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Abstract
Over the past few years, the market has shifted away from mass production
towards mass customization and personalized production. This shift has made
it necessary for manufacturing companies to change their manufacturing line
more frequently, which can be both expensive and time-consuming. To over-
come this challenge, reconfigurable manufacturing systems (RMS) have been
proposed as a solution. However, there are numerous challenges associatedwith
RMS, including a lack of research on physical implementation and automating
the system, designing a new layout due to complexity, and time-consuming
reprogramming of robots and other machines.

This research addresses the gaps and challenges in the physical implementation
and automation of RMS. A physical platform-based RMS has been developed,
which can be reconfigured automatically without any human intervention. The
system uses a mobile robot to move and reconfigure different platforms, which
has led to the concept of a highly flexible RMS being proposed.

Furthermore, this research investigates the impact of Industry 4.0 technolo-
gies on RMS. The study involves integrating additive manufacturing, advanced
robotics, industrial big data, digital twin and simulation, and industrial internet
of things (IIoT) into the physically highly flexible RMS to enhance its efficiency
and performance. Wireless power transfer (WPT) is also proposed as an Indus-
try 4.0 technology to wirelessly electrify the highly flexible RMS. Additionally,
multiple Industry 4.0 technologies are used together to address the issues of
layout design and reprogramming of RMS. This includes the proposal of a
smart layout design system and a framework for developing an intelligent and
self-RMS.

The main contributions of the research are:

• Proposing the concept of a highly flexible RMS and demonstrating how
such a system can be built.

• Investigating the impact of Industry 4.0 technologies, such as additive
manufacturing, advanced robotics, industrial big data, digital twin and
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simulation, IIoT, and WPT, on RMS.

• Using multiple Industry 4.0 technologies to propose solutions to the lay-
out design problem of RMS and proposing an intelligent self-RMS.

Overall, this research provides practical solutions for designing and operat-
ing reconfigurable manufacturing systems, making it easier for manufacturing
companies to adapt to the shift toward mass customization and personalized
production.
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1
Introduction
Manufacturers face a number of challenges that range from global competition
to pandemics and lockdown. To stay competitive, manufacturers need to man-
ufacture goods at a low cost while being able to adapt to market changes and
consumers’ needs [1]. In other words, the manufacturing industry is moving
from mass production towards mass customization or personalized production.
The transition to mass customization has numerous advantages but is challeng-
ing to implement [2]. Moreover, the pandemic has added another challenge
to the manufacturers. Since the Covid-19 pandemic, the number of workers
in factories and production systems has decreased. A consequence has been a
delay in production and suspension of manufacturing lines. As a result, there is
a need for a manufacturing system that is highly autonomous and can produce
a wide variety of products.

Manufacturing systems have passed through three main paradigms, these be-
ing dedicated manufacturing system (DMS), flexible manufacturing system
(FMS), and reconfigurable manufacturing system (RMS) [3], as shown in Fig.
1.1. DMSs are made with stationary and rigid machines, which are not flexible
and are made to manufacture only one product at a time. These systems often
use transfer lines 1 to manufacture a high volume of parts. Their production is
efficient and has a low per-part cost. On the contrary, FMS are made to manu-
facture a large variety of products and consist of CNC or turning-type machines.

1. A transfer line is a manufacturing system with a predetermined line of machines to manu-
facture parts
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2 chapter 1 introduction

Compared to DMS, FMS is a slower production process, and the per-part cost
is higher [1].

Figure 1.1: The three manufacturing paradigms.

The third paradigm, namely RMS, was proposed by Koren et al. [4] in the
late 1990s and introduced modularity to manufacturing systems. RMS can be
described as a modular manufacturing system where the system is made to be
reconfigured. An RMS is made for fast reconfiguration on both the hardware
and software level to adapt to changes in the market [5]. The main function of
RMS is to be able to adjust the manufacturing systems depending on market
needs [6]. A key objective of RMS is to manufacture a wide variety of products
at a low cost. RMS combines the merits of efficient and fast manufacturing of
DMS and combines them with the flexibility of FMS. It has been found that the
lifetime2 of RMS is three times longer than with DMS [7]. Moreover, switching
from DMS to RMS had considerable capacity savings. The use of reconfigurable
setups also resulted in a capacity reduction of around 50% over a seven-year
period [8].

1.1 Challenges with RMS

There are however challenges with RMS. Traditional manufacturing systems
such as DMS and FMS are often considered as being static (i.e., machines and
equipment are rigid), while RMS is made to be modular where it is possible to
reconfigure the system.

2. System or machine lifetime is the total number of years the system or machine will operate
after it has been commissioned.
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1.1.1 Practical/physical implementation of RMS

With RMS, there is a lack of physical implementation and demonstrations.
Khanna et al. [9] did a review on RMS and found that implementing RMS
is still a major challenge. They also noted that further research should focus
on efficient methods for designing RMS, but should also consider its practical
side. Pansare et al. [10] found that there is a lack of examples of successful
implementation of RMS practices. In a literature review on the future direc-
tion of RMS, Singh et al. [11] mention that there is a need for more research
on the development of reconfigurable machines. In another literature review,
Morgan et al. [12] note that further research should look at how to retrofit
the current manufacturing machine with virtualization and CPS architecture.
They suggest developing a system that can autonomously change and have the
intelligence to know how to change the system. There is also a lack of research
on self-configuration, scalability, and interoperability. Isabela et al. [13] looked
at the barriers to implementing RMS and found multiple challenges such as
lack of modular equipment, lack of reconfiguration of controller architecture,
difficulty in integrating new components and technologies, and difficulty in
adding and removing equipment within the system.

There are, however, some examples of physical RMS. Sanderson et al. [14]
presented a smart manufacturing and reconfigurable technology demonstra-
tor. The demonstrator is built with HAS-200 [15], which is a training system
that is modularized. The modules can be set up with different configurations
and can produce a total of 19 product recipes. Another example is from Ke-
meny et al. [16], who built a smart factory using FESTO Didactic modules.
The system is also described as a scaled-down learning factory used in higher
education. There are also multiple examples [17, 18, 19, 20] of RMS that use
the standardized platform from the FESTOs CP factory [21]. The FESTO CP
factory is a modular factory, which is used for both research and as a learn-
ing platform. Another example of an RMS learning platform is from Kim et al.
[22]. They developed a modular testbed that included ten workstations that
could be reconfigured to manufacture electric toothbrushes, electric endodon-
tic handpieces and battery chargers. However, all of these systems are used in
training, education, and research, and are not implemented in an industrial
manufacturing system.

There are also examples of systems that are made for industrial cases. Adamietz
et al. [23] developed an RMS inside a container. In the container, modules can
be replaced, and a full reconfiguration can take less than 8 hours with a forklift.
The system can be set upwith amaximum of six smallmodules or a combination
of small and large modules. However, to run the system, a human must move
the parts between the modules. In the example, the container is set up with
additivemanufacturing (AM),CNCmilling, assembly, cleaning, and sterilization
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modules. Radanovic et al. [24] developed a standardizedmodular platform that
used a plug and produced connectors to connect platforms together. It allows
users to disassemble platforms and rebuild robotic work cells by changing or
moving the platforms. Kang et al. [25] created amodularmanufacturing system
that utilized additive manufacturing. In the system, modules can be added and
removed and in the example, it includes a 3D printer, post-processing, assembly
and packaging.

1.1.2 Design problems

The second research challenge with RMS is planning the rearrangement of an
RMS. In a literature review on layout design for RMS, Maganha et al. [26]
found that there is a need to create new methods to design a layout for RMS.
There are examples of researchers who have worked on the layout problem for
RMS, but their work mainly focuses on scheduling [27], cost optimization [28,
29, 30, 31], scalability planning [32], and process planning [33, 34]. However,
there is a lack of research on the placement of the machines and how the system
should be reconfigured. Sabioni et al. [35] revealed that most papers focused
on minimizing costs when optimizing RMS configurations. However, they did
not find examples of systems where both the machine configuration and layout
design problem were considered at the same time.

Benderbal et al. [36] looked at the best placement of machines for an RMS. In a
second study,Benderbal et al. [37] developed a decision support system that can
assist with switching between products. Nevertheless, both studies investigated
a system where the machines were placed in predefined locations.

1.1.3 Reprograming of RMS

Robots are becoming more common in manufacturing systems. The challenge
with using robots in manufacturing is that they are typically employed to per-
form repetitive work, which offers little or no variety. Most robot applications
in manufacturing systems today use fixed systems, where the robots repeat
the same tasks [38]. There are a number of challenges with RMS due to its dy-
namic nature, where robots and other manufacturing machines can be moved
and rearranged. This means that it can be difficult to automate such systems
because robots and other machines have to be programmed for each reconfig-
uration.

Brecher et al. [39] mentioned that using the teach pendant of the robot arm
to program the robot for each reconfiguration is not suitable since robot pro-
gramming requires expertise and can be time-consuming. When the system is
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being reconfigured, the manufacturing needs to stop, which will lead to extra
cost and loss of production [32]. This in turn means that a slow reconfiguration
process leads to additional manufacturing costs.

1.1.4 RMS with Industry 4.0

To overcome the challenges with RMS, Industry 4.0 has been proposed as a
solution [13, 40]. Industry 4.0 is the fourth industrial revolution for the man-
ufacturing industry and was coined in Germany. The focus of Industry 4.0 is
digitalized and networked production [41, 42]. Moreover, Industry 4.0 includes
key technologies,with a focus on the development of smart factories [43]. There
is no agreed list by researchers on what technologies are included. However,
there are ten technologies that are frequently used in the context of Industry 4.0
and those are the internet of things (IoT), big data and analytics, artificial intel-
ligence (AI), simulation and digital twin modeling, advanced robotics, additive
manufacturing, cloud technology, virtual and augmented reality, blockchain,
and cyber-physical systems (CPS) [44].

As there are ten key technologies in Industry 4.0, it is out of the scope of this
research project to investigate and implement all of them. In this research
project, additive manufacturing, advanced robotics, big data, digital twin and
simulation, IIoT, and AI are investigated. Cloud computing will not be inves-
tigated as the focus of the research is on the machine floor level, and cloud
computing can often be considered as a higher level of control or interaction
with the system. Virtual and augmented reality are technologies that require
human input. However, the goal of this research is to automate the system
without requiring human intervention. Blockchain is not a technology that in-
creases automation and CPS is not directly a technology and will therefore not
be considered.

The following section discusses what has been done within RMS and additive
manufacturing, advanced robotics, big data, digital twin and simulation, IIoT,
and AI.

1.1.5 Additive manufacturing

A technology from Industry 4.0 that can help create a manufacturing system to
produce a large variety of products is additive manufacturing. Additive manu-
facturing uses less materials, lowers carbon footprint by reducing transporta-
tion, and can reduce the need for inventories compared to traditional manufac-
turing methods [45]. In addition, additive manufacturing is a technique where
a large range of products can be produced, allowing manufacturing companies
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to move towards mass customization and personalized production.

There are examples of including additive manufacturing in RMS [23, 46]. Kang
et al. [25] used a 3D printer in an RMS and mentioned that a key advantage of
3D printing is that it offers the capability of achieving mass customization/per-
sonalization and smart manufacturing.

1.1.6 Advanced robotics

Advanced robotics has been studied for RMS. Gaspar et al. [47] developed
a robot work cell where the goal is to automate low-volume manufacturing.
The work cell consists of plug-and-produce connectors to quickly add modules,
fast tool change for the robot arms, and a flexible Gough Stewart fixture to
hold parts. In addition, some of the work cell reconfigurations had to be done
manually, while others could be done automatically using robot arms.

Inoue et al. [48] proposed using mobile manipulators as an important part of
RMS. They used the mobile manipulator as a flexible method to transfer parts
between machines in the RMS. It is also mentioned that it is not feasible to have
skilled engineers do the reconfiguration of the manufacturing system. Xu et al.
[49] developed a reconfigurable modular robot arm that can change the tools
of the robot arm and has an adaptive control system. The system is built with
wireless communication and has neural adaptive control. Madsen et al. [17]
used a mobile manipulator with the reconfigurable FESTOs CP factory. In the
system, the mobile manipulator is used to feed parts into the manufacturing
line.

1.1.7 Big data

Big data is the collection and processing of large amounts of data. The collected
data can further be used to get insight into the manufacturing system and can
be used with AI for failure predictions [44]. There are different fields within
big data depending on the data. For example, data collected from machine con-
trollers, manufacturing systems, and sensors can be categorized under indus-
trial big data [50]. However, to the author’s knowledge, there is no paper that
investigates how big data or industrial big data can be used with RMS.

1.1.8 Digital twin and simulation

Digital twins and simulation are technologies that copy the physical world in a
virtual environment and can be used to monitor and test a system in a virtual
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environment before being employed on a physical system [44]. Leng et al. [51]
proposed using digital twins as a method for reducing the time required for
production changeovers. Kurniadi et al. [52] used both discrete and visual
simulation to show how digital twins can be used for reconfiguration planning.
Yang et al. [53] proposed a framework for digital twin simulation applications
into RMS. They used a discrete event digital twin for design, as an information
model, and as an assessment model. Moreover, the system is applied to an
automotive part manufacturer.

A review [54] on RMS digital twin framework found that the use of digital twins
can increase the efficiency and intelligence of the system by providing functions
such as simulation and intelligent sensing. Additionally, artificial intelligence
can enhance the performance of the digital twin.

1.1.9 Internet of Things

IoT refers to network technology that connects physical objects such as cars,
buildings, and sensors together [44]. Moreover, industrial IoT is the industrial
version of IoT and refers to machine-to-machine and automation communica-
tion systems [55]. Regarding RMS,Nayak et al. [56] highlight the importance of
flexible architecture for the information and communication technology in the
system. In a literature review on state-of-the-art RMS, Morgan et al. [12] found
that IoT can enable scalability, modality, extensibility, and interoperability in
manufacturing devices.

Kurniadi et al. [57] proposed a framework for IoT and RMS and mentioned
that IoT is being applied to RMS. It is noted that integrating IoT with RMS
facilitates the integration and organization of machines, operators, and data.
Meyer et al. [58] analyzed the gap in the standardization of IIoT technologies
and noted that there is a need for new standards within IIoT to support the
transition into flexible and reconfigurable production. Furthermore, Tang et al.
[59] proposed a cloud-assisted manufacturing architecture for RMS that used
IIoT as a bridge between devices and an intelligent production edge. Kang et al.
[25] built a modular manufacturing system and proposed a system where 3D
printers and other manufacturing processes can be controlled with IoT.

1.1.10 Artificial Intelligence

AI refers to methods that enable a system to mimic human thinking and ratio-
nality. It encompasses disciplines such as machine learning, computer vision,
robotics, automated reasoning, and natural language processing [44]. It should
be noted that AI is a broad term, and under AI, machine learning is included.
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Machine learning is a method that uses algorithms to learn from data. It allows
for creating systems without programming them manually [60]. Moreover, AI
is also included in other Industry 4.0 technologies, such as advanced robotics
and big data and analytics. However, there is a lack of research on the imple-
mentation and use of AI in RMS, and how AI can be used to create an intelligent
and self-controlling RMS.

1.1.11 Summary

In conclusion, research has revealed several challenges facing Reconfigurable
Manufacturing Systems (RMS). A notable concern is the limited investigation
into the physical implementation of RMS. Furthermore, the majority of exam-
ples center around educational systems, with all instances relying on human
intervention for reconfiguration—a costly and time-intensive process. Chal-
lenges also arise in planning a new layout for RMS. Past research has primarily
concentrated on aspects such as scheduling, cost optimization, scalability plan-
ning, and process planning. However, there is a lack of attention given to the
development of methodologies for determining the optimal placement of plat-
forms. Additionally, post-reconfiguration adjustments and reprogramming of
robots and machinery requires specialized expertise and consumes valuable
time.

Industry 4.0 has been suggested as a potential solution to address these hur-
dles, leveraging additive manufacturing, advanced robotics, big data, digital
twin and simulation, the Industrial Internet of Things (IIoT), and artificial in-
telligence to enhance RMS automation. However, the current body of research
exploring the application of Industry 4.0 technologies in tackling these chal-
lenges remains insufficient.

1.2 Research questions and objectives

This chapter addresses the research questions and objectives.

1.2.1 Research questions

As mentioned in section 1.1.1, one of the challenges of RMS is the lack of physical
or practical implementation. There exist examples of learning systems that can
be reconfigured, but they are limited in the rearrangement of the platforms.
Furthermore, there are fewer examples of modular platform-based RMS that
can be quickly reconfigured. Additionally, all existing RMS implementations
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require human labor for reconfiguration. To the author’s knowledge, there is
no implementation of an RMS that can be automatically reconfigured. The first
research question is:

How can a platform-based RMS be built with reduced reconfiguration time in
comparison to existing research while also being automated in order to reduce the
human workload in the reconfiguration process?

Further, in section 1.1.2 and 1.1.3, it is noted that planning a reconfiguration
of the RMS and programming robots after the reconfiguration remains a chal-
lenge. Both processes are time-consuming and require expertise which can
increase the manufacturing cost. Moreover, Industry 4.0 has been proposed to
overcome the challenges of reconfiguration [13, 40]. However, there is still a
lack of practical implementations on how the Industry 4.0 technologies can be
implemented into RMS [61]. Therefore, the second research question is:

What is the impact of Industry 4.0 technologies, additive manufacturing, advanced
robotics, big data, digital twin and simulation, IIoT, and AI on RMS, and how
can these technologies be integrated into RMS to improve its performance and
efficiency?

There are also challenges and research gaps in the design and reprogramming
of RMS. In terms of design, there is a lack of research on optimizing machine
placement and layout design for RMS, with most existing studies focusing on
scheduling, cost optimization, scalability planning, and process planning. In
terms of reprogramming, the dynamic nature of RMS makes it difficult to au-
tomate since robots and other machines have to be programmed for each re-
configuration, leading to extra costs and loss of production. The third research
question is:

How can multiple Industry 4.0 technologies be utilized to develop an intelligent
and self-RMS that can optimize machine placement and layout design for efficient
and cost-effective reconfigurations while minimizing production downtime and
the need for human expertise in programming?

1.2.2 Research objectives

Due to the absence of physical examples of how RMS looks and the dependence
on human labor for reconfiguration in existing examples, the primary research
objective is to construct a physical platform-based RMS that can be reconfigured
automatically,without human intervention. In chapter 2, papers 1 and 2 propose
a novel RMS that incorporates multiple manufacturing platforms which can
be reconfigured using a mobile robot. Furthermore, the concept of a highly
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adaptable and flexible RMS is also introduced.

The second objective is to examine the impact of Industry 4.0 technologies on
RMS. This investigation involves the integration of these technologies into the
highly flexible RMS to assess how they can enhance its efficiency and perfor-
mance. In Chapter 3, several papers are presented that explore the utilization
of different Industry 4.0 technologies in RMS. Specifically, papers 2 and 3 dis-
cuss the use of additive manufacturing, while papers 1, 2, and 4 investigate the
application of advanced robotics. Paper 5 explores the potential of industrial big
data, paper 2 examines how digital twin and simulation can be leveraged for
reconfiguration, and papers 2, 3, and 5 discuss the use of IIoT. Finally, papers
2 and 8 propose wireless power transfer as a solution for electrifying RMS and
propose its integration as a component of the RMS system.

The third objective is to integrate multiple Industry 4.0 technologies to address
the issues of layout design and reprogramming of RMS. In Chapter 4, paper 7
proposes a smart layout design system that employs digital twin, simulation,
IIoT, and optimization techniques to automatically generate a new layout for
the highly flexible RMS. Additionally, paper 8 presents an architecture for con-
structing and organizing an intelligent RMS, showcasing how such a system
can be realized in a physical RMS.

1.3 Structure of thesis

The main body of the thesis is structured into five chapters. The chapters of
the thesis and their connection to the papers can be seen in Fig. 1.2.

Chapter 1 defines the paradigm within the manufacturing industry. In addition,
it discusses challenges associated with RMS and how Industry 4.0 technologies
are being used with RMS. It then describes the research questions and structure
of the thesis.

Chapter 2 proposes a different method to make autonomous industrial mo-
bile manipulators (AIMM) more flexible and reconfigurable. Furthermore, it
proposes and shows the concept of highly flexible RMS. In addition, the chap-
ter demonstrates a state-of-the-art highly RMS that uses a mobile robot for
automatic reconfiguration.

Chapter 3 shows how Industry 4.0 technologies i.e., IoT, big data and analytics,
AI, digital twin and simulation, advanced robotics, and additive manufactur-
ing can be added to an RMS. Moreover, Wireless power transfer (WPT) is
proposed as an Industry 4.0 technology and demonstrates how it can be imple-
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Figure 1.2: A color-coded connection between research papers and chapters in the
thesis.



mented.

Chapter 4 investigates how an intelligent RMS can be built. First, a method is
presented for solving and automating the layout problem by combining Industry
4.0 technologies. Next, the chapter proposes an architecture for intelligent
RMS and shows how the programming and reconfiguration of RMS can be
automated.

Chapter 5 concludes with the findings of the project and proposes further work
and research to be carried out.

12



2
Self- reconfigurable
manufacturing system

This chapter proposes a newmethod of how to make mobile manipulators more
flexible. Furthermore, this chapter proposes the concept of highly flexible RMS
and demonstrates how such a system can be built.

2.1 Divided AIMM

As mentioned in section 1.1.6, mobile manipulators have been proposed for
RMS. In industrial cases, mobile manipulators are also known as autonomous
industrial mobile manipulators (AIMM). AIMM is a flexible mobile assistant
that can perform tasks in various workstations [62]. The idea of AIMM is that
they can work around humans in an industrial environment and perform tasks
such as transportation, pick and place, classification, process control and quality
control [63]. The AIMM includes a robot arm on top of a mobile robot, where
the robot arm can perform various tasks at different locations. However, such
a system also has disadvantages. For example, if the mobile robot is driving,
the robot arm cannot work, and if the robot arm is working, the mobile robot
cannot drive. This results in significant downtime for both the mobile robot
part and the robot arm. In addition, both the robot arm and the mobile robot
are expensive manufacturing equipment.

13
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To increase the flexibility and utilization of the AIMM,paper 1 proposes dividing
the AIMM into two parts. The robot arm is placed on a trolley platform that
can be moved/transported with a mobile robot. The idea is that the mobile
robot can transport the robot arm where it is needed, thereby increasing the
usability of both parts. Additionally, the paper shows how the system can be
built. In the system, a mobile robot is equipped with a docking system, and two
old robot arms are placed on platforms (trolleys) with new control computers.
In front of each platform, a marker is placed that the mobile robot can use to
position itself to pick up the platforms, as shown in Fig. 2.1.

Figure 2.1: The two robot platforms and the mobile robot used for moving the plat-
forms.

To showhow the systemworks, a video is created https://youtu.be/8gyoRbaeshk.
In the video, the mobile robot can pick up both robot platforms and place them
at different workstations. Moreover, when the mobile robot is done moving the
robot arms, it can do other logistics tasks. This is to showcase how the utiliza-
tion of the mobile robot and robot arms can be increased by dividing them into
separate systems that can also work together. In addition, the demonstrator
shows how a mobile robot can be used to reconfigure the robot arm’s platforms
to various locations without the need for human intervention.

This paper advances the existing concept of AIMM, recognized for its flexibility
and reconfigurability, by proposing a divided AIMM that exhibits even greater
flexibility and reconfigurability than before.

However, a challenge with this system is that the mobile robot can only pick up

https://youtu.be/8gyoRbaeshk
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the robot platforms at specific workstations. This in turn limits the flexibility
of the system.

2.2 RMS with five platforms

There have been studies on RMS in containers [23], circular RMS where mod-
ules can be changed [25], and using the Feste CP factory [17, 18, 19, 20]. How-
ever, these systems suffer from slow reconfiguration. For example, a full recon-
figuration for the RMS in the container takes up to eight hours and requires
human labor [23].

A different idea is to expand the system in paper 1 to include other manufactur-
ing equipment. A mobile robot can then move and reconfigure manufacturing
platforms without any human intervention. To the author’s knowledge, there
are no publications that explore the use of mobile robots to rearrange machines
in manufacturing cells. In paper 2, the idea of dividing the AIMM into two parts
was expanded, and the concept of highly flexible RMS was created.

The concept of highly flexible RMS uses a mobile robot that can automatically
move manufacturing platforms, such as robot arms, conveyors, 3D printers,
etc. The mobile robot can automatically move the platforms and rearrange the
RMS without human intervention. It should be noted that it is not possible for
the mobile robot to reconfigure large manufacturing machines, such as CNC
or turning centers. However, the mobile robot can still reconfigure platforms
around these machines to create a manufacturing line.

Additionally, there is a notable scarcity of practical RMS implementations within
the current literature, as indicated by Khanna [9] and Pansare [10]. Singh et al.
[11] have identified a need for increased research into the development of re-
configurable machines. Furthermore, Morgan et al. [12] highlight the necessity
for future research to explore strategies for retrofitting existing manufacturing
machinery.

Therefore, to demonstrate how such a system works, a physical system was
built, which includes five platforms:

• Nachi robot arm (six-axis)

• Scara robot arm (four-axis)

• 3D printer platform
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• Conveyor platform

• Conveyor lift platform

All of the platforms in the system have been retrofitted with small computers,
sensors, and state-of-the-art software for control. The idea is to showcase that
old and outdated robots or other manufacturing equipment can be upgraded
by adding new computers and software. This is an effective method of imple-
menting industry 4.0 technologies such as IoT, digital twins, and AI into old
manufacturing equipment.

The challenge with paper 1 is that the platforms could only be picked up and
delivered to specific points in the laboratory. To make the system more flexible,
a marker used for positioning was added to each of the platforms and could
be lifted up and down. This allows the mobile robot to pick up the platforms
in any location in the laboratory and move them to where they need to be. A
video showcasing the docking and undocking of the platforms can be found at:
https://youtu.be/RtOX0HGiqRs.

To show how the system works, a video demonstration is created https://
youtu.be/UXUlaawd8Ps. The video starts with all the platforms having been
spread around. Then the mobile robot picks up all the platforms and reconfig-
ures a manufacturing line. Next, the system is taken apart and reconfigured
around the virtual storage machine in the laboratory. The different layouts
created in the demonstration can be seen in Fig. 2.2.

The idea is to showcase how a mobile robot can automatically reconfigure one
manufacturing line, and then, after a production run is done, configure a new
manufacturing line. A full reconfiguration of all five platforms in the system
took about 12-14 minutes. This process is significantly faster compared to the
container RMS [23], which requires up to eight hours for reconfiguration, or
the Fasto CP factory which needs 1.4 hours [64].

Traditional fixed manufacturing systems, such as DMS and FMS, pose chal-
lenges in terms of modification and can be costly to alter. Furthermore, devel-
oping new manufacturing lines can be time-consuming and labor-intensive.
The proposed system aims to address these issues by modularizing manufac-
turing machines, which simplifies the reconfiguration process. This approach
enables a more efficient and rapid method for altering manufacturing lines.
Additionally, a modular manufacturing system promotes the reusability of mod-
ules, preventing the need to discard the entire system each time a new part is
produced.

Despite the advantages, the system does have some limitations. For example,

https://youtu.be/RtOX0HGiqRs
https://youtu.be/UXUlaawd8Ps
https://youtu.be/UXUlaawd8Ps


2.2 rms with five platforms 17

Figure 2.2: Start layout is the starting point, layout 1 is the first reconfiguration with
the mobile robot, and layout 2 is the second reconfiguration with the
mobile robot.



the mobile robot’s accuracy is not optimal, potentially leading to misplacement
of platforms. Additionally, when the mobile robot moves the platforms, it re-
quires extra force. This force can cause one of its wheels to spin, which may
significantly reduce its positioning accuracy. A potential solution to this prob-
lem could be to remove the wheels from the platforms, allowing the mobile
robot to lift them instead. This would reduce the reliance on force and might
improve the overall accuracy of the system.

18



3
RMS with industry 4.0
thecnologies

This chapter looks at how different Industry 4.0 technologies can be imple-
mented into an RMS and how these technologies can be implemented in a
physical RMS. The following Industry 4.0 technologies have been investigated
and implemented; additive manufacturing, advanced robotics, Industrial big
data, digital twin, simulation, and IIoT. In addition, WPT is suggested as a solu-
tion to electrify the RMS and is proposed as an Industry 4.0 technology.

3.1 Additive manufacturing

Several studies have examined how to integrate 3D printing into RMS [23, 46].
However, Seok et al. [25] mention that research on 3D printing has also been
largely focused on the printer itself or models that use 3D printers for limited
applications. It is noted that further research should focus on the advanced
3D printing models that use IT devices to move towards mass customization
and mass personalization. Furthermore, Isabela et al. [13] notes the absence
of a control architecture for RMS, which poses an obstacle to the effective
implementation of RMS.

The inclusion of additive manufacturing has been proposed as a vital compo-
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nent of RMS. In paper 2, additive manufacturing is included in the concept of
the highly flexible RMS. Furthermore, paper 4 proposes a control architecture
on how the 3D printer platform can be integrated with IT systems. The system
can be used to manage the 3D printer remotely. Moreover, the control system
is integrated into the 3D printer, where the platform contains a Creality CR-30
3D printer, which is a conveyor printer. It prints at a 45-degree angle and can
automatically eject the parts from the 3D printer. The image of the 3D printer
platform with the mobile robot can be seen in Fig. 3.1.

Figure 3.1: The 3D printing platform.

In paper 4, a movable 3D printing platform is proposed, that can be used to
manufacture parts for warehouses. For example, being able to print parts at
different locations in a warehouse to restock spare parts. Additionally, it is
noted that an RMS can be used to replace large warehouses, where a highly
flexible manufacturing system can produce the parts as they are needed instead
of building large warehouses to store parts.

A demonstration video https://youtu.be/Z6WQe1bf648 is made to showcase
how the 3D printing platform can manufacture different parts at different
locations. In the video, the 3D printer platform prints three parts in three
locations. When the parts are printed, they are automatically ejected from the
platform. The same system can be used to refill spare parts in a warehouse as
they are running out.

From the experiments, the use of additive manufacturing with RMS creates

https://youtu.be/Z6WQe1bf648


an automated method of manufacturing a large number of parts. It is a flexi-
ble manufacturing technique that can enhance the RMS’s mass customization
capabilities.

It demonstrates the integration of 3D printers into RMS, illustrating their po-
tential incorporation into a manufacturing system. However, the study has lim-
itations. Future exploration is necessary to pinpoint which parts are best suited
for printing. Additionally, the potential impact on the 3D printer’s precision
due to consistent transportation requires further exploration.

3.2 Advanced robotics and AI

Research has been conducted on enhancing the intelligence and adaptability
of robots. However, there has been comparatively less emphasis on their inte-
gration into RMS. Moreover, extended programming and setup times for robot
arms within an RMS can drastically augment the reconfiguration time of the
system [39]. Additionally, there is a lack of studies and demonstrations on in-
corporating Industry 4.0 technologies, such as advanced robotics and AI, into
RMS [61].

Papers 1 and 2 propose a novel approach on how platforms can be reconfigured
automatically by using a mobile robot. However, using the mobile robot for
reconfiguration creates challenges for the robot arms. When the mobile robot
reconfigures the system, the platforms may not be accurately placed due to the
mobile robot’s low accuracy. This often results in misplacement of the platforms.
This will create challenges for the robot arm platforms in the system since it
is not possible to use pre-made robot programs. Moreover, it will also increase
the reconfiguration time if the robot arm must be programmed for each config-
uration. It is necessary to make robot arms capable of locating objects in order
to make them more flexible and adaptable to different environments.

In Paper 1, the robot arm platforms are equipped with 3D cameras, using a
convolutional neural network (CNN) driven by AI to locate and identify objects.
CNNs are feedforward neural networks capable of extracting features from
images [65]. The camera with CNN can be used to control the robot arms and
there is no need for high position accuracy from the mobile robot. A video
demonstration showing how both robot arm platforms can pick up screws
automatically can be found at https://youtu.be/wvAcrwZMql0.

However, using image recognition to control the robot arms presents chal-
lenges. Creating an image recognition model for each part requires multiple
pictures and data labeling. This process is time-consuming, labor-intensive,
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and can increase manufacturing costs. However, often when manufacturing a
new product, there is a 3D model of the product. In paper 5, a novel method to
create image recognition models is proposed. The method uses a 3D model and
from AI, a cycle generative adversarial network (GAN) to generate synthetic
data, which can be used to train a CNN. The proposed method includes four
main steps:

1. Generate images of the 3D model with different orientations.

2. Run these images through a cycle GAN to make them look more realistic.

3. Add background images and filters.

4. Train a CNN to recognize the parts.

When the image recognition model is created, it can be transferred to the
robot arm to automatically pick-and-place objects. In the following video https:
//youtu.be/5w34Q-QYKX8, the image recognition model has been created from
a 3D model and deployed on the robot arm.

By utilizing these methods to control the robot arms, an automated approach
for manipulating the RMS can be achieved without the need for manual pro-
gramming through a teach pendant. This streamlines the control process and
enhances the efficiency and overall performance of the system. This system can
further automate the reconfiguration of RMS and remove the need to program
robot arms. However, there are still challenges with this system. In its current
form, it only works reliably at close distances and struggles to identify objects
further away.

This study has presented a method for increasing the automation of robot arms.
Nevertheless, to make RMS a practical option that employs robots, additional
methodologies are needed. These methods should aim to automate or simplify
the programming and setup time of robots within the system.

3.3 Industrial big data

As mentioned in section 1.1.7, to the author’s knowledge, there has been no
investigation into using big data with RMS. Therefore, in paper 5, I investigated
how industrial big data can be implemented into an RMS.

An RMS can consist of multiple platforms with machines and sensors. The data
from these sensors and machines can be collected and used to build machine
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learning algorithms. For example, a machine learning algorithm can be built
to predict when something will go wrong or when a certain situation has
happened.

Paper 5 proposes an architecture on how to collect data from the platforms.
A demonstration was conducted to showcase how industrial big data can be
used in an RMS. The goal of the demonstration was to use the data from the
mobile robot to predict which platform was being moved. To collect data from
the system, the mobile robot drives to random points in the laboratory. A video
showing how the data is collected can be found at https://youtu.be/cX1r5Y_
4Xfg. When the data has been collected and sorted, an AI algorithm (K-nearest
neighbors) is used to train a model to identify which platform is being moved
using the data from the mobile robot.

Usually, industrial big data refers to large amounts of unstructured data and
is not directly aimed at small manufacturing systems. However, the methods
and tools in industrial big data are as applicable to smaller systems as they
are to big systems. From the demonstration, paper 5 showed that it is possible
to use the techniques from industrial big data with smaller amounts of data.
Moreover, industrial big data, coupled with AI, can predict or classify problems
or identify what is happening in the system.

Nonetheless, this study represents a single use case. Further exploration is
required to understand how data can be utilized within an RMS to enhance au-
tomation. Additionally, determining which sensors should be incorporated into
a modular RMS and identifying which data is valuable and relevant for RMS are
essential areas for future investigation, as not all data may be significant.

3.4 Digital twin and simulation

Both digital twins and simulation are complementary technologies that have
been noted as being important for RMS. Digital twins have previously been
proposed as a tool to support the reconfiguration of RMS [51, 18] and Yang et
al. [53] used a discrete event digital twin to evaluate the system. Despite these
advancements, the bulk of prior research has been more intent on proposing
frameworks and theoretical concepts. There is a lack of focus on the practical
integration of a digital twin into the RMS and an investigation of how it can
be employed to program and control the system.

Paper 2 proposes a novel method for programming a reconfiguration of the
highly flexible RMS. Themethod uses a digital twin to plan where the platforms
in the RMS should be placed. There is a digital twin of the environment, where
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the platforms in the RMS can be dragged to the desired positions. Then the
digital twin can be used to simulate if the system works and if the robot arms
can reach the required platforms. When the layout has been designed, the
system sends the coordinates of the platforms from the digital twin to the
mobile robot automatically for reconfiguration. This provides a simple and
intuitive method to program and plan a new reconfiguration.

A video demonstration https://youtu.be/vxsg4zgJzTU was created to show-
case how the system works. In the video, the digital twin is used to rearrange
the platforms around a CNC machine. Then, a simulation is executed to check
if the robot arms are able to reach the platforms and if the manufacturing line
will work. When the simulation has been checked, the coordinates of the plat-
forms are transferred to the mobile robot for automatic reconfiguration of the
system. An illustration of the steps can be found in Fig. 3.2. This approach in-
volves connecting a digital twin to the RMS and simplifying the programming
of a new reconfiguration.

Additionally, simulation tools can be utilized to test potential RMS layouts
prior to their physical implementation, leading to increased system efficiency.
Nonetheless, as previously highlighted, the accuracy of the mobile robot is
not that good, resulting in position deviations between the digital twin and
the physical system’s platforms. Therefore, an alternative method is needed to
accurately track the positions of the platforms within the system.

3.5 IIoT systems

It has been noted that IIoT is a crucial part of RMS. However, its structure
must be flexible to allow for reconfigurations [56]. Kang et al. [25] used IoT
to control and monitor 3D printers and other machining processes. In their
system, they used the protocol representational state transfer (REST). Tang
et al. [59] proposed a network architecture where IIoT is used between the
machines and the edge server. They used the Open Platform Communication
Unified Architecture (OPC UA) standard for communication up to the edge. The
OPC UA is an open-source International Electrotechnical Commission (IEC)
communication standard often used for industrial systems. [66].

The previous research does not show how platforms or modules in an RMS
can communicate or how machines interact with each other. Additionally, the
lower lever control of the machines and how RMS platform can communicate
and collaborate is ignored. Paper 1 proposed a control hierarchy for platforms
in an RMS. The system proposes a method where the robot arm platforms can
ask for transportation by a mobile robot or start processes from manufacturing
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Figure 3.2: The four steps to plan a new layout for the RMS using the digital twin
simulation.



machines. Moving control functions and decisions from the higher-level system
can reduce the complexity of RMS.

In a literature review on state-of-the-art RMS,Morgan et al. [12] suggested that
further research be conducted on retrofitting currentmanufacturing equipment.
This can allow the old and outdated machines to be given new functionality,
such as IIoT. Therefore, Paper 2 showed how old manufacturing machines
could be retrofitted to modernize them. The platforms are fitted with new
computers and sensors that wirelessly connect to an IIoT (OPC UA) server for
monitoring and controlling the machines. Furthermore, paper 3 proposed an
IIoT system that utilizes open-source software to control and monitor a 3D
printing platform. The IIoT system can manage which part will be 3D printed
and where the part is printed. Finally, paper 5 proposes an architecture on how
data can be collected from the platforms in the RMS and how this data can be
stored for further use in big data and analytics.

The OPC UA standard has been used extensively in papers 1-8. The OPC UA has
given stable and simple-to-use communication between the platforms. More-
over, the OPC UA is often supported by manufacturing machines and software,
including Visual Components, which is used as a digital twin and for simulation.
Therefore, the OPC UA standard allows machine-to-machine communication
and can be used to monitor and control the platforms. Moreover, connecting all
platforms in a manufacturing cell allows centralized control of all computers
and machines on the platforms.

In the studies,WiFi has been used for communication within the RMS. However,
with the emergence of 5G technology, a more effective solution for communi-
cation may be possible. Balogh et al. [67] examined the use of a 5G cloud
to control a mobile robot, noting that 5G was fast enough for real-time data
transfer and control, and even discovered that it offered adequate speed for
real-time data transmission and control. Future research should explore the
utilization of 5G in RMS and conduct a comparative analysis of 5G and WiFi
communication within RMS.

3.6 Wireless power transfer

One challenge with the highly flexible concept is how to electrify the platforms.
All the platforms are equipped with batteries, which allows the system to op-
erate for a fixed time before they need to be recharged. However, driving the
platforms back and forward to get charged creates a lot of downtime for the
platforms and system. Another solution would be to connect them to power
after the system has been reconfigured. Nevertheless, manually connecting the
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platforms to power requires human labor and can result in cables around the
manufacturing system.

Randanovic et al. [24] proposed standardizing connectors and plugs between
platforms in an RMS. Another solution is to use a similar system used with
mobile robots, where metal pins are used for power transfer. However, both
these systems experience wear on the connection pins and the positioning
of the platforms can become limited. Furthermore, to the best of the author’s
knowledge, there has been no exploration into the application of wireless power
transfer (WPT) in electrifying manufacturing systems, or within RMS.

Paper 2 proposes to use WPT to electrify the platforms. By adding WPT connec-
tion points to the platforms, allows electricity to flow between the platforms
to electrify the system. WPT is also proposed as an Industry 4.0 technology.
Industry 4.0 is a dynamic concept, where the technologies included in Industry
4.0 change over time [42]. In addition, WPT and IoT are very similar in their
function. The goal of IoT is to create wireless communication between devices,
andWPT creates wireless electrification of machines. It can therefore be argued
that WPT is an Industry 4.0 technology that can wirelessly electrify machines
and other devices in manufacturing systems.

Paper 6 proposes a battery platform to increase the flexibility of the system. The
highly flexible RMS is expanded to include a platform that only has batteries.
The battery platform is used as a power bank to electrify the RMS. With such a
system, there can be two battery platforms, one that is charging and a second
battery platform that is powering the RMS. When the battery is running low,
it can be replaced with the battery platform that is charging.

Furthermore, paper 6 demonstrates how to implement WPT into RMS with
a battery platform. A simulation video https://youtu.be/o3jhAhYdPUc was
created to demonstrate the functionality of the system. In the video, the mobile
robot picks up a battery platform that was charging and then places it with the
RMS. Then the mobile robot picked up the battery platform that was powering
the RMS and placed it to be recharged. In addition, to showcase and prove the
concept of using WPT and battery platforms for RMS, a physical demonstration
was built. The RMS system was expanded, and a battery platform was added
to the system. In the demonstration, the mobile robot picks up the battery
platform and places it in front of the conveyor platform. Then, WPT from the
battery platform to the conveyor is carried out to drive the conveyor. The video
of the demonstration can be found at https://youtu.be/KRwIdJ8fu5A.

Nevertheless, the system and experiment present a limitation. For instance, the
requirement of two metal plates on each platform can consume substantial
space. While the study demonstrated powering a single platform with WPT,

https://youtu.be/o3jhAhYdPUc
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it did not extend to testing or exhibiting the powering of all modules in a
manufacturing system. Moreover, significant misalignment could result in a
considerable decrease in power transfer efficiency. Therefore, further research
into the application of WPT for multiple platforms is needed, and research into
the implications of misalignment and power efficiency.
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4
Intelligent RMS
This chapter proposes a smart layout design system that aims to solve the
layout design problem of RMS. Additionally, a framework for how to develop
an intelligent self-RMS is proposed.

4.1 Smart layout design

RMS is designed to be reconfigured often. However, the challenge with such a
system is that a new layout must be planned for each reconfiguration. Planning
a new layout requires an expert in manufacturing, and it can be time-consuming
work. Most of the previous research that addresses the layout design problem
for RMS has focused on scheduling [27], cost optimization [28, 29, 30, 31],
scalability planning [32], and process planning [33, 34]. Maganha et al. [26]
highlight a need for models that aid in the design or redesign of new layouts
for RMS.

Haddou Benderbal et al. [36, 37] utilized optimization to determine the optimal
placement of machines. However, in these systems, the machines could only
occupy fixed locations. Given the modularity of RMS and the objective to design
a system where platforms have free mobility, ideally, the machines should have
the flexibility to be positioned anywhere.

Paper 7 proposes a novel mathematical model that describes the highly flexi-
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ble RMS in paper 2. It also combines IIoT, digital twin, simulation, advanced
robotics, and AI to develop a smart layout design system. In the system, AI
is used for optimization, namely evolutionary computations, to optimize the
layout. The goal of the optimization is to design a layout that considers the
limitations of the robot arms and finds the shortest path for the product to
move in the system.

The input to the smart layout design system consists of the order of the plat-
forms. The NSGA2 algorithm, combined with the mathematical model, is then
used to search for a layout. A video showing the optimization with NSGA2
running can be found at https://youtu.be/UNsugBOi4cs. The layout is then
transferred to the digital twin simulation, where the layout is tested to check
for any collisions and if the layout will work. After the validation, the layout is
sent to the mobile robot with IIoT to reconfigure the system automatically. Fig.
4.2 illustrates how the system works.

Figure 4.1: Illustration of how the smart layout design system works.

The smart layout system is tested with various numbers of platforms and on a
physical system. The results of the optimization and digital twin solution can
be found in table 4.1.

Table 4.1: The table lists the tests conducted with the smart layout systems.

System Link

Layout 1 (three platforms, simplest form) https://youtu.be/YVbpl2U_L8I

Layout 2 (seven platforms in one line) https://youtu.be/MTCSDvy0Qag

Layout 3 (two sections) https://youtu.be/gZxg1X57g3Y

Layout 4 (big system) https://youtu.be/GFiIdPl_0_E

Test on a physical system https://youtu.be/TqimTSBvpTs

By utilizing a smart layout design system for RMS, the planning of a new layout
can be automated, eliminating the need for an operator to handle the task
manually. This, in turn, enhances the efficiency of the RMS. However, as shown
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in the results, the system is not able to find the shortest path. In addition, the
optimization time increases exponentially with the number of platforms in the
system. For example, it takes around 1.3 days to optimize with 25 platforms.
There is a need for further improvements in the optimization method. For
instance, improvements might be achieved by using reinforcement learning
or by combining reinforcement learning with different types of evolutionary
computation to increase both the optimization speed and the quality of the
results. Furthermore, more constraints should be added to the mathematical
model, where it automatically finds the number of machines required for a
given demand.

4.2 Intelligent self-RMS

As mentioned in section 1.1.3, rearranging the RMS requires re-programming
the systems, which can be time-consuming and requires an expert to program
the machines. One method to automate the reconfiguration of RMS is to com-
bine multiple Industry 4.0 technologies into one system. However, previous
research has shown that there is a need for an architecture or framework for
smarter and reconfigurable machines [12]. Moreover, Sahoo et al. [68] noted
that there is a lack of knowledge on how to implement smart manufacturing.
In addition, to the author’s knowledge, there is no publication that proposes
an architecture or method that automates the reconfiguration process.

Therefore, paper 8 proposes a novel architecture for building an intelligent
RMS. The architecture consists of three main parts; the control computer, the
edge server, and the platforms. The control computer is used to perform heavy
computational tasks such as planning a new layout or training deep neural
networks. In addition, the control computer is also used to send tasks to the
platforms and tell them what to do. The edge server hosts the communication
server for the computers in the RMS and stores the data from the system
in SQL format. Each platform contains intelligent methods for control and
monitoring. For this architecture, the following platforms are considered: a
robot platform, a 3D print platform, and a conveyor platform. However, more
types of platforms with similar functionalities can be added to the architecture.
The robot arms are controlled with image recognition models, which can be
generated automatically from CAD 3Dmodels and transferred to the robot arms.
Moreover, digital twins and simulation should be used to support the control of
the robot arms. To monitor the platforms cameras and sensors are used, along
with image recognition and machine learning, to detect abnormalities or any
issues that may arise.

In addition to the intelligent architecture for RMS, the smart layout system
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(paper 7) is also included. By combining these two systems, we get a six-step
process for reconfiguring the system, as shown in Fig. 4.2. First, a CAD 3D
model or assembly model is set as input to the system. The second step is to
generate or create a list of the platforms that are required to manufacture
the part. From the list of platforms, a layout is created and optimized using
AI, specifically evolutionary computations. The layout is validated in a digital
twin simulation to check if the system will work or if there are any collisions
between the platforms. After the validation, the coordinates of the platforms
are then sent to the mobile robot for configuration of the RMS. The last step is
to run automatic control of the system.

As previously highlighted, there exists a dearth of studies demonstrating prac-
tical implementation of RMS [9]. Moreover, Bortolini et al. [61] underscore
the lack of research on the integration of Industry 4.0 technologies into RMS.
Addressing this gap, Paper 8 presents and demonstrates how various Indus-
try 4.0 technologies can be successfully implemented and function within an
RMS.

To showcase how an intelligent RMS can work, video demonstrations are
built. The first video demonstration https://youtu.be/SwDNChz57ts shows how
the layout is generated, and the second video https://youtu.be/Su7A_6GuF0s
shows the system being programmed and controlled automatically.

This work can be seen as the first step towards implementing intelligent RMS.
There is a need for more practical implementation and demonstrations of intel-
ligent RMS. The proposed architecture can be expanded to include higher-level
systems and more types of platforms.

The study has limitations. The basic demonstration of two boxes might not
reflect real-world complexities, and the slow operation speed of the robots and
conveyors raises efficacy concerns for faster scenarios. While the system’s error
detection is focused on a specific 3D printer and robot arms, broader research
is needed to explore diverse sensor data applications and the integration of
various machinery. Additionally, more investigations are needed into how AI
techniques can be used to automate the RMS reconfiguration process.
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Figure 4.2: The six steps used for the intelligent RMS, when manufacturing a new
product.





5
Conclusion
In research, there is a lack of practical implementations and examples of RMS.
Moreover, all previous research has used human labor for the reconfiguration of
the RMS. In this research, the use of mobile robots for reconfiguration in RMS
has been explored. The concept of dividing an AIMM into separate parts was
proposed to increase flexibility and utilization of the system. This concept was
further expanded to develop a highly flexible RMS where a mobile robot can
automatically move and rearrange manufacturing platforms without human
intervention. A physical system was built to demonstrate how to build such a
system and show the concept. Although there are limitations to the system,
such as the mobile robot’s accuracy and the need for extra force when mov-
ing platforms, the research shows promise for the development of automated
methods for reconfiguration of RMS.

The second part investigates the potential impact of Industry 4.0 technologies
on reconfigurable manufacturing systems (RMS). The highly flexible RMS was
utilized to implement and study the integration of Industry 4.0 technologies.
The research explored various technologies, including additive manufactur-
ing, advanced robotics, industrial big data, digital twin and simulation, IIoT,
and AI. Additive manufacturing was investigated as a means of automating
the production of a diverse range of products in RMS. Advanced robotics with
intelligent control were also explored for moving and handling parts in manu-
facturing processes. Industrial big data was investigated as a tool for analyzing
and utilizing data collected from the RMS. Digital twins and simulation were
employed as planning tools to test and validate new layout configurations in a
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virtual environment. Machine-to-machine communication between platforms
and control of the system were explored through IIoT. AI is a tool to enable
intelligent control and monitoring of the RMS, which can enable a higher level
of automation. In addition, wireless power transfer (WPT) was proposed as a
potential solution for wirelessly electrifying RMS and was suggested to be a
part of Industry 4.0. The research shows the benefits of integrating Industry
4.0 technologies into RMS, which could lead to more efficient and automated
manufacturing processes.

The reconfiguration of RMS can be a time-consuming and complex task. Previ-
ous research has mainly focused on scheduling, cost optimization, scalability
planning, and process planning. However, there is a lack of investigation into
optimization for machine placement in an RMS. To address this, A mathemati-
cal model and a smart layout design system is proposed that utilizes Industry
4.0 technologies such as IIoT, digital twin, simulation, advanced robotics, and
AI to optimize the layout of RMS. The smart layout design system is tested on
different amounts of platforms and a physical system.

Furthermore, a novel framework for an intelligent RMS that automates the
reconfiguration process is proposed. The framework demonstrates how to de-
velop an intelligent RMS which can be programmed automatically. The frame-
work for intelligent RMS is combined with the smart layout design system to
fully automate the reconfiguration process. Overall, these works represent sig-
nificant contributions toward the automation and optimization of RMS.

5.1 Future works

As RMS is a relatively new manufacturing paradigm, there are still many chal-
lenges.

• In the project, a state-of-the-art RMS is built to showcase how an RMS can
work. However, future research should investigate how to build platforms
for RMS and how they can be implemented into a manufacturing system.
Further research is needed to enhance the mobile robot’s accuracy in
platform positioning.

• More investigation into how additive manufacturing can be implemented
into an RMS should be carried out. This might show how a large number
of 3D printers can be implemented and how metal additive manufactur-
ing can be used in RMS, to move towards mass customization.

• More investigation into methods, and what data can be extracted from
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an RMS, to make predictions and improve the system.

• The smart layout system can be expanded to consider more elements of
the optimization.

• There is also a lack of examples and methods on how to build intelligen-
t/smart RMS. More investigation on what AI methods can be applied and
how these methods can be combined to further enhance the RMS.





Bibliography
[1] Y. Koren. “General RMS Characteristics. Comparison with Dedicated and Flex-

ible Systems.” In: Reconfigurable Manufacturing Systems and Transformable
Factories. Ed. by Anatoli I. Dashchenko. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 27–45. isbn: 978-3-540-29397-2. doi: 10.1007/3-
540-29397-3_3. url: https://doi.org/10.1007/3-540-29397-3_3.

[2] Joanna Daaboul et al. “Design for mass customization: Product variety vs. pro-
cess variety.” In: CIRP Annals 60.1 (2011), pp. 169–174. issn: 0007-8506. doi:
https://doi.org/10.1016/j.cirp.2011.03.093. url: https://www.
sciencedirect.com/science/article/pii/S0007850611000941.

[3] M. Reza Abdi et al. “Introduction to the Book.” In: Integrated Reconfigurable
Manufacturing Systems and Smart Value Chain: Sustainable Infrastructure for
the Factory of the Future. Cham: Springer International Publishing, 2018, pp. 1–
13. isbn: 978-3-319-76846-5. doi: 10.1007/978-3-319-76846-5_1. url:
https://doi.org/10.1007/978-3-319-76846-5_1.

[4] Y. Koren et al. “Reconfigurable Manufacturing Systems.” In: CIRP Annals 48.2
(1999), pp. 527–540. issn: 0007-8506. doi: https://doi.org/10.1016/
S0007 - 8506(07 ) 63232 - 6. url: https : / / www . sciencedirect . com /
science/article/pii/S0007850607632326.

[5] Yoram Koren and Moshe Shpitalni. “Design of reconfigurable manufactur-
ing systems.” In: Journal of Manufacturing Systems 29.4 (2010), pp. 130–141.
issn: 0278-6125. doi: https://doi.org/10.1016/j.jmsy.2011.01.
001. url: https://www.sciencedirect.com/science/article/pii/
S0278612511000021.

[6] Yoram Koren, Xi Gu, and Weihong Guo. “Reconfigurable manufacturing sys-
tems: Principles, design, and future trends.” In: Frontiers of Mechanical Engi-
neering 13 (Nov. 2017). doi: 10.1007/s11465-018-0483-0.

[7] Y. Koren. “The Emergence of Reconfigurable Manufacturing Systems (RMSs).”
In: Reconfigurable Manufacturing Systems: From Design to Implementation. Ed.
by Lyes Benyoucef. Cham: Springer International Publishing, 2020, pp. 1–9.
isbn: 978-3-030-28782-5. doi: 10.1007/978- 3- 030- 28782- 5_1. url:
https://doi.org/10.1007/978-3-030-28782-5_1.

[8] Ann-Louise Andersen, Thomas D. Brunoe, and Kjeld Nielsen. “Investigating
the Potential in Reconfigurable Manufacturing: A Case-Study from Danish In-
dustry.” In: Advances in Production Management Systems: Innovative Production
Management Towards Sustainable Growth. Ed. by Shigeki Umeda et al. Cham:
Springer International Publishing, 2015, pp. 274–282.

[9] Kamal Khanna and Rakesh Kumar. “Reconfigurable manufacturing system: a
state-of-the-art review.” In: BENCHMARKING-AN INTERNATIONAL JOURNAL

39

https://doi.org/10.1007/3-540-29397-3_3
https://doi.org/10.1007/3-540-29397-3_3
https://doi.org/10.1007/3-540-29397-3_3
https://doi.org/https://doi.org/10.1016/j.cirp.2011.03.093
https://www.sciencedirect.com/science/article/pii/S0007850611000941
https://www.sciencedirect.com/science/article/pii/S0007850611000941
https://doi.org/10.1007/978-3-319-76846-5_1
https://doi.org/10.1007/978-3-319-76846-5_1
https://doi.org/https://doi.org/10.1016/S0007-8506(07)63232-6
https://doi.org/https://doi.org/10.1016/S0007-8506(07)63232-6
https://www.sciencedirect.com/science/article/pii/S0007850607632326
https://www.sciencedirect.com/science/article/pii/S0007850607632326
https://doi.org/https://doi.org/10.1016/j.jmsy.2011.01.001
https://doi.org/https://doi.org/10.1016/j.jmsy.2011.01.001
https://www.sciencedirect.com/science/article/pii/S0278612511000021
https://www.sciencedirect.com/science/article/pii/S0278612511000021
https://doi.org/10.1007/s11465-018-0483-0
https://doi.org/10.1007/978-3-030-28782-5_1
https://doi.org/10.1007/978-3-030-28782-5_1


40 BIBLIOGRAPHY

26.8 (Oct. 2019), pp. 2608–2635. issn: 1463-5771. doi: 10.1108/BIJ-05-
2018-0140.

[10] Rajesh Pansare, Gunjan Yadav, and Madhukar R. Nagare. “Reconfigurable man-
ufacturing system: a systematic review,meta-analysis and future research direc-
tions.” In: JOURNAL OF ENGINEERING DESIGN AND TECHNOLOGY (). issn:
1726-0531. doi: 10.1108/JEDT-05-2021-0231.

[11] Ashutosh Singh et al. “Reconfigurable manufacturing systems: journey and the
road ahead.” In: INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGI-
NEERING AND MANAGEMENT 8.2, 2 (Nov. 2017), pp. 1849–1857. issn: 0975-
6809. doi: 10.1007/s13198-017-0610-z.

[12] JeffMorgan et al. “Industry 4.0 smart reconfigurable manufacturingmachines.”
In: Journal of Manufacturing Systems 59 (2021), pp. 481–506. issn: 0278-6125.
doi: https://doi.org/10.1016/j.jmsy.2021.03.001. url: https:
//www.sciencedirect.com/science/article/pii/S027861252100056X.

[13] Isabela Maganha et al. “A Classification of the Barriers in the Implementation
Process of Reconfigurability.” In: Towards Sustainable Customization: Bridging
Smart Products and Manufacturing Systems. Ed. by Ann-Louise Andersen et al.
Cham: Springer International Publishing, 2022, pp. 88–95. isbn: 978-3-030-
90700-6.

[14] David Sanderson et al. “Smart Manufacturing and Reconfigurable Technolo-
gies: Towards an Integrated Environment for Evolvable Assembly Systems.” In:
2016 IEEE 1st International Workshops on Foundations and Applications of Self*
Systems (FAS*W). 2016, pp. 263–264. doi: 10.1109/FAS-W.2016.61.

[15] SMC International Training. SMC International Training – The didactic division
of SMC Corporation. [Online; accessed 6. Jan. 2023]. Jan. 2023. url: https:
//www.smctraining.com.

[16] Zsolt Kemény et al. “The MTA SZTAKI Smart Factory: Platform for Research
and Project-oriented Skill Development in Higher Education.” In: Procedia
CIRP 54 (2016). 6th CIRP Conference on Learning Factories, pp. 53–58. issn:
2212-8271. doi: https : / / doi . org / 10 . 1016 / j . procir . 2016 . 05 .
060. url: https://www.sciencedirect.com/science/article/pii/
S2212827116305169.

[17] Ole Madsen and Charles Møller. “The AAU Smart Production Laboratory for
Teaching and Research in Emerging Digital Manufacturing Technologies.” In:
Procedia Manufacturing 9 (2017). 7th Conference on Learning Factories, CLF
2017, pp. 106–112. issn: 2351-9789. doi: https://doi.org/10.1016/j.
promfg.2017.04.036. url: https://www.sciencedirect.com/science/
article/pii/S2351978917301543.

[18] Catherine da Cunha et al. “Designing the Digital Twins of Reconfigurable Man-
ufacturing Systems: application on a smart factory.” In: IFAC-PapersOnLine 54.1
(2021). 17th IFAC Symposium on Information Control Problems in Manufactur-
ing INCOM 2021, pp. 874–879. issn: 2405-8963. doi: https://doi.org/10.
1016/j.ifacol.2021.08.103. url: https://www.sciencedirect.com/
science/article/pii/S2405896321008521.

[19] IMS Centre Laboratories | Intelligent Manufacturing Systems (IMS) Centre. [On-
line; accessed 6. Jan. 2023]. Jan. 2023. url: https://www.uwindsor.ca/
intelligent-manufacturing-systems/299/ims-centre-laboratories.

[20] Nicole Jäpel. Industrie 4.0 Modellfabrik. [Online; accessed 6. Jan. 2023]. Jan.
2023. url: https://www.htw-dresden.de/hochschule/fakultaeten/

https://doi.org/10.1108/BIJ-05-2018-0140
https://doi.org/10.1108/BIJ-05-2018-0140
https://doi.org/10.1108/JEDT-05-2021-0231
https://doi.org/10.1007/s13198-017-0610-z
https://doi.org/https://doi.org/10.1016/j.jmsy.2021.03.001
https://www.sciencedirect.com/science/article/pii/S027861252100056X
https://www.sciencedirect.com/science/article/pii/S027861252100056X
https://doi.org/10.1109/FAS-W.2016.61
https://www.smctraining.com
https://www.smctraining.com
https://doi.org/https://doi.org/10.1016/j.procir.2016.05.060
https://doi.org/https://doi.org/10.1016/j.procir.2016.05.060
https://www.sciencedirect.com/science/article/pii/S2212827116305169
https://www.sciencedirect.com/science/article/pii/S2212827116305169
https://doi.org/https://doi.org/10.1016/j.promfg.2017.04.036
https://doi.org/https://doi.org/10.1016/j.promfg.2017.04.036
https://www.sciencedirect.com/science/article/pii/S2351978917301543
https://www.sciencedirect.com/science/article/pii/S2351978917301543
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.08.103
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.08.103
https://www.sciencedirect.com/science/article/pii/S2405896321008521
https://www.sciencedirect.com/science/article/pii/S2405896321008521
https://www.uwindsor.ca/intelligent-manufacturing-systems/299/ims-centre-laboratories
https://www.uwindsor.ca/intelligent-manufacturing-systems/299/ims-centre-laboratories
https://www.htw-dresden.de/hochschule/fakultaeten/info-math/forschung/smart-production-systems/industrie-40-modellfabrik
https://www.htw-dresden.de/hochschule/fakultaeten/info-math/forschung/smart-production-systems/industrie-40-modellfabrik
https://www.htw-dresden.de/hochschule/fakultaeten/info-math/forschung/smart-production-systems/industrie-40-modellfabrik


BIBLIOGRAPHY 41

info - math / forschung / smart - production - systems / industrie - 40 -
modellfabrik.

[21] CP Factory – The Cyber-Physical Factory - CP Factory - Learning factories, CIM/FMS
Systems - - Learning Systems - Festo Didactic. [Online; accessed 6. Jan. 2023]. Jan.
2023. url: https://www.festo.com/us/en/c/technical-education/
learning-systems/factory-automation-and-industry-4-0/learning-
factories-id_FDID_01_02_05/.

[22] Yun Geon Kim et al. “Multi-agent system and reinforcement learning approach
for distributed intelligence in a flexible smart manufacturing system.” In: Jour-
nal of Manufacturing Systems 57 (2020), pp. 440–450. issn: 0278-6125. doi:
https://doi.org/10.1016/j.jmsy.2020.11.004. url: https://www.
sciencedirect.com/science/article/pii/S0278612520301916.

[23] Raphael Adamietz et al. “Reconfigurable and transportable container-integrated
production system.” In: Robotics and Computer-Integrated Manufacturing 53
(2018), pp. 1–20. issn: 0736-5845. doi: https://doi.org/10.1016/j.
rcim.2018.02.008. url: https://www.sciencedirect.com/science/
article/pii/S0736584517301515.

[24] Primoz Radanovic et al. “Design of a Modular Robotic Workcell Platform En-
abled by Plug & Produce Connectors.” In: 2021 20th International Conference
on Advanced Robotics (ICAR). 2021, pp. 304–309. doi: 10.1109/ICAR53236.
2021.9659345.

[25] Hyoung Seok Kang et al. “The FaaS system using additive manufacturing for
personalized production.” In: RAPID PROTOTYPING JOURNAL 24.9 (2018),
pp. 1486–1499. issn: 1355-2546. doi: 10.1108/RPJ-11-2016-0195.

[26] Isabela Maganha, Cristovao Silva, and Luis Miguel D. F. Ferreira. “The lay-
out design in reconfigurable manufacturing systems: a literature review.” In:
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
105.1-4 (Nov. 2019), pp. 683–700. issn: 0268-3768. doi: 10.1007/s00170-
019-04190-3.

[27] Bensmaine Abderrahmane, Mohammed Dahane, and Lyes Benyoucef. “A new
heuristic for integrated process planning and scheduling in reconfigurable man-
ufacturing systems.” In: International Journal of Production Research 52 (Dec.
2014), pp. 3583–3594. doi: 10.1080/00207543.2013.878056.

[28] Lokesh Kumar Saxena and Promod Kumar Jain. “A model and optimisation
approach for reconfigurable manufacturing system configuration design.” In:
International Journal of Production Research 50.12 (2012), pp. 3359–3381. doi:
10.1080/00207543.2011.578161. eprint: https://doi.org/10.1080/
00207543.2011.578161. url: https://doi.org/10.1080/00207543.
2011.578161.

[29] Abderrahmane Bensmaine, Mohammed Dahane, and Lyes Benyoucef. “A non-
dominated sorting genetic algorithm based approach for optimal machines
selection in reconfigurable manufacturing environment.” In: Computers & In-
dustrial Engineering 66.3 (2013). Special Issue: The International Conferences
on Computers and Industrial Engineering (ICC&IEs) - series 41, pp. 519–524.
issn: 0360-8352. doi: https://doi.org/10.1016/j.cie.2012.09.
008. url: https://www.sciencedirect.com/science/article/pii/
S0360835212002240.

[30] Shokraneh K. Moghaddam, Mahmoud Houshmand, and Omid Fatahi Valilai.
“Configuration design in scalable reconfigurable manufacturing systems (RMS);

https://www.htw-dresden.de/hochschule/fakultaeten/info-math/forschung/smart-production-systems/industrie-40-modellfabrik
https://www.htw-dresden.de/hochschule/fakultaeten/info-math/forschung/smart-production-systems/industrie-40-modellfabrik
https://www.htw-dresden.de/hochschule/fakultaeten/info-math/forschung/smart-production-systems/industrie-40-modellfabrik
https://www.htw-dresden.de/hochschule/fakultaeten/info-math/forschung/smart-production-systems/industrie-40-modellfabrik
https://www.htw-dresden.de/hochschule/fakultaeten/info-math/forschung/smart-production-systems/industrie-40-modellfabrik
https://www.festo.com/us/en/c/technical-education/learning-systems/factory-automation-and-industry-4-0/learning-factories-id_FDID_01_02_05/
https://www.festo.com/us/en/c/technical-education/learning-systems/factory-automation-and-industry-4-0/learning-factories-id_FDID_01_02_05/
https://www.festo.com/us/en/c/technical-education/learning-systems/factory-automation-and-industry-4-0/learning-factories-id_FDID_01_02_05/
https://doi.org/https://doi.org/10.1016/j.jmsy.2020.11.004
https://www.sciencedirect.com/science/article/pii/S0278612520301916
https://www.sciencedirect.com/science/article/pii/S0278612520301916
https://doi.org/https://doi.org/10.1016/j.rcim.2018.02.008
https://doi.org/https://doi.org/10.1016/j.rcim.2018.02.008
https://www.sciencedirect.com/science/article/pii/S0736584517301515
https://www.sciencedirect.com/science/article/pii/S0736584517301515
https://doi.org/10.1109/ICAR53236.2021.9659345
https://doi.org/10.1109/ICAR53236.2021.9659345
https://doi.org/10.1108/RPJ-11-2016-0195
https://doi.org/10.1007/s00170-019-04190-3
https://doi.org/10.1007/s00170-019-04190-3
https://doi.org/10.1080/00207543.2013.878056
https://doi.org/10.1080/00207543.2011.578161
https://doi.org/10.1080/00207543.2011.578161
https://doi.org/10.1080/00207543.2011.578161
https://doi.org/10.1080/00207543.2011.578161
https://doi.org/10.1080/00207543.2011.578161
https://doi.org/https://doi.org/10.1016/j.cie.2012.09.008
https://doi.org/https://doi.org/10.1016/j.cie.2012.09.008
https://www.sciencedirect.com/science/article/pii/S0360835212002240
https://www.sciencedirect.com/science/article/pii/S0360835212002240


42 BIBLIOGRAPHY

a case of single-product flow line (SPFL).” In: International Journal of Produc-
tion Research 56.11 (2018), pp. 3932–3954. doi: 10.1080/00207543.2017.
1412531. eprint: https://doi.org/10.1080/00207543.2017.1412531.
url: https://doi.org/10.1080/00207543.2017.1412531.

[31] Shokraneh K. Moghaddam et al. “Configuration design of scalable reconfig-
urable manufacturing systems for part family.” In: International Journal of Pro-
duction Research 58.10 (2020), pp. 2974–2996. doi: 10.1080/00207543.2019.
1620365. eprint: https://doi.org/10.1080/00207543.2019.1620365.
url: https://doi.org/10.1080/00207543.2019.1620365.

[32] Wencai Wang and Yoram Koren. “Scalability planning for reconfigurable man-
ufacturing systems.” In: Journal of Manufacturing Systems 31.2 (2012), pp. 83–
91. issn: 0278-6125. doi: https://doi.org/10.1016/j.jmsy.2011.11.
001. url: https://www.sciencedirect.com/science/article/pii/
S0278612511000999.

[33] A. Azab and H.A. ElMaraghy. “Mathematical Modeling for Reconfigurable Pro-
cess Planning.” In: CIRP Annals 56.1 (2007), pp. 467–472. issn: 0007-8506.
doi: https://doi.org/10.1016/j.cirp.2007.05.112. url: https:
//www.sciencedirect.com/science/article/pii/S0007850607001138.

[34] Anuch Chaube, Lyes Benyoucef, and Manoj Tiwari. “An adapted NSGA-2 algo-
rithm based dynamic process plan generation for a reconfigurable manufactur-
ing system.” In: Journal of Intelligent Manufacturing 23 (Aug. 2010), pp. 1–15.
doi: 10.1007/s10845-010-0453-9.

[35] Rachel Sabioni, Joanna Daaboul, and Julien Le Duigou. “Optimization of Re-
configurable Manufacturing Systems configuration: a literature review.” In:
June 2020.

[36] Hichem Haddou Benderbal,Mohammed Dahane, and Lyes Benyoucef. “Exhaus-
tive Search Based Heuristic for Solving Machine Layout Problem in Reconfig-
urable Manufacturing System Design.” In: IFAC-PapersOnLine 51.11 (2018). 16th
IFAC Symposium on Information Control Problems in Manufacturing INCOM
2018, pp. 78–83. issn: 2405-8963. doi: https://doi.org/10.1016/j.
ifacol.2018.08.238. url: https://www.sciencedirect.com/science/
article/pii/S2405896318313624.

[37] Hichem Haddou Benderbal and Lyes Benyoucef. “Machine Layout Design Prob-
lem Under Product Family Evolution in Reconfigurable Manufacturing Environ-
ment: A Two-Phase Based-AMOSA Approach.” In: The International Journal of
Advanced Manufacturing Technology 104 (Sept. 2019). doi: 10.1007/s00170-
019-03865-1.

[38] Jose Luis Outón et al. “Innovative Mobile Manipulator Solution for Modern
Flexible Manufacturing Processes.” In: Sensors 19.24 (2019). issn: 1424-8220.
doi: 10.3390/s19245414. url: https://www.mdpi.com/1424-8220/19/
24/5414.

[39] Christian Brecher et al. “Simulation Framework for Virtual Robot Programming
in Reconfigurable Production Systems.” In: Procedia CIRP 86 (2019). 7th CIRP
Global Web Conference – Towards shifted production value stream patterns
through inference of data, models, and technology (CIRPe 2019), pp. 98–103.
issn: 2212-8271. doi: https://doi.org/10.1016/j.procir.2020.01.
045. url: https://www.sciencedirect.com/science/article/pii/
S2212827120300597.

https://doi.org/10.1080/00207543.2017.1412531
https://doi.org/10.1080/00207543.2017.1412531
https://doi.org/10.1080/00207543.2017.1412531
https://doi.org/10.1080/00207543.2017.1412531
https://doi.org/10.1080/00207543.2019.1620365
https://doi.org/10.1080/00207543.2019.1620365
https://doi.org/10.1080/00207543.2019.1620365
https://doi.org/10.1080/00207543.2019.1620365
https://doi.org/https://doi.org/10.1016/j.jmsy.2011.11.001
https://doi.org/https://doi.org/10.1016/j.jmsy.2011.11.001
https://www.sciencedirect.com/science/article/pii/S0278612511000999
https://www.sciencedirect.com/science/article/pii/S0278612511000999
https://doi.org/https://doi.org/10.1016/j.cirp.2007.05.112
https://www.sciencedirect.com/science/article/pii/S0007850607001138
https://www.sciencedirect.com/science/article/pii/S0007850607001138
https://doi.org/10.1007/s10845-010-0453-9
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.238
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.238
https://www.sciencedirect.com/science/article/pii/S2405896318313624
https://www.sciencedirect.com/science/article/pii/S2405896318313624
https://doi.org/10.1007/s00170-019-03865-1
https://doi.org/10.1007/s00170-019-03865-1
https://doi.org/10.3390/s19245414
https://www.mdpi.com/1424-8220/19/24/5414
https://www.mdpi.com/1424-8220/19/24/5414
https://doi.org/https://doi.org/10.1016/j.procir.2020.01.045
https://doi.org/https://doi.org/10.1016/j.procir.2020.01.045
https://www.sciencedirect.com/science/article/pii/S2212827120300597
https://www.sciencedirect.com/science/article/pii/S2212827120300597


BIBLIOGRAPHY 43

[40] Ashutosh Singh, Piyush Gupta, and Mohammad Asjad. “Reconfigurable Man-
ufacturing System (RMS): Accelerate Towards Industries 4.0.” In: SSRN Elec-
tronic Journal (Jan. 2019). doi: 10.2139/ssrn.3354485.

[41] Wahlster W. Kagermann H. and Helbig J. In: (Feb. 2023). [Online; accessed
13. Feb. 2023]. url: https : / / www . din . de / resource / blob / 76902 /
e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-
industry-4-0-data.pdf.

[42] Cristina Orsolin Klingenberg, Marco Antonio Viana Borges, and Jose Anto-
nio Valle Antunes Jr. “Industry 4.0 as a data-driven paradigm: a systematic
literature review on technologies.” In: JOURNAL OF MANUFACTURING TECH-
NOLOGY MANAGEMENT 32.3, SI (MAR 25 2021), 570–592. issn: 1741-038X.
doi: {10.1108/JMTM-09-2018-0325}.

[43] Anbesh Jamwal et al. “Industry 4.0 Technologies forManufacturing Sustainabil-
ity: A Systematic Review and Future Research Directions.” In: Applied Sciences
11.12 (2021). issn: 2076-3417. doi: 10.3390/app11125725. url: https:
//www.mdpi.com/2076-3417/11/12/5725.

[44] Ting Zheng et al. “The applications of Industry 4.0 technologies in manufac-
turing context: a systematic literature review.” In: International Journal of Pro-
duction Research 59.6 (2021), pp. 1922–1954. doi: 10.1080/00207543.2020.
1824085. eprint: https://doi.org/10.1080/00207543.2020.1824085.
url: https://doi.org/10.1080/00207543.2020.1824085.

[45] Simon Ford and Mélanie Despeisse. “Additive manufacturing and sustainabil-
ity: an exploratory study of the advantages and challenges.” In: Journal of
Cleaner Production 137 (2016), pp. 1573–1587. issn: 0959-6526. doi: https:
//doi.org/10.1016/j.jclepro.2016.04.150. url: https://www.
sciencedirect.com/science/article/pii/S0959652616304395.

[46] Steffen Scholz et al. “A modular flexible scalable and reconfigurable system
for manufacturing of Microsystems based on additive manufacturing and e-
printing.” In: Robotics and Computer-IntegratedManufacturing 40 (2016), pp. 14–
23. issn: 0736-5845. doi: https://doi.org/10.1016/j.rcim.2015.12.
006. url: https://www.sciencedirect.com/science/article/pii/
S0736584515301642.

[47] Timotej Gašpar et al. “Smart hardware integration with advanced robot pro-
gramming technologies for efficient reconfiguration of robot workcells.” In:
Robotics and Computer-Integrated Manufacturing 66 (2020), p. 101979. issn:
0736-5845. doi: https://doi.org/10.1016/j.rcim.2020.101979. url:
https://www.sciencedirect.com/science/article/pii/S0736584519306726.

[48] Shinichi Inoue et al. “High-Precision Mobile Robotic Manipulator for Reconfig-
urable Manufacturing Systems.” In: International Journal of Automation Tech-
nology 15.5 (2021), pp. 651–660. doi: 10.20965/ijat.2021.p0651.

[49] Wenfu Xu et al. “A wireless reconfigurable modular manipulator and its control
system.” In: Mechatronics 73 (2021), p. 102470. issn: 0957-4158. doi: https:
//doi.org/10.1016/j.mechatronics.2020.102470. url: https://www.
sciencedirect.com/science/article/pii/S095741582030132X.

[50] Jay Lee, Hung-An Kao, and Shanhu Yang. “Service Innovation and Smart Ana-
lytics for Industry 4.0 and Big Data Environment.” In: Procedia CIRP 16 (2014).
Product Services Systems and Value Creation. Proceedings of the 6th CIRP
Conference on Industrial Product-Service Systems, pp. 3–8. issn: 2212-8271.

https://doi.org/10.2139/ssrn.3354485
https://www.din.de/resource/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf
https://www.din.de/resource/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf
https://www.din.de/resource/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf
https://doi.org/{10.1108/JMTM-09-2018-0325}
https://doi.org/10.3390/app11125725
https://www.mdpi.com/2076-3417/11/12/5725
https://www.mdpi.com/2076-3417/11/12/5725
https://doi.org/10.1080/00207543.2020.1824085
https://doi.org/10.1080/00207543.2020.1824085
https://doi.org/10.1080/00207543.2020.1824085
https://doi.org/10.1080/00207543.2020.1824085
https://doi.org/https://doi.org/10.1016/j.jclepro.2016.04.150
https://doi.org/https://doi.org/10.1016/j.jclepro.2016.04.150
https://www.sciencedirect.com/science/article/pii/S0959652616304395
https://www.sciencedirect.com/science/article/pii/S0959652616304395
https://doi.org/https://doi.org/10.1016/j.rcim.2015.12.006
https://doi.org/https://doi.org/10.1016/j.rcim.2015.12.006
https://www.sciencedirect.com/science/article/pii/S0736584515301642
https://www.sciencedirect.com/science/article/pii/S0736584515301642
https://doi.org/https://doi.org/10.1016/j.rcim.2020.101979
https://www.sciencedirect.com/science/article/pii/S0736584519306726
https://doi.org/10.20965/ijat.2021.p0651
https://doi.org/https://doi.org/10.1016/j.mechatronics.2020.102470
https://doi.org/https://doi.org/10.1016/j.mechatronics.2020.102470
https://www.sciencedirect.com/science/article/pii/S095741582030132X
https://www.sciencedirect.com/science/article/pii/S095741582030132X


44 BIBLIOGRAPHY

doi: https://doi.org/10.1016/j.procir.2014.02.001. url: https:
//www.sciencedirect.com/science/article/pii/S2212827114000857.

[51] Jiewu Leng et al. “Digital twin-driven rapid reconfiguration of the automated
manufacturing system via an open architecturemodel.” In: Robotics and Computer-
Integrated Manufacturing 63 (2020), p. 101895. issn: 0736-5845. doi: https:
/ / doi . org / 10 . 1016 / j . rcim . 2019 . 101895. url: https : / / www .
sciencedirect.com/science/article/pii/S073658451930167X.

[52] Kezia Amanda Kurniadi, Sangil Lee, and Kwangyeol Ryu. “Digital Twin Ap-
proach for Solving Reconfiguration Planning Problems in RMS.” In: Advances in
Production Management Systems. Smart Manufacturing for Industry 4.0. Ed. by
Ilkyeong Moon et al. Cham: Springer International Publishing, 2018, pp. 327–
334. isbn: 978-3-319-99707-0.

[53] Jinho Yang et al. “Digital Twin-Based Integrated Assessment of Flexible and
Reconfigurable Automotive Part Production Lines.” In: Machines 10.2 (2022).
issn: 2075-1702. doi: 10.3390/machines10020075. url: https://www.
mdpi.com/2075-1702/10/2/75.

[54] Emna Hajjem et al. “Digital Twin Framework for Reconfigurable Manufac-
turing Systems: Challenges and Requirements.” In: ADVANCES IN PRODUC-
TION MANAGEMENT SYSTEMS: ARTIFICIAL INTELLIGENCE FOR SUSTAINABLE
AND RESILIENT PRODUCTION SYSTEMS, APMS 2021, PT II. Ed. by A Dolgui
et al. Vol. 631. IFIP Advances in Information and Communication Technology.
IFIP WG 5.7 International Conference on Advances in Production Manage-
ment Systems (APMS), Nantes, FRANCE, SEP 05-09, 2021. IFIP Working Grp
5 7 Advances Prod Management Syst; IMT Atlantique, Campus Nantes; Cen-
trale Nantes; Univ Nantes; Rennes Business Sch; Audecia Business Sch. 2021,
pp. 553–562. isbn: 978-3-030-85902-2; 978-3-030-85901-5. doi: 10.1007/
978-3-030-85902-2\_59.

[55] Emiliano Sisinni et al. “Industrial Internet of Things: Challenges, Opportunities,
and Directions.” In: IEEE Transactions on Industrial Informatics 14.11 (2018),
pp. 4724–4734. doi: 10.1109/TII.2018.2852491.

[56] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. “Software-defined
environment for reconfigurable manufacturing systems.” In: 2015 5th Inter-
national Conference on the Internet of Things (IOT). 2015, pp. 122–129. doi:
10.1109/IOT.2015.7356556.

[57] Kezia Amanda Kurniadi and Kwangyeol Ryu. “Development of IOT-basedRecon-
figurable Manufacturing System to solve Reconfiguration Planning Problem.”
In: Procedia Manufacturing 11 (2017). 27th International Conference on Flex-
ible Automation and Intelligent Manufacturing, FAIM2017, 27-30 June 2017,
Modena, Italy, pp. 965–972. issn: 2351-9789. doi: https://doi.org/10.
1016/j.promfg.2017.07.201. url: https://www.sciencedirect.com/
science/article/pii/S2351978917304092.

[58] Olga Meyer et al. “Industrial Internet of Things: covering standardization gaps
for the next generation of reconfigurable production systems.” In: 2018 IEEE
16th International Conference on Industrial Informatics (INDIN). 2018, pp. 1039–
1044. doi: 10.1109/INDIN.2018.8472048.

[59] Hao Tang et al. “A Reconfigurable Method for Intelligent Manufacturing Based
on Industrial Cloud and Edge Intelligence.” In: IEEE Internet of Things Journal
7.5 (2020), pp. 4248–4259. doi: 10.1109/JIOT.2019.2950048.

https://doi.org/https://doi.org/10.1016/j.procir.2014.02.001
https://www.sciencedirect.com/science/article/pii/S2212827114000857
https://www.sciencedirect.com/science/article/pii/S2212827114000857
https://doi.org/https://doi.org/10.1016/j.rcim.2019.101895
https://doi.org/https://doi.org/10.1016/j.rcim.2019.101895
https://www.sciencedirect.com/science/article/pii/S073658451930167X
https://www.sciencedirect.com/science/article/pii/S073658451930167X
https://doi.org/10.3390/machines10020075
https://www.mdpi.com/2075-1702/10/2/75
https://www.mdpi.com/2075-1702/10/2/75
https://doi.org/10.1007/978-3-030-85902-2\_59
https://doi.org/10.1007/978-3-030-85902-2\_59
https://doi.org/10.1109/TII.2018.2852491
https://doi.org/10.1109/IOT.2015.7356556
https://doi.org/https://doi.org/10.1016/j.promfg.2017.07.201
https://doi.org/https://doi.org/10.1016/j.promfg.2017.07.201
https://www.sciencedirect.com/science/article/pii/S2351978917304092
https://www.sciencedirect.com/science/article/pii/S2351978917304092
https://doi.org/10.1109/INDIN.2018.8472048
https://doi.org/10.1109/JIOT.2019.2950048


BIBLIOGRAPHY 45

[60] Tin-Chih Toly Chen and Yi-Chi Wang. “Artificial Intelligence in Manufacturing.”
In: Artificial Intelligence and Lean Manufacturing. Cham: Springer International
Publishing, 2022, pp. 13–35. isbn: 978-3-031-04583-7. doi: 10.1007/978-
3-031-04583-7_2. url: https://doi.org/10.1007/978-3-031-04583-
7_2.

[61] Marco Bortolini, Francesco Gabriele Galizia, and Cristina Mora. “Reconfig-
urable manufacturing systems: Literature review and research trend.” In: Jour-
nal of Manufacturing Systems 49 (2018), pp. 93–106. issn: 0278-6125. doi:
https://doi.org/10.1016/j.jmsy.2018.09.005. url: https://www.
sciencedirect.com/science/article/pii/S0278612518303650.

[62] Mads Hvilshoj et al. “Autonomous industrial mobile manipulation (AIMM):
past, present and future.” In: INDUSTRIAL ROBOT-THE INTERNATIONAL JOUR-
NAL OF ROBOTICS RESEARCH AND APPLICATION 39.2 (2012), pp. 120–135.
issn: 0143-991X. doi: 10.1108/01439911211201582.

[63] Mads Hvilshoj and Simon Bøgh. “"Little Helper" - An Autonomous Industrial
Mobile Manipulator Concept.” In: International Journal of Advanced Robotic
Systems 8 (June 2011). doi: 10.5772/10579.

[64] Aau Smart Production. Reconfiguration of AAU Smart Production Lab. [Online;
accessed 16. Jun. 2023]. Jan. 2018. url: https://www.youtube.com/watch?
v=pX74QVfZ-6A.

[65] Zewen Li et al. “A Survey of Convolutional Neural Networks: Analysis, Applica-
tions, and Prospects.” In: IEEE Transactions on Neural Networks and Learning
Systems 33.12 (2022), pp. 6999–7019. doi: 10.1109/TNNLS.2021.3084827.

[66] Brochures - OPC Foundation. [Online; accessed 30. Dec. 2022]. Oct. 2022. url:
https://opcfoundation.org/resources/brochures.

[67] Marcell Balogh et al. “Cloud-Controlled Autonomous Mobile Robot Platform.”
In: 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mo-
bile Radio Communications (PIMRC). 2021, pp. 1–6. doi: 10.1109/PIMRC50174.
2021.9569730.

[68] Snehasis Sahoo and Cheng-Yao Lo. “Smart manufacturing powered by recent
technological advancements: A review.” In: Journal of Manufacturing Systems
64 (2022), pp. 236–250. issn: 0278-6125. doi: https://doi.org/10.1016/
j.jmsy.2022.06.008. url: https://www.sciencedirect.com/science/
article/pii/S0278612522001042.

https://doi.org/10.1007/978-3-031-04583-7_2
https://doi.org/10.1007/978-3-031-04583-7_2
https://doi.org/10.1007/978-3-031-04583-7_2
https://doi.org/10.1007/978-3-031-04583-7_2
https://doi.org/https://doi.org/10.1016/j.jmsy.2018.09.005
https://www.sciencedirect.com/science/article/pii/S0278612518303650
https://www.sciencedirect.com/science/article/pii/S0278612518303650
https://doi.org/10.1108/01439911211201582
https://doi.org/10.5772/10579
https://www.youtube.com/watch?v=pX74QVfZ-6A
https://www.youtube.com/watch?v=pX74QVfZ-6A
https://doi.org/10.1109/TNNLS.2021.3084827
https://opcfoundation.org/resources/brochures
https://doi.org/10.1109/PIMRC50174.2021.9569730
https://doi.org/10.1109/PIMRC50174.2021.9569730
https://doi.org/https://doi.org/10.1016/j.jmsy.2022.06.008
https://doi.org/https://doi.org/10.1016/j.jmsy.2022.06.008
https://www.sciencedirect.com/science/article/pii/S0278612522001042
https://www.sciencedirect.com/science/article/pii/S0278612522001042




Paper 1
Reconfigurable autonomous industrial mobile ma-
nipulator system
Halldor Arnarson and Bjørn Solvang

Doi: 10.1109/SII52469.2022.9708887

© 2022 IEEE. Halldor Arnarson and Bjørn Solvang, Reconfigurable autonomous
industrial mobile manipulator system, 2022 IEEE/SICE International Sympo-
sium on System Integration (SII), Narvik, Norway, 2022, pp. 772-777, doi:
10.1109/SII52469.2022.9708887.

Author’s Contribution

Halldor Arnarson has contributed substantially in the proposal of research
idea, concept, literature review, graphics produce, programming, experimental
analysis and writing of the paper.

47



Reconfigurable autonomous industrial mobile manipulator system

Halldor Arnarson1, Bjørn Solvang1

Abstract— The manufacturing industry is moving from mass
production towards more personalized products through mass
customization. In order to adapt factories should be highly
flexible and rapidly able to adjust their operations.

The new technologies and concepts in industry 4.0 are impor-
tant in the transition from mass- to flexible and personalized
manufacturing systems. One such specific tool for increased
flexibility is the introduction of an Autonomous Industrial
Mobile Manipulator (AIMM). The AIMM provides mobility
with its mobile part and increased flexibility and functionality
with the robot arm. However, a disadvantage with AIMM
systems is that when the mobile robot is moving the robot
arm cannot work; when the robot arm is working, the mobile
robot cannot drive. This creates downtime for both the mobile
robot and the robot arm.

In this paper, we will look at how an AIMM can be divided
into two parts for increased utilization of the mobile part and
robot arm of the AIMM. Our approach is to physically divide
the system into two parts, one with the mobile robot and a
second with the robot arm on a trolley. In this case, the mobile
robot can transport the robot arm, detach from the robot arm
and perform other tasks while the robot arm is working at its
new location.

I. INTRODUCTION

Industry 4.0 is often referred to as the fourth industrial
revolution. It is a manufacturing philosophy that includes a
wide area of concepts and new technologies, such as Human-
Machine and Machine-Machine communication, Internet of
Things (IoT), Enterprise Resource Planning (ERP), Cloud
technologies, Big data and mobile systems [1]. The vision
of Industry 4.0 is to create a smart factory with intelligent
Cyber-Physical Systems (CPS) [2].

Businesses that implement and master technologies, such
as advanced automation, virtualization and flexibilization,
will gain a competitive advantage [3]. The technologies in
Industry 4.0 allow production companies to go from mass
production with limited customization towards mass person-
alized production [4]. Mass personalized customization can
be a lucrative strategy that comes with many advantages.
However, it does come with some challenges, such as in-
creased complexity in the production system [5]. To achieve
mass customized production, the production system in itself
has to be adaptive and highly flexible.

Robots are often used to perform simple tasks, which again
requires the least amount of sophisticated technology [6].
They are usually mounted to the ground (fixed autonomous),
which limits the robot’s reach and decreases flexibility. New
applications are emerging that require industrial robots (IR)

1Halldor Arnarson and Bjørn Solvang are with Department of Indus-
trial Engineering, UiT The Arctic University of Norway, Narvik Norway,
halldor.arnarson@uit.no, bjorn.solvang@uit.no

to access environments previously inaccessible [7], and there
is an increasing demand for robots performing more complex
tasks [6]. Such as assembly tasks that require the robot to
make decisions based on a changing environment.

One tool towards increased flexibility and mass customiza-
tion is the introduction of an Autonomous Industrial Mobile
Manipulators (AIMM). AIMM is a flexible autonomous
manufacturing assistant that can be used for different man-
ufacturing tasks. The idea behind AIMM is to have a more
flexible and varied automation solution. It can work beside
people, be fully automatic and be able to perform work at
different workstations [8]. It is a combination of different
technologies and concepts working together, where the four
abbreviations can be explained by the following [9]:

• Autonomous: The robot is able to perform tasks inde-
pendently, with no human intervention.

• Industrial: Refers to where the robot is utilized.
• Mobile: The robot can map and move around an indus-

trial environment through its localization.
• Manipulator: The robot can do mechanical work, such

as move objects or change arrangements of parts.
The AIMM benefits from the mobile robot with in-

creased flexibility and mobility, and gets the functionality
from having a robot arm [10]. Most of the recent research
projects have used a standard mobile robot or ROS-based
mobile robot together with an industrial or collaborative
robot [11][12]. There have been EU funded projects [13][14]
on mobile manipulators, and so companies have started
to produce AIMMs, for example: KUKA KMR iiwa [15],
Fetch Fright [16], Omron MoMa [17], ER-FLEX [18] and
Robotnik mobile manipulators [19].

AIMMs have been tested in real manufacturing system,
but there are still challenges and the technology should ma-
ture before being implemented in large-scale manufacturing
operations [20]. There is a need for further development of
control methods for the AIMM system and standardization
of its components [9]. It should be noted that industrial robot
arms and mobile robots are expensive investments. Typically,
a medium sized industrial robot cost 50kC, while a mobile
robot cost around 30kC. A substantial investment for most
small and medium sized companies.

In order to increase the utilization of both the robot and
the carrier we suggest to split the AIMM into two physical
parts, the mobile robot and an industrial robot arm mounted
on a trolley. This paper look at such division, how to build,
connect and control the respective units.

The paper is organized as follows: Section 2 will discuss a
new conceptual approach to the AIMM; Section 3 describes
an experimental setup, how it works, and how it is connected



together; Section 4 gives a demonstration of the experimental
system; while Section 5 presents a discussion based on the
demonstration and a conclusion.

II. AN ALTERNATIVE APPROACH TO AIMM

One of the disadvantages of AIMM is that the robot arm
and mobile robot are fastened together. When the robot arm
performs tasks, the mobile robot has to stand still and vice
versa. It creates a large amount of downtime for both the
mobile robot and the robot arm.

As mentioned, an AIMM can be divided into two parts: a
mobile robot and robot arm. A different approach is splitting
the AIMM into two physical parts, one with a mobile robot
and a second part with a robot arm on a moveable trolley.
An illustration of such an AIMM can be seen in figure 1.

Fig. 1. The three figures showcase how an AIMM can be divided into two
parts but also work together

The mobile robot can transport the robot arm, then detach
itself from it, and do other tasks while the robot arm is
working. This allows the mobile robot and robot arm to work
as one unit and work separately from each other. This can
decrease the mobile robot and robot arm’s downtime while
maintaining the flexibility of an AIMM system.

The trolley can be equipped with different types of robot
arms (SCARA or n-DOF IR) or other machines, depending
on what work has to be done. It should be mentioned that
most AIMMs today use collaborative robots, since they can
work beside humans and are not as dangerous as standard
industrial robots.

Depending on the use of the system, it is possible to have
multiple trolleys with robot arms and only one mobile robot
to transport the robot arm to where it is needed. This again
increases the flexibility of the production systems and cuts
costs, since only a few mobile robots are required in order
to transport the robots.

III. AIMM SYSTEM STRUCTURE

A proof of concept has been developed to demonstrate
how an AIMM can be divided and how such system can
work. In this chapter we will describe each key-component,
its setup and connection to an industrial information server.

A. Mobile robot system
The first part of the system is the mobile robot. In this

system we used the MiR100, which is a highly flexible
autonomous mobile robot. It has a carrying capacity of 100kg
and can pull up to 300kg [21].

There are two methods by which the mobile robot can
move or transport the robot trolley, either through a hook
system where the mobile robot latches onto the trolley and
pulls it, or a system where the mobile robot drives under the
trolley and then docks into the trolley. It is not recommended
to pull the trolley (from outside), since it is harder for the
mobile robot to move in a strict predictable way. Attaching
the mobile robot under the trolley simplifies the movement
of the unit.

The mobile robot is made to be flexible and it is possible
to change or add a top-module. A simple top module, which
uses a motor to move two L-formed pins outwards, has been
developed, as can be seen in figure 2. When the mobile robot
drives under the trolley, the two pins move outwards, which
hooks the mobile robot to the trolley.

The positioning accuracy of the mobile robot is only ±
50 mm [21] and is too low to dock into a trolley reliably.
However, the mobile robot is fitted with two 3D cameras
in the front, which can be used for accurate positioning
within ± 10 mm. This is done with either a V marker or
a VL marker, which can be 3D printed and placed around
a production environment for accurate docking positions, as
shown in figure 2.

Fig. 2. The figure showcases both robot trolleys, the mobile robot with
the pin system, and the marker used for docking with the mobile robot.

It should be noted that in this system the mobile robot
can only pick up the robot trolley where there is a marker.
Being able to pick up and place the robot in any position
in the laboratory would further increase the flexibility of the
system. However, that requires a different method to improve
the accuracy of the mobile robot.

B. Robot arm system
There are two robot arms in this system, one SCARA

Adept 604 (4-DOF) and a Nachi MZ07 (6-DOF). Both robot



arms are placed on a movable trolleys, as shown in figure
2. Each trolley is equipped with an Uninterruptible Power
Supply (UPS) to power the robots, controllers and grippers.
Both robots are fitted with a 3D camera (Intel Realsense
D435) used to identify, pick and place objects. The 3D
cameras are fitted to the gripper on the robot arm, as shown
in figure 3.

Fig. 3. The robot gripper for the Nachi and Scara robot

An open-source library OpenCV [22] was used for clas-
sification of objects. OpenCV is a computer vision and
machine learning library that can be used for real-time vision
applications [23]. When the robot gets a task to pick a
specific item, it drives automatically out with a fixed routine
to see if it can find the object using OpenCV. If the object
is found the robot will position itself so that the object
is in the middle of the camera view. When the robot has
positioned itself, the 3D camera is used to read how far away
the object is and the robot moves down to pick the object.
An electromagnet is used to grip the object, as can be seen
in figure 3. The electromagnetic gripper has been made to
be flexible and does not require high accuracy where small
objects will automatically get pulled towards the gripper.

C. IoT system

AIMMs are usually made to work remotely and wireless,
and should be able to communicate with other machines
as well as human operators [24]. In our previous project
[25], all robot arms and mobile robots were connected to
the Open Platform Communications Unified Architecture
(OPC UA). The OPC UA Standard [26] is an open-source
industrial information server. It’s an international IEC 62541
[27] standard and is commonly used today in the manufac-
turing industry to enable communication between pieces of
equipment [28]. It is scale-able and platform-independent,
which means it can run on almost all operating systems.

Having all the robots connected to the same server makes
it simpler for the machines to communicate. In addition, the
robots can be controlled and monitored through the OPC UA
server. Since the OPC UA standard is widely supported in
the manufacturing industry, it simplifies the integration of
new machines into the system.

The IoT system can be structured into five parts, one for
each of the robot trolleys, one for the mobile robot, one for
controlling the system/generating missions, and the OPC UA
server, as illustrated in figure 4.

Fig. 4. Illustration on system setup and connections.

As can be seen in figure 4, both robot trolleys is equipped
with a single-board computer (Raspberry Pi). It gathers
information from the 3D camera and send information to
the robot arm and its gripper. There is also a Raspberry Pi
on top of the mobile robot, which is used to manage the pins
for locking or attaching the mechanism to the trolley. The
Raspberry Pis are wireless connected to the OPC UA server.

The mobile robot itself do not support OPC UA, and a
computer is used to send and receive information from the
OPC UA server.

To start a mission on the Nachi or Adept robot, a computer
is used to allocate assignments, which are then started and
executed automatically. The Adept and Nachi robots have
been made to operate independently from the other parts of
the system. Both robot trolleys can control the mobile robot
and other machines, for example: call on the mobile robot
for transport or get a drawer from the vertical storage lift.
The hierarchy of the system can be seen in figure 5.

IV. DEMONSTRATION

To showcase the system, we have created three demonstra-
tion videos, as can be seen in table I. There are two versions



Fig. 5. System control hierarchy.

of each video: one with increased video speed and a second
video at normal speed.

TABLE I
THE TABLE LISTS THE FIVE VIDEOS THAT HAVE BEEN CREATED AND

INCLUDES A LINK TO THE VIDEOS.

Videos from the demonstration
Description: Speed x5 Original speed
Logistics demon-
stration

https://youtu.
be/8gyoRbaeshk

https://youtu.
be/r-DMh_OIFO0

Nachi pick object https://youtu.
be/HgNFWy8n560

https://youtu.
be/q9QY52aMSdE

Scara pick object https://youtu.
be/O2DUdpMDWmU

https://youtu.
be/C13GEO--DRg

The first video showcases the collaboration between robots
in the systems. Four positions/markers have been added to
the laboratory. In the demonstration video, the mobile robot
transports the Nachi platform, Adept platform and an empty
platform around the laboratory to showcase how one mobile
robot can be used to transport multiple robots and carry out
an logistics operation.

The following happens in the demonstration video:
1) The mobile robot transports the Nachi platform to the

Compact lift
2) The Nachi platform calls for a drawer from the Com-

pact lift and starts picking an object(screw)
3) The mobile robot transports the Scara platform to a

workstation
4) When the Scara platform has been transported, it starts

picking up objects (screw)
5) At the end, the mobile robot transports an empty

platform
The other two videos showcase the Nachi and Scara

robot picking up a screw using image recognition and the

electromagnet.
From the demonstration, we conclude that the mobile

robot is able to transport both robot platforms and an empty
platform around the laboratory. The mobile robot and the
robot arms are also capable of working independently from
each other as well as collaborating together.

It should also be noted that using the OPC UA server
for communication creates a stable and reliable method for
communication between all machines.

The pickup system for the Nachi and Adept robot is
relatively simple. A test was conducted on the Scara robot
to see how accurate the pick system was. The robot tried
to pick up a screw eight times and failed three times which
gives room for improvement.

V. CONCLUSION

The AIMM has proven to be a flexible solution that
combines different technologies and concepts. It is intended
to be used by manufacturing companies that require more
flexibility and personalized production. The AIMM often
includes an intelligent mobile robot and robot arm with a
vision system that increases the robot’s flexibility. However,
one of the disadvantages of the AIMM is that it is an
expensive investment, and it is therefore essential to get as
much utilization of the AIMM as possible.

To increase the utilization and the flexibility of the AIMM,
we propose to divide the AIMM into two parts. This creates
a more flexible system where we better can utilize both
the mobile robot and robot arm, as can be seen in the
demonstration.

This system relies on IoT functionality for machine-to-
machine communication between the robots. Using the OPC
UA standard can be a good and flexible solution for IoT
connectivity in industry 4.0 systems. It makes it simple to
add more robots or other machines to the system without
affecting the other parts and creates unified communication
between all members.

The experimental system was tested with a SCARA robot
and an industrial Nachi robot. The Scara robot is limited to
4-DOF and therefore has somewhat limited movements. In
contrast, the Nachi robot has 6-DOF, has a better reach, and
is more suited to work on a mobile trolley. It is also important
to keep the robot trolley as light as possible. If the trolley
is too heavy, the wheels of the mobile robot will start to
spin, which reduces the accuracy of the robot. Therefore,
the ideal robot trolley should be equipped with a lightweight
robot arm and controller, with a long reach/working area.

A general challenge of having the robot on a portable
trolley is that robot movement can transfer to an unstable
trolley. A docking system of the portable trolley should be
considered as a next step in system development.

VI. FURTHER WORK

As part of our future work, the vision system should
be made more flexible and able to recognize more objects.
More intelligence, such as reinforcement learning and neural
networks, should also be added to the robot trolleys to make



them more flexible and adaptable to the environment. Adding
more intelligence to the system can simplify the integration
of more capabilities of the robot trolley.

In this system, the mobile robot can only position the robot
arms where a marker has been placed. This again limits the
flexibility of the system. The positioning could be improved
so that the mobile robot can place and pick up the trolley in
any given position. Finally a trolley docking system should
be developed in order to secure stable IR robot movements.
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Néstor Fabián Ayala. “Industry 4.0 technologies: Imple-
mentation patterns in manufacturing companies”. In: In-
ternational Journal of Production Economics 210 (2019),
pp. 15–26. ISSN: 0925-5273. DOI: https://doi.org/
10 . 1016 / j . ijpe . 2019 . 01 . 004. URL: http :
//www.sciencedirect.com/science/article/
pii/S0925527319300040.

[4] Yi Wang et al. “Industry 4.0: a way from mass customization
to mass personalization production”. eng. In: Advances in
manufacturing 5.4 (2017), pp. 311–320. ISSN: 2195-3597.

[5] Joanna Daaboul et al. “Design for mass customization:
Product variety vs. process variety”. In: CIRP Annals 60.1
(2011), pp. 169–174. ISSN: 0007-8506. DOI: https://
doi.org/10.1016/j.cirp.2011.03.093. URL:
http : / / www . sciencedirect . com / science /
article/pii/S0007850611000941.

[6] Brad Hamner et al. “An autonomous mobile manipulator for
assembly tasks”. In: Autonomous Robots 28 (Sept. 2010),
pp. 131–149. DOI: 10.1007/s10514-009-9142-y.

[7] Biao Zhang et al. “The challenges of integrating an industrial
robot on a mobile platform”. In: 2010 IEEE International
Conference on Automation and Logistics. 2010, pp. 255–
260. DOI: 10.1109/ICAL.2010.5585289.

[8] Simon Bøgh et al. “Identifying and evaluating suitable tasks
for autonomous industrial mobile manipulators (AIMM)”.
In: The International Journal of Advanced Manufacturing
Technology 61 (Nov. 2011), pp. 713–726. DOI: 10.1007/
s00170-011-3718-3.

[9] Mads Hvilshøj et al. “Autonomous industrial mobile manip-
ulation (AIMM): past, present and future”. eng. In: Indus-
trial robot 39.2 (2012), pp. 120–135. ISSN: 0143-991X.

[10] H. Cheng, H. Chen, and Y. Liu. “Object handling using
Autonomous Industrial Mobile Manipulator”. In: 2013 IEEE
International Conference on Cyber Technology in Automa-
tion, Control and Intelligent Systems. 2013, pp. 36–41. DOI:
10.1109/CYBER.2013.6705416.

[11] Rasmus Eckholdt Andersen et al. “Integration of a Skill-
based Collaborative Mobile Robot in a Smart Cyber-physical
Environment”. In: Procedia Manufacturing 11 (2017). 27th
International Conference on Flexible Automation and Intelli-
gent Manufacturing, FAIM2017, 27-30 June 2017, Modena,
Italy, pp. 114–123. ISSN: 2351-9789. DOI: https://doi.
org/10.1016/j.promfg.2017.07.209. URL:
http : / / www . sciencedirect . com / science /
article/pii/S2351978917304171.

[12] Heiko Engemann et al. “OMNIVIL—An Autonomous Mo-
bile Manipulator for Flexible Production”. In: Sensors 20.24
(2020). ISSN: 1424-8220. DOI: 10.3390/s20247249.
URL: https://www.mdpi.com/1424-8220/20/
24/7249.

[13] Welcome to TAPAS. URL: http : / / www . tapas -
project.eu/. (accessed: 29.12.2020).

[14] Validation of Advanced, Collaborative Robotics for Indus-
trial Applications. URL: https://cordis.europa.
eu/project/id/314774. (accessed: 29.12.2020).

[15] KMR iiwa. URL: https : / / www . kuka . com / en -
de/products/mobility/mobile-robots/kmr-
iiwa. (accessed: 29.12.2020).

[16] Robotics Platforms for Research. URL: https : / /
fetchrobotics . com / robotics - platforms/.
(accessed: 29.12.2020).

[17] Omron Mobile Manipulator Solution. URL: https :
/ / industrial . omron . eu / en / solutions /
product - solutions / omron - mobile -
manipulator-solution. (accessed: 29.12.2020).

[18] ER-FLEX. URL: https://www.enabled-robotics.
com/er-flex-robot/. (accessed: 29.12.2020).

[19] Mobile Manipulators. URL: https : / / robotnik .
eu/products/mobile-manipulators/. (accessed:
29.12.2020).

[20] Ole Madsen et al. “Integration of mobile manipulators in
an industrial production”. In: Industrial Robot: An Interna-
tional Journal 42 (Jan. 2015), pp. 11–18. DOI: 10.1108/
IR-09-2014-0390.

[21] Mobile Industrial Robots. MiR100. URL: https : / /
www . mobile - industrial - robots . com /
en / solutions / robots / mir100/. (accessed:
023.11.2020).

[22] OpenCV team. OpenCV. URL: https://opencv.org/.
(accessed: 24.11.2020).

[23] OpenCV team. About. URL: https://opencv.org/
about/. (accessed: 25.11.2020).

[24] Mads Hvilshøj and Simon Bøgh. ““Little Helper” — An
Autonomous Industrial Mobile Manipulator Concept”. In:
International Journal of Advanced Robotic Systems 8.2
(2011), p. 15. DOI: 10.5772/10579. eprint: https:
//doi.org/10.5772/10579. URL: https://doi.
org/10.5772/10579.

[25] H. Arnarson, B. Solvang, and B. Shu. “The application of
open access middleware for cooperation among heteroge-
neous manufacturing systems”. In: 2020 3rd International
Symposium on Small-scale Intelligent Manufacturing Sys-
tems (SIMS). 2020, pp. 1–6. DOI: 10.1109/SIMS49386.
2020.9121537.
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A B S T R A C T   

Manufacturing industries are moving from mass production towards customized production, aiming for high- 
quality products with innovative technologies, low prices, and high reliability. A reconfigurable 
manufacturing system (RMS) is an attractive approach to facilitate the movement toward such flexible 
manufacturing systems. However, reconfiguration and programming of RMS are time-consuming and labor- 
intensive. Industry 4.0 technologies (such as robotics, digital twin technology, and IoT solutions) decrease 
human interaction in the preparation phase of a new production series. One challenge that industry 4.0 does not 
address is a flexible electrification of the system. The lack of electrical outlets limits the available space on the 
shop floor, and extensive cabling constrains the motion of humans and machines in the same area. This paper 
solves these challenges by proposing a highly flexible RMS system with advanced robotics, a digital twin pro
gramming interface, and a wireless power transfer (WPT) solution. Experimental results, through simulations 
and verification by laboratory experiments, show great potential in the reduction of human interaction and time 
to set up a new manufacturing line.   

1. Introduction 

Globalization has put intense competition between manufacturing 
companies to produce high-quality products with innovative technolo
gies, low prices, and high reliability. The increasing competition be
tween manufacturers motivates them to move away from mass 
production towards mass customization and personalized production 
[1]. Competitors need to adapt and change depending on the market 
changes, product changes, system failures [2], or global health crises 
[3]. 

We can categorize manufacturing systems into three main categories; 
dedicated manufacturing system (DMS), flexible manufacturing system 
(FMS), and reconfigurable manufacturing system (RMS). The DMS fo
cuses on high volume and low variety production, while the FMS focuses 
on low volume and wide variety. In contrast, RMS combines the ad
vantages of both systems to produce with high volume and wide variety. 
Koren et al. [4] defined RMS as a manufacturing system that can adjust 
its resources. Thus, RMS is an attractive approach to solve the previously 
mentioned challenges. 

Reconfiguration of RMS can be time consuming. Kim et al. [5] found 
that in their RMS, the most time-consuming part is the physical 

rearrangement of the modules and reconfiguring of the system. The 
system also needs physical labor to rearrange or change the modules in 
the manufacturing system. As the RMS is scalable, increasing the size of 
the system results in scaling up the RMS challenges. In other words, with 
the increasing number of modules of the RMS, the reconfigurable time 
increases, and the required labor to reconfigure the system will also 
increase. Moreover, increasing the system scalability adds more demand 
on the computation, communication, and system complexity [6]. 

Industry 4.0 is the next technological revolution that focuses on 
increasing connectivity, automation, and intelligence in manufacturing 
[7]. The technologies in industry 4.0 are advanced robotics, the internet 
of things (IoT), cyber-physical systems (CPS), cloud computing, 
augmented reality, additive manufacturing, and big data are essential 
for the success of RMS in the future [8]. Industry 4.0 technologies can 
improve and automate the rearrangement of RMS. However, Bortolini 
et al. [9], revealed that there is still a lack of research on industry 4.0 
integration in RMS. Maganha et al. [10] mentioned that using industry 
4.0 technologies must be considered when designing the layout of the 
system and that the technologies can allow for smart layout design of the 
RMS. 

Morgan et al. [11] suggested that there is a need to retrofit current 
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manufacturing equipment with the new technologies. Thus, we can 
retrofit old robots with new controllers, IoT functionality, and adaptable 
control systems. Using advanced robotics, IoT, and digital twins, we can 
control and automate the reconfiguration of RMS. The robots can rear
range the modules in such a system, while the IoT offers wireless control 
and communication. 

Although industry 4.0 tackles most RMS problems, there is still a 
challenge with electrification. Systems need labor to connect all parts to 
power, and it is time-consuming. Besides, the conventional electrifica
tion uses cables that require large areas, which limits the flexibility of 
the systems. Therefore, there is a need for more flexible methods to 
power RMS without human intervention. Wireless power transfer (WPT) 
can energize the system autonomously and has the potential to address 
the challenges in the conventional conductive charging approach, 
including long charging time, wear and tear of the contractors and plugs, 
and hazard of the electric shock. 

To the authors’ knowledge, there is no publications which use mobile 
robot to rearrange the machines in the manufacturing cells. Arnarson 
et al. [12] used one mobile robot to move multiple robot arms. We can 
expand this conceptual idea by moving different manufacturing ma
chines using a mobile robot. In addition, there is no investigation of WPT 
for manufacturing systems or consideration of WPT as an industry 4.0 
technology. Industry 4.0 is a dynamic concept where various technolo
gies are in industry 4.0 can and will change over time [7]. For instance, 
one of the main technologies in industry 4.0 is IoT which can connect 
devices wirelessly. WPT provides wireless electrification of systems, we 
can argue that WPT is a new and emerging industry 4.0 technology that 
can allow manufacturing systems to become more flexible, modular, and 
automated. 

Expanding Bortolini framework [9], we can categorize the research 
directions of industry 4.0 in RMS, as shown in Fig. 1. The first industry 
4.0 technology is RMS with robots, including industrial robots, collab
orative robots, mobile robots, and autonomous industrial mobile ma
nipulators (AIMM) in RMS. RMS with additive manufacturing looks at 
implementing 3D printers into the system. RMS with digital technolo
gies which embrace augmented reality, industrial internet of things 
(IIoT), cloud, simulation, and digital twins. Smart RMS encompass data 
analysis, machine learning, and other artificial intelligence techniques. 
Finally, RMS with WPT looks at flexible and autonomous electrification 
for manufacturing systems. 

In this paper, we propose an autonomous RMS by integrating a 
mobile robot into RMS, to increase the reconfigurability of the system, 
decrease the setup and programming time, and enhance the system’s 

flexibility. Besides, we investigate different WPT configurations that 
increase flexibility and autonomy, creating a highly flexible RMS. We 
can summarize the main contribution of the paper as follows: .  

• Proposing a new RMS in which a mobile robot can reconfigure the 
system.  

• Rearranging, and monitoring the proposed system using a digital 
twin solution.  

• Proposing static and dynamic WPT as industry 4.0 technology for 
RMS.  

• Retrofitting old manufacturing machines with industry 4.0 
technology.  

• Simulating and verifying through laboratory experiments and video 
presentations. 

We organize the remainder of this paper as follows: Section 2 pre
sents previous studies on RMS. Section 3 proposes the concept of a 
highly flexible mobile RMS with WPT. Section 4 describes a mobile RMS 
with a digital twin, a physical demonstration of the system. Then, we 
discuss the results in Section 5. Finally, we conclude and present our 
future works in Section 6. 

2. Previous studies 

Sanderson et al. [13] developed the Smart Manufacturing and 
Reconfigurable Technologies (SMART), which is an assembly system 
that can be set up with different configurations. The system is based on 
the HAS-200 system [14] and applies adaptive multi-agent control. 
There are other similar examples on smart RMS [15–18]. They used 
standardized platforms from the CP Factory. CP Factory is a universal 
modular manufacturing systems for research, training, and teaching, 
produced by FESTO [19]. The systems use platforms that can be rear
ranged based on the system’s capacity and functionality. 

In another study, Kim et al. [5] introduced a modular factory testbed. 
The system consists of 10 main workstations producing portable battery 
chargers, electric endodontic handpieces, and electric toothbrushes. The 
system uses a infrared communication system that automatically rec
ognizes how the system is configured. However, all the previous systems 
(i.e., CP factory, HAS-200, and testbed) are only used for training, 
educational, and research purposes. 

Adamietz et al. [20] presented a miniaturized RMS. The system uses 
a standardized container, in which it is possible to change the 
manufacturing modules inside the container. This system can have a 

Fig. 1. The research direction for RMS based on Bortolini schematic [9], with a focus on industry 4.0 integration to RMS.  
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maximum of six small modules, three large modules, or a combination of 
big and smaller modules. The system reconfiguration takes less than 8 h 
using a forklift, where a human needs to move the parts between the 
machines. 

Seok et al. [21] built a modular manufacturing system using the 
additive manufacturing concept. Their system consists of, 3D printers, 
post-processing, inspection, and packing modules. It uses a 3D printer as 
the main manufacturing process, and it is possible to achieve personal
ized production or mass customization. We can categorize the system as 
an RMS with digital technologies. 

One approach that can save time and automate the RMS is the AIMM 
principle. Hongtai et al. [22] explained the concept of AIMM as a mobile 
robot combined with an industrial manipulator. The robots are easy to 
integrate and can carry out tasks at different workstations. The AIMM 
increases manufacturing flexibility and we can implement it into exist
ing manufacturing systems [23]. Recently, Inoue et al. [24] proposed 
AIMM to be a key component of RMS. Andersen et al. [25] examined 
how to integrate an AIMM into a modular CP Factory. 

Regardless of these previous studies, there is little attention to 
building and designing RMS for manufacturing industries. For instance, 
Singh et al. [26] revealed that there is inadequate research on the 
development of principles for reconfigurable machines. Moreover, 
Khanna et al. [27] found that the implementation of RMS into 
manufacturing systems is still a significant problem. In addition, there is 
a lack of studies that explain RMS in practices and how RMS can be 
adapted and used by companies [28]. 

The previous studies showed that the physical reconfiguration of the 
platforms is the most time-consuming, and they require labor to change 
and modify the layout. Morgan et al. [11] proposed smart reconfigurable 
machines that can change autonomously. In another study, Singh et al. 
[26] found that there is immense potential for further research on 
wireless sensor networks for automatic configuration, interoperability, 
and scalability. 

WPT plays a crucial role in charging applications without human 
intervention, making it attractive for developing flexible and reliable 

RMS systems. It reduces the hazards of electrical shocks by plugin ca
bles. It can also minimize the systems’ maintenance by removing the 
plugs, cables, and contractors. WPT provides an attractive solution in 
different applications: IoT devices [29,30], lightning [31–33], heating 
[34], wind turbines and oil drilling tools [35], energy encryption [36], 
unmanned aerial and underwater vehicles [37–40,41], and trans
portation applications [42–44]. 

To summarize, we found there is less focus on industry 4.0 integra
tion. Moreover, all the previously proposed systems suffer from setup, 
layout, and programming restrictions. In addition, systems are still 
highly dependent on humans for reconfiguration and powering the 
system. If we use advanced robotics, IoT, and digital twin to rearrange 
the system, this can improve the flexibility and reconfigurability of the 
system. At the same time, implementing WPT will make manufacturing 
systems more flexible, modular and automated and support the other 
industry 4.0 technologies. 

3. Concept of a highly flexible system 

3.1. RMS with robots 

To integrate industry 4.0 in RMS, we can use the concept of AIMM to 
utilize robots in a flexible manner. Arnarson et al. [12] proposed an 
AIMM for RMS, where the AIMM is divided into two separate parts, one 
for the mobile robot and a second for a robot arm. The mobile robot and 
robot arm can work together or separately. With such a system, one 
mobile robot can move multiple platforms and increase the utilization of 
both the robot arm and the mobile robot. In this example, they created 
two robot platforms. Using the same principle, we can expand the idea 
by adding conveyors, 3D printers, or other manufacturing machines to 
the platforms instead of a robot arm. 

A mobile robot can move and rearrange all system parts to manu
facture a specific product. The mobile robot can also rearrange around 
large manufacturing machines (CNC, turning, and 3D printer) that are 
fixed and hard to move. This solution is scalable since adding new 

Fig. 2. Different examples of how the system can be configured (a, b) and scaled up and down (c, d): (a) The platforms are arranged around the turning center, (b) 
the platforms are arranged around a large 3D printer, (c) a small manufacturing system using the platforms, and (d) the previous manufacturing system is expanded 
with more platforms to increase production. 
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platforms to the system can increase the output and production capacity. 
Therefore, it is easy to downscale and upscale production based on de
mand. Fig. 2 shows how to configure the system with different scalable 
layouts. At the same time, we can also use collaborative robots in open 
environments where humans are working or industrial robots for tasks 
that require higher precision and accuracy. 

3.2. 3D printing 

Another emerging industry 4.0 technology is additive 
manufacturing, in which we can get an even more flexible and 

automated RMS. For instance, in the conventional manufacturing 
approach to produce a plastic box, we need to build a mold and other 
related manufacturing machines that are not flexible. In comparison, 
plastic 3D printer can produce a plastic box or any other plastic part. In 
other words, additive manufacturing can increase the mass custom
ization capability of the RMS. In this video https://youtu.be/Z6 
WQe1bf648 and in [45], we demonstrate how a flexible additive 
manufacturing in RMS in which a plastic 3D printer can print different 
parts automatically and a mobile robot pick up the 3D printer and move 
it to different places. In addition, we can use the manufacturing material 
more efficiently and produce less waste. 

Fig. 3. A top-view of three different scenarios for static WPT: (a) the platforms charge each other through a mesh configuration. (b) the platforms charge each other 
through a mesh configuration while a big machine energizes the whole system. (c) the platforms charge from the main source while they are parking. 

Fig. 4. A top-view of two approaches of dynamic WPT: (a) railway transmitters. (b) matrix transmitters.  

H. Arnarson et al.                                                                                                                                                                                                                              



Journal of Manufacturing Systems 64 (2022) 225–235

229

3.3. Digital technologies 

IIoT facilitates communication, allowing remote monitoring and 
control of the manufacturing system. Thus, we can retrofit the conven
tional manufacturing systems with IIoT to create communication be
tween machines in the system. Besides, we can simulate the system to 
see how the reconfiguration and layout of the system will look in reality. 
The disadvantage of having only offline simulation is that we cannot test 
the RMS in real-time. It cannot be used for control or monitoring the 
RMS. In addition, the current solution for manufacturing systems is basic 
human-machine interfaces, where the labor communicates with the 
machines through a screen. This type of interface makes it difficult to 
program a reconfiguration of the manufacturing system. 

However, if we use the digital twin of the system to test and see how 
the configuration looks and works. The digital twin is a real-time digital 
replica of the manufacturing system where we can transfer the data 
bidirectional between the physical and digital systems. Based on a dig
ital twin we can simulate [46], control [47], monitor [48], predict 
failures of the system. In this paper, we simulate and monitor the system 
at the same time using a digital twin principle. 

3.4. Smart RMS 

Arnarson et al. [49] introduced industrial big data in RMS, for a 
smarter RMS system. In this work, they used the principles of industrial 
big data analysis moving towards automated RMS. Industrial big data 
analysis combined with artificial intelligence moves us toward a fully 
automated manufacturing system in which the system can manufacture 
any products without human intervention. 

3.5. RMS with WPT 

It is hard to achieve fully automated manufacturing systems with a 
conventional wired electrification approach. If we use WPT, we can gain 
autonomous electrification of the system and hence a fully automated 
system. Besides, WPT provides more flexibility and reliability to the 
RMS. In this section, we introduce the main concept of WPT to industry 
4.0 technologies and give examples of static and dynamic implementa
tion of WPT in RMS, while we provide more detailed descriptions and 
experimental results in further work. 

The International Telecommunication Union defines WPT as the 
transmission of power from a power source to an electrical load wire
lessly using a electromagnetic field [50]. WPT incorporates three main 
groups: near-field, mid-range, and far-field. The differences between 
these groups are in terms of the type of the electromagnetic wave, dis
tance range, operating frequency level, power level, and the complexity 
of the system’s architecture. 

We can utilize either static or dynamic near-field WPT for RMS. The 
static approach offers electrification when the platforms are not moving.  
Fig. 3 illustrates three different scenarios. The arrows show the direction 
of the power flow. In scenario (a), we can fix the WPT transmitter- 
receiver on the platforms while electrifying each other through a mesh 
configuration. In contrast, in scenario (b), the platforms energize from a 
stationary machine, such as a turning center, while charging. The last 
scenario (c) is when the platform is not in use and charges from the main 
power source. 

On the other hand, dynamic WPT can offer a power source for the 
platforms and mobile robots. We can implement the dynamic WPT 
through two approaches, namely, the railway approach and matrix one, 
as shown in Fig. 4. The railway transmitters provide continuous power 
to the platforms in the railway approach. However, the allocation of the 
platform should be predetermined, which limits the flexibility of the 
RMS. In contrast, the matrix approach offers a flexible charging solution. 
Nevertheless, it provides discrete charging, and hence we should opti
mize the distance between the transmitters, increasing the complexity 
and cost of the WPT system. 

4. Reconfigurable manufacturing system 

In this section, we describe the RMS and give a demonstration both 
by simulation and testing. 

4.1. RMS description 

Our system consists of five platforms:  

• IRB1 platform: Has a four degree of freedom robot arm (SCARA- 
type). In this system it is used for simple assembly, pick and place and 
sorting operations. 

Fig. 5. The proposed RMS: (1) IRB1 platform, (2) IRB2 platform, (3) conveyor, 
(4) conveyor with lifting, and (5) 3D printer. 

Fig. 6. The main components on each platform.  
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• IRB2 platform: Is a six degree of freedom robot arm. The robot arm 
can be used for the same operations as the IRB1 robot, but can also do 
more complex tasks such as machine tending, polishing, etc.  

• Conveyor platform: The conveyor platform is used to transport the 
parts between the robot arms.  

• Conveyor with lifting platform: Is used to transport parts out of the 
manufacturing system. Since it has a lift module it is more adaptable 
then the conveyor platform.  

• 3D printer platform: The 3D print platform contains a Creality CR- 
30, which is a 3D printer that prints on a conveyor. It can automat
ically remove the parts as they are being printed. 

Fig. 5 shows a specific setup of the RMS. 
We have developed the platforms by retrofitting them with small 

single-board computers and sensors. We have used different sensors to 
measure distance, angular velocity, and acceleration. As the robot arms 
require a more powerful computer, we have used (i5–10210 U CPU) to 
run the inverse kinematics calculator in ROS MoveIT and image recog
nition models in parallel. While the conveyor, conveyor lift and 3D 
printer platform use a Raspberry pi for control. All the computers are 
equipped with WIFI for wireless communication and we have also uti
lized extra microcontrollers on some of the platforms to collect data and 
control motors. Fig. 6 depicts the setup of each platform. 

A MiR100 mobile robot transports the platforms to the selected 
location. It has a carrying capacity of 100 kg and can pull up to 300 kg 
[51]. The accuracy of the mobile robot is ± 50 mm, which limits the 
flexibility of the system [12]. The low accuracy of the mobile robot can 
deteriorate the docking reliability of the platform. Nevertheless, a 
marker solution is used and enhance the docking accuracy of the mobile 
robot within ± 5 mm [51]. 

We can describe the docking sequence as follows: First, once the 
mobile robot reaches in front of the platform it adjust itself to the 
marker. Second, the marker moves up, so the mobile robot can drive 
under the platform. Third, the mobile robot drives forward with a fixed 
distance. Fourth, the hooking system is activated and fasten the mobile 
robot with the platform. A demonstration video to show the docking and 
uncoupling sequence can be fund at https://www.youtube.com/watch? 
v=RtOX0HGiqRs. When the mobile robot uncouples from a platform, 
the mobile robot software saves the platform’s position. Besides, the 
mobile robot calculates and saves 1.5 m from the platform as the 
docking point for the mobile robot. 

For communications the platforms are connected to the Open Plat
form Communications Unified Architecture (OPC UA). The OPC UA is a 
IEC 62541 standard and is used for communication in industrial appli
cations [52]. It allows all platforms to connect to the same server and 
communicate seamlessly which facilitates the control of the robots, 
conveyors and other motors in the system. This communication protocol 
will also help to bring about machine-to-machine communication, and 
hence all platforms can operate without human intervention. 

4.2. Platform placement 

As mentioned in Section 2, reconfiguring of the RMS can be time 
consuming and often needs human labor. The idea behind this system is 

Fig. 7. An illustration of the placement requirements of the system.  

Fig. 8. A screenshot from Visual Components showing the digital twin of the platforms. (1) IRB1 platform, (2) IRB2 platform, (3) conveyor, (4) conveyor with lifting, 
and (5) 3D printer. 
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to reconfigure and change the system’s layout automatically with a 
mobile robot. Also, we can change the layout of the system based on 
demands. However, the system still faces some challenges. For instance, 
the IRB1 robot has a movement radius of 0.6 m, while the IRB2 robot has 
a maximum reach of 0.9 m. For this system to work, the robot arms need 
to reach the platforms they are working with, as shown in Fig. 7, which 
add a constraint on system’s arrangement. One way to tackle the chal
lenges of choosing the layout of our system is by using a digital twin 
solution. 

Van Der Horn et al. [53] have described the digital twin as a virtual 
representation of a physical system, where the virtual and physical 
systems share the data. The virtual model of the manufacturing system 
can be used to test and visually various configurations of the layout. We 
can also use it to send information about the placement of the platforms. 
In addition, we can combine a digital twin with a modular system to 
create fast reconfiguration, integration, and safety validation of the 
system [3]. 

Previously, Arnarson et al. [54] have developed a two-way digital 
twin model in the Visual Components Premium simulation software 
[55] and conducted laboratory testing of the system. As Visual Com
ponents Premium supports the OPC UA standard, we can use the digital 
twin model as a visual tool to plan the system’s layout and simulate 
assembly and production flow for different system layouts. Fig. 8 shows 
the digital twin model of the five platforms. The model in the software 
has the same scales and positions of the components as the physical 
system. The simulation takes the positions of the digital platforms and 
sends them to the OPC UA server. The mobile robot can automatically 
get the new coordinates of the platforms and start moving them. Even
tually, the simulation software decides how the mobile robot picks the 
platform. 

4.3. Demonstrations of the RMS system 

Two demonstrations show the functionality of our system. 

4.3.1. Demonstration of simulation design 
The first demonstration shows the automatic reconfiguration. Two 

layouts are created in the Visual Components model, and when the 
simulation is executed the positions of the platforms are sent to the 
server. Afterwards, the mobile robot reads the positions of the platforms 
from the OPC UA server and pick up and place the platform in the same 
position given by the model in Visual Components. The resulting 
configuration of the mobile robot can be seen in Fig. 9. 

A video demonstration shows the functionality of the system and can 
be found at https://youtu.be/UXUlaawd8Ps with 5x speed and another 
video https://youtu.be/s8r-Q5eMy2M with normal speed. The purpose 
of the video is to showcase how the mobile robot can automatically 
change a manufacturing system’s layout. The video starts with all 
platforms in different locations in the laboratory. Then mobile robot 
picks the platforms and places them into the configuration in Fig. 9. 
Second, the mobile robot takes apart the system and reconfigures a new 
manufacturing system with the vertical storage machine (Compact lift). 
The time it takes to move and place each platform and the total time of 
the configuration can be found in Table 1. 

4.3.2. Demonstration of production simulation 
In the second demonstration, we showcase the flexibility and 

reconfigurability of the system in the simulation model. For this 
experiment, we use the process modeling component of Visual 

Fig. 9. Two layout configurations in the Visual Components (On the left side), and the resulting configuration assembled with the mobile robot (on the right side): a) 
The first digital layout. b) The first physical layout. c) The second digital layout. d) The second physical layout. 

Table 1 
The time the mobile robot used to reconfigure both layouts measured in minutes.   

Layout 1 Layout 2 

IRB1 Platform  2.2  2.2 
IRB2 platform  2.2  2.3 
Conveyor platform  2.1  2.9 
Conveyor Lift  2.0  1.9 
3D print platform  2.3  2.6 
Total time [min]  10.8  11.8  

H. Arnarson et al.                                                                                                                                                                                                                              



Journal of Manufacturing Systems 64 (2022) 225–235

232

Components to program the system’s movements. The simulation shows 
the production and assembling of a box in six steps, as shown in Fig. 10. 
The production process are: a box without a lid is 3D printed with the 3D 
printer platform. When the box reaches the end of the 3D printer, the 
IRB2 robot picks up the box and places it on the large conveyor. The 
conveyor transports the box to the IRB1 robot, which takes the lid and 
places it on top of the box. At last, the box is transported over to the 
conveyor lift, and the mobile robot transports the conveyor lift out.  
Fig. 11, illustrates all steps. 

We can execute the same production plan of the box with different 

configurations and placement of the platforms. To test this, we create 
three different configurations, as can be seen in Fig. 12. A video 
demonstration https://youtu.be/6ir7RUN_uk0 of the three simulations 
shows a different production time for each layout. Table 2 lists the 
production times for each step in all three layouts. We can use the 
simulation to estimate the production time and test if there are any 
collisions in the simulation. 

4.4. Demonstration of manufacturing application 

To demonstrate a manufacturing application of the system, we 
simulate and implement an assembly of a manufacturing system around 
a CNC machine. In the simulation, the first step is to drag the platforms 
and rearrange them around the CNC machine. The second step is to 
check if the robot arms can reach the positions. The last step, using the 
digital twin we can transfer the positions of all the platforms to the 
mobile robot where it reconfigures the platforms automatically. Fig. 13 
shows the demonstration of the proposed RMS for manufacturing 
application. The video https://youtu.be/vxsg4zgJzTU demonstrates the 
aforementioned three steps. The results shows the system needs around 
12.75 min for rearranging around the CNC machine. In this demon
stration, we can use one mobile robot to fill raw material to the CNC 

Fig. 10. The production sequence used to produce and assemble a box in the simulation.  

Fig. 11. An illustration of each step in the simulation.  

Fig. 12. Three different layout configuration to produce the box.  

Table 2 
The time it takes to complete each step in the simulation, without considering 
the 3D printing time measured in seconds.  

Manufacturing setup 1 2 3 

Step 1  4.6  4.6  4.6 
Step 2  3.0  2.8  2.6 
Step 3  11.3  2.4  9.8 
Step 4  3.1  3.6  3.3 
Step 5  10.1  9.5  2.9 
Step 6  17.6  17.5  25.0 
Total time [sec]  49.7  40.4  48.2  
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machine, rearrange the system, and take out the manufactured products. 

5. Discussion 

Traditionally, RMS need human interaction to reconfigure the sys
tem. In this paper, we have proposed a new RMS solution that decreases 
the need for humans in the setup of a new manufacturing line. A mobile 
robot can reconfigure the platforms without any human intervention. A 
total reconfiguration of the system requires 10:8 min to (numerical 
range) 11:8 min depending on the layout. 

We utilized additive manufacturing as an industry 4.0 technology to 
produce various products. We simulated three different layouts to 
manufacture a box using a 3D printer. According to the simulation, the 
production time took 49.7 s, 40.4 s, and, 48.2 s, respectively, without 
considering the 3D printing time. However, this was a simple example of 
producing one type of product, but the 3D printer can print any part as 
long as it fits within the dimensions of the 3D printer. Besides, using a 3D 
printer for production can easily automate the production process. Thus 
we create a platform with a 3D printer that can be controlled, operated, 
and monitored remotely. 

Using industry 4.0 digital technologies, we retrofitted old machines 
with sensors and controllers, and by applying the IIoT, we got commu
nication between all parts of the system. We used a two-way digital twin 
with simulation to program the system and choose the layout of the 
platforms. It gives the operator a simple drag and drop interface to po
sition the platforms. We can also simulate the manufacturing process to 
test and see if the robot arm reaches its desired position. It creates a 
simple and intuitive interface for fast and simple programming of the 
layout. 

The IIoT and digital twin can automate the system and put the 
building blocks for smart RMS. We can collect and store data from all 
platforms in real-time, which we can use to train machine learning al
gorithms to classify and predict the RMS. We can implement rein
forcement learning and image recognition to create self adaptable 
control system for the robots. At the same time, we can apply image 
recognition models to detect when prints are failing or any other failure 

in the RMS. 
Industry 4.0 technologies have enhanced the flexibility and recon

figurability of manufacturing systems by integrating robots, additive 
manufacturing, digital technologies, and smart RMS. However, we have 
several challenges that the proposed RMS is still facing. 

The first challenge is to arrange the layout of the system in such a 
way that considering the limited working area of the robot arms. 
Currently, we address this challenge by simulation through a digital 
twin. However, we need to find a better solution to solve this problem 
autonomously. The second challenge is that the mobile robot needs extra 
force to move the trolleys and often ends up spinning while moving the 
platforms. In addition, if one of the ten wheels gets stuck, it will 
dramatically reduce the accuracy and cause collisions with other plat
forms. As a better solution, we can remove all wheels of the platforms 
and use a mobile robot with high lifting capacity. Then the mobile robot 
would be able to lift the platform and place them in different positions. 
Regardless of these challenges, the system has a unique characteristic 
that can not only be reconfigured in different layouts but can also be 
rearranged in other locations irrespective of the manufacturing space. 

We also proposed WPT systems to electrify the platforms and in
crease the flexibility of the manufacturing system. In addition, we can 
utilize static or dynamic WPT to electrify the system. The dynamic WPT 
can electrify both the platforms and the mobile robot, increasing the 
system’s extent and cost. In contrast, static WPT offers a good option to 
electrify the platforms from each other or a main fixed machine. The 
system will get better efficiency by correcting the misalignment between 
the platforms. 

6. Conclusion 

We have proposed a number of industry 4.0 technologies to build an 
highly flexible RMS. We also expand the industry 4.0 technologies 
principle by adding WPT. The WPT system increases the flexibility and 
reliability of the proposed RMS. Our system includes five platforms 
containing robot arms, a conveyor belt, a conveyor lift, and a 3D printer. 
We have retrofitted the platforms and used a mobile robot to reconfigure 

Fig. 13. Demostration of industrial application: a) Configuring the platforms around the CNC machine. b) Simulating to check that the robot arm can reach their 
position. c) The physical configuration of the platforms around the CNC machine. 
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the platforms automatically. Then, we created a simulation model that 
controls and arranges the platforms using the digital twin to configure 
the system. The simulation model has the same scale and coordinates as 
the mobile robot. Using the OPC UA server, we send the coordinates of 
the platforms from the simulation model to the physical model. In 
addition, we present two demonstrations: the first simulation showing 
the system’s flexibility with the production and assembly of a box, and 
the second simulation showing how the mobile robot can reconfigure 
the platforms based on the simulation model. 

7. Future works 

The proposed system can be further expanded and automated. 

7.1. Automatic layout design 

As can be seen from the simulation results, there are multiple solu
tions for positioning the platforms. Therefore, optimizing the layout 
with the shortest path or smallest area can reduce manufacturing time 
and costs. We seek to develop a mathematical model that can find a sub- 
optimal layout for a system with multiple platforms as further work. 
With the mathematical model, the system will rearrange the layout 
automatically depending on what we need to manufacture. 

7.2. Automatic programming/control 

Another challenge facing the system is to control and program the 
platforms automatically. Due to the mobile robot inaccuracy, the plat
forms aren’t positioned with high accuracy. Therefore, using pre- 
programmed programs on the robot arms will not be feasible. Besides, 
the literature has previously shown that manually controlling, pro
gramming, and setting up the system is time-consuming, requiring 
expertise in control systems [5]. We will investigate and create a system 
that can be programmed automatically depending on what will be 
manufactured. 

7.3. Wireless electrification of RMS 

Finally, we will study in detail different approaches of WPT and 
examine capacitive power transfer (CPT) as a low-cost solution for 
powering the RMS. In addition, we expand the system with a mobile 
battery platform that can power other platforms using CPT. 
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Abstract—The world is moving towards a more sustainable
future where the focus is to reduce energy and resource con-
sumption. Warehouses constitute a significant contributor to
emissions in supply chains. At the same time, there has been
little focus on the sustainability of warehouses. One method to
reduce energy and resource consumption in warehouses is to
reduce the size of warehouse buildings. This can be done by
adding a manufacturing system inside the warehouse to reduce
the number of parts being stored. For such a system to work,
the manufacturing system needs to be flexible and produce
multiple parts. This paper will investigate and demonstrate how
a reconfigurable manufacturing system (RMS) with additive
manufacturing (AM) can be implemented in a warehouse.

Index Terms—Reconfigurable Manufacturing System (RMS),
Mobile robots, Warehousing, Additive Manufacturing (AM),
Mobile 3D printing

I. INTRODUCTION

As global political conversation prioritizes moving towards
a sustainable future with low carbon emissions. One area
where there has been limited focus on sustainability is ware-
housing. At the same, warehousing is a sizable contributor to
emissions in supply chains [1].

A strategy to make warehouses more sustainable is to reduce
the size of warehouse buildings. The warehouse buildings
are the most significant contributor to natural resources and
energy consumption [2]. One approach to reduce the size of
a warehouse is to add a manufacturing system as a part of
the warehouse. A warehouse with spear parts can reduce the
number of parts by having a manufacturing system that can
produce the parts when needed.

However, such a manufacturing system needs to be flexible
and capable of producing multiple products. Using a reconfig-
urable manufacturing (RMS) system can be a good option.

RMS is built on modularity, where the manufacturing
system can rapidly change the functionality and production
volume [3]. The idea of an RMS is to be able to manufacture as
a dedicated manufacturing system (DMS) with the flexibility
of a flexible manufacturing system (FMS) [3].

To combine an RMS and warehouse, there is a need for
industry 4.0 technologies such as internet of things (IoT),
cyber physical systems (CPS), advanced robotics, etc. Within
academia, little research has been done on implementing
industry 4.0 technologies in RMS [4, 5]. Using industry 4.0
technologies with an RMS is essential for the success of RMS
[5] and combining for example additive manufacturing (AM)
with RMS can improve the flexibility and agility of the system.

A part of the warehouse can include an RMS with
AM to manufacture parts on demand. This can reduce
warehouses’ size since parts can be stored digitally and
printed/manufactured when needed. To the authors’ knowl-
edge, there is no investigation of using an RMS in a ware-
house.

In this paper, we will investigate how RMS with AM can be
combined and used in warehouses to increase automation and
reduce the size of the warehouse. We will also demonstrate
how a mobile 3D printer solution, where a mobile robot
distributes printers to a warehouse and manufacturing system
when and where needed.

The contributions of this work are as follows:
1) Investigates the potential of an RMS with AM in ware-

houses.
2) Overview of the current state of AM, RMS with AM,

and flexible AM systems.
3) Propose a mobile 3D printer solution, as part of an RMS

system for automatic printing and refill in warehouses.
The rest of the paper is organized as follows; Section II

investigates the potential to implement RMS and AM into
warehouses. Section III presents previous studies on RMS and
AM. Then in Section IV, we present a mobile 3D printer that
can be used in warehouses and manufacturing systems and the
results in Section V. Finally, conclusion and further work in
section VI.

II. RMS WITH STATIC WAREHOUSE STORAGE

The concept and practice of warehousing date back many
decades. Among the first recollections of warehousing is



the storage of grain by Joseph of Genesis [6]. In religious
scripture, it is noted how useful this storage practice turned
out to be, as it helped many Egyptians later when famine
spread across the land.

Today, warehousing is practiced across many industries –
manufacturing, agriculture, e-commerce, and retail being just
a few examples. The common feature of these industries’ use
of warehousing is that it seems vital. A potential scenario
where warehousing is superfluous is considered unrealistic
and excessively ambitious. From an item’s production phase
to its shipment to stores and customers, there is usually
a phase in-between where the item must be placed in the
company’s storage until a customer orders the item. This
phase is, according to most of today’s production practices,
inevitable.

As the global focus on sustainability and environmental
friendliness increases, a production system that produces only
what is certain to be sold to customers should be of interest
to all industries. In the case of more industries adopting RMS
practice, the hitherto inevitable practice of warehousing could
be scaled down significantly. In addition to the sustainability
aspect, there is also the financial component – with no ware-
housing, overall costs would decrease.

However, opposite trends have also been observed. The e-
commerce industry’s expansion into mass customization has in
some cases led to an increased demand for warehouse storage
space [2]. This especially seems to be the case for business-
to-consumer markets. With increased opportunities for online
purchases across fields, customer demand has become more
persistent than ever before and can safely be assumed to be
uninterrupted [2]. In industries such as retail, this results in a
need for warehouse storage, as the products are manufactured
prior to being marketed. The pre-production and storage of the
products allow the companies to ship the products to customers
as soon as possible after the order has been placed.

Thus far, little research has been conducted on RMS tech-
nology’s effect on warehousing. This particularly holds true
for business-to-business markets [7]. In industries such as
the energy or petroleum industries, there is a certain level
of predictability in demand for new products after decades
of experience at this stage. For such industries, a solution
combining AM of products with a RMS may lead to a
decreased demand for warehouses where products and spare
parts are stored for long periods.

The potential removal of the warehousing stage would cause
a change to the supply chain as known today. Such a change
would be of great interest to companies, largely due to the
decreased costs it would result in. Companies spend significant
amounts on warehousing, which causes it to be one of the most
expensive components of the supply chain [2].

Furthermore, with more companies and industries becoming
aware of the importance of reducing carbon emissions on
a global scale, it is now also of great interest to reduce
warehousing activities and costs for the purpose of sustainable
practice. As such, decreased overall costs for a company can
be observed to be directly related to a reduced number of

activities [8]. Other than costs, it is also observed to be a trend
among customers, both in business-to-consumer markets and
business-to-business markets, to prefer companies that actively
prioritize sustainable operations [2].

In cases where the warehouse stage cannot be removed
entirely from the supply chain, an RMS system would still
hold the potential of decreasing warehouse space. This could
especially be the case for industries in which orders are
sparse and order predictability is significant. Products could
be produced and stored in the same space, as the probability
of the need for storage would be less. In a situation where
only necessary products are manufactured through AM and
required to be shipped immediately afterwards, the need for
additional storage space is less.

III. PREVIOUS STUDIES

This section presents the current state of 3D printing in the
manufacturing industry and how it has been used with a RMS
systems.

3D printing or Additive manufacturing is a manufacturing
technology defined by the ASTM society as a “process of
joining materials to make parts from 3D model data, usually
layer upon layer, as opposed to subtractive manufacturing
and formative manufacturing methodologies”[9]. Although 3D
printing was formally introduced almost three decades ago,
it is only in recent years that the interest in 3D printing has
exploded. The rapid technological advancement of 3D printing
and continuous growing attentiveness brings us to the verge
of a new paradigm shift in manufacturing.

3D printing is a flexible production process that requires
minimal setup as compared to traditional processes, and de-
spite only being in the early phase of adoption shows signs
of delivering great environmental benefits. Such an increase
material efficiency, reduction of waste, lowers the carbon
footprint through localized production and less transportation,
and eliminates or reduces the needs for inventories[10].

It was initially a technique solely used for rapid proto-
typing. However, as the technology has matured, so have
the applications. Nowadays, we see that AM has unlocked
new opportunities with more and more turning towards 3D
printing for larger industrial production and even for mass
customization.

Mass customization is the capability offered by firms to
provide product variety and customization on a large scale[11],
and is not something that is easily achievable as it requires a
highly flexible production technology. 3D printing and mass
customization has been an area of interest for researchers for
some time already but is not something that is widely applied
so far.

Although 3D printing offer benefits such as increased design
freedom, tool-less production and high flexibility[12] that
easily has the potential to address individual customers product
desire and lead to mass customization it alone have not really
been able to penetrate the manufacturing industry. However, by
using 3D printing in the right manufacturing environment such



as an RMS, it could expedite firms journey towards achieving
mass customization at a wider scale.

There are only a select few studies on using 3D printers
as a part of the manufacturing for RMS. One example is a
modular manufacturing system [13]. This system consists of a
3D printer, post-processing, assembly, inspection and packing
modules. The 3D printer is used to achieve variety, allowing
the system to achieve personalized or mass customization
in manufacturing. The paper notes that current research has
mainly focused on 3D printers itself and creating service
models on using it. However, making 3D printers a valid
manufacturing method requires a more advanced 3D printing
model supported by digital technologies.

A second example is given by Adam [14], where a 3D
printer has been added to a RMS. In their study, a miniature
manufacturing system inside a movable container was built,
including a module with a thermoplastic material extrusion
printer. The system was made to manufacture parts with a high
level of customization. Further the container could be moved
where the parts are needed and the just- in- time principle
could be applied.

One of the limitations of AM systems is that most 3D
printers are stationary, causing isolation, making it difficult
to combine different technologies and overcome limitations of
the individual processes [15].

There are examples of mobile robots that can 3D print on
the floor with plastic [16, 17, 18] and concrete [19, 20, 21].
These systems utilize one or more mobile robots to 3D print
objects in a flexible manner. Since mobile robots are used, the
systems can print large parts in any given location. One of the
problems with printing on the floor is that the quality of the
product is low. If the floor is dirty, uneven, or an object on the
floor can damage the 3D printed part. In addition, the mobile
robot positioning isn’t that accurate, which further reduces the
quality of the 3D printed part.

IV. MODULAR 3D PRINTER SYSTEM

Based on the previous chapters, a demonstration has been
developed to demonstrate how the concept of RMS and AM
can be used in warehouses. The idea is to have a system that
can automatically move a 3D printer in a warehouse and print
parts without human intervention.

A system has been created to showcase how a mobile 3D
printer platform can work. The system has been limited to
plastic printing, for simplicity and since the technology is quite
mature and in wide usage.

A. System setup

One approach that can be used is the autonomous industrial
mobile manipulators (AIMM). The AIMM uses a mobile robot
to transport a robot arm between workstations. In the previous
study [22], an AIMM was split into two parts to increase the
utilization of the robot arm and mobile robot. The same AIMM
principle from [22] can be used to create a mobile 3D printer.
In this case, the robot arm is replaced with a 3D printer.

The system has been made to be automatic without human
labor. Most of the 3D printers on the market today use vertical
printers. When these printers are done printing, a human needs
to pick the part of the printer and might risk damaging the part
when removing it.

A different type of printer is a conveyor-based 3D printer.
These printers print at a 45-degree angle onto a conveyor. By
printing on a conveyor, the printer can print parts where there
is no restriction on the z-axis (endless). In addition, printing
on the conveyor allows for automatic removal of printed parts.
After each print, the 3D printer can move the part of the
conveyor.

Therefore, a Creality CR-30 [23] conveyor printer is used.
It can print parts with dimensions of 200x170x∞ mm. The
mobile 3D printing platform is fitted with the 3D printer and
consists of six main parts:

1) 3D printer: For automatic 3D printing and removal of
parts.

2) Raspberry Pi: The main computer for the platform is
a raspberry pi

3) Batteries: Two 12v batteries are used to power the
platform

4) Voltage converter: Used to convert the 12v DC from
the batter to 230v AC for the 3d printer

5) Movable marker: A marker on a linear actuator is
placed in front of the platform, for automatic pickup
of the mobile robot.

6) Mobile robot: The mobile robot is used to transport the
3D printer

The platform is fitted with five 12V batteries connected in
parallel. Since the 3D printer uses 230V, a voltage converter
is needed to convert from 12 DC to 230V AC. Figure 1 shows
the platform and the six components.

Fig. 1. The six main parts of the platform. (1) 3D printer, (2) Raspberry Pi,
(3) Batteries, (4) Voltage converter, and (5) Movable marker (6) Mobile robot.

A mobile robot (MiR100) is used to transport and place the
3D printer. As can be seen in figure 1, there is a movable



marker. This marker is used to increase the positioning accu-
racy of the mobile robot. Using the marker allows the mobile
robot to place and pick up the platform anywhere in the envi-
ronment. A video demonstrating the docking and undocking
of the platform can be seen at https://youtu.be/RtOX0HGiqRs.

B. Communication and control

There is a need for communication between all parts in
the system. For simple and reliable communication between
the different parts, the Open Platform Communication Unified
Architecture (OPC UA) [24] standard is used. The OPC
UA standard is an IEC 62541 standard used for industrial
communication [25]. In this system, the OPC UA server is
used as a bridge to create communication between the mobile
robot, 3D printer and control computer, as can be seen in figure
2.

For control of the 3D printer, OctoPrint [26] is used.
OctoPrint is an open-source web server that allows the user to
control 3D printers remotely [27]. A python API can be used
to start and stop prints, monitor the printer and collect data. A
python program is created which connects control functions in
OctoPrint to the OPC UA server. It is possible to start prints
and monitor the printer remotely with the OPC UA server.

As can be seen in figure 2, the main control system is
the manufacturing processes management (MPM). The MPM
is used to tell where the mobile robot should drive and
what the 3D printer will print. The idea is that an enterprise
resource planning (ERP) system or warehouse management
(WM) system, sends an order to the MPM system. Then the
MPM will order the mobile robot to transport it to the required
place and the 3D printer will start to produce parts.

An example of such a case can be if the WM system notices
that it is almost empty of a part, it can send an order to the
MPM for a refill of parts. Then the MPM system orders the
mobile robot to transport the 3D print platform and the printer
will start to produce parts.

C. Demonstration

To showcase how the system works a video demonstration
is created. The demonstration shows two example use cases,
one for just-in-time production with a CNC machine and the
second example in refill of parts. The video can be found at
https://youtu.be/Z6WQe1bf648.

In the video, the 3D printer starts producing a part and au-
tomatically ejects it to the manufacturing system. The mobile
robot picks up the 3D printer platform and transports it to
storage shelves. Then the 3D printer prints a different part to
show automatic refill of storage. Afterward, the mobile robot
will pick the 3D printer again and move it to an assembly
station and the 3D printer starts to print parts.

V. DISCUSSION

Large warehouses use a lot of resources and energy and
it can be beneficial to implement a manufacturing system
inside a warehouse to reduce the overall size of the warehouse

building. Combining RMS with AM allows such warehouse
manufacturing system to become more flexible and automated.

One disadvantage of our mobile 3D printer system is that the
platform has wheels. It can lead to an unstable platform that
can reduce the quality of printed objects. A proposed solution
would be to remove the wheels of the platform. Instead of
pulling the platform, it can be lifted up by the mobile robot
and rigidly placed where it is needed. Additionally, the system
faces a calibration challenge as the accuracy of the 3D printer
may be compromised during relocation.

However, this is a very flexible system and the mobile
robot is able to transport the 3D printer to any position in the
environment. In addition, having a conveyor 3D printer allows
for continuous 3D printing without any human intervention.

Despite these strengths, the study does face certain limi-
tations. Further investigation is required to determine which
parts are most suitable for printing within this system. Addi-
tionally, the potential impact on the printer’s accuracy caused
by frequent transportation remains a subject of concern that
necessitates additional scrutiny.

It should be noted that 3D printers are currently slow
production methods. If the parts are large, the manufacturing
process is very slow. However, if the parts are small, they
can be produced much quicker. It is possible to add more
3D printers to scale up the production volume. In addition,
3D printers can work almost without human intervention, 24
hours a day.

VI. CONCLUSION AND FURTHER WORK

In this paper, we have introduced emerging industry 4.0
technologies, such as AM with RMS, as part of a warehouse
manufacturing system. This system can manufacture parts on
demand, instead of storing all parts. This can reduce the
size of the warehouse, which is of crucial importance in a
sustainability perspective.

We have proposed a mobile 3D printer platform that can be
used for automatic refilling. The system includes a conveyor
3D printer that allows for automatic removal of parts. The
system can be controlled automatically through the use of
the OPC UA server and an MPM control program is used
to control the production of parts.

A. Further research and challenges
A small-scale system is developed in this paper to showcase

how RMS and AM can be used in a warehouse. However, there
are still many challenges that need further research.

1) Expanding the Warehouse with RMS: The extent to
which significant warehouse reduction or elimination is possi-
ble when using an RMS system, should be tested and modeled
in order to gain perspective on whether such a concept is
achievable in reality. Also, it would be of interest to see a
modeling of an RMS factory and warehouse combined, in
literature. A successful example of this would be of great
interest to industry, as it would have the potential to decrease
costs relating to supply chain activities. Exemplifications of the
theories presented in this paper would be of use to observe the
exact potential of this.



Fig. 2. How the system is connected together

2) Supply chain distribution: The convergence of techno-
logical innovations within Industry 4.0 is resulting in many
new promising solutions. The reconfigurable 3D printing plat-
form is an example where different Industry 4.0 solutions such
as IoT, autonomous robotics, and 3D printing converge, which
can bring disruptive transformation to entire supply chains. To
further understand the effect and applicability of this system
it would be highly beneficial to look at how the supply chain
can be affected by the reconfigurable 3D printing platform.
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Abstract—As the world moves towards mass customization,
there is a need for a manufacturing system that can quickly
adapt to market changes. Reconfigurable manufacturing systems
(RMS) have been proposed as a solution. RMS is designed to
be modular with a high degree of flexibility. However, such a
structure creates a lot of complexity. For instance, if the modules
are moved or changed, the robot arms in the system must be
re-programmed. Adding 3D cameras and image recognition to
the robot arms can solve some of these problems. Nevertheless,
creating image recognition models is time-consuming work, re-
quires human labor, and can increase the cost of manufacturing.
To manufacture a large variety of products, there is a need to
create image recognition models for each product. One method
to automate the generation of image recognition models can be
to use synthetic data. Synthetic data can be used to generate a
large amount of labeled data, which can be used to train image
recognition models.

In this paper, we propose a method for training image recog-
nition models using synthetic data, which can further automate
robots in RMS. Specifically, the system utilizes a 3D model of
a part to generate images, which are then processed by a cycle
generative adversarial network (GAN) to enhance their realism.
These images are subsequently auto-labeled and employed to
train an image recognition model compatible with an industrial
robot arm.

Index Terms—Industrial robot arm, Image recognition, Re-
configurable Manufacturing System (RMS), Cycle Generative
Adversarial Network (GAN)

I. INTRODUCTION

The manufacturing industry is transitioning from mass
production towards mass customization, necessitating more
frequent changes in manufacturing systems to accommodate
new products and variations in demand [1]. Reconfigurable
manufacturing systems (RMS) offer a solution to address these
changes by providing modular manufacturing systems that can
easily scale up or down and adapt to market fluctuations [2].
However, RMS still faces several challenges. For instance,
RMS is designed to be reconfigurable at both the hardware
and software levels [1], which requires the entire system and

control software to be adjustable and flexible. Furthermore,
the modular nature of RMS introduces additional complexity
to the system [3], resulting in extended setup and programming
times for manufacturing systems.

An example of an RMS featuring a modular structure
is presented in [4]. This RMS employs a mobile robot
to autonomously reconfigure the system’s platforms without
human intervention. A demonstration video of the system
can be viewed at https://youtu.be/UXUlaawd8Ps. However,
the system has a drawback: the mobile robot lacks accuracy
when positioning the platforms that form the customized
production line. Therefore, the robot arms in the system
must be programmed for each reconfiguration. Given that
RMS is designed for frequent reconfigurations, the robots
and system require constant reprogramming, which is both
time-consuming and demands robotics expertise. For future
research, it is suggested to investigate how the system can be
automatically programmed.

One approach that can automate the programming/control of
the robot arms in an RMS is to use Industry 4.0 technologies.
Industry 4.0 is the fourth industrial revolution which brings
new technologies such as the internet of things (IoT), cyber-
physical systems (CPS), big data and analytics, simulation and
digital twin, artificial intelligence (AI) and additive manufac-
turing [5]. Singh et al. [6] note that Industry 4.0 technologies
are essential for the future success of RMS.

One Industry 4.0 technology that can be used to automate
the programming/control of the robot arms is to use AI with
a bin-picking system. For example, using 3D cameras with
image recognition to pick objects automatically. For example,
robot arms equipped with 3D cameras and image recognition
can classify objects and determine the distance [7]. Fujita
et al. [8] looked at four state-of-the-art bin-picking solutions
and investigated what technologies should be combined for
effective bin-picking by robots. They found that in all the
systems industrial robot arms were used because of their high



accuracy and were combined with suction grippers and RGB-
D sensors with CNN-based algorithms.

However, the challenge of using the CNN-based algorithms.
In a typical machine learning project can be categorized
into four steps, data collection, data labeling, model training,
and deployment. One challenge is that the labeling step can
consume up to 80% of development time [9]. Moreover, deep
neural networks require substantial amounts of labeled data
for training [10].

This relates to big data, which comprises four dimensions:
volume, velocity, variety, and veracity. Volume relates to the
amount of data, variety describes the types of data that are
available, velocity is related to the speed at which the data is
generated and the speed the data is processed, and veracity
refers to the reliability (correctness) of the data [11].

Large, diverse, and accurate labeled datasets can be used
to develop effective machine learning models. For image
recognition, this entails capturing multiple images of an object
from various angles, backgrounds, and lighting conditions.
This process can be time-consuming, labor-intensive, and
expensive, especially when considering the need to adapt
to mass customization in manufacturing. Consequently, new
machine learning models must be developed for each new
product manufactured.

Therefore, to automate this process there is a need for a
method to create data that can be used to train the machine
learning model. One method that can be used to create training
data, is generating synthetic data. Using synthetic data can
give a cost-effective method to get large amounts of labeled
training data [10].

One of the most used methods to generate synthetic data
is generative adversarial networks (GAN) [10]. The GAN are
neural networks that consist of two networks, one generator
that generates the data and a discriminator. When the model is
trained, the generator generates images, and the discriminator
will try to identify which images are real and which are fake.
The goal when training is to reach an equilibrium where
the generated images follow the same distribution as the real
images.

Generative Adversarial Networks (GANs) are a versatile
class of neural networks that can be employed for a wide
range of applications. For instance, Zou et al. [12] utilized
GANs to enhance the calibration process of a welding robot,
resulting in improved performance, while Mishra et al. [13]
leveraged GANs for effective footstep planning in humanoid
robots. However, a significant challenge associated with many
GANs is the necessity for large datasets containing paired
image-to-image translations, such as Pix2Pix [14]. Acquiring
these datasets can be difficult and time-consuming.

To tackle this challenge, Zhu et al. [15] used another
approach, namely, cycle GAN. Cycle GAN does not require
paired images and is trained in an unsupervised manner.
The cycle GAN uses two generators and two discriminators,
and when training, the images are translated two times. One
to translate the image, and a second time to translate the
translated image back to the original image. Rao et al. [16]

explored the use of cycle Generative Adversarial Networks
(GAN) to make simulations more realistic. By using rein-
forcement learning, robot arms can be trained to pick objects
automatically. However, the challenge lies in ensuring the
simulation accurately reflects reality, which is where cycle
GAN comes in, transforming simulated images to appear more
realistic.

In the manufacturing of new products using CNC machines
or additive manufacturing, CAD 3D models of the product are
often readily available. These 3D models can be harnessed
to create synthetic images for training machine learning al-
gorithms. Building on this concept, Hanssen [17] designed a
system that employs 3D models to generate images in various
orientations, which were subsequently used to train a VGG16
model for image recognition. However, solely relying on the
generated images with the VGG16 model [18] did not result in
an effective image recognition system. Furthermore, Jordon et
al. [10] highlight that the utilization of synthetic data remains
an emerging research area, characterized by a scarcity of
established frameworks for implementing the technology.

In this paper, we build upon Hanssen’s work [17] by
combining 3D models with a cycle GAN to create more real-
istic images and implementing YOLOv5, a fast and powerful
image recognition model. We also propose a system structure
detailing the necessary steps for creating an image recognition
model from a 3D model.

The main contribution is to propose a novel method for au-
tomatically generating image recognition models for industrial
robot arms in RMS, eliminating the need for reprogramming
robots after system reconfigurations. Additionally, we show-
case the practical implementation of this approach.

The rest of the paper is organized as follows: Section II
proposes how the image recognition model can be generated
from the 3D model and how the system works, and in Section
III, experimental testing of the system is conducted. Then the
paper discusses the results and concludes in Section IV and
V.

II. A METHOD FOR GENERATING SYNTHETIC TRAINING
DATA

This section presents a system for automatically generating
image recognition models for 3D-printed parts. These models
can then be seamlessly transferred to robot arm platforms, en-
abling the robot arms to directly utilize the image recognition
models for object detection.

A. Generating synthetic data

The first step is to generate images from the 3D model. A
Python program imports a 3D model as an STL file, rotates
the model to different orientations and generates images from
the model, as can be seen in Fig. 1. However, the resulting
images may not resemble realistic 3D-printed parts. Therefore,
it is necessary to further process and enhance the images to
achieve a more lifelike appearance.



Fig. 1. The generated images of an STL file with different orientations.

B. Cycle GAN

As mentioned, the generated images do not have realistic
features. One method that can be used to make the image look
more realistic, is a translation system. The translation system
can be used to generate new synthetic images based on real
or synthetic images.

Therefore, cycle GAN is trained to translate the synthetic
images from the 3D model into real-looking 3D printed
parts. When training the cycle GAN, it was noted that if
the generated images have white backgrounds, as shown in
Fig. 1, the cycle GAN network will end up focusing on the
background instead of the parts. Therefore, background images
can be inserted into all the generated images for the training
of the cycle GAN.

Moreover, filters can also be used. The idea of the filters
is to slightly change the images with either a blur filter or
by increasing or decreasing the brightness, sharpness, and
contrast. If the filters made too big changes to the images,
these filters would be added to the cycle GAN. However,
small adjustments in the generated images would improve
the translated images from the cycle GAN. Fig. 2, shows the
images used to train the Cycle GAN.

Fig. 2. The cycle GAN training approach: a) is the generated images, where
backgrounds have been inserted, and b) is the real 3D printed parts used to
train the cycle GAN.

In this study, we utilized 24 unique 3D models to generate a
total of 2,700 synthetic images. The same 3D models were also
3D-printed and photographed, resulting in an additional 2,700
images. This provided us with a combined dataset of 5,400
images, comprising both generated and photographed images.
Furthermore, we employed the code from [19] to implement
the cycle GAN. The cycle GAN was tested on a 3D model not
included in the training dataset, yielding the results illustrated
in Fig. 3.

Fig. 3. The image shows the resulting cycle GAN, where a) The input images
of the cycle GAN. b) The output from the cycle GAN.

C. Image recognition model

The You-Only-Look-Once (YOLO) object detection algo-
rithm is known for its high accuracy and rapid processing
capabilities, making it suitable for real-time applications [20].
By extracting the x and y coordinates of detected objects,
YOLO can be employed to control robots [21]. In the proposed
system, YOLOv5 [22] is employed to provide object position
information to the robot arm controller.

YOLOv5 primarily consists of four models: YOLOv5x,
YOLOv5l, YOLOv5m, and YOLOv5s. The YOLOv5x model
is the most comprehensive, generally yielding the best results,
while the other three models are simplified versions. The mod-
els differ in terms of feature extraction, convolutional kernels,
specific network locations, parameter count, and overall size
[23].

Given that the generated images contain only one part
centrally positioned, an automatic labeler can be used. The
”Automatic YOLO Labeler” library on GitHub [24] is capable
of identifying the main object within a frame and saving its
position. This library leverages the U2-Net [25] for salient
object detection, which removes backgrounds in images.

When the images are labeled, a background is added to
the pictures and a filter to improve the training of the image
recognition model. An illustration of the automatic labeling
can be seen in Fig. 6.

D. The image recognition system

The automatic generation of the image recognition model
can be divided into four main steps:

1) Generate images with different orientations.



Fig. 4. The images are automatically labeled, and a new background is
inserted.

2) Run the images through a cycle GAN to make the
images look more realistic.

3) Then label the images, insert background images, and
run the images through a filter.

4) Finally, the images are used to train the YOLOv5 model.
All of these steps can be executed automatically, and the

image recognition model can be transferred to a robot arm
and start picking objects automatically. An illustration of the
steps can be seen in Fig. 5.

Fig. 5. On the left side, all the steps are used to create the image recognition
model, and on the right side, the images are transformed.

III. SYSTEM DEMONSTRATION

A demonstration has been built to showcase how the system
works. First, we explain how the image recognition model is

created and then show video demonstrations of the system
with robot arms.

A. Generating the image recognition model

The system is demonstrated using the three objects. A total
of 12,000 images were generated by creating 4,000 images
for each of the three 3D models with varying rotations. These
images were then processed through the GAN to enhance
realism and incorporate background images. As previously
mentioned, the YOLOv5 algorithm is employed for the image
recognition model, specifically using the largest pre-trained
weights model, YOLOv5x [26].

Initial tests revealed that training the model with 100 epochs
led to mislabeling and incorrect object identification, whereas
training with 200 epochs resulted in overfitting, preventing the
model from recognizing the objects. Consequently, training the
model for 150 epochs yielded the best outcomes and the loss
from the training can be seen in Fig 6. Additionally, an Intel
RealSense D405 camera is utilized in the demonstration to
obtain depth information from the camera frame.

Fig. 6. The loss from training with 150 epochs.

B. Demonstrations 1 and 2

The initial two demonstrations illustrate the performance
of the image recognition model in conjunction with different



robot arm movements. In the first demonstration, the robot
arm moves in a square pattern, increasing its height after
each completed pattern. The image recognition model operates
simultaneously with the robot arm’s movement. A screenshot
of this test is provided in Fig. 7, and the video can be viewed
at https://youtu.be/6lGjiVP21Dg.

Fig. 7. Screenshot from the first demonstration, with a) depicting the camera
approximately 160mm from the table and b) showing the camera 300mm from
the table.

The second demonstration, available at https://youtu.be/
6TmoyWvbd5Q, features the robot arm moving up and down
slowly while the image recognition model runs concurrently.

Both demonstrations reveal that the image recognition
model performs well at close distances. However, as the
distance increases, the model’s ability to recognize the object
deteriorates.

C. Demonstration 3

The objective of the third demonstration is to automatically
pick up an object using the image recognition model. A Nachi
MZ07 six-axis industrial robot arm equipped with a suction
gripper is utilized for this purpose, and the demonstration is
limited to a single object. In this demonstration, the robot arm
relies on the camera for navigation, adjusting its position based
on the object’s location within the camera frame. Once the
suction cup is aligned with the object, the robot arm descends
with a fixed movement to pick it up and then places it in a
designated red box. To demonstrate the system’s reliability,
the robot arm repeats the process three times. The video can
be found at https://youtu.be/oD82GAP8Ffs.

IV. DISCUSSION

Traditionally, RMS needs to set up and program robots
for each reconfiguration of the RMS. In this paper, we have
proposed a method that can be used to automate the process
of creating an image recognition model. This again can
allow robot arms in manufacturing systems to become more
automated and reduce the need for humans.

Moreover, in Industry 4.0, we have gotten new digital
technologies such as digital twins, Big data, and simulation.

These technologies can be used to digitalize manufacturing
systems, but connecting or using these technologies with
physical/real systems can be challenging. Using cycle GAN,
can be an effective method to transform digital 3D models and
make them look more realistic (real).

We also propose a system to generate the image recognition
model automatically. The system takes in a 3D model, which
is used to generate synthetic images. These images are then
transformed with a cycle GAN, to make them more realistic.
Then the images are automatically labeled, a background is
added, and a filter is applied to make them ready to be trained.
In this system, we use YOLOv5 since it is a fast method that
can accurately detect objects but also tell where in the picture
the object is. The image recognition model can be directly
transferred to the robot arm for the pick and place of parts. It
can also allow robot arms to work with objects without any
human intervention.

The method achieved good results for close-ups, but several
issues were experienced from a distance. To see what the
image recognition model is focusing on, EigenCAM [27] is
implemented. EigenCAM is a class activation map that can be
used to find what pixels of the image the model is focusing
on. After implementing EigenCAM, the main problem seems
to be that the model is focused on specific parts of the part
and not the general shape of the part. Another challenge is
the effect of different lighting conditions and the background
surface. If the light in the room is too strong or not strong
enough can lead to no recognition. In addition, if the object
is on a reflective surface and there is a lot of glare, the object
will not be recognized.

Furthermore, as seen from the first two demonstration
videos, the box is rarely recognized. However, the other
objects are very well recognized at a close distance and the
image recognition model can label them correctly. The box
detection might be worse because it does not contain any clear
feature that the image recognition model can focus on.

V. CONCLUSION AND FURTHER WORK

In this paper, we have developed a method on how an
image recognition model can be created automatically without
the need for humans. The system takes a 3D model as
input and generates images from the 3D model with differ-
ent orientations. These images are transformed with a cycle
GAN, to make them look more realistic. The Images can be
automatically labeled, trained, and deployed on a robot arm
for pick-and-place operations. This method can therefore be
used to automatically create image recognition models, which
can reduce the reconfiguration time of RMS.

We have also developed three demonstration videos. The
first two videos show the performance of the image recognition
model when the robot arm is moving. The third video shows
pick and place with an industrial robot arm.

As mentioned in the discussion, there are many challenges
with this system that must be solved before this system can
be deployed in an RMS. For instance:



• To improve the detection of parts, the image recognition
model must be improved. The first part is to find a method
that allows for the detection of parts from a distance.

• In this paper, we create a cycle GAN that is used for 3D-
printed parts in black. Further work should investigate if
the same cycle GAN can be used from parts that come
from CNC or turning machines. In addition, create a GAN
which can work with all colors, not only black.

• The cycle GAN used in this system can be expanded
and improved. This can be done by adding more images
of real parts and using more 3D models. In addition,
the system can be tested with other methods to create
synthetic data, such as variational auto-encoders (VAE).
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Reconfigurable Manufacturing: Towards an industrial Big Data
approach

Halldor Arnarson1, Bernt Arild Bremdal2 and Bjørn Solvang1

Abstract— As the world is moving towards more personal-
ized and customized manufacturing, the manufacturing system
needs to adapt. One method can be to integrate industry 4.0
concepts in reconfigurable manufacturing systems (RMS). This
allows the manufacturing system to become more self-sustaining
and flexible at the same time. There is however, a lack of
research on how to integrate industry 4.0 concepts such as
industrial Big Data (IBD) into RMS. This paper looks at how
IBD techniques can be used on an RMS for classification and
how to collect data from an RMS. A case study where five
different movable platforms are identified with an accuracy of
more than 85% is showcased.

I. INTRODUCTION

With globalization, manufacturing companies are expe-
riencing more fluctuations in product demand and unpre-
dictable market changes [1]. At the same time, the man-
ufacturing industry is moving towards more personalized
production, which requires more frequent changes to the
manufacturing system.

One approach to handle these changes is to have a re-
configurable manufacturing system (RMS). RMS is built on
modularity and can rearrange itself based on functionality
and production capacity. It provides a system that can quickly
adapt to changes in the market at a reasonable cost.

RMS has the same high throughput as dedicated manufac-
turing lines (DML) and the agility of flexible manufacturing
systems (FMS) while also being able to respond to changes
in the market [2], [3]. It has been shown that taking DML
and adding reconfigurability can give considerable capacity
savings [4].

We are still in the early stages of research on RMS and
how to implement RMS [5]. It has been found that there is a
need for more research on reconfigurability towards industry
4.0 and how to use the industry 4.0 technologies in RMS
[6].

Industry 4.0 brings new technologies such as simulation,
autonomous robots, industrial internet of things (IIoT), cloud,
cybersecurity, additive manufacturing, and Big Data (BD)
and analytics [7]. These technologies enable manufacturing
systems to be self-learning, controlling and aware. Industry
4.0 technologies are fundamental for the success of RMS
[8], making the system more intelligent and self-sustaining.
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One concept from industry 4.0 that can allow an RMS to
become smarter is BD and data analysis [8]. BD for an RMS
can be used to store and gather historical data, trends and
status of the system and machines [8].

BD can be used to manage large amounts of data in an
efficient way [9]. The emergence of the internet has led
to a large amount of data being collected that can not be
handled with traditional tools for analysis and processing.
Data collected from machines, the environment, humans
and manufacturing processes can help improve the product
quality and reduce production costs [10].

BD is a term often used to describe data that is challenging
to manage with traditional tools [11]. It can be defined
as, “Big Data is the Information asset characterised by
such a High Volume, Velocity and Variety to require specific
Technology and Analytical Methods for its transformation
into Value” [12].

BD in industry 4.0 applications can be used for business
intelligence, product quality enhancement, machine health
prediction, production planning and fault tolerance [11].
Combining BD techniques with a cyber physical manufac-
turing system can allow for monitoring of the system and
real-time decisions making for production scheduling [13].
It is also important to note that BD is not only related to the
volume of the data but also the velocity, variety and veracity
[14].

There are differences in how BD is used in different
industries. For example Industrial Big Data (IBD) requires
other processing techniques than for BD in social networks
[15]. IBD is related to machine generated data instead of
human related data and can be collected from machine
controllers, manufacturing systems and sensors [16].

As mentioned before, RMS is built on modularity and
can contain multiple platforms that are working together. In
this paper we will define IBD for RMS, as data collected
and analyzed from the whole manufacturing system. This
includes multiple platforms, machines, sensors, logistics sys-
tems, ERP system and so on. Collecting and analyzing data
from one platform or machine can be considered small data,
but collecting and using data from multiple platforms and
machines is IBD.

This paper will look at how IBD can be applied to an
RMS and have the following contributions:

• We will look at how IBD can be collected from multiple
platforms in an RMS.

• Look at how the data from a mobile robot that is part
of an RMS can be used with IBD techniques and how
the volume, velocity, variety, and veracity effects the



usability of the data.
The remainder of this paper can be structured as follows.

Section II explains how the system is set up and it is
connected. Section III goes through the four BD processing
where the data is collected and how the data can be used
to predict which platform is being moved. Discussion and
conclusion in section IV and V.

II. DATA PROCESSING

This section look at the system setup, how it is connected
together.

A. System setup

An RMS often consists of different modules that can be
assembled together based on a specific manufacturing task.
For our experiments we have built a modular RMS of the
following components:

• Nachi platform: A small anthropomorphic industrial
robot

• Scara platform: A four joint SCARA robot
• Conveyor lift: A conveyor that can be moved up and

down
• Conveyor platform: A normal conveyor to transport

goods
• 3D print platform: A creality CR-30 3D printer that

can automatically print parts and move them out auto-
matically.

These platforms can be moved and reassembled automat-
ically with a mobile robot (MiR100). The mobile robot is
equipped with a top module that has two pins that can move
out to fasten itself to the platforms. It has a max payload of
100 kg but a towing capacity of 300 kg [17]. In this system,
the platforms are being towed using the docking module.

A video on how the system works has been created
and can be found https://youtu.be/idA-TmYP45c.
The Video showcases the mobile robot picking up the five
different platforms from various positions in the laboratory
and assembling them to a manufacturing system. Afterward,
the mobile robot takes the system apart and builds a new
manufacturing system in front of the vertical storage lift
(Compact lift).

B. Connection

This system consists of robots and other machines from
different brands such as Nachi, MiR and Adept. These
machines have different communication standards and it is
time-consuming and tedious to create a separate method to
collect data from each machine separately.

Another approach to collect data from the robots is to
connect all machines to the Open Platform Communications
Unified Architecture (OPC UA) server. The OPC UA is an
IEC 62541 standard [18] and is widely accepted and used
for industrial communications systems. It is seen as a reliable
and secure standard for data exchange between components
[19]. Connecting machines to the OPC UA server allows for
a standardized method of communication and control.

The large conveyor, conveyor lift and 3D print platform
use raspberry pi for control while the Scara and Nachi plat-
forms have ubuntu machines. All these computers connect
wirelessly to the OPC UA server, update data from the
platforms to the OPC UA server and take data from the
OPC UA server. This method allows for data collecting and
monitoring while the system is running. Figure 1 shows how
the system is connected with the OPC UA server.

Fig. 1. The figure shows how all platforms and the mobile robot is
connected to the OPC UA server.

C. Mobile robot connection
After all the platforms have been connected to the OPC

UA server the mobile robot needs to be connected as well.
The mobile robot has a REST-API which can be used for

simple control of the robot, gather information and changing
settings on the robot. This interface uses JSON messages
with get, post, and put messages. A python program is
created, which works as a bridge between the OPC UA server
and mobile robot. The program takes data from the mobile
robot, sends it to the OPC UA server and takes control data
from the OPC UA server, sends it to the mobile robot.

The REST-API gives somewhat limited information on the
mobile robot and it is not possible to get data directly from
the motors, power system, or sensors. If the payload is too
heavy, the mobile robot will stop and give the operator the
error message “motor stall detected!” or “power limit”. Thus,
it can be beneficial to get data directly from motors, the
power system, and various sensor data.

It is possible to get more data on the mobile robot by
using a web browser and connecting to the IP address of
the robot. Under “Monitoring” and then “Hardware health”
you can get data on the internal Computer, Motors, Power
system, Safety system, Sensors and Serial interface.

The data displayed in the browser is updated automatically
every second. One method to collect this data is by using web
scraping. Web scraping is a technique used to collect data
from websites and save them to databases or files [20]. It
can be used to extract data from websites automatically.

A second python program is created to collect the data
from the web browser and put it in the OPC UA server. The
program uses Selenium [21] which opens a chrome browser
and goes to the IP address of the mobile robot. Then opens
the “Hardware health” pages and extends all the windows to
show the information from the mobile robot.



From the “Hardware health” page, there are 237 variables.
For the sake of simplicity, saving time and processing power,
only a set number of variables were chosen and limited to
84 variables. These variables are constantly read from the
website and updated to the OPC UA server. The variables
collected were on the motors, power system and sensors. A
screenshot from the data in the OPC UA server can be seen
in figure 2.

Fig. 2. The figure showcases the data taken from the web browser and
transferred to the OPC UA server. The program UA Expert [22] is used
to view OPC UA server, where the yellow square shows the data from the
browser.

D. Data characteristics
When the data has been collected and processed it can

be analyzed by looking at the characteristics. In the case of
BD, it can be divided into four main characteristics volume,
velocity, variety and veracity [14] [23]. Where:

• Volume: Is related to the amount of data/information
being gathered. There is a need for algorithms that can
handle and process large amounts of data in real time
[14].

• Velocity: Is related to the speed at which the data is
created, gathered and streamed [24].

• Variety: Data variety is related to the different data
sources where the data is collected [24]. In industrial
manufacturing systems, this often relates data from
sensors, machines and other manufacturing equipment.

• Veracity: Is related to the quality accuracy and correct-
ness of the data collected [25].

To evaluate the data from the mobile robot it can be
beneficial to have the update rate and size of the data
coming from the mobile robot. A simple python program
is created, that measures how often the variable pitch from
the gyroscope and the current of the left motor was updated.
The data is updated every second. The data size collected was
also measured, for all the 237 variables the size is around
2208 bytes.

When relating these four characteristics to the mobile
robot:

• Volume: With the 237 variables, the data collected when
the system is running is 2208 bytes per second. This
can be considered as low volume and since this is data
collection is from one module in an RMS, it will fall
under small data instead of IBD. It should be noted that
having multiple mobile robots or platforms would then
create IBD.

• Velocity: The velocity of the data is rather slow (ones
a second) and there is a chance of missing important
readouts from the sensors. This can also affect the
response rate from the sensors and it is more beneficial
to have a higher update rate of the data.

• Variety: A total of 237 variables can be collected from
the mobile robot on the internal Computer, Motors,
Power system, Safety system, Sensors, and Serial in-
terface. There is data on almost all components in the
mobile robot. This data gives detailed insight into what
the mobile robot is doing and the status of the mobile
robot.

• Veracity: As mentioned, the data from the mobile robot
isn’t made readily available by using their REST-API.
There is no information on how the data is collected,
transported, and the update rate of different data. It is
hard to say something about the accuracy or correctness
of the data, but a low update rate (velocity) can affect
the data quality. With low velocity of the data the system
can miss readouts from the sensors, which reduces the

III. CASE STUDY

After setting up and connecting the system, the next step
is collecting the data and using it to do classifications. This
paper focuses on data collection for the mobile robot since
it is used to reconfigure the system. The experiment is
conducted in a controlled environment and only focuses on
one platform. Thus, it will therefore fall under small data and
not IBD. Regardless, we can still use the IBD techniques and
see how the main characteristics of IBD can affect the data’s
usability in making predictions.

A. Case study/idea behind the system

As mentioned before, the mobile robot is used to move
the platforms around in the laboratory. All platforms in the
system have a marker in front which the 3D cameras can
detect and the marker allows the mobile robot to position
itself accurately relative to the marker. However since all the
platforms are on wheels, they can easily be tilted or moved
out of position (e.g by a human operator). If a platform is
moved by someone other than the mobile robot, the system
will loose the position of the platform. Thus, there is a
scenario where the mobile robot is driving around looking for
platforms that have been moved out of its predicted position.
Now the idea is to collect and use BD from the motors,
power system and other sensors in the mobile robot in order
to identify which platform is found. All platforms in the
system vary in weight, size, wheel diameter etc. and requires
an unique set of forces in order to be moved around.

In this paper six cases are considered, one for each of
the five platforms and a sixth when there is no platform
attached. The goal is to use data from the motors, battery
and sensors with machine learning to classify what platform
is being moved.



B. Big data processing
BD processing can be divided into four main steps; data

collection, data preprocessing, data storage and data analysis
[24].

• Data collection: Data can come from different sensors
or other devices that are connected up to the internet.
Therefore the first step is to collect the data from various
sources.

• Data storage: The data that is collected needs to be
stored. With BD, the data comes from different sources
and is often diverse. It might need software that is
compatible with multiple data types.

• Data preprocessing: Is used to clean and process the
data that has already been collected. Some of the data
that is collected might be invalid and needs to be
removed. Other data needs to be unified and structured
so that it can be analyzed with data from different
sources.

• Data analysis: The last step is data analysis. Analyzing
BD can give information and insight into processes that
only BD analytics can give.

These four steps are used to process the data from the
mobile robot.

C. Data collecting and storage
Machine learning can be used for various types of clas-

sification, but it needs historical data to train/fit a machine
learning algorithm. In this case, data needs to be collected
while the system is running.

To collect data, a program is created that drives the mobile
robot to a random position and orientation in the laboratory.
The area where the robot is driving is marked in figure 3.

Fig. 3. Laboratory training arena: Collecting data for learning algoritm.

Data is collected while the mobile robot drives towards
30 random positions. When the mobile robot is done, the
data is stored in a CSV file. The program is executed for all
five platforms and then with no platform. The same data is
collected a second time with 30 random positions. This data
is used to validate and see if the classifier works.

A short video showcasing data collection from all
platforms can be found at https://youtu.be/
0Sy457WWHbM.

As can be seen in figure 3, two spots are marked with a red
square. If the mobile robot drives over these areas, there is
a high likelihood that the robot will get stuck because of the
pumps. If it gets stuck, it will generate the error “Right motor
stall detected!”, “Left motor stall detected!” or “Motor power
usage above limit!”. When the mobile robot gets stuck, the
data collection needs to be restarted.

An example from the variable “Battery 1 current” can be
seen in figure 4.

Fig. 4. The graph shows a example of data collected on for the variable
“Battery 1 current”. It shows data from all five platforms and where there
no platform (none).

From the figure 4, there is a clear difference when the
mobile robot is not moving a platform and when it’s moving
a platform. It can be harder to see clear differences between
the platforms.

D. Data preprocessing and analysis
To train/fit the machine learning model the python library

scikit-learn [26] is used. Scikit-learn is a well known machine



learning library for python [27]. It has different machine
learning algorithms for classification, such as naive Bayes
classifier, k-nearest neighbors and linear support vector clas-
sification.

K-nearest neighbors is a simple and popular machine
learning algorithm to do classification [28]. The algorithm
can classify objects using the training data to find the nearest
new object based on euclidean formula [29].

In this case, the k-nearest neighbor’s method is used
because of its simplicity and ease of use.

It is beneficial to have clear data, where it is possible to
detect patterns. For instance, when the robot has arrived at
its position, it stops and plans a new route before continuing.
When the robot stops, the current of the motors and batteries
becomes the same for all platforms. These measurements is
removed to make the data more clear. After trimming the
data, there are around 550 to 850 measurements from each
of the 84 variables.

It is possible to get the current of the motors and the
discharging rate of the battery. In addition, it is possible to
get data on the current of both batteries and the channel
temperature of the motor controller. These variables can
be used to identify if the mobile robot is pulling heavy
platforms.

Then from the 84 variables, six were used to train the
classifier, as listed below:

• Battery 1 current
• Battery 2 current
• Discharging current A
• Motor current-Left
• Motor current-Right
• Channel temp (of motor controller)
After testing different combinations of the six variables, it

was found that using the ”Channel temp” and ”Discharging
current A” gave the best classification (80-85% accuracy). It
is also possible to use the battery current or motor current,
giving a little lower accuracy of around 80%.

IV. DISCUSSION

In this paper, we have focused on collecting and analyzing
data from the mobile robot in the RMS. Using IBD tech-
niques on the mobile robot gives new opportunities to do
classification with the sensors. As mentioned, the experiment
with the mobile robot has small data and not IBD. However,
the same methods and techniques from the experiment can
be transferable to the other modules and data sources. In the
literature, there is most focus on the amount of data in IBD
cases. However, it is also important to consider the data’s
velocity, variety, and veracity.

The next step is to look at how all the data from the robot
arms, conveyors, 3D printers and other data in the system
can be used together. Merging data from different modules
and sources in an RMS can allow the system to become more
intelligent with the use of IBD.

Using the OPC UA server can be a good method to
connect manufacturing equipment, allowing for simple data
collection. However, it should be noted that connecting

robots and other machines that don’t support the OPC UA
standard can be time-consuming work. For instance, the
mobile robot has valuable data on its website, where a web
browser is needed to collect the data. Creating programs for
both web scraping and the REST-API for data collection is
time consuming. It is more efficient if robot manufacturers
make all sensor data available with an API or through the
OPC UA server.

The data from the website is only updated every second
and gives a low update rate. It can be easier to find patterns
between variables if they are collected more frequently. This
again makes it more challenging to use for machine learning,
where you are trying to find differences between data. With
a higher update rate, it can be possible to estimate how
much payload the mobile robot is moving. By using the same
sensors used to identify which platform is being moved.

In addition, having an update rate of once per second can
impact the data quality. When relating this to the four V’s,
we can see that having a low velocity (update rate) can affect
the veracity of the data.

V. CONCLUSION AND FURTHER WORK

This paper looks at different applications of IBD for an
RMS in Narvik. It focuses on the sensors data from the
mobile robot and how this data can be used.

A classifier is created that uses sensor data from the mobile
robot to identify which platform is being moved. Using the
two variables “Channel temp” and “Discharging current A”
gave the best result (80-85%) with the k-nearest neighbor’s
classifier. Other variables can also be used, such as the
battery current and motor current, giving an accuracy of
around 80%.

With the proposed system structure, a classifier can used
to identify which platform is being moved.

In further work, we look at how to increase the accuracy of
the classification. One method is to create a fixed path/routine
for the mobile robot to drive. When the robot is driving the
path/routine, data is collected, which can be used to classify
which platform is being moved.

It should be noted that both classifiers can be improved
by:

• Collected data over a longer period of time. More data
usually means a more accurate classifier.

• More machine learning classification algorithms can be
tested to improve the classifier.

• Other variables can be tested to improve the classifier.
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A B S T R A C T

Reconfigurable manufacturing systems (RMS) with a rearrangeable structure can quickly adjust their produc-
tivity to meet the dynamic market changes and the demand for high-variety products. Industry 4.0 technologies
have enhanced the RMS flexibility and made the automation of the reconfiguration of the manufacturing system
possible. As an Industry 4.0 technology, wireless power transfer (WPT) can further increase the flexibility of
RMS by providing safe, reliable, and maintenance-free autonomous charging. This paper examines the wireless
electrification of RMS by investigating different WPT configurations that increase flexibility and autonomy,
creating a highly flexible RMS. It also proposes a battery charging platform for further enhancement of the
flexibility of RMS. As a low-cost WPT solution, the paper tests capacitive charging systems. The proposed
charging system has about 135 W power transfer capability at a 5 cm distance and about 84% efficiency.

1. Introduction

Automated manufacturing systems have experienced noticeable
changes passing through three main paradigms. The first paradigm
is Dedicated Manufacturing System (DMS), which focuses on mass
production for cost-effectiveness but with a low variation. The second
paradigm is Flexible Manufacturing System (FMS) that address the pro-
duction variety with low production volume. Finally, Reconfigurable
Manufacturing System (RMS) is the third paradigm with high volume
and high variation production combining the characteristics of the
previous two paradigms. The RMS has a rearrangeable structure that
can quickly adjust its productivity, variety, and flexibility based on the
demand [1].

The dynamic market changes and the increasing competition be-
tween manufacturers to produce high-quality products with innovative
technologies make the RMS an attractive paradigm. Bi et al. [2] pro-
posed a systematic design methodology for RMS, including architec-
ture, configuration, and control design. In practice, however, there is
still a lack of research on how to solve design issues because a limited
number of case studies are available [3]. Although the researchers
have exerted considerable effort in developing RMS for several decades,
there are still significant challenges, and barriers to the actual develop-
ment of RMS in industry [4]. Rösiö et al. [5] explored the theoretical
and practical challenges to achieving RMS design and summarized

∗ Corresponding author.
E-mail address: halldor.arnarson@uit.no (H. Arnarson).

them in three main challenges: to use a structured design methodol-
ogy and gain knowledge in reconfigurability and its characteristics,
and to include the reconfigurability knowledge in a structured design
methodology.

For research and educational purposes, the Engineering Research
Center for Reconfigurable Manufacturing Systems at the University of
Michigan developed a distributed reconfigurable factory testbed [6].
Kovalenko et al. [7] proposed real and virtual environment interaction
(digital twin) framework to evaluate the performance of different ma-
chines and system configurations in a mixed virtual–real environment.
Zuehlke D. [8] proposed adopting the basic principle of the Internet-
of-Thing (IoT) in a testbed to proof-the-concept that moving toward
intelligent manufacturing is a reality. Although the researcher tried to
emulate RMS using a testbed, however, these systems require human in-
tervention to rearrange the system, which is a time-consuming process
and may suffer from limited positioning.

In general, the RMS suffers from several challenges, such as it is
not the complete solution to meet all of the manufacturing require-
ments [2]. Besides, there is still no perfect or the most realistic model
and method for RMS implementation. The rearrangement of the RMS
structure is also time-consuming [6]. The RMS still depends on labor
to rearrange the system structure and energize the platforms, which
might affect the production time and limit the flexibility of the systems.
And recently, the COVID-19 pandemic has added more challenges to

https://doi.org/10.1016/j.jmsy.2023.01.002
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Fig. 1. An illustration of wireless electrification system.

Fig. 2. An exploded view of IPT’s different shape power pads.

the manufacturing systems, including lockdown and maintaining social
distance [9], which can increase the rearrangement time of RMS and
reduce its flexibility.

To tackle the challenges above, Arnarson et al. [10] introduced
the autonomous RMS by using a mobile robot to rearrange robot
arm platforms automatically to achieve flexibility and mobility. As
an expansion, Arnarson et al. [11] presented a highly flexible RMS
by retrofitting a number of manufacturing machines to automate the
reconfiguration of the system, decrease the setup and programming
time, and enhance the system’s flexibility. Randanovi et al. [12] tried
to solve one of the common problems of the conventional wired electri-
fication of RMS by standardizing the connectors and plugs. In contrast,
Arnarson et al. [11] considered Wireless Power Transfer (WPT) as an
emerging industry 4.0 technology for electrifying RMS that tried to
remove the plugs, connectors, and cables to increase the flexibility and
reliability of the electrification of RMS.

The previous research on RMS investigated testbed manufacturing
cells which are aimed for educational and research purposes [6–8].
Recently, researchers tried to develop a practical RMS using industry
4.0 technologies [11]. However, the proposed system still requires
labor to connect the machines to electricity or charging batteries. As
an industry 4.0 technology, wireless electrification can provide the
required energy to these platforms without mechanical contact, similar
to how IoT communication brings wireless communication. Previous
research investigated wireless electrification for various applications in
general and industrial robots in specific. There are also various products
for robot charging applications on the market. However, the focus is
more on one type of WPT, which utilizes magnetic fields.

This paper investigates the state-of-the-art WPT for robotics in
manufacturing applications in the literature and on the markets. Based
on the investigation, the paper proposes a novel approach to the elec-
trification of manufacturing applications based on Capacitive Power

Table 1
A comparison between the main three groups of WPT.

Near-field Mid-range Far-field

Wave Electric/Magnetic Magnetic Electromagnetic
Rang Very short (cm) short (m) Medium long (km)
Frequency low high high Very high extreme high
Power low moderate Moderate Very low
Architecture Simple/Moderate Complex Complex

Transfer (CPT), which creates a new foundation for RMS that signifi-
cantly increases the system’s flexibility and reconfigurability. Thus, we
propose and test a battery platform using CPT that utilizes electric fields
to wirelessly electrify other manufacturing machines in an RMS. We can
summarize the main contribution of the paper as follows:

• Investigating wireless electrification for manufacturing applica-
tions.

• Proposing an autonomous battery platform based on CPT for
electrification of RMS.

• Build an RMS and demonstrate how it can be energized using
wireless power transfer to increase flexibility and automation.

• Simulating, testing, and demonstrating the CPT system with the
battery platform to prove the concept.

We organize the rest of this paper as follows: Section 2 presents
the general concept of wireless electrification of RMS. Section 3 in-
vestigates the state-of-the-art WPT for robotics and manufacturing ap-
plications. Section 4 expands the RMS by building a battery platform
that can power the system in static, dynamic, or quasi-dynamic mode.
Section 5 presents the experimental and testing results of the CPT
system. Section 6 gives a comprehensive discussion of WPT systems in
general and CPT systems in specific. Section 7 concludes this work and
presents our future works.

2. Wireless electrification

Wireless electrification, or WPT, is to transfer electric power with-
out mechanical contact. International Telecommunication Union [13]
defines WPT as ‘‘the transmission of power from a power source to an
electrical load using the electromagnetic field." The three main groups of
these technologies are near-field, mid-range, and far-field [14]. The
classification depends on the size of the transmitter and the receiver,
and the transfer distance. Table 1 summarizes a comparison between
the three main groups in terms of the type of wave, distance range,
operating frequency range, power level, and system architecture.

Near-field WPT utilizes medium- to high-frequency range electro-
magnetic fields for high-power charging applications. Thus, the sepa-
ration distance between the transmitter and the receiver is in the cm
range. WPT can provide static, quasi-dynamic, and dynamic electrifica-
tion [15,16]. It can also energize the system autonomously and poten-
tially address the challenges in the conventional conductive charging
approach, including long charging time, wear and tear of the contrac-
tors and plugs, and the hazard of the electric shock. Using WPT in RMS
provides autonomous electrification and removes the time consumption
of plugging the cables.
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Fig. 3. Capacitive coupler: six plates CPT system (left) and an exploded view of capacitive couplers (right).

Fig. 1 illustrates the functional blocks in the WPT system. The
inverter converts the DC source voltage into a square wave which
depends on the operation frequency of the inverter. The resonant circuit
improves the system’s overall efficiency by minimizing the reactive
power, achieving soft-switching, and high misalignment tolerance. The
resonant circuits also act as low-pass filters that filter out the high
harmonics in the current of the inverter and reduce electromagnetic
interference. Finally, the rectifier stage converts the ac resonant current
into a DC. The wireless electrification system might need other DC/DC
converters, for instance, between the power source and the inverter
or between the rectifier and the load, which depends on the design
specifications. The near-field WPT embraces three sub-group, namely,
Inductive Power Transfer (IPT) and Capacitive Power Transfer (CPT).

2.1. Inductive power transfer

Inductive electrification, or IPT, operates on loosely coupled mag-
netic fields between transmitter and receiver coils. It includes inductive
and inductive resonance. The only difference between inductive and
inductive resonance is the resonance compensation circuits. The trans-
mitter and receiver of the IPT system are also called ‘‘power pads,"
composed of coils to produce alternating magnetic fields, Ferrite to
align and shield the fields, and mechanical supports, as shown in Fig. 2.
The Litz wire provides a solution for increasing the conductivity of
the coil at high operation frequency while screening the magnetic
fields. Nevertheless, both the Litz wire and the Ferrite make the pads
expensive, heavy, and fragile [17]. Depending on the dimension of the
power pads, the coupling and hence the efficiency of IPT systems can
significantly change with the separation distance, and misalignment
changes [18]. Increasing the power pads is one way to achieve better
misalignment performance [19]. However, it will increase the overall
system’s weight, cost, and design complexity.

2.2. Capacitive power transfer

Capacitive electrification, or CPT, utilizes alternating electrical
fields that are confined between transmitter and receiver plates, also
called ‘‘capacitive couplers," to transfer power. We can build CPT sys-
tems using two-, four-, or six-plates configurations. Fig. 3 illustrates a
six-plate configuration of the CPT system’s transmitter–receiver, which
includes four plates forming the capacitive couplers and two plates
screening the electric fields. The six plates configuration can reduce
the safety clearance range from 1m to 10 cm [20]. The transmitter and
the receiver consist of aluminum capacitive couplers, plastic plates,
wooden plates, and shielding plates. The plastic plates offer insulation
protection, while the outer plates work as a shield to screen the leakage
electric fields and offer extra protection. The wooden plates insulate
the screening plates from the couplers. Based on the structure, the
capacitive coupler is lighter and costs less than the IPT power pad. The
CPT system is still sensitive to misalignment [20], yet it has a much
better misalignment performance than the IPT system [17].

Table 2
A Comparison between IPT and CPT.

IPT CPT

Power Range tens of kW hundreds of W
Eddy Current Losses high low
Misalignment Performance bad good
Cost high low
Pads’/Couplers’ Weight heavy light
Efficiency high medium
Fields Shielding complex simple

To sum up, IPT systems contain Litz wires and magnetic screenings,
which are expensive, fragile, and heavy. Besides, the magnetic fields
can interact with the metal parts of the platforms resulting in high
eddy losses, which can increase the temperature of the platforms. As
an alternative, CPT is more suitable for the platform as it tackles the
challenges that face IPT systems. Table 2 lists a comparison between
IPT and CPT systems in terms of power density, losses, misalignment
performance, cost, weight, and efficiency.

3. The state-of-the-art WPT for robotics in manufacturing applica-
tions

Wireless power transfer has several distinctive advantages, includ-
ing reliability, flexibility, and autonomy, making it an attractive solu-
tion in many applications. More than 30 years ago, Esser and Skudelny
[21] investigated wireless inductive electrification using rotatable
transformers fixed on the joint of a robot. They managed to transfer
20 kW over 100 μm. About ten years later, Hirai et al. [22] proposed
IPT for an autonomous decentralized manufacturing system for electri-
fication and data transfer purposes. The proposed system transferred
a consecutive 1250GB data transmission under the continuous 2 kW
power transmission over 100 μm to 500 μm to a servomotor. Since then,
the research has focused more on IPT industrial robot applications. In
this section, however, we focus on the most recent studies on high-
power WPT for robotics in manufacturing applications and investigate
the available WPT solutions on the market. Low power and data
transfer are out of the scope of this paper.

3.1. Robotic arms

Wireless power transfer offers robotic arms distinct merits such as
no risk of electrocution, high convenience and robustness, and water-
and dust-proof [23]. Thus, wireless electrification (WPT) applications
for robot arms have gained more attention. Inductive electrification
(IPT) is the common approach used in robotic arms by applying mag-
netic connections at the joint. Han et al. [23] energized two perma-
nent magnet dc motors in a robot arm using IPT. And they reported
output power of 142.9W at 88.7% transmission efficiency. Besides,
Kikuchi et al. [24] proposed IPT to power a robot manipulator used
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Table 3
Summary of WPT applications in the literature.

Ref. Application Power [W] Eff. [%] Freq. [kHz] Dist. [mm]

[23] Robotic Arm 142.9 88.7 85 100
[24] Robotic Arm 311.6 92 246 5
[25] Robotic Arm 39.9 78 6780 250
[26] Robotic Arm 85.9 84 150 100
[28] Logistic Robot 150 90 300 200
[30] Transport Robot 30 74.2 100 8

in warehouse automation systems. They built a prototype with a maxi-
mum power of 311.6W and total efficiency of 94%. Moreover, Tokano
et al. [25] experimented with a 39.9W and 78.0% power-delivery
efficiency for conventional robot arms. Finally, Wu et al. [26] proposed
and tested a 85.9W multidegree freedom and bidirectional transmission
capability WPT system for robot arm’s joints (see Table 3).

3.2. Transport and mobile robots

For flexible manufacturing, IPT systems have found their appli-
cation with clean factory automation through the dynamic power-
ing of vehicles on monorails which have spread to floor-mounted
automatic guided vehicles and other industrial vehicles [27]. Zhang
et al. [28] proposed an IPT system for a logistic robot within a confined
three-dimensional space around the charging station. In addition, Lee
et al. [29] proposed an IPT system for continuous wireless powering
of multiple transport robots in an electrified monorail system. Table 3
lists the available wireless solution in the literature.

3.3. WPT on the market

Many manufacturers are working to develop WPT technologies for
robot joints of robotic arms applications. TDK [31] offers a 200W IPT
system for mobile robots that has a power distance 100mm to 300mm,
88% efficiency, and a 50W IPT system for robot arms. Moreover,
Waypoint Robotics [32] offers a 300W non-contact charging and energy
delivery system that ensures maximum availability of their mobile
robot fleet. Delta [33] provides a 1 kW IPT system for mobile with a
maximum efficiency of 93%. In addition, Wibotic [34] provides a 300W
IPT charging solution for mobile robots. Table 3 lists the WPT systems
on the market for manufacturing.

Thus far, the previous research has focused more on IPT industrial
robot applications and less focus on manufacturing cells. The examples
in the literature and on the market only use IPT. The IPT systems
comprise expensive, fragile, and heavy components, and they have high
eddy losses. In contrast, CPT is more suitable for the platform as it
tackles the challenges that face IPT systems. To the authors’ knowledge,
there has not been any investigation on CPT to power a manufacturing
cell. In the next section, we propose a CPT system for the electrification
of a RMS manufacturing cell.

4. RMS with battery platform

4.1. The structure of the proposed RMS

Previously, Arnarson et al. [11] proposed an RMS consisting of
five platforms; two industrial robots (Scara and Nachi), a conveyor
platform, a conveyor lift platform, and a 3D printing platform. The
RMS can move and rearrange automatically with the help of a mobile
robot in a manufacturing environment that is flexible and scalable,
and it has the potential to be fully autonomous. A demonstration
video [35] shows the mobile robot picking up the platforms and
assembling two manufacturing layouts. In this paper, we expand the
system by proposing a battery platform to increase the flexibility of
the RMS (see Fig. 4).

Table 4
Power usages of the modules.
Module Power [W]

IRB1 (Scara) 141
IRB2 (Nachi) 242
Conveyor 38
Conveyor lift 54
3D printer 350

4.2. Battery platform

In this paper, we suggest adding two extra platforms to the system,
containing only batteries. While one platform is charging, the other is
powering the system, as shown in Fig. 5. When the platform powering
the system is running out of power, a fully-charged battery platform
can replace it. The capacity of the batteries on the battery platform
decides how long the platform can power the system. The mobile robot
drives to pick up a full battery platform at the charging station and
places it within the RMS. Then, the mobile robot picks up the empty
battery platform and transports it to the charging station. Afterward,
the mobile robot can do other logistics tasks. A video https://youtu.be/
o3jhAhYdPUc demonstrates a simulation of how the battery platforms
change.

The battery platform can also power other platforms in the system in
the static, dynamic, or quasi-dynamic modes, as shown in Fig. 6. Thus,
the mobility of the battery platform gives the system more flexibility,
reconfigurability, and reliability. In addition, the battery platform can
also charge the mobile robot. When the mobile robot is moving the
battery platform, the battery platform can charge the mobile robot. This
allows a flexible method to charge the mobile robot without the need to
turn to a charging point, but it depends on the capacity of the batteries.

5. Experimental validation and testing

5.1. The power requirement

All the platforms have small computers and microcontrollers to
collect data from the sensors and operate independently. For each plat-
form, we measured the power consumption under normal operation.
This means measuring the total power consumption of the computers
and robots/conveyors while they are moving. Table 4 lists the power
usage of all platforms under test operation conditions. The platforms
require low power consumption to run the system, which ranges 43W
to 350W. As the required power is not high, using WPT can be a flexible
solution to power the system.

It should be noted that the conveyor uses only 38W in this sys-
tem since the motor uses a gearbox with a 75:1 ratio. The idea of
this demonstration is to show that a manufacturing system that has
low power consumption can be wirelessly powered. Each platform is
equipped with batteries that can be used to supply the manufacturing
platforms with power peaks as long as the power draw is not higher
than from the WPT system. Large machines, such as CNC and 3D print-
ers, consume large power, which will be a challenge to electrification
wirelessly. These large machines are not reconfigurable, as they re-
quire re-calibration; hence the reconfigurable platforms are rearranged
around them. Thus, we will not consider wireless electrification for
these large machines.

5.2. Capacitive wireless electrification for RMS

As an inexpensive and simple solution for electrifying the RMS, we
will continue investigating the CPT system. We use the same config-
uration shown in Fig. 3 to build the capacitive couplers. The size of
the couplers is 25 × 25 cm, the wooden plate is 30 × 70 cm, and
the shield plate is 25 × 70 cm. The distance between the plates on



Journal of Manufacturing Systems 67 (2023) 379–388

383

H. Mahdi et al.

Fig. 4. The expansion of RMS with battery platform. (1) conveyor with lifting (2) Scara platform, (3) conveyor, (4) battery platform, (5) 3D printer, and (6) Nachi platform.

Fig. 5. The operation principle of the battery platform: The mobile robot drives to pick up a full battery platform (steps 1 to 4), picks up the empty battery platform, and
transports it to the charging station (steps 5 to 6).

the same sides is 10 cm. We utilize a GaN bridge inverter (Infineon
EVAL1EDFG1HBGAN [36]) and four Schottky diodes (C6D04065 A
[37]) to build the rectifier bridge. We also used air-cored inductors
in the series resonant circuit to compensate both transmitter and the
receiver sides with the inductance of 235.1 μH for 𝐿𝑇 and 268.3 μH for
𝐿𝑅.

Fig. 7 presents testing results in the laboratory. The CPT output
power is about 109W with an efficiency of about 73% at 150V input
voltage and 1.3MHz. The maximum voltage is more than 600V across
the couplers, and the maximum current through the receiver side
inductor is about 1A. Due to the harmonics, the current is not a pure

sine waveform. This video https://youtu.be/-mubROmWRcI shows the
testing of the CPT system.

We can further increase the output power by increasing the input
voltage. To further improve the efficiency and increase the transmitting
distance, we also increased the size of the coupling plates to 30 × 45
cm, and the distance between the couplers was 18 cm. The CPT output
power is about 134.6W with a total efficiency of about 84% at 1MHz
and about 5 cm distance between the transmitter and the receiver.

Fig. 8 shows the separation distance’s effect on the CPT system’s
efficiency. The efficiency decreases with the increase of the distance,
which we can attribute to the sensitivity of the compensation circuits
(i.e., the resonant frequency) to the distance change. One way to
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Fig. 6. The two operation modes of battery platform: (a) The dynamic mode. (b) the static mode.

Fig. 7. The voltage across the couplers and the current on the receiver side.

enhance the efficiency is by proposing control techniques to operate the
inverter at a frequency that can adapt to the change in the distance.

When the maximum output voltage of the inverter is 300V, the
voltage across the couplers can reach about 1.9 kV, which is high
voltage stress, as shown in Fig. 9. Fig. 10 shows the currents through

the transmitter’s and the receiver’s indicators. The transmitter’s current
is about 2.2 times the amplitude higher than the receiver’s current.

To prove the concept, we designed a battery platform with three
batteries connected in parallel as a power source and the CPT system
transmitter plates, shown in Fig. Fig. 4. We also equipped it with
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Fig. 8. The efficiency of the CPT system versus the change in the separation distance
between the platforms.

a converter that steps up the 12V input voltage to 300V voltage to
achieve the required electric field strength. Moreover, we retrofitted
the conveyor platform with the receiver couplers, and the step-down
converter stage converted the output voltage from 300V to 12V. The
functional blocks of the proposed CPT system show the parts of the
systems and the components that are used in each part, as shown in
Fig. 11.

Fig. 12 shows the demonstration of a CPT system between two
platforms. In the demonstration, the mobile robot picks up the battery
platform and brings it to the other platforms. Then, the battery platform
starts energizing the conveyor platform, which is not equipped with
batteries. Fig. 12 and the video https://youtu.be/KRwIdJ8fu5A show
the experiment described above.

6. Discussion

Arnarson et al. [11] tried to tackle the challenges that RMS en-
counters by retrofitting manufacturing machines with industry 4.0
technologies. Their system can automatically arrange five platforms
using a mobile robot for manufacturing a specific product. The system
is flexible and scalable and can be autonomous, but all platforms
are energized with batteries, which require human intervention to
charge them. Thus, there is a need for an autonomous method for
charging or electrifying the platforms to make the proposed system
fully autonomous.

Dealing with the charging problem, Randanovi et al. [12] tried to
solve one of the common problems of the conventional wired electri-
fication of RMS by standardizing the connectors and plugs. Another
solution is to use the same principle of charging a mobile robot through
electro-mechanical parts, but this solution limits the platforms’ posi-
tioning and increases the need for maintenance due to the wear and
tear of these contacts.

From the opposing point of view, Arnarson et al. [11] proposed
WPT, which tried to remove the plugs, connectors, and cables to
increase the flexibility and reliability of the electrification of RMS. They
also proposed WPT as industry 4.0 technology to increase the flexibility
of the manufacturing system. One of the industry 4.0 technologies
is the IoT, where we can communicate wireless between machines
and sensors. Similarly, we can wirelessly electrify machines and other
robots, removing restrictions and making them more flexible. It was,
therefore, suitable to include WPT as an industry 4.0 technology and
be implemented in the following paradigms of RMS.

Using WPT, we can utilize static or dynamic WPT to electrify the
system to improve its flexibility and reduce the time to reconfigure
the system [11]. The dynamic WPT can electrify the platforms and the
mobile robot, increasing the system’s extent and cost. In contrast, static
WPT offers a good option to electrify the platforms from each other or a
main fixed machine. The system will get better efficiency by correcting
the misalignment between the platforms.

The researchers previously investigated WPT for industrial robot
electrification with power ranges from tens to hundreds of watts. On
the market, there are already commercial solutions with power ranges
50W to 300W. However, IPT is commonly used in the literature and
industrial robot applications markets. We can utilize static IPT for high
power requirements of the platforms or vast distances between them.
However, IPT systems contain heavy, fragile, and expensive power
pads and are sensitive to misalignment and eddy losses, decreasing the
overall system efficiency.

One limitation of the WPT system which proposed to RMS in [11] is
that when the platforms are not connected to a wireless charging point,
they need to be moved back when their battery is running low. As a
novel approach to the electrification of manufacturing applications, we
proposed a battery platform that can electrify other platforms of mobile
robots in static, dynamic, or quasi-dynamic charging modes to increase
the flexibility and reliability of the WPT charging system.

Building this platform, we increased the distance between the cou-
plers to 5 cm and the input voltage to 300V to achieve 134.6W and
about 84% system efficiency at 1MHz. The proposed system demon-
strated that static CPT is a low-cost alternative. However, the system’s
efficiency can be degraded with the increase in the distance as the
system operates in an open loop. To solve this problem, we will prove
a control technique that changes the operating frequency with the
change in the separation distance to track the maximum efficiency of
the system.

The results also showed that increasing the input voltage increases
the voltage across the couplers to about 2 kV, which increases the
electric fields between the plates. However, the shielding plates screen
the electric fields from interacting with the platform’s parts or en-
dangering the workers near the plates. The results also show that the
current on the transmitter and receiver sides have harmonics, which
can have electromagnetic interference with the system. We can tackle
this problem by investigating better compensation circuits to filter out
the harmonics and enhance the electromagnetic compatibility of the
CPT system in RMS.

Implementing the battery platform allows us to reconfigure the
system in any place. Depending on the capacity of the batteries, the
battery platform can charge other platforms or mobile robots in static
or motion, which can further increase the flexibility and reliability
of the system. For instance, the battery platform can electrify the 3D
printer platform, which has the maximum power usage of 350W, for
8 h if we connect ten batteries in parallel. The capacity of the batteries
is an essential factor that decides the charging period, but increasing
the capacity by adding more batteries will increase the weight of
the platform resulting in a docking problem for the mobile robot, as
Arnarson et al. [11] discussed.

7. Conclusion and future works

This paper investigated WPT solutions for robotics in manufacturing
applications. Focuses are more on IPT industrial robot applications
manufacturing cells in the literature and on the market. However, the
paper presented the general concept of wireless electrification using
near-field WPT technologies, namely, IPT or CPT for RMS. It also
proposed and tested a static CPT system as an inexpensive and light
alternative for manufacturing cells, as the proposed system comprises
no expensive, fragile, or heavy parts. Utilizing a six-plates configura-
tion, the safety clearance of the CPT system can be reduced to a few
centimeters. As a novel approach to the electrification of manufacturing
applications, a battery platform is designed based on the CPT system,
which is a part of an RMS consisting of five other platforms: two
industrial robots (Scara and Nachi), a conveyor platform, a conveyor
lift platform, and a 3D printing platform. The battery platform can
charge the batteries of other platforms. Hence it gives the system more
flexibility, reconfigurability, and reliability. The proposed CPT system
gives an output power of 135W with 84% efficiency at 5 cm separation
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Fig. 9. The output voltage of the inverter (𝑉inverter ) and the voltage across the couplers (𝑉TR).

Fig. 10. The current on the transmitter side (𝑖T) and the receiver side (𝑖R).

Fig. 11. The experimental setup.

distance. The efficiency decreases with the increase of the distance,
which can be attributed to the sensitivity of the compensation circuits
to the distance change. One way to enhance the efficiency of the system
is by proposing control techniques to operate the inverter at a frequency
that can adapt to the change in the distance. As further work, we will
further improve the system efficiency and increase the transfer distance
by proposing different resonant circuits. We will also investigate a
control technique to achieve high efficiency with the variation of the
separation distance.
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Fig. 12. Demonstration of how the CPT is implemented into the RMS: The mobile robot drives to pick up a full battery platform (step 1 to 4) and transports it to the charging
RMS (step 5 to 6).
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A B S T R A C T

Global competition and increased variety in products have created challenges for manufacturing companies.
One solution to handle the variety in production is to use reconfigurable manufacturing systems (RMS). These
are modular systems where machines can be rearranged depending on what is being manufactured. However,
implementing a rearrangeable system drastically increases complexity, among which one challenge with RMS
is how to design a new layout for a customized product in a highly autonomous and responsive fashion, known
as the layout design problem. In this paper, we combine several Industry 4.0 technologies, i.e., IIoT, digital
twin, simulation, advanced robotics, and artificial intelligence (AI), together with optimization to create a
smart layout design system for RMS. The system automates the layout design process of RMS and removes the
need for humans to design a new layout of the system.

1. Introduction

With a global market and interconnected supply chains, the com-
petition between manufacturing companies has risen substantially. In
addition, the product life cycle has become shorter and the man-
ufacturing industry is moving from mass production towards mass
customization and mass personalization. This means that manufac-
turing systems need to be changed so that they can better adapt to
the changes in the market and capture new business opportunities.
Therefore, there is a need for a manufacturing system that can be easily
changed and scaled up or down depending on the various demands of
consumers.

To solve these problems, Koren et al. [1] proposed the idea of
a reconfigurable manufacturing system (RMS). An RMS can be de-
scribed as a manufacturing system that can be changed and adjusted
by rearranging and changing the components. They are designed for
the reconfiguration of both hardware and software components in the
system [2].

However, having a system that can be rapidly reconfigured adds
new challenges and complexity to the system [3]. One of the challenges
with RMS is the layout problem. The layout problem focuses on how
to design/rearrange the RMS, when considering both the capacity and
operational performance of the system [4]. To be able to reconfigure
the manufacturing system quickly, it would be beneficial to give the
exact placement of the machines to minimize the reconfiguration time

∗ Corresponding author.
E-mail address: halldor.arnarson@uit.no (H. Arnarson).

of the RMS. In addition, when a new customized order comes, planning
and designing a new product-based layout for an RMS is a time-
consuming job that requires a significant amount of human labor and
input.

There is, however, a lack of research on the layout problem for
RMS. Sabioni et al. [5] reveal that most papers that work on the layout
problem for RMS, focus on cost minimization, and there are few papers
that focus on the design optimization problem. Thus, there is a need for
a model that can support the redesign of the layouts [6]. One method to
solve the layout problem can be to implement other tools/technologies
that can help in the design. Maganha et al. [6], note that there are few
investigations on supportive tools for RMS design.

Industry 4.0 is the next technological revolution and brings several
cutting-edge technologies such as big data, industrial internet of things
(IIoT), simulation, cloud computing and cyber–physical systems. These
technologies are important for the success of RMS [7] and can be used
to further automate the systems. However, Brotolini et al. [8] indicate
that there is a lack of research on implementing and using Industry 4.0
technologies in RMS.

Applying digital twins and simulation enables a faster method that
allows for testing, optimization, development, and deployment of new
layouts for the RMS [9]. Maganha et al. [6] note that there is a need
to investigate the use of simulation to design manufacturing facilities
since simulation tools can be used to test the performance of the system
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in a more realistic way. In addition, industry 4.0 technologies can be
used to achieve smart layout design of the RMS [6]. In this paper, we
will define smart layout design, as combining multiple Industry 4.0
technologies to solve the layout problem in an automatic manner.

Arnarson et al. [10] propose an RMS that uses a mobile robot to
reconfigure the system automatically without any human intervention.
In the paper, they showed that different placement of the platforms in
an RMS gives different manufacturing times. It is therefore important
to minimize the distance the manufactured part has to move in the
system. This paper also reveals that designing and rearranging an RMS
can be extremely time-consuming and usually requires a large amount
of human labor and input, so there is a need for a method to design the
layout of the manufacturing system automatically.

In the literature, there are few papers on combining multiple in-
dustry 4.0 technologies together to solve the layout design problem
for RMS. To fill this gap, in this paper, we implement several industry
4.0 technologies such as IIoT, digital twin/model, simulation, advanced
robotics, and artificial intelligence (AI) with optimization to develop a
smart layout design system for RMS. Furthermore, we use evolutionary
computations, known as a subfield of AI, where a population-based
algorithm produces a population of candidates that evolves toward an
optimal or near-optimal solution [11]

More specifically, we formulate a mathematical model for the
platform-based RMS proposed by Arnarson [10] and use optimization
to find a layout automatically. From the optimization, a digital model
is generated, which can be tested with simulation for further validation
of the system. Finally, the system is tested on a physical RMS to verify
and validate if the layout optimization with a digital model simulation
can work effectively and correctly in the real-world system.

The main contributions of the work are as follows:

• Investigate how Industry 4.0 technologies such as IIoT, digital
model, simulation, and advanced robotics can be combined with
optimization to create smart layout design for RMS.

• Develop a mathematical model which gives the exact position/
coordinates of a platform-based RMS.

• Use AI and evolutionary computations to search/optimize for a
layout configuration for the platform-based RMS.

• Generate a digital model automatically from the solution of the
optimization.

• Connect the optimization program together with the digital model
simulation software for further testing and validation in a digital
environment.

• Use IIoT technology to connect the optimization, digital model
simulation, and a physical RMS together for communication.

The rest of the paper is structured as follows: Section 2 reviews
previous studies on the layout design problem for RMS. Section 3
develops the mathematical model of the system, and Section 4 looks at
the implementation and the results from the system. Finally, we discuss
the results in Section 5 and conclude the paper in Section 6.

2. Prevous studies

2.1. Facility layout problem

In more broad research, the layout design problem for manufactur-
ing systems in general is referred to as the facility layout problem [12].
Besbes et al. [13] looked at the layout facility problem, where they
arranged facilities on a planar site and considered geometric constraints
for the facilities. They tested the system using the proposed algorithm
to optimize eight facilities on the plan floor. Lim et al. [14] eval-
uated hybrid algorithms, where they used the algorithms for layout
optimization of multi-cellular manufacturing systems.

Guo et al. [15] used a digital twin to optimize the manufacturing
workshop. A digital twin was used to optimize different parts of the

workshop and the distribution routes. The method was tested in a
physical welding workshop, which resulted in an increased production
capacity of 29.4%. This shows the potential of implementing digital
twins when doing optimizations of the layout. The authors also mention
that there is a lack of research on using digital twins with layout opti-
mization, and for further research, more methods should be developed
for layout optimization using digital twins.

Moreover, in a literature review on the facility layout problem [16]
reveals that most researchers did not include simulation and safety
drivers with the facility layout design problem. They also noted that
there was less focus on industry 4.0 technologies such as IIoT and
digital twin. Zubaidi et al. [16] note that implementing elements of
industry 4.0 can help in creating a more reliable, comprehensive, and
sustainable layout design. It is also important to note that the facility
layout problem is often considered a static problem. In contrast, the
layout problem for RMS is a dynamic problem since the RMS layout is
made to be changed. Since it is a dynamic problem, it requires powerful
and flexible simulation tools.

2.2. Layout design of RMS

Layout design for RMS encompasses many elements, including pro-
cess planning [17,18], scheduling [19], scalability planning [20], and
cost optimization [21–24]. There are, however, fewer papers that look
at the placement of the machines.

Koren et al. [2] proposed a method on how to design an RMS. Their
method requires planning, and if the RMS has many processes and
machines, the problem will become more complex. They also mention
that each new product that is manufactured should include a new
design of the RMS. Guan et al. [25] investigated the layout design for
RMS where they considered automated guided vehicles for material
handling instead of using conveyors. In the study, precedence graphs
are used to show the flow and positions of the workstation.

Haddou Benderbal et al. [26] studied the machine layout problem
for RMS, where they developed a system that could propose the best
placement for the machines. In addition, Haddou Benderbal et al. [27]
also developed a decision-support approach for switching between
products in the same product family. However, in both cases, the
machines could only be placed in predefined positions.

Another paper from Besbes et al. [28] investigated the facility layout
problem for RMS. In the study, the goal was to minimize the material
handling cost. The layout was generated with a genetic algorithm, and
then an A* search algorithm was used to find the shortest distance
between manufacturing cells. Nevertheless, the authors mention that
the method is tested offline and for further work, the system should
be tested on a physical RMS system. In addition, they mention that
the model should be expanded toward a multi-objective problem that
considers the shape and orientation of the manufacturing cells.

There are few examples of systems that can generate a layout for the
RMS. Abdelkrim et al. [12] note that there were few researchers work-
ing on solving the layout design problem for RMS. From a literature
review, Sabioni et al. [5] reveal that most papers working on optimizing
of RMS configurations looked at cost minimization. The study did not
find any relevant researches that combined both the layout design and
machine configuration problem at the same time. It is also noted that
it is difficult to find industries or laboratories that have implemented
an RMS.

2.3. Simulation for layout design

A few attempts have been made to implement industry 4.0 tools,
such as simulation and digital twin, to solve the layout design problem.
Yamada [29] used 3D simulation to do analysis and design evalua-
tion for the reconfiguration of an RMS. In the study, he looked at
a manufacturing system with transport robots, input stations, output
stations, movable manufacturing cells and processes, where he tried to
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minimize the manufacturing time using particle swarm optimization.
The simulation is rather simple, where the manufacturing cells and
other stations are modeled in the simulation as circles and squares.
Zheng et al. [30] proposed a simulation framework for the layout,
cost, and performance of the system. They used the simulation tool
‘‘Plant Simulation’’, which is a discrete-event simulator, to analyze the
behavior of a system. Petroodi et al. [31] used a discrete event simu-
lation tool (Simul8) together with optimization to solve the resource
allocation and production planning problem. These studies show the
potential of combining simulation and optimization together. However,
these examples of using simulations are simple and are not validated
with a real RMS.

Work has also been done on using 3D manufacturing simulations
and digital twins to support the layout design process. Santos et al. [32]
used a simulation-based approach to support the design and operational
management of the system. The simulation allowed the planner to
test different configurations and layouts virtually. Touckla et al. [33]
proposed a framework with a digital twin design and simulation model
for RMS. These studies do not use optimization to create the layout and
require human operators to design the system.

There is also research on using digital twins for planning in RMS.
Leng et al. [34] proposed a digital twin for fast reconfiguration of RMS,
which was used as a tool to shorten the time of production changeover.
Kurniadi et al. [35] investigated the use of digital twin simulation
for reconfiguration planning. They used both discrete-event simulation
(DES) and visual simulation to show that digital twins can help effec-
tively integrate RMS into a production system. The RMS digital twin
framework proposed by Hajjem et al. [36] suggested that using digital
twins with RMS provides improved functionalities, e.g., simulation and
intelligent sensors, which can improve the system’s intelligence and
efficiency.

2.4. Summary

All the papers investigating the layout design problem for RMS have
not tested their system or method on a physical RMS to validate if
the system works. Rosio et al. [3] did also find limited examples of
industrial examples of RMS, and there is a lack of knowledge on how
to design an RMS.

In addition, there is a lack in the literature on exploiting the benefits
of using Industry 4.0 technologies to solve the layout design problem of
RMS. These existing studies have clearly shown the potential of using
simulation and digital models for the layout design problem, but there
is a need for more investigation, for instance, by combining both opti-
mization and simulation. In addition, there are a few examples showing
how Industry 4.0 technologies such as digital twins and simulation can
be implemented in a physical RMS. Integrating various industry 4.0
technologies can lead to a smart layout design system for RMS which
can automate the layout design process.

3. Mathematical model

In this project, a mathematical model is formulated based on the
concept of a modular platform based RMS described in [10]. This type
of system has multiple modular platforms that can easily be added or
removed depending on the demand or what is being manufactured. The
goal is to develop a general mathematical model which can be used to
automatically generate layouts for a platform based RMS.

3.1. Assumptions

To develop the mathematical model, the following assumptions are
made:

1. The mathematical model is a 2D plane, and the 3D dimension is
not considered.

Fig. 1. The center point and movement point of the platforms. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

2. All platforms are modeled as rectangles
3. The platforms can be placed in a space of 10 × 10 m
4. All manufactured parts move from a singular point on the plat-

forms.
5. The amount of platforms is given, and the model can use all

platforms to design the layout. There is a risk of the layout
becoming chaotic if too many platforms of the same type are
used.

6. All platforms are made to be the same- or similar height.

3.2. Describe the platforms

Manufacturing systems usually contain different machines depend-
ing on the tasks. In the system, each platform can contain a 3D
printer, a CNC machine, a conveyor or a robot arm. To categorize these
platforms and be able to generalize the system, we divide the platforms
into four categories:

• Input platform: A platform that gives material to the system, or
an input part of the system

• Movement platform: A platform that is used to move parts be-
tween platforms (can be robot arms or humans).

• Work platform: A platform used to do a process, such as quality
control, machining process, and assembly station.

• Output platform: A platform that moves the parts out of the
system (can be conveyors).

Each of the platforms has three variables used in the optimization,
𝑥 and 𝑦 for the position and theta for the rotation of the platform. The
platforms do also have size variables and the position of the movement
points.

The point of rotation (center point) is highlighted with the red circle
as shown in Fig. 1. In this project, we test two types of rotations for
theta. The first type sets a fixed 0, 90, 180, or 270 degrees rotation for
the platforms and the second type uses a number between 0–360 for
theta.
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Fig. 2. Demonstration of a simplified RMS with three platforms.

To calculate the 𝑥 and 𝑦 positions of the corners (P2-P4) the follow-
ing formulas are used when theta:

𝑃1𝑥 = 𝑥

𝑃 1𝑦 = 𝑦

𝑃2𝑥 = 𝐿1 ∗ 𝑐𝑜𝑠(𝜃) + 𝑥

𝑃 2𝑦 = 𝐿1 ∗ 𝑠𝑖𝑛(𝜃) + 𝑦

𝑃3𝑥 = 𝐿1 ∗ 𝑐𝑜𝑠(𝜃) − 𝐿2 ∗ 𝑠𝑖𝑛(𝜃) + 𝑥

𝑃 3𝑦 = 𝐿1 ∗ 𝑠𝑖𝑛(𝜃) + 𝐿2 ∗ 𝑐𝑜𝑠(𝜃) + 𝑦

𝑃4𝑥 = −𝐿2 ∗ 𝑐𝑜𝑠(𝜃) + 𝑥

𝑃 4𝑦 = 𝐿2 ∗ 𝑠𝑖𝑛(𝜃) + 𝑦

𝑃𝑜𝑝𝑡𝑥 = 𝐿𝑜𝑝𝑡1 ∗ 𝑐𝑜𝑠(𝜃) − 𝐿𝑜𝑝𝑡2 ∗ 𝑠𝑖𝑛(𝜃) + 𝑥

𝑃𝑜𝑝𝑡𝑦 = 𝐿𝑜𝑝𝑡1 ∗ 𝑠𝑖𝑛(𝜃) + 𝐿𝑜𝑝𝑡2 ∗ 𝑐𝑜𝑠(𝜃) + 𝑦

(1)

3.3. Optimization problem

In this paper, we investigate a platform-based RMS, and the opti-
mization goal is to improve efficiency by minimizing the total move-
ment distance of the workpiece throughout the system. Since the
movement distance on each working platform is fixed, the problem
becomes thus the minimization of the distance between different plat-
forms. Fig. 2 illustrates a simple case with a 3D printer, a robot
platform, and a conveyor. In this example, we try to minimize the
distance between the 3D printer and the conveyor, say, the distance
between point A and point B. At this stage, the distance between the
robot platform (movement platform) and the other platforms is not
considered, because the robot platform only moves the parts from
one working platform to another. The only requirement for the robot
platform is that it can reach the required points on the respective
working platforms.

Thus, the objective of the optimization model is to minimize the
Euclidean distance for moving the workpiece between point 1 and point
2, as shown in Eq. (2):

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝐵𝐽 =
√

(𝑥𝑝𝑜𝑖𝑛𝑡1 − 𝑥𝑝𝑜𝑖𝑛𝑡2)2 + (𝑦𝑝𝑜𝑖𝑛𝑡1 − 𝑦𝑝𝑜𝑖𝑛𝑡2)2 (2)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗1 =
∑
𝑖∈𝑀

∑
𝑗∈𝑀

𝑑𝑖𝑗𝑐𝑖𝑗𝑤𝑡𝑖𝑗 (3)

Moreover, the Euclidean distances are calculated from a given
order/sequence of the platforms in the system. We generalize the
mathematical optimization model in Eq. (3), which minimizes the

total movement distance (𝑐𝑖𝑗) of the workpiece throughout the whole
RMS. The set of working platforms is defined by 𝑀 = {1, 2,… , 𝑚},
and calculate the movement distance between two working platforms,
where 𝑖, 𝑗 ∈ 𝑀 and 𝑖 ≠ 𝑗.

In an RMS for mass and/or individualized customization, the manu-
facturing procedures need to be formulated based on the requirements
of specific products or product families. In this regard, 𝑐𝑖𝑗 is a binary pa-
rameter establishing the linkage and precedence between two working
platforms in the RMS, which is determined based on a specific product.
If the system uses multiple input and output platforms, the optimization
model considers all combinations of how the part can move in the
system. For instance, Fig. 3 shows an RMS system that has two 3D
print platforms, working platforms, and conveyor platforms, where five
linkages are established by setting 𝑐13, 𝑐23, 𝑐34, 𝑐45, and 𝑐46 equal to 1.

In this model, 𝑤𝑡𝑖𝑗 is the weight of each linkage, which may help
to adjust the movement distance (𝑐𝑖𝑗) with, for example, the flow of
workpieces between two working platforms. Besides, it can also be
used to solve the challenges related to a multi-platform RMS system. As
shown in Fig. 4, a manufacturing system can be divided into multiple
platforms. In this example, the system is divided into three platforms,
where two conveyor platforms are used to connect these platforms. One
challenge of having a conveyor between two platforms is that, in the
optimization process, the two platforms are likely to fight for the same
conveyor. Moving the conveyor in either direction may yield the same
optimal result, and the conveyor may be placed in between the two
platforms, which are far away from each other, as can be seen in Fig. 5.
There are several ways to solve this problem. One method is to add a
larger weight to the conveyor’s output and input, which can help to
reduce the distance between the two platforms connected by the same
conveyor. This method has little impact on the rest of the system.

Next, we consider the optimal positions of movement platforms.
For this system, we model the movement platforms as robot arms and
will therefore need to take into consideration the reach of the robot
arms in the mathematical model. As mentioned in Section 3.1, the
mathematical model is based on a 2D plane. However, the robot arms
have a circular reach in all axis. This means that if the platforms are
of different heights, the robot arms might not be able to reach the
platforms while being within the radius of the 2D plane. In this system,
we assume that all platforms are at the same or similar height, and we
will therefore model the reach of the robot arm as a circular radius, as
shown in Fig. 6. It should be noted that the robot might still not be able
to reach certain points with a particular orientation (yaw, pitch, and
roll) of the tool center point. As a result, a simulation is used for further
verification if the robot arm is capable of picking the item (Section 4.2).



Journal of Manufacturing Systems 68 (2023) 354–367

358

H. Arnarson et al.

Fig. 3. A RMS with two input platforms, two working platforms, two output platforms, and two movement platforms.

Fig. 4. A multi-platform RMS system.

Fig. 5. Illustration of the optimization challenge related to a multi-platform RMS with shared conveyors connecting different platforms.

The total movement distance of the robot arms needs to be min-
imized, while at the same time, all the working platforms need to
be assigned to a robot arm within its maximum reachable radius.
Mathematically, the following constraint (4) needs to be held. Herein,
the set of movement platforms is given by 𝑁 = 1, 2,… , 𝑛, and 𝑟𝑛 is the
maximum reachable radius of each movement platform. Moreover, 𝑎𝑛𝑚
is a binary variable that determines if a working platform is assigned to
a movement platform, and 𝑝𝑛𝑚 is the movement distance (𝑐𝑖𝑗) between
them.

𝑝𝑛𝑚 ≤ 𝑟𝑛𝑎𝑛𝑚,∀ 𝑛 ∈ 𝑁,𝑚 ∈ 𝑀 (4)

Besides, each working platform must be served by a robot arm, as
shown in Eq. (5):
∑
𝑛∈𝑁

𝑎𝑛𝑚 = 1,∀ 𝑚 ∈ 𝑀 (5)

However, the use of this non-linear hard constraint drastically in-
creases the computational efforts needed to solve the optimization
model. Thus, in this paper, it is converted to a soft constraint to
improve the computational efficiency to find near-optimal solutions.
These solutions will be further validated in the simulation stage, which
helps to effectively eliminate all the infeasible solutions. To implement
the soft constraint, we introduce a piecewise function in Fig. 7 to
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Fig. 6. Illustration of the maximum reachable radius of the robot platform.

Fig. 7. Piecewise function for weight calculation.

calculate the weight of the movement distance between robot arms and
working platforms. As shown, if the robot arm can reach the required
points, the weight on the respective distance is very small. However,
if the robot arm cannot reach the required point, a higher weight will
be given as a penalty for the respective linkage between the robot arm
and the working platform, which will, in most cases, lead to 𝑎𝑛𝑚 = 0. An
illustration of how the weights can be seen in Fig. 8. The general form
of the second objective as well as the respective constraint is given in
Eq. (6).

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗2 =
∑
𝑚∈𝑀

∑
𝑛∈𝑁

𝑝𝑛𝑚𝑎𝑛𝑚𝑤𝑝𝑛𝑚 (6)

Subject to:
∑
𝑛∈𝑁

𝑎𝑛𝑚 = 1,∀ 𝑚 ∈ 𝑀

𝑤𝑝𝑛𝑚 =

{
𝑝𝑛𝑚𝑤𝑔 , if 𝑃𝑛𝑚 ≤ 𝑟𝑛
𝑝𝑛𝑚𝑤𝑠, if 𝑃𝑛𝑚 ≥ 𝑟𝑛

(7)

There is also a need to consider the rotation and reachable area of
different types of robot arms. For instance, Universal Robots has a reach
of ±360 degrees, while a Nachi MZ07 has a reach of ±170 degrees. As
shown in Fig. 9, the unreachable area of the robot arm can be drawn
as a triangle. A check is thus added to see if any required points on the
working platforms are in the unreachable area of the robot arms. First,

all the points in the triangle are calculated with the following formulas:

𝑐1𝑛 = (𝑥2(𝑛) − 𝑥1(𝑛)) × (𝑦𝑝(𝑚) − 𝑦1(𝑛)) − (𝑦2(𝑛) − 𝑦1(𝑛)) × (𝑥𝑝(𝑚) − 𝑥1(𝑛))
𝑐2𝑛 = (𝑥3(𝑛) − 𝑥2(𝑛)) × (𝑦𝑝(𝑚) − 𝑦2(𝑛)) − (𝑦3(𝑛) − 𝑦2(𝑛)) × (𝑥𝑝(𝑚) − 𝑥2(𝑛))
𝑐3𝑛 = (𝑥1(𝑛) − 𝑥3(𝑛)) × (𝑦𝑝(𝑚) − 𝑦3(𝑛)) − (𝑦1(𝑛) − 𝑦3(𝑛)) × (𝑥𝑝(𝑚) − 𝑥3(𝑛))

(8)

A constant 𝑘𝑛 is added to increase the length of the triangle to
ensure the whole area is checked. For the Nachi MZ07 robot arm, the
constant is 1.2. In addition, all robot arms are 90 degrees rotated on
the platforms, and we therefore add 90 degrees. Using these points, we
check with Eq. (8) if the point 𝑝 on the working platform m is inside
the triangle with these conditions when 𝑎𝑛𝑚 = 1:

If the point is inside the triangle, a higher penalty should be applied.
In addition, in some cases, one movement platform is able to reach all
the required platforms, and then there would be no need for another
movement platform that is not assigned to any working platforms, as
shown in Fig. 10. The redundant movement platform needs thus to be
eliminated from the system.

The general form of the mathematical optimization model is then
given in Eq. (9):

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗1 =
∑
𝑖∈𝑀

∑
𝑗∈𝑀

𝑑𝑖𝑗𝑐𝑖𝑗𝑤𝑡𝑖𝑗

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗2 =
∑
𝑚∈𝑀

∑
𝑛∈𝑁

𝑝𝑛𝑚𝑎𝑛𝑚𝑤𝑝𝑛𝑚
(9)

Subject to Eq. (10):

∑
𝑛∈𝑁

𝑎𝑛𝑚 = 1,∀ 𝑚 ∈ 𝑀

𝑤𝑝𝑛𝑚

=

⎧⎪⎪⎨⎪⎪⎩

𝑝𝑛𝑚𝑤𝑠, 𝑖𝑓𝑤𝑝𝑛𝑚 = 1 and if{𝑝𝑛𝑚 ≥ 𝑟𝑛} or{
𝑃𝑛𝑚 ≤ 𝑟𝑛 and

{
𝐶1
𝑛 ≥ 0 and 𝐶2

𝑛 ≥ 0 and 𝐶3
𝑛 ≥ 0

or 𝐶1
𝑛 ≤ 0 and 𝐶2

𝑛 ≤ 0 and 𝐶3
𝑛 ≤ 0

𝑝𝑛𝑚𝑤𝑔 , otherwise

(10)

Finally, another hard constraint needs to be added to ensure the
model is not to have any overlap between different platforms. One
method to formulate this constraint is to use the separating axis the-
orem (SAT). The SAT can be used with any convex shapes to check
if there is any overlap. For each of the solutions generated, the SAT
is tested. If there is an overlap between the platforms, the solution is
eliminated, and only the solutions without overlap are considered.

4. Implementation

4.1. Solve mathematical model

One of the challenges with RMS is the complexity of such systems.
Increasing the number of platforms in the system also increases the
number of possible layouts for the system. One method to find a layout
for the RMS is to use evolutionary computation, which is a sub-field
of AI. Evolutionary computation uses population based algorithms,
where a population is maintained and evolves towards a good/optimal
solution [11].

For this project, we used non-dominated sorting genetic algorithm 2
(NSGA2) [37] for the optimization since it is a powerful multi-objective
algorithm [38], which has been widely used to solve process planning
problems [38] for RMS design. Due to its reliability and speed, the
NSGA2 has been used to solve workshop-related problems [39], allo-
cation problems, scheduling problems, traveling salesman problems,
and vehicle routing problems [40]. The NSGA2 is a multiobjective
evolutionary algorithm that can find multiple Pareto-optimal solutions.
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Fig. 8. Example of the Piecewise function for weight works. In case 1 the robot platform can reach the platforms and the 𝑤𝑔 weight is used, while in case 2 the robot platform
cant reach the points and the 𝑤𝑠 is used.

Fig. 9. Illustration of the reachable area for a robot arm, where the blind zone of the robot arm is shown.

It is an improvement on NSGA in terms of computational complexity,
the need to specify sharing parameters and the lack of elitism [37].

The NSGA2 algorithm is implemented in python using the library
Pymoo [41] and a flowchart of the algorithm can be seen in Fig. 11.

The input to the system is a list with all platforms in each section.
For example, if a section contains ‘‘3D printer, Robot platform, Work
Table - 1, Conveyor out’’, then a part will move from the 3D printing
platform to the work table - 1 to do a process and move out of the
section with the conveyor platform. The robot platform is used to move
the parts between the platforms. Fig. 12 shows the input to the system
and the resulting layout.

The list is used to determine how the manufactured parts move
through the system and the size of each platform. Then, the mathe-
matical model is used for optimization with NSGA2 to find a layout.

In this project Pymoo 0.5.0 is used, and the optimization is executed
on an AMD Ryzen 9 3950X processor.

A video example of when the layout optimization is running can
be seen at https://youtu.be/UNsugBOi4cs. The video shows the best
solution for each generation.

4.2. Digital model, simulation, and IIoT

It is difficult to describe and include all restrictions in a mathemat-
ical model. Making the model too complex can also make the problem
unsolvable. It can therefore be beneficial to have a simpler mathemat-
ical model and connect the solution generated from the mathematical
model with simulation tools, as a second layer to validate/test the
solution. For this purpose, Visual Components Premium 4.4 [42] is
used. Visual Components is a visual simulation software used to design
and optimize manufacturing systems. It is possible to use Visual Compo-
nents both for developing a visual digital model of the system, as well
as for running manufacturing simulations. Hence, Visual Components
is used to generate a digital model from the optimization, and then the
digital model is used to run the simulation.

There is also a need for communication between all parts of the
system. Since the system is made to be flexible, where the platforms
can be moved to any position in the manufacturing environment. One
method to allow for communication in a system is to use IIoT. IIoT
is an extension of IoT in industrial applications and has a strong
focus on machine-to-machine communication [43]. It is therefore used
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Fig. 10. Illustration of one robot arm that can move parts between all platforms, while the last robot arm cant perform any tasks.

Fig. 11. A flowchart of the NSGA2 algorithm.

for communication with the platforms in the system and control the
mobile robots. IIoT can also be used to transfer the layout to the

mobile robot for automatic configuration of the system. In this system,
the Open Platform Communications Unified Architecture (OPC UA) is
used for IIoT. The OPC UA is an IEC 62541 standard, often used for
communication between industrial equipment [44]. In addition, Visual
Components support connectivity functions such as OPC UA and can
therefore be used to connect the optimization simulation and physical
system together.

The layout program in python is therefore connected to an OPC UA
server, where the solution from the optimization is directly sent over
to Visual Components. An illustration of how the system is connected
and setup can be seen in Fig. 13.

From the layout program, the task order of the machines and the
positions of all the platforms are sent over to Visual Components. When
the data has been transferred, the layout is generated, the simulation
is programmed automatically, and the simulation is then executed. If
there is a problem when running the simulation, it will be stopped
and an error message will be returned. As mentioned in Section 3.3,
the robot arm might not be capable of picking up an item at certain
angles of the tool center point. Therefore, the simulation serves as a
verification tool to determine if the robot arm can pick the item.

In addition, the simulation can be used to:

• Validate if the RMS looks reasonable.
• Check if there is any collision between the platforms.
• Check if there is any collision when the robot arm is working.

If one of the tests fails, the simulation sends a message back to
the layout program that the solution is not satisfactory. Then, the
layout program will send the second-best solution and the simulation
is again tested. A flowchart showing how the system work can be seen
in Fig. 14.

4.3. Configuration testing

To showcase the layout generation in python, four different man-
ufacturing layouts were tested. The layouts are tested for both op-
timization with rotation between 0 to 360 degrees and for fixed 0,
90, 180, and 270 degrees rotation. For the generated layouts, 3D
printers, work platforms, and conveyors are used. The work platform
is modeled as simple tables in the digital model. However, they are
meant to represent manufacturing processes such as CNC machin-
ing, coordinate-measuring machine, assembly or other manufacturing
processes.
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Fig. 12. The input to the optimization model and the system.

Fig. 13. How the optimization program in python is connected to the simulation software Visual Components.

Fig. 14. Flowchart of how the smart layout design system works.

4.3.1. Layout 1 (three platforms, simplest form)
The first layout is the simplest form of the system. It includes a 3D

printer platform, a robot platform and a conveyor. The results from the
optimization can be seen in Fig. 15. A video of the simulation can be
found at https://youtu.be/YVbpl2U_L8I.

4.3.2. Layout 2 (seven platforms in one line)
The second layout has one section with two 3D printers as input,

two work platforms in parallel, two robot platforms and a conveyor.
The result from the optimization can be seen in Fig. 16 and a video of
the simulation in https://youtu.be/MTCSDvy0Qag.

4.3.3. Layout 3 (two sections)
There are two sections for the third layout. In this case, the conveyor

is used as a bridge between the two sections. The idea of this layout
is to showcase how parallel systems can be connected to create larger
manufacturing layouts. The results are shown in Fig. 17, and a video
demonstration can be found at https://youtu.be/gZxg1X57g3Y.

4.3.4. Layout 4 (big system)
The last layout consists of four sections with different amounts of

platforms in each section. This is to test the optimization on a large
system and see how much time it takes to solve the problem. Fig. 18
shows the results from the optimization and a video can be found at
https://youtu.be/GFiIdPl_0_E.

Table 1 provides details on the optimization time and the number
of generations necessary to produce the generated layouts.

4.4. Test on a physical system

To test and validate the layout, the system is tested on a physical
RMS. The RMS consists of five platforms:

• Robot arm 1 (Nachi MZ07)
• Robot arm 2 (Scara Adept 604)
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Fig. 15. The result after running optimization for layout one. On the left side is the input to the Pymoo optimizer, in the middle is the result from the optimization, and on the
right side is the simulation.

Fig. 16. The result after running optimization for layout two. On the left side is the input to the Pymoo optimizer, in the middle is the result from the optimization, and on the
right side is the simulation.

Fig. 17. The result after running optimization for layout three. On the left side is the input to the Pymoo optimizer, in the middle is the result from the optimization, and on the
right side is the simulation.
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Fig. 18. The result after running optimization for layout four. On the left side is the input to the Pymoo optimizer, in the middle is the result from the optimization, and on the
right side is the simulation.

Fig. 19. Illustration of how the system works. On the left side, the input to the optimization, then the resulting layout from optimization, which is transferred over to the
simulation/digital model, and on the right side the layout on the physical RMS.

Table 1
The table shows the optimization time, for the layouts tested.

Rotation Optimization
time (min)

Generations Number of
platforms

Layout 1: 0–360 0.88 393 3
Layout 1: 0, 90, 180, 270 0.72 325 3

Layout 2: 0–360 25.66 1400 7
Layout 2: 0, 90, 180, 270 12.72 750 7

Layout 3: 0–360 77.75 3985 8
Layout 3: 0, 90, 180, 270 17.99 800 8

Layout 4: 0–360 1838.49 8380 25
Layout 4: 0, 90, 180, 270 898.95 2685 25

• 3D print platform
• Conveyor platform
• Conveyor with lifting platform

These platforms can be moved and rearranged automatically by the
use of a mobile robot. The mobile robot is equipped with a docking
module on top, which allows it to fasten itself to the platform, and
can pull the platform. The system is controlled through the OPC UA
standard and it is therefore possible to connect the optimization and
digital model simulation in Visual Components directly to the physical
system. An illustration of the connection can be seen in Fig. 19.

When testing the layout of the physical system, it was shown that it
is not feasible to have the platforms too close to each other. This is due
to the mobile robots’ low accuracy when reconfiguring the platform.

To solve this issue, all platforms receive a safety distance between each
other, which equals 200 mm.

A video demonstrating the system can be found at https://youtu.
be/TqimTSBvpTs. In the video, a layout is generated with NSGA2
optimization, tested with the digital model simulation, and then sent
to the physical system for automatic reconfiguration with the mobile
robot.

5. Discussion

The idea of RMS is to have a manufacturing system that can rapidly
be changed depending on what is being manufactured. However, de-
signing and reconfiguring such a system is both time-consuming and
costly due to the requirement of excessive human labor. In this paper,
we propose a new approach to automize the reconfiguration process
of RMS. We combine optimization with industry 4.0 technologies,
i.e., IIoT, digital model, simulation, and advanced robotics to create
a smart layout design system for RMS.

We first formulate a mathematical model for a platform-based RMS
proposed by Arnarson [10]. The mathematical model for the system
is used to yield a score for the system, where penalties are added
to the score if certain criteria are not met. The main goal of the
system is to reduce the distance between the points of the platforms
while all movement platforms can reach the points. This model is
then used with an NSGA2 optimizer to find a near-optimal layout. The
model can be used for manufacturing platforms of different shapes, and
different constraints can be added depending on the requirements of
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the platforms. Constraints and platforms can easily be changed, and the
system can consider other optimization requirements or constraints.

Only using the mathematical model for optimization can be limited,
and it can be time-consuming to model all constraints. Therefore,
adding a digital model and simulation helps test the manufacturing
system. It can be used as a verification tool to validate if the solution
from the optimization work in a simulation environment. In addition,
connecting the optimization model to the simulation can allow for
bi-directional communication between both systems. As a result, the
simulation software can provide a quality check and safeguard on the
optimization program’s solution.

In this project, we tested different rotations for the platforms. One
with fixed 0, 90, 180, and 270 degrees and one which is between 0 to
360 degrees. As can be seen from the four layouts (Figs. 15–18), when
0–360 degrees is used, the optimization function will not converge and
will therefore not give an optimal layout. By limiting the rotation to 0,
90, 180, and 270 degrees, an improved solution is obtained compared
to using 0 to 360 degrees. Having the rotation between 0–360 degrees
adds more complexity and possibilities to the system and from the
optimization, it looks like the NSGA2 gets stuck. This may be due to
the hyper-parameters for the NSGA2 are not exploratory enough.

We have demonstrated four different cases of how the system works
and tested the layout optimization on a physical system. In the physical
test, we connected the optimization, digital model/simulation and the
physical system by using an IIoT (OPC UA) server. Being able to connect
the optimization model and digital model directly to a physical RMS
allows for increased automation. On the other hand, manually design-
ing the same system would require a human operator with expertise in
manufacturing to design the layout. Simulating the system would also
require programming, which is time-consuming. The proposed system
automates the optimization of the layout, virtually test the layout with
simulation, and reconfigure a system with a mobile robot allowing
for full reconfiguration without any human intervention. However, the
system may not be able to provide the shortest moving path for the
workpieces and the most effective use of the RMS modules. Therefore,
this system can work as a support tool to help the human operator
quickly design and adjust the RMS layout for customized orders, which
forms the foundation of the future human–machine interaction in a
collaborative manufacturing environment. This system is well-suited
for manufacturing systems that undergo frequent process reconfigu-
ration, such as companies operating within industries characterized
by high product variety and short product lifecycles, e.g., electronics
manufacturing or manufacturing of customized products. Implementing
a smart layout design system can greatly benefit manufacturing com-
panies specializing in mass customization or mass personalization by
streamlining and reducing the time required for planning and executing
new production runs.

As shown in 18, the layout is chaotic and can be considered as
not acceptable from a safety and industrial standards perspective. This
dilemma is most likely caused by the unrestricted use of platforms to
minimize the total movement distance while simultaneously ensuring
the reach to all points. A possible solution would be to let the opti-
mization system determine how many platforms are needed, thereby
removing unnecessary platforms. Besides, another objective function
may also be added to minimize the use of platforms so that the resource
requirement could be reduced. Moreover, safety rules and industrial
standards can be added to the mathematical model to get a more
realistic system.

6. Conclusion

In this paper, we proposed a novel method on how to solve the
layout design problem for RMS. We used optimization together with
the industry 4.0 technologies, i.e., IIoT, digital model, simulation, and
advanced robotics to create a smart layout design for RMS. First, we

propose a new mathematical model for the layout design of a platform-
based RMS. The object of the mathematical model is to find a layout
that minimizes the distance the product has to move while considering
the constraints of the system. Then, the NSGA2 algorithm is used to
search for an optimal or near optimal layout for the system. The layout
is transferred to a digital model simulation software for testing and
verification of the system in a virtual space. To showcase how the
system works, four different demonstrations were created. The results
showed that the mathematical model works and using NSGA2 for
optimization can generate a layout automatically and be tested in the
digital model. In addition, we also connect the optimization and digital
model to a physical RMS to validate the proposed system.

6.1. Future works

6.1.1. Solve the optimization with 0–360 degrees
As mentioned in the discussion, when 0–360 degrees rotation is

used, the system will not converge into a good layout. For further work,
there should be done an investigation on how to make the system
converge. In addition, when the system includes a lot of platforms,
it can take a few days for the system to solve the problem. There
should also be an investigation into how to improve the computational
efficiency of the optimization problem.

6.1.2. Combine optimizations
There has been a lot of work on optimization for process planning,

in what order the machines should be in, how many machines are
required, how often the system should be reconfigured, and what is
the best approach to reconfiguring the system. For further work, these
optimization models should be combined together in one system to
better model a close-to real-world manufacturing system. For example,
when multiple RMSs are set up for different products, some platforms
may need to be shared by different RMSs, so not only the positions of
the platforms but also the timing for their use needs to be optimized.

6.1.3. Add more objectives and constraints to the system
More and different objectives and constraints can be added to the

mathematical model in order to create a more realistic solution. For
instance, in this paper, we assume that all parts move from one single
point on the platforms. Therefore, adding a constraint that considers
an area where parts can be placed would be more realistic and should
be added to the optimization. Furthermore, adding another objective
to minimize the use of platforms while simultaneously ensuring an
acceptable level of reach to all points may help to solve the problem
shown in Fig. 18. Moreover, the model can be developed in a 3D space
and also take into consideration the limitations in the orientation of the
robot arms’ tool center point (yaw, pitch, and roll).

6.1.4. General manufacturing systems
Use the same methods in this project to find the optimal layout

of a general manufacturing system can be created. As manufacturing
systems are usually divided into cells, the position of the machines,
walking areas, where the robot should be placed and the different
stations can be used to create the most optimal layout depending on
the criteria of the model.
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Abstract

Customer demand and profit potential have pushed companies to offer diverse customization options in their products and move
towards mass customization. To move towards mass customization reconfigurable manufacturing systems (RMS) have been prosed
as a solution. However, it comes with challenges, including labor, costs, time, and complexity. Introducing intelligence, smartness
and state-of-the-art industry 4.0 technologies into reconfigurable manufacturing systems (RMS) can be a solution to these chal-
lenges. Combining these concepts can be used to develop an intelligent RMS that can be automatically reconfigured without any
human intervention. In this paper, a novel architecture has been proposed that explains all the details from the idealization phase
to design and physical implementation. The architecture covers individual elements of the RMS, introduces the technologies that
enable intelligence and follows through the steps that add up to the complete functionality of the system. In addition, we propose
an intelligent process that automates the reconfiguration phase of our proposal. Based on this architecture and intelligent recon-
figuration, a physical demonstration is also presented that shows how the system can be implemented. The constructed system is
demonstrated as an intelligent RMS capable of mass customization without human effort.
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1. Introduction

With globalization and a more connected world, the competition between manufacturing companies has increased.
Realizing the profit potential, manufacturing companies are offering more customizable products than ever before,
thus moving away from mass production and focusing on mass customization and personalized production [1].
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Introducing product customization in manufacturing processes comes with a lot of challenges including costs,
manufacturing limitations, reconfiguration times, extra labor, and scheduling [2]. To address these challenges, the
concept of reconfigurable manufacturing systems (RMS). RMS enables a system to readjust its cyber and physical
resources in a resilient, sustainable and adaptable way based on the dynamic needs and sudden changes [3]. The idea
of RMS is to have a system that is designed on both the hardware and software levels for undergoing rapid changes.
These are dynamic modular systems that can be taken apart and rebuilt into a new manufacturing system thus changing
their functionality and manufacturing capacity based on the product specification [4, 5].

However, the field of RMS is still in the early stages of research and development. There are many research
questions that need to be addressed and challenges that need to be solved. For example, a major challenge of having a
manufacturing system that can be reconfigured quickly is that it adds a lot of complexity to the system [6]. Similarly,
after each reconfiguration, the system needs to be reprogrammed. Programming robots, conveyors, and 3D printers
to work in harmony require expertise with the manufacturing equipment and is time-consuming, requires human
labor and is expensive. Another challenge with RMS is the layout design problem [7, 8]. Frequently planning a new
rearrangement for the RMS consumes a lot of effort and resources. Moreover, Maganha et al. [9] analyzed the barriers
to implementing an RMS and noted that Industry 4.0 technologies can help companies overcome the barriers.

The fourth industrial revolution introduced state-of-the-art technologies and concepts, which can help manufactur-
ing companies become more competitive and flexible in their production. There is no agreed list of what technologies
are included in Industry 4.0, but 10 technologies have been found to be often considered when discussing Industry
4.0. These technologies are the internet of things (IoT), cyber-physical systems (CPS), artificial intelligence (AI), big
data and analytics, cloud technology, simulation and modeling, additive manufacturing, virtualization, and advanced
robotics [10]. According to Maganha et al. [9], these technologies can together be employed to fulfill the design and
construction needs of an RMS.

There is however a lack of research into Industry 4.0 implementation and intelligent manufacturing into RMS.
Bortolini et al. [11] did a literature review on the research directions and concluded that there is a need for more
research on reconfigurability toward Industry 4.0. Cunha et al. [12] proposed a modular design of digital twins for
RMS. They found that RMS and digital twins complement each other and that digital twins are necessary for the ef-
fective management of manufacturing systems. Hence, in an RMS with frequent changes, its digital twin must change
in synchronization. Cunha et al. also noted that further research should focus on the automation of reconfiguration.
Moreover, Singh et al. [13] found that the technologies in Industry 4.0 are vital for the future success of RMS.

Although scarce, there are some examples of Industry 4.0 integration into RMS. Adamietz et al. [14] developed
an RMS inside a container, utilizing additive manufacturing due to its ability to produce highly customized parts.
Notably, a complete reconfiguration of their system demands as much as eight hours and necessitates human interven-
tion. Arnarson et al. [15] developed an RMS that utilized multiple Industry 4.0 technologies. A mobile robot could
reconfigure the system and the reconfiguration takes around 13 min. However, when the system has been reconfigured
a new program has to be created for each platform in the system. The authors note that for further work, there is a
need to develop a standard method to automatically program/control the RMS.

One method to create a highly automated and self-controlling manufacturing system can be to use smart man-
ufacturing. Smart manufacturing relies on Industry 4.0 technologies. The goal of smart manufacturing is to reduce
human labor while increasing automation. To achieve this, AI along with other technologies such as IIoT and CPS can
be used for quality control [16]. Combining smart manufacturing with RMS can allow the systems to become more
autonomous, self-controlling, and flexible. Zhu et al. [17] noted that RMS is a model for smart manufacturing, where
Industry 4.0 technologies such as digital twins are key enablers to enhance smart manufacturing.

There are two terms used to describe the next generation of manufacturing systems: smart and Intelligent manu-
facturing. Both of these terms are often referring to the same technology and it can be hard to identify the difference
between them. Wang et al. [18] did an investigation on the literature on the difference. They found that smart manufac-
turing is used more with Industry 4.0, big data, and data-driven concepts. While intelligent manufacturing is used more
with AI, optimization, agent systems, and architecture. It is also to be noted that smart and intelligent manufacturing
are both used with networking, digital technologies, and intelligentization. However, since AI is often considered to
be an integral part of Industry 4.0 and it is known that big data and analytics involve AI methods, it can be argued that
smart and intelligent manufacturing are the same thing. In this article, we define smart and intelligent manufacturing
to be the same concepts.
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The literature on the implementation of RMS is still immature and insufficient. Khanna et al. [19] reviewed research
on RMS and concluded that implementation still remains a challenge. For further research, they recommend focusing
on efficient methods to design RMS and taking a pragmatic approach. Singh et al [20] found that there should be more
research on developing simple principles on how reconfigurable machines and systems are created. Morgan et al. [21]
in a literature review on smart reconfigurable machines noted that there is a need for further research in architecture
for smarter and reconfigurable machines. They emphasized that the architecture should be simple and focused on
high-speed automation. In addition, Sahoo et al. [16] found that there is a lack of knowledge regarding the integration
of smart manufacturing technologies. They also noted that having a framework for adopting smart manufacturing
technologies can make it easier to implement smart manufacturing. To the authors’ knowledge, there is no publication
of an architecture for intelligent RMS, that demonstrates how such a system can be implemented. In addition, there is
a lack of publication that shows how the reconfiguration of an RMS can be automated.

In this paper, a novel architecture for constructing an intelligent RMS is proposed. The architecture formulates the
components of an intelligent RMS, detailing their connections and controls. Industry 4.0 technologies are incorporated
into the architecture, with robot arms employed as workers. Additionally, a methodology for automating the recon-
figuration process without human intervention is introduced, illustrating how robot arms are automatically controlled
using image recognition and digital twin. Demonstrations are also provided to illustrate the practical implementation
of this architecture and methodology on a physical system.

The organization of the rest of the paper is as follows: In section 2, literature on intelligent/smart manufacturing
and RMS is reviewed. Section 3 presents an architecture for intelligent RMS, while section 4 showcases its application
to a physical system. Results are discussed in section 5 and conclusions are drawn in section 6.

2. Related work

In more broad research, intelligent or smart manufacturing often utilizes Industry 4.0 technologies. Therefore, we
first review the key technologies and their applications for general smart or intelligent manufacturing systems.

One of the most important technologies from Industry 4.0 that is required to move towards intelligent manufactur-
ing is IoT. Chen [22] looked at industrial IoT (IIoT) technologies and how they are used in manufacturing workshops.
They created a reference architecture for smart factories and concluded that IIoT is the foundation of smart facto-
ries and intelligent manufacturing systems. Tang et al. [23] designed an intelligent production system that used edge
decision-making. The system used OPC UA and data distribution service to communicate with the intelligent produc-
tion edge.

Another technology that is also often considered in intelligent manufacturing is the digital twin. Cheng et al. [24]
looked at the connection between IIoT and digital twin. Moreover, they also proposed a framework towards smart
manufacturing with IIoT and digital twin. Li et al. [25] developed a small-scale robotic production station that uses
intelligent additive manufacturing. A digital twin is developed for the station that can be used to monitor and control
the system. Lu et al. [26] investigated the research challenges related to digital twin-driven smart manufacturing. The
researchers found that humans use digital twins for monitoring and decision-making. However, the digital twin should
also be used with autonomous control of the physical system in a smart manufacturing system.

AI is also considered to be an integral part of intelligent manufacturing. Kim et al. [27] created a smart manufactur-
ing system that uses multi-agents with reinforcement learning. The idea is to have a system with intelligent agents that
can make their own decisions, can interact with other systems, and learn from changing environments. The system is
not tested in a physical environment. For further work, they suggest looking at how a smart manufacturing system can
react to machine failure, cancellation, or rush in ordering. Zhang et al. [28] did a review on deep learning methods
for robot vision applications in smart manufacturing. Robot vision can be used for object detection, segmentation,
and tracing of objects. They noted that there are challenges when applying robot vision. For example, some image
recognition models such as Faster RCNN and CenterNet can achieve very good detection, but it can be difficult to
implement them on mobile hardware platforms.

Another AI method that can make manufacturing systems more intelligent is to use convolutional neural network
(CNN). A CNN is a feedforward neural network that can extract features from an image using convolution structures
[29]. Verana et al. [30] used CNN to develop an intelligent fault diagnosis for 3D printers. The system can detect
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various faults when the 3D printer is printing. Haghnegahdar et al. [31] proposed a theoretical framework for a cloud-
based intelligent additive manufacturing system.

Zhong et al. [32] did a literature review on intelligent manufacturing and important technologies that are linked to
intelligent manufacturing such as IoT, big data analytics, CPS, and information and communication technology. For
further work, they noted that there is a need for a generic framework for intelligent manufacturing. The idea is to have
a general structure to make it easier to implement intelligent manufacturing systems. It should include Industry 4.0
technologies such as wireless communication standards, advanced sensors and big data models and algorithms.

All the papers mentioned above focus on general manufacturing systems. However, in manufacturing, there are
different types of manufacturing systems such as dedicated manufacturing systems, flexible manufacturing systems,
and RMS [5]. Each of these manufacturing types has different challenges. For example, one of the major challenges
with RMS is the reconfiguration of the system. The reconfiguration process for an RMS requires expertise and can be
a time-consuming job that also requires human labor. Moreover, [21, 16] also noted and emphasized the need for a
smart manufacturing architecture or framework for RMS. Lee et al. [33] proposed an architecture for a decision model
of reconfigurable manufacturing systems. The architecture is based on fractal and smart manufacturing concepts.
However, there is a lack of examples of how architecture can be linked to a physical system. In addition, it is mentioned
that they don’t use real data and do not cover all aspects and mechanisms of such systems.

Zhu et al. [17] created a dynamic reconfiguration optimization method for an intelligent manufacturing system that
used a digital twin for human-robot collaboration. They looked at a case with one operator, one robot, and one machine
tool and concluded that more complex manufacturing scenarios should be looked at. In addition, the system was not
tested on a physical RMS. Friederich et al. [34] investigated a data-driven simulation for smart manufacturing systems.
The authors noted that to do an Industry 4.0 integration, a digital twin is needed. They also found that performing
manual simulation modeling is not possible in today’s environment, where manufacturing systems have many fast
reconfigurations. Hence, there is a need for a method to create digital twin simulation models of the manufacturing
system in an efficient and fast manner. The proposed method can be used to generate data-driven simulations with
digital twin data.

From the reviewed literature, most research focuses on implementing one or two Industry 4.0 technologies for
intelligent manufacturing systems, with limited work on combining multiple technologies. Practical implementation
examples and research on RMS integration with intelligent manufacturing and Industry 4.0 are scarce. Studies on
automating the reconfiguration process using Industry 4.0 technologies are also lacking.

3. Architecture for Intelligent RMS

In this chapter, we propose an architecture detailing the components and functionality of an intelligent RMS. This
architecture focuses on the machine or manufacturing cell level, excluding connections to high-level systems (e.g., En-
terprise Resource Planning (ERP), Material Requirements Planning (MRP), and Customer Relationship Management
(CRM)).

Additionally, the architecture is designed based on Arnarson et al.’s highly flexible modular system concept [15],
which uses a mobile robot for autonomous reconfiguration. The reconfiguration scheme is product-specific. The archi-
tecture’s objectives include: Showcasing key elements/platforms/modules and ideal characteristics for an intelligent
RMS; Defining tools and methods to enhance intelligence in individual elements and the overall system; Proposing
a method for smart communication and data storage within the system; Incorporating optimization and algorithms
for automatic programming, control, and layout formation with minimal human effort; Establishing a sequence and
hierarchy of RMS steps; Structuring the architecture for easy industry adoption, development, and physical implemen-
tation. The following sections describe the aspects, elements, and functionalities included in the architecture based on
these criteria.

3.1. Elements of the architecture

An RMS usually includes multiple manufacturing machines and equipment.
It has been observed and deduced that these machines can be broadly generalized into three categories, and most

manufacturing processes can be implemented through a combination of them.
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The first one is a process platform that performs the main action on a product. Examples of these platforms in-
clude 3D printers, CNC machines, turning centers, and cutting machines. For this architecture, a 3D printer has been
demonstrated and discussed as the generalized element because of its rising significance as an Industry 4.0 technol-
ogy. The second platform is a robot arm platform used to autonomously move products between platforms. The third
is a conveyor platform that can be considered as the logistical platform in the system to move and store products.
Additionally, the architecture consists of two elements to enable supervisory control and data storage in the system.
The full architecture of the system can be seen in Fig. 1.

Fig. 1: The architecture for intelligent RMS

Each of these elements/platforms along with the associated Industry 4.0 technologies, tools and methods for intro-
ducing intelligence in the RMS are discussed further.

3.1.1. 3D print platform
Additive manufacturing is the most sought-after and optimal manufacturing method because of the direct produc-

tion and sustainability [35]. In this architecture, a 3D printer is generalized for any platform that performs a process
and outputs a part that is ready to be transported forward in the manufacturing line. It is the recommended production
platform for this architecture and the further technologies in this paper are discussed with examples of a 3D printer
platform.

However, the technologies are equally valid for other process platforms that can contain an assembly station, CNC,
or Turning machine. To make the platform intelligent, there is intelligent control and intelligent monitoring. For
intelligent control, the 3D printer is connected to an IIoT network for wireless control. The IIoT server can be used by
the 3D printing platform to inform the rest of the system when a part is finished printing, and if it was successful or
not. In addition, if the system requires a completely new part to be manufactured, the printing management software
takes the 3D file, slices it, and generates a G code which can be used to print the part on the 3D printer automatically.

For intelligent monitoring, several methods can be employed to detect how the printing is going and if there is a
failure. With 3D printing, there can be a number of failures, such as the nozzle crashing into the printing bed, over
and under extruding, and the part falling off the bed while printing. As noted in section 2, CNN can be used together
with 3D printer for fault detection. Therefore, a camera is added to monitor the 3D printer while printing. The camera
feed is fed into a CNN, to detect different failures. A CNN can be used to detect warping, over and under extrusion,
layer separation, stringing, and not sticking to the print bed. If the CNN detects over-extrusion on a part, a message
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can be sent to the printing management software, and the print will be stopped and thrown away, and a new print can
be started, but the extrusion rate is reduced. In the same way, the CNN can also be trained to detect failures through
camera feed in other production platforms like CNC and turning machines.

In addition to the CNN, a sensor can be added to the 3D printer that can support the CNN. For example, having a
6-axis velocity and acceleration sensor can help detect if the nozzle is crashing into the printing bed. Using a vibration
sensor can monitor if the 3D printer is on a stable surface or is shaking. Machine learning algorithms can also be
trained to detect different failures, and these algorithms can be used with CNN to compare and check for failures. In
short, a multitude of sensors and cameras need to be used to monitor the production and stop or adjust if a failure is
detected.

3.1.2. Robot arm platform
Robot arms are typically designed to perform repetitive tasks with little or no variation. From a review on smart

robotics in manufacturing, Liu et al. [36] note that most current robots are programmed manually. However, the next
generation of robots should be programmed free and be able to adapt to uncertainties. To make the robot arm platforms
intelligent, they need to adapt and see the environment they are working in.

Similar to the 3D printer, the robot control software needs both intelligent- control and monitoring. One method for
intelligent control of the robot arm can be to use cameras. Zhang et al. [28] noted in their study that using a 3D vision
instead of a 2D vision gives more information on the scene the robot is working in. Using 3D cameras will allow the
robot arm to detect the depth and see how far away parts are from the gripper. The images from the 3D cameras are
fed into a CNN for image recognition which is able to recognize the part the robot arm will work with. Since image
recognition can be used to detect where the part is in an image, it can be used as a navigation tool to control the robot
arm automatically and pick parts without any human intervention.

However, one challenge with using image recognition for control is that a specific image recognition model has to
be created for each part the robot arm will work with. Traditionally, image recognition models are usually made by
first taking a lot of pictures of the parts to be recognized and then manually labeling these images. This process is very
time-consuming, dull, and requires human labor.

Another method to create the image recognition model is to use a 3D model to generate the image recognition
model. This can be done by first generating images from the 3D model, then feeding these images into a cycle
generative adversarial network (GAN) [37] to make the images look more realistic (add shadows and features to make
them look like real 3D printed parts). Since the images of the part are in the center, they can be automatically labeled
and trained with a CNN. The steps of generating an image recognition model based on a 3D model can be seen in Fig.
2. A detailed explanation of how such a system can be implemented can be found in [38].

Fig. 2: The figure shows the four steps on how a 3D model can be used to train an image recognition model.

Similar to the 3D printing platform, sensors are also added to the robot arm to detect abnormalities and irregularities
when the robot arm is working. For example, acceleration and velocity, or force sensors to detect if the robot arm has
crashed. The robot arm platform is also connected to the IIoT server of the system. This is to get the tasks the robot
arm should do but also communicate with the other parts in the system.
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3.1.3. Conveyor platform
The conveyor platform is the simplest platform. The conveyor platform is used to move parts between robot arms in

the manufacturing system. Similar to the 3D printing- and robot arm platform, the conveyor is equipped with sensors
to detect abnormalities and to detect where a part is on the conveyor. The conveyor platform is also connected to the
IIoT server, where it can be controlled remotely.

3.1.4. Control computer
The control computer is the main controller of the whole system. Although each platform must contain a local

computer, the control computer serves as the master of the whole system. Being mobile, the platforms’ computers
are only powerful enough to perform basic functions. The master computer, on the other hand, should be powerful
enough to multitask and run heavy computational operations tasks.

The control computer is responsible for planning and defining tasks from the start of receiving a product order
to the complete execution and output. It organizes and commands which tasks the platforms need to perform and
generates a new manufacturing layout.

Formation of digital twins and validation is one of the main duties of the control computer. As mentioned earlier,
digital twins are another Industry 4.0 technology that has been integrated into this Architecture as a requisite. The
reconfiguration, planning and task assignment are decided based on the optimization and information obtained from
the digital twin. One important aspect of digital twins in this Architecture is that it enables completely autonomous
programming and control of the entire system. Additionally, the control computer should also serve as an interactive
human interface for easy communication with an operator and display of information.

3.1.5. Edge Server
An RMS is data savvy and requires methods to organize and maintain the data. In this methodology, an edge server

which is an SQL database has been integrated for reliable data storage and access. Each element or platform in the
RMS is usually dealing with data, and an edge server enables this flow through an IIoT connection. One important
requirement in RMS is to have information on each task of each platform as it helps in troubleshooting and finding
faults in the system. Therefore each element in the RMS has read and write access to the database, and the events are
continuously logged. It also helps the operator for monitoring the system. In other words, the edge server is responsible
for industrial big data tasks. Industrial big data applications can be business Intelligence, product quality enhancement,
machine health prediction, fault tolerance, and production planning [39]. In this methodology, the computer collects
data from the RMS and uses machine learning algorithms to monitor the system and give status on how the system is
performing. In addition, while the RMS is running, data is collected from the sensors, and machine learning algorithms
can be automatically updated and trained on new data.

3.2. Intelligent reconfiguration process

After describing the elements of the proposed Architecture, an intelligent reconfiguration process is proposed as an
automatic methodology to reconfigure an RMS. In this section, the steps of the process and function are defined and
outlined.

The methodology utilizes the RMS proposed by Arnarson et al. [40] and expands it for autonomous, optimal and
intelligent performance. Under this proposed methodology, the main purpose of the system is to take a 3D model of
a part as an input, autonomously and intelligently perform all the operations and output the desired product. For this
purpose, the system goes through a series of steps, each of which is explained in detail further. The process can be
divided into six steps, as shown in Fig. 3.

• Step 1: 3D model The input to the methodology is a 3D model or assembly file of the part that should be man-
ufactured. Using a 3D model or assembly file, it is possible to extract information and devise a manufacturing
plan.
• Step 2: Required steps/platforms There has previously been done work on methods that can take information

from the 3D models and generate instructions [41, 42]. Thus, it is possible to generate manufacturing instruc-
tions automatically. These instructions can further be used to find which platforms are required to manufacture
the parts or an RMS operator can also select which platforms to use.
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Fig. 3: Six steps of the intelligent layout design.

• Step 3: Generate layout Based on the platforms that are required the mathematical model from [40] is
employed with evolutionary computation (a subfield of AI) [43]. From evolutionary computation, the non-
dominated sorting genetic algorithm 2 (NSGA2) [44], a multi-objective optimization technique, to identify
multiple Pareto-optimal solutions. The algorithm optimizes platform coordinates (x, y, θ) for Pareto efficiency,
using the required platforms as input.
• Step 4: Test system with a digital model simulation After the optimization, platform coordinates are input

into a simulation software (Visual Components). With instructions, platform orders, and coordinates of the
platforms, we can create a digital model that simulates the manufacturing process. This step checks for colli-
sions and ensures robot arms reach required platforms without colliding with other objects. If errors occur, the
simulation communicates with Step 3, requesting an alternative optimization solution.
• Step 5: Mobile robot reconfiguration Mobile robots, using simultaneous localization and mapping (SLAM)

for navigation can re-plan routes if an obstacle is in the way and are therefore highly flexible and automated.
These robots can pick up and move platforms to new locations using provided x, y, θ coordinates. After digital
testing, platform coordinates are sent to the mobile robot for reconfiguration.
• Step 6: Intelligent control Upon reconfiguration, manufacturing begins with platforms executing tasks as-

signed by the control computer. The digital twin and instructions facilitate automatic control. Intelligent control
integrates AI technologies like CNN, cycle GAN, and machine learning for object detection, failure detection,
quality control, and system performance analysis, health, and abnormality detection. Moreover, in the event
of a specific failure or abnormality, the system is designed to address the issue or alert the system operator
autonomously.

4. Demonstration

A demonstration has been built to showcase how an intelligent RMS works and what parts are in the system. The
system proposed in [15, 40] is expanded to create an intelligent self-reconfigurable manufacturing system.

4.1. The intelligent platforms

The system consists of five platforms: a 3D printer, a Nachi (six-axis robot arm), a Scara (four-axis robot arm), a
conveyor, and a conveyor lift. These platforms are connected to an OPC UA server for machine-to-machine commu-
nication, remote control, and monitoring. Moreover, the server stores the raw sensor data in an SQLite database.
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4.1.1. 3D print platform
The 3D printer is used to automatically manufacture parts as they are needed. A CR-30 Creality 3D printer is used

and is a conveyor printer that prints with a 45-degree angle. This allows the 3D printer to automatically eject parts
from the printer and can print endlessly in the Z direction.

To control and manage the 3D printer, OctoPrint is used. OctoPrint is an open-source software that is most com-
monly installed on a raspberry pi and can be used to manage, monitor, and control 3D printers connected to it. It can
also be used with an API and supports plugins that can add software functionality to the 3D printer. A camera is con-
nected to Octoprint to be able to monitor the 3D printer. Then Obico, which uses image recognition with the camera
connected to Octoprint, is employed to do failure detection. Obico is used to warn an operator of the 3D printers or
stop the printing and send an email or notification that something has gone wrong. Fig. 4, shows when a print has
failed, and the operator has been notified.

Fig. 4: A example of a 3D print that has failed where Obico has stopped the print and notified the operator.

The failure detection focuses on the part being 3D printed. To be able to detect other faults, such as the nozzle
hitting the bed or crashing, a sensor box is added. The sensor box contains a sound sensor, a vibration sensor, a three-
axis gyroscope, and an accelerometer. All the data from the sensors is collected and used as additional information
to monitor the 3D printer. The data collected from the sensor box and 3D printer can be used with machine learning
algorithms to detect abnormalities. The methods proposed in [45] can be used to use the data collected in an RMS.

4.1.2. Robot arm platform
In the system, there are two robot platforms. Both of the robot arms are equipped with the same gripper. The gripper

has an intel realsense D405 3D camera, a suction gripper to pick parts, and in the middle of the gripper a sensor box.
The 3D camera is used with image recognition to locate and pick up parts automatically. In this system, the 3D camera
is used as a navigation tool to control where the robot will move. The sensor box in the gripper is equipped with a
sound sensor, a vibration sensor, a three-axis gyroscope, and an accelerometer. It is placed with the gripper because if
the robot crashes, it will most likely have the greatest impact on the gripper.

Using the automatic method (described in section 3.1.2) to create image recognition models of 3D models, the robot
arms can pick up any object without any human intervention. In the video https://youtu.be/5w34Q-QYKX8 the
robot arm uses the image recognition model which is trained using the 3D model to pick up objects from a conveyor.
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4.1.3. Conveyor platform
This system consists of two conveyors. One large conveyor is used to move parts between the robot arms and a

second conveyor, can be lifted up and down. As mentioned before, the conveyors are the simplest platforms and have
been equipped with a raspberry pi for remote control, ultra sensors to detect the position of the parts, and a sensor box
to detect abnormalities.

4.2. Intelligent reconfiguration

Reconfiguring the platforms is the first step in programming an RMS. In this example, a simple box will move
through the platforms, and the required platforms are set manually. First, the box is 3D printed, and the Nachi robot
arm transfers it to the conveyor platform. The conveyor moves the box, the Scara robot arm relocates it to the conveyor
lift, which serves as the final step before the product exits the system.

From these steps, layout optimization is carried out. The generated layout is sent to simulation software to create
a digital twin. The solution is tested with digital twin simulation, and platform positions are relayed to the physical
RMS for mobile robot-assisted reconfiguration. View a demo at https://youtu.be/SwDNChz57ts. In this exam-
ple, optimization takes 31.5 minutes using the NSGA2 algorithm, while the mobile robot requires 11.8 minutes to
reconfigure the five platforms in the system.

4.3. Automatic programming

A control computer is added to allocate tasks to the different platforms. The instructions from the layout generation
are used to define each step in the process. The control computer will therefore send the tasks to platforms, for
example, first the 3D printer to print a part, then the Nachi robot will move the part to the conveyor, and so on.

After finishing the layout generation, we have a digital twin of the system. This digital twin is not 100% accurate
when it comes to positioning since the accuracy of the mobile robot is rather low. It is therefore not possible to run
the simulation program from the digital twin directly on the physical system. However, the digital twin can be used to
read the relative distance from the robot arm to the part or the joint rotation of the robot arm, as can be seen in Fig. 5.

This information can be used as a start position for the robot arm. The idea is to use the information from the digital
twin to find an estimated position of the part and then start to use the 3D camera for control. For example, at the start,
the Nachi robot arm is sent to the position from the digital twin, and then camera vision is used to move the tool center
point towards the part. Another approach to finding the object can be to use a grid-based search method. However, the
grid-based search method can be slower than using the digital twin to get the start position.

The same system demonstrated from the layout generation is then run automatically on the physical RMS. A
demonstration video showing the automatic programming of the platforms can be found at https://youtu.be/
Su7A_6GuF0s, and the steps of the demonstration can be seen in Fig. 5. The process involves: 1) 3D printer expelling
the part; 2-3) Nachi robot using digital twin coordinates to approach the printer; 4) navigating with a 3D camera
to pick up the part; 5-6) positioning it on the conveyor based on the digital twin; 7) conveyor transporting the part;
8-10) Scara robot utilizing digital twin data and 3D camera to place a box on the conveyor lift; 11-14) mobile robot
transferring the conveyor lift with boxes for further transport. In this experimental setup, both robot arms and the
conveyor operate at a slow pace, taking 3.2 minutes for a box to be transported through the system.

5. Discussion

Both the concept of intelligent manufacturing and RMS complement each other as the manufacturing Industry is
moving towards mass customization. Over the last few years, there has been a lot of theoretical work on intelligent
manufacturing and RMS, but there is still a lack of research on how to implement such systems. Based on this need, a
set of objectives and goals were defined that assisted in developing a functional and applicable architecture. Such an
architecture can be a stepping stone for researchers and encourages research on RMS with results based on physical
experimentation rather than a theoretical approach. It is also believed that it will promote mass customization in
industries in a simpler, cost-effective and labor free way.
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Fig. 5: On the left side, the digital twin displays the relative position and rotation during the process of retrieving a part from the 3D printer. On the
right side, the demonstration steps.

The developed architecture for a platform-based RMS enables automatic reconfiguration using mobile robots and
incorporates intelligent control and monitoring. Employing various Industry 4.0 technologies such as IoT, digital
twins, simulation, big data, analytics, additive manufacturing, advanced robotics, and AI, the system is resilient and
capable of corrective measures. AI methods and data processing are extensively used in the architecture, which is
designed to be generic and adaptable for various industrial processes, enabling autonomous reconfiguration and intel-
ligence.

The architecture has been developed for a platform-based RMS, where the platforms can be reconfigured automat-
ically using mobile robots. For each of the platforms, there is an intelligent method for control and monitoring. Today,
Industry 4.0 technologies are vital for implementing intelligent manufacturing. In the architecture, we utilize multiple
Industry 4.0 technologies such as IoT, digital twins, simulation, big data and analytics, additive manufacturing, ad-
vanced robotics, and AI. These technologies make the system resilient and able to take corrective measures.Examples
of these technologies include video monitoring in process related platforms to autonomously detect failures or in-
corrections, and sensor boxes to detect abnormalities. Furthermore, most of the architecture’s technologies revolve
around artificial intelligence. The usage of AI methods and data processing is extensive in this architecture to estab-
lish these specifications. Additionally, the architecture has been kept generic and it is claimed that it can be adopted
and varied to fit industrial processes, making them autonomously reconfigurable and intelligent.

For better control and system integration, the architecture includes a network of master-slave configurations con-
nected through an IIoT and an edge server. A control computer serves as the master of the whole system. It organizes
the whole system, runs optimization and provides independent tasks to each slave platform where the only information
forwarded to the platforms is what task to perform. Additionally, a digital twin of the system is introduced. It serves
the complete planning phase making certain of error free performance. It also supports the control of the robot arms.
From the digital twin, we can read the positions that the robot arms need to move to. By integrating this with a 3D
camera for image recognition, an efficient method to control the robot arm is achieved. This method is presented as a
faster alternative to a grid-based search system for part identification.

One challenge with RMS is the reconfiguration process which requires expertise and often manual labor. However,
the six-step intelligent reconfiguration process is proposed as a method to automate the reconfiguration of RMS. The
system takes in a product as a CAD or assembly file and is used as a template to generate the layout for the RMS.
Moreover, it is also used to automatically program the robot’s arms and other platforms in the system.

Existing RMS and intelligent manufacturing literature lacks physical demonstrations. We’ve built an RMS show-
casing intelligent monitoring and control at both platform and system levels for 3D printer, robot arm, and conveyor
platforms. Additionally, automatic layout generation using optimization, digital twin simulation, and mobile robot-
assisted automatic reconfiguration is demonstrated, effectively solving the layout design problem for RMS. The op-
timization time to generate a layout stands at 31.5 minutes indicating a slower process. In contrast, the mobile robot
efficiently places the five platforms in 11.8 minutes, demonstrating a faster performance.
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The current study possesses several limitations that warrant consideration. Firstly, the demonstration is elementary,
illustrated by just two boxes navigating through the system. This setup might not fully capture real-world complexities.
Moreover, both robots and conveyors operate at a notably low speed, which could raise questions about the system’s
efficacy in higher-speed environments.

While the system incorporates specific error-detection mechanisms with the 3D printer and robot arms, there is
an evident need for broader research. This exploration should explore diverse methods to utilize sensor data and
identify additional data beneficial for the system’s enhancement. Moreover, the implications of industrial big data
approaches tailored to this system require further investigation. The study’s scope, restricted to a plastic 3D printer
and certain robot arms, underscores the importance of examining various robots and manufacturing machinery. Further
examination is needed to determine how various machines can be designed or reconfigured for wider applicability.

6. Conclusion

In this paper, an architecture for intelligent RMS was proposed. The architecture detailed the different components
found within an intelligent RMS and the methods that can be employed to establish the system. Furthermore, multiple
Industry 4.0 technologies such as IIoT, digital twin, simulation, industrial big data, AI, and advanced robotics were
utilized in the architecture.

Additionally, an intelligent reconfiguration process that automates the reconfiguration procedure of RMS was in-
troduced. This process encompassed six steps, including the rearrangement of the RMS and the identification of a
new layout. The robots and other machines within the system were automatically programmed using digital twin,
simulation, and AI technologies.

It was also demonstrated how the intelligent RMS architecture and the intelligent reconfiguration process can be
utilized to create an intelligent self-RMS. A layout for the system was automatically generated and subsequently
reconfigured using a mobile robot in the demonstration. The application of digital twins and image recognition for the
automatic control of two industrial robots was also illustrated.
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