intensities are purely gaussian noise. These
are introduced to the training set to force the model to recognize a zero-signal condition, and thus discourage it from considering
the spectra as variations on a "mean" spectrum but rather as intrinsically unique and express them as more unique in the latent
space. Experiments have shown that this is beneficial (not reported here).

Training phases
The raw spectra are first separated into the training set ( 70%, 1898 spectra) and the testing set ( 30%, 769 spectra) which are
then isolated from each other in the datastructure. During phase 1 training, a new noisy set is generated from the raw training
set for each epoch of training to encourage the model to be robust against noise. These training sets are generated by adding
together one copy of the raw training set, three copies with the described noise types, and one copy of noise-only signals. The
generated training set is then randomly shuffled before being passed to the model for training.
The model is then built with the determined achitecture and allowed to train on the generated training sets for 100 epochs with
a learning rate of 10−4 before concluding phase 1 of the learning.
Once trained, the encoder of the model is used to generate latent representations of the training data which is then used to train
the classifier. The classifier is fed the latent training set and tasked with classifying the data into 13 classes corresponding to the
known particle origins which are used as labels.

Results
Reconstruction performance

(a) Reconstruction of intensity vector only by
model.

(b) Reconstruction of both intensity and
frequency vectors by model.

(c) Distributions of original spectra vs.
reconstructed spectra, and the residual
between them.

Figure 5. Reconstruction performance of the model, showing the input in blue and the reconstruction in red. The model is
tasked with reconstructing the same data in both plots, but only the intensity vector in a) and both frequency and intensity
vectors in b). The histograms in c) show the statistical distribution of the original spectra and the reconstructed spectra as well
as the distribution of their residual difference.

The first measure of the quality of the model is the accuracy of the reconstructions it produces. The trained network is
provided with unaltered spectra from the test set and asked to reconstruct them, producing the results shown in fig. 5. The
models ability to reconstruct the spectra is excellent, despite the high levels of noise and their variability. Note the significant
reduction in noise in both cases and the preservation of sharp features, such as the phenylalanin peak at 1003.6 cm−1. Fig. 5b
shows that the reconstruction of the frequency vector is not perfect, producing an elongation or compression of the spectra.
However, the reconstruction is adapting to changes in the range, approximates it well, and, most importantly, the shapes of the
features are preserved. By comparison, truncating and interpolating the data such that the adaptation is not required removes a
significant part of the spectra, see fig. S1.

The most notable difference between the original spectra and the reconstructions is the significant noise reduction, especially
for high wavenumbers (> 3000/cm). The autoencoder is trained on data with artificial noise and has learned to remove this
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noise. Therefore, when presented with spectra that only have the natural noise, such as those in the test set, it will attempt
to remove the natural noise in the same way it learned to remove the artificial noise. The performance of this process can be
evaluated by investigating the difference between the original and the reconstructed spectra. The distribution of this residual is
shown in fig.5c. In the case of perfect noise removal, the residual should consist of noise, which is presumed to have a Gaussian
distribution. The Kullback-Leibler divergence between the distribution of the residual and a Gaussian distribution reveals a
normalized divergence 3.3 times lower than for the original spectra, indicating that the residual is largely gaussian and thus
largely noise.

Feature extraction capabilities
The high reconstruction accuracy of the model indicates that the information preserved in the latent space is of high quality
and that noise is not preserved. The next step is to evaluate the relevance and significance of the information as a means to
characterize the sample. This is done by passing the test data through the encoder of the network and extracting the predicted
means of the latent space distributions such that the "perception" of the encoder can be investigated.

By using t-distributed stochastic neighbour embedding (t-SNE)36, we project the 100 dimensional data in the latent space
down to two dimensions and use the known origins of the data as labels to illustrate the latent space representations as shown in
fig. 6. The t-SNE plots are used to reveal the structure of the latent space and show which samples are grouped together, both in
latent space and in the t-SNE plots. The principle of t-SNE is to reduce the dimensionality while keeping points that are close
in the high dimensional space close in the low dimensional one. Points in a t-SNE plot do not reflect where they are in the
latent space, but their proximity to other points reflects their proximity in the latent space. Note that points in the t-SNE plot
may appear more clustered than they are in reality37. Hence the clusters in the next figures mean that points are located close to
each other in the latent space but they may not be well isolated from the others.

Figure 6. Two-dimensional t-SNE projection of the latent representations of spectra from the test set. This is a general
overview of the latent space. Six clusters of samples can be seen, showing that the network is able to "see" similarities in the
data. However, the main results are difficult to discern from this global view. In the next figure, subsets of the data are shown.

The plot shows six clusters, indicating that the model sees varying degrees of similarity and dissimilarity between the
particles. Due to the large number of datapoints and labels, it is difficult to discern them in fig. 6. For better clarity, a few
labels have been selected and plotted in fig. 7. Some more selections can be found in fig. S3. Note especially, in fig. 7a, the
partial overlap between some of the platelet particles from Twente with the control and Trap-activated platelet particles from
Paris. This indicates that the model recognizes them as similar in spite of the difference in the condition of their measurements.
Furthermore for the Paris dataset, EVs from activated platelets are clearly separated from controls. Regarding the controls 1
to 4 in fig. 7b, they are well mixed in one cluster, while control 5 is separately clustered. In contrast, the five prostate cancer
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(a) t-SNE projection for platelet derived EVs. The
TRAP6-activated platelets (green) form a common group with
some platelet particles from Twente (red). Some of the latter
also overlap with the platelet control EVs from Paris (black).
The A23 (calcium, black)) activated platelets form a distinct
group.

(b) t-SNE projection for nanoparticles from (cancer) controls.
Controls 1-4 form a common wide group (multi-color) while
the EVs from Control 5 forms a smaller, distinct group.

(c) t-SNE projection for nanoparticles from prostate cancer
patients. Patients 3 and 4 form a common group (green/blue),
while the remaining patients each form separate groups.

(d) t-SNE projection for nanoparticles from prostate cancer
patients vs. controls. With the exception of Control 5, the
controls form one group near the center. The prostate cancer
patients form separate clusters surrounding the control cluster.

Figure 7. Projections of the latent space of the autoencoder with true origin labeling. The 100 dimensions of the latent space
are squeezed down to 2 by a t-SNE model and plotted using the known origins of the particles. It is demonstrated that the
self-supervised clustering of the autoencoder agrees well with the true particle types, and can recognize particles as the same
regardless of the lab they were measured in.

patients in fig. 7c mostly form separate clusters, with the exception of patients 3 and 4 which share a cluster. Lastly, fig. 7d
shows that the cancer patients and the controls are mostly well separated from each other. The underlying data show that the
partial overlap of cancer patients is with controls 1-4, while control 5 is in a separate cluster, as in fig. 7b.

Classification accuracy
After the classifier has been trained on the latent representation of the training set produced by the encoder, the test set is passed
through the encoder and to the classifier. The classifier is trained to recognize the same origins as shown by the labels in fig. 6
except for the merging of the platelet particles from Twente and platelet control particles from Paris into one label. The resulting
confusion matrix of the classifications are shown in fig. 8, with supplementary matrices with percentages and for ICA in Fig.
S4. As an example from the matrix, it shows that the cancer patients can be perfectly differentiated from non-cancer controls by
the model. In cases of EVs from bulk blood, the model is also able to differentiate blood plasma and red blood cells with a high
degree of accuracy, producing no misclassification between the two. Over a total of 769 spectra in the test set 709 are correctly
classified, yielding a true positive rate (sensitivity) of 92.2% and true negative rate (selectivity) of 92.3%. Note that the highest
rate of mutual misclassification is between the control platelets and plasma derived particles. A likely explanation for this is
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that a large portion of the particles measured in the platelet test were determined to be lipoproteins38, resulting in the spectra
more closely resembling those of plasma, see fig. S3d). The noise robustness of the classifier is also tested by introducing the
same clipping to the test data as for the training data, resulting in a sensitivity of 84.7% and a selectivity of 86.2% for clipped
data. Further degradation of the data by noise or frequency distortions similar to the training case resulted in the classifier
maintaining a sensitivity of 81.5% and a selectivity of 83.8% or higher. The resulting confusion matrices are shown in fig. S4.

Figure 8. Confusion matrix for the classifier trained on the latent space representations of the spectra. The colors indicates the
percentage correct predictions, with yellow for 1% to 25% correct, orange for 25% to 50% correct, and green for more than
75% correct prediction. The numbers show the number of analysed spectra for each case.

Discussion
In this work we have constructed a novel that is able to reconstruct the Raman spectra of single (or near-to-single) EV with a
high degree of accuracy and with strong de-noising properties. The model is shown have to high level of adaptability as it can
fit well data from different origins, with differences in frequency range and noise levels. The extracted features are of high
quality, enabling to classify and cluster EVs and other biological nanoparticles based on their cellular origin and activation
state, as well as an overall condition (health/disease). This is verified by the classifier, which attains more than 90 % accuracy
in classifying the nanoparticles to their correct origins with high sensitivity and selectivity.

In the reconstructions shown in fig. 5, we see that the autoencoder perceives all of the significant features and reconstructs
them well; both the low-frequency slopes and complexes, as well as the high-frequency peaks. From the frequency range
reconstructions shown in fig. 5b we see that the reconstructed frequency vectors are reconstructed well, but with some degree
of error. This error can readily be attributed to the weighting of the learning process, where the intensity vector, containing the
actual Raman features, is given more importance in reconstruction. Nevertheless, the adaptive behavior of the reconstructed
frequency vector clearly shows that the model actively considers it in its determination of the features in the spectrum and that
the model can adapt to data with very different frequency ranges from different labs.

Figs. 6 and 7 show that the extracted features form natural clusters that correspond well with the samples that produced
the spectra. The most notable of these results is shown in fig. 7a. For the dataset from Paris, EVs from un-activated control
platelets are well differentiated from the EVs from activated platelets, and the model recognizes a difference between activation
with Thrombin (Trap) or Calcium (A23). For the dataset from Twente, some platelet particles overlap with the controls from
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Paris, while some overlap with those activated with Thrombin from Paris. The partial overlap for platelet particles from Twente
and platelet control particles from Paris, despite their Raman spectra having very different noise levels and frequency ranges,
illustrates the achieved strength and flexibility of the model for variations in the measurement method. The separate clusters
for EVs from platelets activated with Thrombin (Trap) and with Calcium (A23), both Paris, further emphasizes the models
ability to differentiate EVs. The proximity of the Trap-activated platelets and platelets from Twente to the plasma particles also
indicates that the model sees them as similar. This may be due to a higher prevalence of protein in these particles, making them
more similar to the plasma derived particles which are mainly lipoproteins. This can be explained by the fact that the platelets
used to generate this data comes from stored platelet concentrate38 while the Paris platelets come from fresh blood, which can
influence the composition of the platelets and their derived nanoparticles. Regarding fig. 7b, four of the (non-cancer) controls
are clustered together, indicating that the model can see them as similar despite originating from different controls. But one
control forms a tight, separate cluster, indicating that the model sees a difference relative to controls 1-4. As the medical record
and possible medication of the controls is not known, this difference cannot be further investigated.

Previous studies have shown that EVs from different cell lines and primary cells carry different biochemical features, as
analyzed by Raman spectroscopy and PCA19, 39. Such analysis, however, did not generate a clear distinction, as shown in fig.
S2. It also could not blindly associate features extracted from Raman spectra of EVs with their cells of origin. The features
extracted from the Raman spectra of EVs by the autoencoder enable classification according to the cellular origin, as well as
between cancer patients and subjects who do not have cancer. Such classification opens new frontiers and possible uses of EVs
for the diagnosis and prediction of disease. Of particular note is the specific identification of EVs from activated platelets, which
were clearly separated from EVs isolated from resting platelets, monocytes or erythrocytes. The exclusivity of the features of
nanoparticles from platelets was further demonstrated by grouping nanoparticles from platelets generated in two independent
labs, each using different instruments and operators. Platelet activation and subsequent release of EVs is thought to play a role
in various thrombotic conditions, such as venous thromboembolism (VTE)40. Therefore, it would be interesting to investigate
whether our autoencoder and classifier can detect elevated levels of EVs from activated platelets in the plasma of VTE patients
and whether this could facilitate future predictions or diagnoses of the disease. Our results also warrant further investigation in
the field of cancer, where patients exhibit a distinct EV profile.

The quality of the information extracted from the spectra by the model is demonstrated by the achieved accuracy of the
classifier. By taking the extracted features given by the latent space of the autoencoder, the classifier achieves both a sensitivity
and selectivity of over 90% across the test set. Most notable is the fact that there is no overlap between the cancer and non-cancer
derived particles, meaning that the model is capable of detecting prostate cancer with perfect sensitivity and selectivity. This
indicates that the model perceives a significant difference between the EVs from cancer compared to non-cancer.The classifier
also gives an 82.3% accuracy in classifying platelet derived EVs as activated or unactivated, with a sensitivity of 76.1% and
selectivity of 93.3% for detection of activated platelets. The lower sensitivity of this test indicates that the model sees a relatively
small difference between the activated and un-activated platelet derived EVs, which is not unexpected given their intrinsic
similarity due to them having a common origin. This is also illustrated in fig. 7a by the partial overlap between the platelet
particles from Twente and un-activated platelets from Paris, as discussed above. There is also a significant overlap between the
platelets from Twente and the plasma derived particles, resulting in a sensitivity of only 65.1% for detecting control platelets
from plasma.

Conclusion
We have demonstrated that an autoencoder, with a depth of 21 convolutional layers and eight fully connected layers, can
learn to reconstruct a wide variety of Raman spectra with a highly variable signal-to-noise ratio and with a variable frequency
range. The ability to consider spectra from separate measurement systems, while maintaining high reconstruction accuracy
underscores the capabilities of the model. The de-noising performance of the model is also shown to be promising, leaving a
residual difference between the spectra and reconstructions that follows a gaussian distribution, indicating that the residual is
largely random noise that is filtered out by the model. The model is also shown to be capable of extracting valuable, chemically
related information from the spectra, which allows it to perform label-free clustering of particles by their similarity despite the
significant differences in the measurement methods.

It is shown that the model is capable of recognizing activated platelet derived EVs and recognize mixed activated platelet
derived particles from both the lab in Paris and in Twente as similar, while also recognizing that EVs from un-activated platelets,
and platelets activated by artificial calcium activators, are different from EVs activated using thrombin. This demonstrates both
the viability of using Raman spectroscopy as a means of detecting platelet activation and the viability of using the demonstrated
model to reliably extract valuable information from those spectra. For prostate cancer derived EVs, individual patients are
mostly separated, while the EVs from controls are mostly clustered together. The reason for this cannot be further investigating
without more data and knowing the medical conditions of the patients and the controls. The model readily differentiates the
cancer patients from the non-cancer controls, with a perfect sensitivity and selectivity, demonstrating the viability of Raman
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spectroscopy and the model. In cases of bulk blood, the model is also able to differentiate blood plasma and red blood cells
with a high degree of accuracy, producing no misclassification between the two.
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ABSTRACT

Extracellular vesicles (EVs) and nanoparticles released from cells attract interest for their possible role in health and diseases.
The detection and characterization of EVs and other biological nanoparticles is challenging due to the lack of specialized
methodologies. Raman spectroscopy, however, has been suggested as a novel approach for biochemical analysis of
nanoparticles. To extract information from the spectra, a novel deep learning architecture is explored as a versatile variant of
autoencoders. The proposed architecture considers the frequency range separately from the intensity of the spectra. This
enables the model to adapt to the frequency range, rather than requiring that all spectra be pre-processed to the same frequency
range as it was trained on. It is demonstrated that the proposed architecture accepts Raman spectra of nanoparticles from
multiple biological origins and laboratories. High reconstruction accuracy is maintained despite large variances in frequency
range and noise level. It is also shown that the architecture is able to cluster nanoparticles by their Raman spectra and
differentiate them by their origin without pre-processing of the spectra or supervision during learning. The model performs
label-free differentiation of nanoparticles from 13 biological sources with high fidelity, including separating extracellular vesicles
from activated vs. unactivated blood platelets and nanoparticles from prostate cancer patients vs. non-cancer controls. The
differentiation is evaluated by creating a neural network classifier that observes the features extracted by the model to classify
the samples according to their origin. The classification reveals a test sensitivity of 92.2% and selectivity of 92.4% over 783
nanoparticles measured at two different labs with two different measurement configurations.

Sample preparation
For ’Paris’ dataset, sample prepared at UiT The Arctic University of Norway and analysed at Sorbonne
University
Collection of clinical samples has been approved by the regional ethical committee for Medical and Health Research Ethics
(REK200825). All participants were above the age of 18, did not suffer from illness, or use medication; all gave a written
informed consent. Blood was drawn by venipuncture of the antecubital vein using a 21-gauge needle and minimal stasis.
Blood was collected into Vacuette 6 ml Z tubes with no additives (Greiner Bio-One, Kremsmünster, Austria); the first tube
was discarded. Acidic citrate dextrose buffer (ACD, 39 mM citric acid, 75 mM sodium citrate, 135 mM [D]-glucose, pH 4.5)
and 2,8 mM Prostaglandin E1 (PGE1, MedChemExpress, Monmouth Junction, NJ, USA) were added rapidly to the blood to
prevent blood coagulation and platelet activation, respectively. In addition, 3 ml of blood were drawn into K2EDTA Vacuette
tubes (Greiner Bio-One, Kremsmünster, Austria) for cell count and analysis using an ABX MicrosES60 (ABX Diagnostics,
Montpellier, France). Following addition of ACD and PGE1, blood was centrifuged at 140 xg for 15 min with no breaks (room



temperature) using a Megafuge 1.0 (Heraeus Sepatech) centrifuge equipped with a swing bucket rotor BS4402/A to generate
platelet rich plasma (PRP).

Platelet pellets were recovered from PRP following centrifugation at 900 xg for 15 min at room temperature, washed twice
with HEPES-NaCl buffer (10 mM HEPES, 0.85% NaCl, pH 7.4) and 2.8 mM PGE1, and resuspended in Tyrode-HEPES buffer
(10 mM HEPES, 0.85% NaCl, 1 mM MgCl2, 2 mM CaCl2, 3 mM KCl, pH 7.4). Platelets (250x106 in 1 ml Tyrode-HEPES
buffer) were stimulated with 100 µM thrombin receptor activator peptide 6 (TRAP-6, MedChemExpress, Monmouth Junction,
NJ, USA) or 2 µM calcium ionophore A23187 (Sigma-Aldrich, USA) and incubated for 15 min at 37°C. Saline was added
for time-matched unstimulated control platelets. Following 15 min, EDTA was added to platelet suspensions (activated and
time-matched control) at a final concentration of 10 mM to stop platelet activation and platelets were sedimented at 2,500 xg for
10 min at room temperature. Supernatant was transferred to a new tube before proceeding with isolation of platelet-Evs, and the
platelet pellets were resuspended in 1% paraformaldehyde (PFA) in PBS for assessment of platelet activation by flow cytometry.
Platelet derived (micro)particles, hereafter referred to as platelet-Evs, were isolated from supernatant by centrifugation at
20,000 xg for 30 min at 4°C, using a 5810R Eppendorf centrifuge with a fixed angle rotor FA-45-30-11. EV pellets were
resuspended in 1/10 of their initial volume (i.e., 10x concentrated) in a buffer suitable for the respective downstream analysis.

For EV characterization by Raman spectroscopy, Nanoparticle Tracking Analysis (NTA), and cryogenic transmission
electron microscopy (Cryo-TEM), EV pellets were resuspended in PBS. For analysis of procoagulant activity of Evs by
procoagulant phospholipid clotting assay and thrombin generation by calibrated automated hrombogram (CAT), Evs were
re-suspended in pooled EV-depleted plasma (EVDP). EVDP was prepared as previously described by Ramberg et al.1. Briefly,
citrated blood from 10 healthy individuals was centrifuged twice at 2,500 xg to produce platelet free plasma (PFP). PFP was
subjected to ultracentrifugation (100,000 xg, 60 min) at 16°C (Beckman Optima LE-80 K Ultracentrifuge, rotor SW40TI,
Beckman Coulter, USA). EVDP samples were pooled, aliquoted and stored at -80°C until further use.

For analysis of the prothrombinase complex activity Evs were resuspended in 20 mM HEPES, 150 mM NaCl buffer. All
EV suspensions were stored at -80°C until use.

For ’Twente’ dataset, sample prepared and analysed at University of Twente
Plasma from healthy donors and cancer patients

Blood was obtained from non-fasting healthy donors and mCRPC patients (both N=5) after written informed consent in
accordance with the Helsinki Declaration and approved by the medical-ethical assessment committee of the Academic Medical
Center, University of Amsterdam (NL 64623.018.18). Refer to Table S1 for donors clinical data. Whole blood was collected
from each donor using a 21G needle, and the first vacutainer was discarded. Next, three citrate vacutainers of 2.7 mL (BD
Biosciences, San Jose, CA) were collected and mixed gently by inversion. The vacutainers were centrifuged at 2500 g for 15
minutes at 20 °C without brake (Rotina 380R, Hettich, Tuttlingen, Germany). Plasma was collected up to 0.5 cm above the
pellet, pooled and centrifuged in a conical base tube (10 mL; Sarstedt, Nimbrecht, Germany) at 2500 g for 15 minutes at 20 °C.
The supernatant was deposited in aliquots of 75 µL (Sarstedt), which were snap frozen in liquid N2 and stored at 80 °C until
use. Samples were thawed in a water bath at 37 °C immediately before use.

Lipoprotein particles (LPs) Human high density lipoprotein (HDL), low density lipoprotein (LDL), very low density
lipoprotein (VLDL) and chylomicrons (CM) were acquired from Sigma-Aldrich Chemie N. V. (The Netherlands). HDL (Cat.
No.: L8039), LDL (Cat. No.: 437644), VLDL (Cat. No.: 437647) and CM (Cat. No.: SRP6304) had a purity of ≥ 95% by
electrophoresis, as specified by the provider.

LNCaP-derived EVs Cells from the prostate cancer cell line LNCaP (ATCC, CRL-1740, USA) were cultured at 37°C and
5% CO2 in RPMI-1640 with L-glutamine medium (Lonza, Cat. No.: 12-702F) supplemented with 10% (v/v) fetal bovine
serum (FBS), 10 units/mL penicillin and 10 mg/mL streptomycin. Cells were seeded at a density of 10,000 cells/cm2 as
recommended by ATCC and medium was refreshed every second day. At 80-90% confluence, cells were washed three times
with phosphate buffer solution (PBS) and cultured in FBS-free RPMI-1640 with L-glutamine medium (Lonza, Cat. No.:
12-702F) supplemented with 1 unit/mL penicillin and 1µg/mL streptomycin. After 2-3 days of culture, cell supernatant was
collected in a 15 mL tube (Cellstar® tubes, Grenier Bio-one BV, Alphen a/d Rijn, The Netherlands) and centrifuged at 500
g at room temperature for 10 minutes (centrifuge 5804, Eppendorf, Hamburg, Germany). Next, the supernatant containing
LNCaP-derived EVs was collected and stored in aliquots (Greiner Bio-one) at -80 °C until use. Samples were thawed in a water
bath at 37 °C immediately before use. LNCaP-derived EVs are referred to as LNCaP EVs throughout the text.

Red blood cell (RBC) - derived EVs RBC-derived EVs were obtained from RBC concentrate (150 mL, Sanquin Bloodbank,
Amsterdam, The Netherlands) and diluted 1:1 with filtered PBS. Samples were centrifuged three times at 1560 g for 20 minutes
at 20 °C (Rotina 46RS centrifuge, Hettich, Tuttlingen, Germany). The supernatant containing EVs was pooled and distributed
in aliquots of 50 µL, which were snap frozen in liquid N2 for 15 minutes and stored in aliquots (Sarstedt) at -80 °C until use.
Samples were thawed in a water bath at 37 °C before use. RBC-derived EVs are referred to as RBC EVs throughout the text.

For other particles used from Twente, see the methods-section of Martinez et al.2
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Table S1. Clinical data on the cancer patients afflicted with Metastasized castration-resistant cancer (mCRPC) and control
donors.

Subject Date of Date of CRPC Treatment Age PSA* LDH ALP tChol HDL LDL TGLdiagnosis diagnosis

Pt 1 05/2017 10/2018 Abiterone 66 0.6 202.9 1.6 3.89 1.27 2.13 1.08Prednisone
Pt 2 2006 04/2018 Enzalutamide 86 3.4 165.4 1.4 5.44 1.57 3.24 1.41

Pt 3 2000 04/2018 Abiterone 75 1.2 175.6 5.0 3.14 1.37 1.39 0.86Prednisone
Pt 4 NA NA NA 77 17.6 165.3 3.3 5.45 2.22 2.82 0.92
Pt 5 NA NA NA 82 10.4 240.3 6.4 5.75 1.36 3.59 1.78
HD min NA NA NA 19 NA 125.8 1.2 3.45 0.93 1.81 0.42
HD max NA NA NA 40 NA 270.3 3.2 4.38 1.45 2.47 1.93

Pt: patient, HD: healthy donor (N=5), PSA: prostate specific antigen *last determined PSA level before inclusion
LDH: Lactate dyhydrogenase (U/L 37C), ALP: Alkaline phospatase (U/L 37C), tChol: total cholesterol (mmol/L)
HDL: high density lipoproteins (mmol/L), LDL: low density lipoproteins cholesterol (mmol/L), TGL: Triglyceride (mmol/L).

Dataset

Table S2. Overview of samples in the data set with number of samples, distribution and ranges. The heterogenity in frequency
range is clear, with some having a range of approximately 3300 cm−1 and some with a range of approximately 1700 cm−1.
There is also a large variability in the number of samples for each of the origins, with 898 cancer patient derived particles and
only 19 high density lipoproteins.

Origin/Properties Subspecies Nsamples ν̃ min (cm−1) ν̃ max (cm−1)
Plasma 153 301 3672
Cancer ctrl. 745 300 3652
Cancer 898 300 3652
RBC 56 300 3668

Platelet

Ctrl. (Paris) 82 307 2036
Act. A23 (Paris) 77 308 2035
Act. Trap (Paris) 81 307 2035
Mixed (Twente) 184 300 3671

THP 41 315 2041
LNCaP 74 300 3673
PC3 94 300 3668
CM 64 300 3648
HDL 19 300 3652
LDL 47 302 3652
VLDL 69 300 3648
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Architecture

Table S3. The final architecture of the encoder and decoder with the total number of parameters.

Element Block Layers Filters Width Parameters

Encoder

Conv. Block E1 6 32 5 30 912
Conv. Block E2 6 64 3 74 112
Conv. Block E3 4 128 3 197 120
Feed forward EFreq. 3 64 1 8 704
Feed forward E 4 512 1 2 475 571
Latent space 1 1 110 0

Decoder

Feed Forward DFreq.1 3 64 1 9 024
Feed forward D 4 512 1 872 448
Feed Forward DFreq.2 1 5 1 30
Conv. Block D1 2 64 3 12 992
Conv. Block D2 3 32 3 22 656

Classifier Feed forward C 5 128 1 78 976
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Supplementary results
Reconstruction

(a) Reconstruction by base model with explicit frequency range
consideration.

(b) Reconstruction by a simple autoencoder model without skip
or explicit frequency range consideration.

Figure S1. Reconstruction performance of comparative methods. The PCA reconstruction shown in a) is limited to 100
components, same as the autoencoder, and results in the reconstruction being highly accurate, but also preserves a significant
amount of noise. For the autoencoder reconstruction shown in b) it is shown that the accuracy is high, and the process
eliminates a significant amount of noise but the lack of adaptivity to frequency removes a significant portion of the spectra.

Clustering

Figure S2. t-SNE projection of PCA components for test data. The particle origins cluster chaotically, forming several smaller
clusters, notably the smeared cluster at the center bottom which reflect samples from Paris. The clusters are highly intermixed,
similar to the autoencoder results, but the PCA results are more spread out. See especially the particles from PC3,LNCaP, and
THP-1 which are differentiated by the PCA despite their intrinsic similarity and unlike the autoencoder, which recognizes them
as similar.
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(a) t-SNE projected latent space for cell culture derived EVs. The
PC3 and LNCaP derived nanoparticles cluster well and form tight,
well distinguishable groups. The THP derived particles form a loose,
poorly defined group that overlaps with the PC3 particles.

(b) t-SNE projected latent space for lipoproteins. The low density
lipoproteints (LDL) form a distinct cluster that is well separated,
while the high density lipoproteins (HDL) form a diffuse but
differentiable cluster. The chylomicrons (CM) and the very low
density lipoproteins (VLDL) form a common cluster. However, as
spectra of both particle types had an extremely poor signal-to-noise
ratio, it is possible that this is largely a noise response.

(c) t-SNE projected latent space for bulk blood elements. The red
blood cells (RBC) form a distinct cluster that is well differentiated
from the plasma, albeit with some outliers that overlap with the
plasma. The plasma derived particles form two distinct clusters with
one partially overlapping with the RBC particles.

(d) t-SNE projected latent space for platelets and plasma. The
platelets and the plasma derived nanoparticles form a common group
in the lower right. This agrees with expectations as the platelets
originate from stored concentrate, which is known to cause activation
and generation of lipoproteins, making the platelet derived
nanoparticles more similar to the general plasma derived particles.

Figure S3. t-SNE projection of the latent space for the autoencoder and for various selections of EVs and nanoparticles.

Classification
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(a) Confusion matrix for unaltered test data. (b) Confusion matrix for randomly clipped test data

(c) Confusion matrix for test set with clipped and noisy test
data.

Figure S4. Confusion matrices for noise augmented test sets. The percentages are given by the number of true labels, e.g.
66% RBC indicates that 66% of the true RBC samples are classified as RBC by the model. The confusion matrix in a) shows
the results of classification on the source data of the test set, without any artificial distortion or noise. The confusion matrix in
b) shows the results of classification on the test set augmented with random clipping of the spectra, as was done to the training
set during learning. The results show a general reduction in accuracy doe to increased misclassification, indicated by yellow,
but remains generally good, indicated by the green on the diagonal. The confusion matrix in c) shows the result of classification
on the test set augmented with random clipping, intensity noise, and frequency distortion in the same manner as the training set
during learning. The accuracy is further reduced, indicated by the orange and yellow, due to increased misclassification. The
colors indicates the percentage correct predictions, with yellow for 1% to 25% correct, orange for 25% to 50% correct, and
green for more than 75% correct prediction.
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