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BSTRACT 

xtrachromosomal elements of bacterial cells such 

s plasmids are notorious for their importance in evo- 
ution and adaptation to changing ecology. Ho we ver, 
igh-resolution population-wide analysis of plas- 
ids has only become accessible recently with the 

dvent of scalable long-read sequencing technol- 
gy. Current typing methods for the classification of 
lasmids remain limited in their scope which moti- 
ated us to develop a computationally efficient ap- 
r oach to sim ultaneously recognize no vel types and 

lassify plasmids into pre viousl y identified groups. 
ere , we introduce mg e-cluster that can easily han- 
le thousands of input sequences which are com- 
ressed using a unitig representation in a de Bruijn 

raph. Our approac h off er s a faster runtime than e x- 
sting algorithms, with moderate memory usage, and 

nables an intuitive visualization, classification and 

lustering scheme that users can explore interac- 
ively within a single framew ork. Mge-c luster plat- 
 orm f or plasmid analysis can be easily distributed 

nd replicated, enabling a consistent labelling of 
lasmids across past, present, and future sequence 

ollections. We underscore the advantages of our ap- 
r oach b y analysing a population-wide plasmid data 

et obtained from the opportunistic pathogen Es- 
 heric hia coli , studying the prevalence of the colistin 

esistance gene mcr-1.1 within the plasmid popula- 
ion, and describing an instance of resistance plas- 
id transmission within a hospital environment. s
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NTRODUCTION 

acteria can exchange genetic material via Horizontal Gene 
ransfer (HGT) mediated by Mobile Genetic Elements 
MGEs) such as temperate phages and plasmids. Plasmids 
ct as key vehicles for the dissemination of important traits 
uch as antimicrobial resistance (AMR) and virulence both 

ithin and between species ( 1 , 2 ). The introduction and 

road implementation of long-read sequencing for the as- 
embly of bacterial genomes have led to a dramatic increase 
n the number of complete plasmid sequences ( 3 ). 

Clustering and classifying complete plasmid sequences 
nto meaningful groups is a crucial step to understand- 
ng the epidemiology of plasmid-encoded genes ( 4 ). With- 
ut a consistent plasmid typing scheme, it is challenging 

o examine, for example, whether AMR genes are dissem- 
nated by a single or se v eral plasmid types, or if particu- 
ar plasmid types are overrepresented in successful bacterial 
lones. Current plasmid typing tools struggle to account for 
he extreme modularity observed in plasmids, where large 
enomic blocks can be ra pidl y gained or lost. Tradition- 
lly, plasmids have been classified according to their repli- 
on and associated incompatibility (Inc) groups using tools 
uch as PlasmidFinder ( 5 , 6 ). Howe v er, replicon-based typ- 
ng suffers from the presence of multiple replicons within 

he same sequence, offers a limited resolution for epidemi- 
logical purposes ( 4 ) and is only well-established in partic- 
lar bacteria phyla (e.g. Proteobacteria). Another strategy 

onsists of typing plasmids based on their relaxase, a pro- 
ein involved in plasmid mobilisation ( 7 , 8 ), which is in turn
imited to plasmids transmissible by conjugation. 

Network analyses based on k-mers or average nucleotide 
dentities (ANI) have been proposed as an alternative clas- 
ification frame wor k ( 9 , 10 ). This strategy was implemented 
alonso@medisin.uio.no 
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in the recent release of COPLA, a novel tool to classify
sequences into discrete plasmid taxonomic units (PTUs)
based on ANI distances and hierarchical stochastic block
modelling ( 11 ). MOB-suite is another tool that classifies se-
quences but relies on k-mers observed in the entire plasmid
( 12 , 13 ). MOB-suite uses Mash distances coupled with com-
plete linkage clustering to partition plasmid sequences by
maximising consistency with replicon and relaxase schemes.
The use of COPLA is mainly restricted to typing small sets
of sequences due to its computation-intensi v e algorithm
while MOB-suite is more scalable. MOB-suite uses a sin-
gle Mash threshold to cluster plasmid sequences into dis-
crete groups and can fail to accurately cluster collections of
MGEs with different sequence sizes or gene gain / loss rates.

Her e, we pr esent mge-cluster, a novel approach to consis-
tently type and classify MGEs. Mge-cluster provides a clas-
sification frame wor k that allows for the typing of thousands
of input sequences with a runtime faster than existing algo-
rithms and moderate memory usage. Furthermore, in the
light of new MGE data, it offers an option to type these new
sequences with an existing mge-cluster model and avoids
the need to reanalyse previously typed sequences. Mge-
cluster considers the entire sequence content by extracting
the unitig sequences which are extended nodes (k-mers) in a
compressed de Bruijn gra ph. Briefly, unitigs correspond to
the merging of all maximal-non-branching paths present in
the compressed de Bruijn graph with a word size exceeding
the original k-mer size ( 14 ). The presence / absence of unit-
igs is embedded into a 2D-r epr esentation using openTSNE
( 15–17 ), a non-linear dimensionality reduction algorithm
that permits the addition of new points to an existing em-
bedding. The non-linear aspect of the t-SNE algorithm al-
lows for plasmid clusters to be identified at multiple scales
of genetic variation. The HDBSCAN clustering algorithm
is then finally used to define plasmid clusters in the resulting
2D embedding ( 18 ). 

We demonstrate the features of mge-cluster by generat-
ing a plasmid classification frame wor k for the opportunis-
tic pathogen Escherichia coli , one of the leading causes of
bloodstream and urinary tract infections globally with a
large number of complete plasmid sequences available. In
this organism, virulence factors are usually associated with
plasmids, which dri v e the virulence of enteroinvasi v e, en-
ter opathogenic, enter ohemorrhagic, enter oaggregati v e, and
extraintestinal pathogenic E. coli ( 19 , 20 ). Moreover, plas-
mids are key hosts for AMR determinants such as extended-
spectrum �-lactamases and mobile colistin resistance genes
contributing to the emergence of E. coli multi-drug resistant
infections. Overall, mge-cluster provides a fast and consis-
tent classification frame wor k for MGEs that can be easily
distributed to enhance the analysis and tracking of these el-
ements. 

MATERIALS AND METHODS 

Ov ervie w 

Mge-cluster is an open-source approach to cluster and
classify MGEs. The tool accepts assembled nucleotide se-
quences for a set of MGEs as input. To generate initial clus-
ters, mge-cluster uses the – create operational mode (Figure
1 A). Mge-cluster identifies all unitigs in the set of MGEs
(default k-mer 31) by generating a de Bruijn graph us-
ing Bifrost ( 14 ). Unitigs with a low variance in their pres-
ence and absence between samples ar e filter ed out. The
r emaining unitigs ar e used as classification features and
pairwise Jaccard distances are calculated from the unitig
pr esence / absence matrix. The r esulting distance matrix is
embedded into two dimensions using openTSNE ( 16 ) and
HDBSCAN is used to identify clusters in the 2D embed-
ding ( 18 ). For each sample, mge-cluster returns the 2D em-
bedding coordinates and the assigned HDBSCAN cluster. 

The classification mode of mge-cluster facilitates the con-
textualization of MGEs across distinct collections without
the need to reanalyse the original dataset (Figure 1 B). In
this mode, mge-cluster computes the same unitig features as
in the existing model. These unitigs are used by openTSNE
and HDBSCAN to map the new samples into the existing
2D embedding and assign them to the previously defined
clusters. The ability of mge-cluster to ra pidl y type MGEs
enhances our capacity to compare MGEs between datasets
and to conduct genomic surveillance of these important el-
ements. A detailed description of the steps performed by
mge-cluster is gi v en in the sections below. 

Workflow 

Mge-cluster is a Python package installable through bio-
conda https://anaconda.org/bioconda/mge-cluster , freely
available under the open-source MIT license https://gitlab.
com/sirarr edondo/mge-cluster . Supplementary Figur e S1
illustrates the two different operational modes of mge-
cluster: –create and –existing . In both cases, mge-cluster
takes as input a file that indicates the absolute or relati v e
paths to the nucleotide sequence files (.fasta format). The –
create mode will generate a new classification scheme for the
sequences provided as input by the user while the –existing
mode will return embedding coordinates and cluster assign-
ments considering a pre vious, e xisting mge-cluster model.
Both modes can be run with the multithreading option ( –
threads ) to reduce mge-cluster runtime. 

Unitigs as classification features 

Unitigs defined as extended nodes in a compressed de
Bruijn graph were selected as features for building the
classification frame wor k. Unitig-caller ( –call mode, v ersion
1.2.1) https://github.com/bacpop/unitig-caller which imple-
ments Bifrost Build ( 14 ) is used with a k-mer size spec-
ified by the mge-cluster (argument –kmer ) to generate a
presence / absence matrix of the unitigs present in the input
file. 

Bifrost initially considers a de Bruijn graph structure de-
fined as a direct graph: 

G = ( V , E ) 

V corresponds to the number of vertices (k-mers) present
and E to the edges connecting the distinct vertices. Thus, the
vertices V present in graph G can be defined by: 

V = 

{ v 1 , v 2 , . . . , v n } 

https://anaconda.org/bioconda/mge-cluster
https://gitlab.com/sirarredondo/mge-cluster
https://github.com/bacpop/unitig-caller
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A

B

Figur e 1. Gra phical ov ervie w of the mge-cluster pipeline. ( A ) Schematic steps of the opera tional mode –cr eate used by mge-cluster to define discrete cluster 
gr oups fr om a set of MGEs. (i) Unitigs are computed with ‘unitig-caller’ a wrapper script for the Bifr ost algorithm ( 14 ). For graphical purposes, a k-mer size 
of 5 was considered to exemplify and simplify the unitig concept and re v erse-complements were omitted. (ii) Unitigs with low variance in their presence 
and absence between samples are removed. (iii) The filtered unitig presence / absence matrix is then transformed into Jaccard distances and embedded 
into 2 dimensions using openTSNE ( 16 ). (iv) HDBSCAN ( 18 ) is used to call clusters in the 2D embedding defined by openTSNE. In this e xample, fiv e 
different clusters (highlighted with distinct colours) are represented while points in black correspond to unassigned sequences. ( B ) Schematic steps of the 
operational mode – existing used by mge-cluster to assign to a new set of MGEs with the same clusters computed in a previous model. (i) The same selected 
unitig definitions present in the model are queried to create the classification features. (ii) openTSNE maps the new samples to the existing embedding. (iii) 
HDBSCAN assigns the new samples to a previously defined cluster. 
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The edges E can be defined as direct connections between
two vertices of V : 

E = { ( i, j ) : | 1 ≤ i, j ≤ n wi th an edge f rom v i to v j }
For each v ε V , we define the in-degree d 

i ( v) and out-
degree d 

o ( v) as the number of edges in E towards and from
v respecti v ely. 

Paths in the graph can be defined as finite se-
quences of distinct vertices connected by edges
p = ( v o , e( v 0 , v 1 ) , v 1 , e( v 1 , v 2 ) , . . . , e( v k−1 , v k ) , v k ) .
Bifrost then considers all non-branching paths, defined as
paths p in which all vertices have an d 

i ( v) = 1 

and d 

o ( v) = 1 e xcluding the first and last v ertices in p. 
Each non-branching path is merged into a single ver-

tex, termed unitig in Bifrost. Those unitigs r epr esent ex-
tensions of the initial k-mers (vertices) that are longer in
length than the original k-mer size. Unitig-caller then cre-
ates a presence / absence matrix of those unitigs. We can de-
fine M, as a binary matrix with s ∗ μ dimensions, in which
s is the total number of sequences present in the input file
and u corresponds to the total number of unitigs extracted
by Bifrost. 

M s,u = 

⎛ 

⎜ ⎜ ⎝ 

m 1 , 1 m 1 , 2 . . . m 1 ,u 
m 2 , 1 m 2 , 2 · · · m 2 ,u 

. . . 
. . . 

. . . 
. . . 

m s, 1 m s, 2 · · · m s,u 

⎞ 

⎟ ⎟ ⎠ 

Unitigs were chosen over other features (e.g. gene
presence / absence) because identical unitig definitions could
be computed between distinct datasets, an essential charac-
teristic for the –existing prediction mode of mge-cluster. To
reduce the memory use required to build the typing scheme,
we remove unitigs with a variance less than 0.01 (default) us-
ing the function VarianceThreshold of the python package
sklearn (version 1.0.2) ( 21 ). In this manner, we remove unit-
igs (features in the model) that have the same value for all
samples and thus do not provide any relevant information
for the embedding process. This variance threshold can be
modified by the user in mge-cluster (argument –variance ). 

Embedding the presence / absence of unitigs into a lower num-
ber of dimensions 

We considered the implementation of the t-SNE algo-
rithm available in the python package openTSNE (ver-
sion 0.6.1) ( 16 ,17) to generate a 2D embedding based on
M , the unitigs presence / absence matrix. This new imple-
mentation improved the global positioning of the points
and introduced the possibility of mapping new points into
an existing, r efer ence embedding. The multidimensional
presence / absence matrix of unitig-caller can be represented
as M = { m 1 , m 2 , . . . , m s } ε R 

u for which m s corresponds
to a datapoint (sequence) with u defined as the number of
dimensions (number of unitigs passing the variance thresh-
old). In our case, openTSNE is run to find a 2D dimensional
embedding Y = { y 1 , y 2 , . . . , y s } ε R 

2 in which the origi-
nal distance between m 1 and m s is preserved in y 1 and y s .
The similarity between two data points in the original space
is measured with Jaccard distances (flag – metric ). The per-
plexity value is one of the main parameters of openTSNE
tha t af fects how the similarity between two da ta points in
the original space is preserved in the resulting embedding
space. Large perplexity values tend to preserve the global
structure of the data better while obscuring some of the
local structure potentially resulting in small clusters be-
ing merged together. Small perplexity values generate tight
dense clusters preserving the local structure better but ig-
noring the overall global structure for which the distance
and position of the clusters in the resulting embedding can
no longer be considered. 

The TSNE function can be run with different perplexity
v alues specified b y the user with the mge-cluster arguments
–perplexity , using ‘exact’ as the method for finding the near-
est neighbor (flag –neighbors ). For reproducibility purposes,
we fixed the seed of the random number generator with the
flag –random state . 

Calling plasmid clusters in the embedding space 

To define which clusters wer e pr esent in the embedding
space Y = { y 1 , y 2 , . . . , y s } ε R 

2 created by openTSNE,
we r equir ed a clustering algorithm that (i) did not for ce us
to provide the number of clusters present in the data, (ii)
tolerated noisy data since plasmid modularity can result in
sequences that are hybrids between two neighbouring clus-
ters, (iii) tolerated clusters with different density and sizes
(iv) allowed the assignment of new data points to an exist-
ing clustering solution. Based on these four premises, we se-
lected the HDBSCAN algorithm ( 18 ), an improved version
of dbscan that finds highly stable clusters over a range of
epsilon values (the main parameter of dbscan). 

HDBSCAN defines the mutual reachability dis-
tance (extracted from HDBSCAN documentation) as
d mre ac h −k ( y 1 , y s ) = max( c ore k ( y 1 ) , c ore k ( y s ) , d( y 1 , y s ) ) ,
where d( y 1 , y s ) is the original metric distance (Euclidean)
and core k the distance to its k th neighbour. This mreach
distance is used to transform the embedding space into a
new space where points with low core distances remain
to gether w hile pushing away sparser points. This distance
is considered to create a graph structure H G = ( P , D ) in
which nodes P correspond to the original data points y s 
while D are all edges with weight equal to d mre ac h −k ( y 1 , y s ) .
HDBSCAN then transforms HG into a minimum spanning
tree to look into the hierarchy of connected components.
The parameter – min cluster size is used define the mini-
mum number of points r equir ed to define a cluster. This
parameter is then used to generate a condensed tree to select
clusters with high persistence. Lastly, HDBSCAN outputs
for each point y s their assigned cluster and membership
probability. 

The python package hdbscan (version 0.8.28) with the
primary function HDBSCAN is run to specify a default
minimum cluster size (flag –min cluster size ) defined by the
user in mge-cluster (argument –min cluster ). 

The main output of this operational mode consists of
a comma-separated file (csv) with the embedding coordi-
nates gi v en by openTSNE (columns ‘tsne1D’, ‘tsne2D’),
the cluster assigned and membership probability returned
by HDBSCAN (column ‘Standard Cluster’ and ‘Mem-
bership Probability’ and the last column (‘Sample Name’)
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ndicating the header extracted from the given nucleotide 
equences. 

toring and distributing an mge-cluster model 

ge-cluster was specifically designed to generate a classi- 
ca tion scheme tha t can easily be distributed and reused 

y other users. The following files constitute a mge-cluster 
odel: (i) *.unitigs .f asta , the fasta file containing the unit- 

gs with a variance higher than specified in the argument 
variance , (ii) *.embedding.pbz2 , embedding model created 

y openTSNE to transform the unitig presence / absence 
atrix into 2D and (iii) *c luster s .pbz2 , clustering model cre-

ted by HDBSCAN to call clusters in the resulting embed- 
ing from openTSNE. 

rediction of a new batch of sequences using an existing mge- 
luster model 

or predicting the embedding coordinates and the cluster 
ssignment of a new batch of plasmid sequences with an ex- 
sting mge-cluster model, we designed the –existing opera- 
ional mode (Figure 1 B). In this mode, mge-cluster r equir es 
n input file pointing to the nucleotide sequences of inter- 
st and the folder with the files constituting a mge-cluster 
odel (Supplementary Figure S1). 
Mge-cluster performs the following steps: (i) computes 

he same unitig definitions present in the file *unitigs .f asta , 
sing unitig-caller (– query mode), (ii) uses the transform 

unction from openTSNE python package to embed the 
ew points to the existing embedding present in the file 
embedding.pbz2 , (iii) assigns the new points to the existing 

DBSCAN clusters present in the file *c luster s .pbz2 using 

he approximate predict function from the hdbscan python 

ackage. 

enchmarking mge-cluster with real data: generating an E. 
oli model to classify plasmid sequences 

o showcase mge-cluster on real data, we de v eloped an 

. coli model to classify plasmid sequences. We consid- 
red all plasmid sequences ( n = 6864) with the species ‘ Es- 
 heric hia coli’ annotated in the PLSDB database ( 22 ). Se-
uences from this database can contain near identical plas- 
ids which could bias the downstream validation of mge- 

luster. To select a single r epr esentati v e sequence among 

ighly similar plasmids, we used cd-hit-est (version 4.8.1) to 

 emove r edundant sequences within a 0.99 sequence iden- 
ity threshold (- c 0.99 - s 0.9 - aL 0.9) ( 23 , 24 ). Cd-hit-est gen-
rated 6185 groups encompassing plasmid sequences with 

igh similarity and coverage, from these only a single rep- 
esentati v e sequence was chosen. The discarded sequences 
ere used to benchmark the CPU time, runtime and mem- 
ry r equir ed by mge-cluster to pr edict sequences consider- 

ng an existing mge-cluster model. These sequences were 
lso used as a quality check to ensure that mge-cluster re- 
urned the same cluster assignment as their cd-hit-est group. 

We clustered the set of 6185 non-redundant plasmids us- 
ng mge-cluster. The perplexity was set to 100 ( –perplexity ), 
ith a minimum cluster size of 30 ( –min cluster ). Unitigs 
ere discarded if their variance exceeded 0.01 ( –variance ). 
e used the script average nucleotide identity.py included 

n the pyani package (version 0.2.11) to calculate the av- 
r age cover age and average nucleotide identity (ANI) of 
he plasmids within each cluster ( 25 ). We performed dis- 
inct runs of mge-cluster setting distinct perplexity values 
10, 30, 50, 200) to compare the resulting clustering so- 
ution against the presented mge-cluster model (perplex- 
ty = 100). For this, we considered the adjusted Rand index 

mplemented in the function adjustedRandIndex from the 
clust R package (version 5.4.7) ( 26 ). For r epr esenting the 

mbedding created by openTSNE and the clusters defined 

y HDBSCAN, we used ggplot2 (version 3.3.6) and consid- 
red the Khachiyan algorithm implemented in the ggforce 
 package ( https://github.com/thomasp85/ggforce ) to draw 

llipses around the clusters. 
The clustering gi v en by mge-cluster was compared 

gainst the current typing schemes: (i) ‘primary cluster id’ 
eported by the module MOB-typer of MOB-suite ( 12 ), a 

v e-character fixed-length code that groups plasmids using 

omplete-linkage clustering based on Mash distances (de- 
ault distance = 0.06), (ii) plasmid taxonomic units (PTUs) 
eported by COPLA based on ANI distances and hier- 
rchical stochastic block modelling ( 11 ) and (iii) in silico 

MLST data retrie v ed from the PLSDB database, a typ- 
ng scheme based on the combination of allelic variants 
resent in well-known plasmid replicons ( 6 ). Due to the 
PU time and memory r equir ed by COPLA to pr edict a 

ingle sample, we could not perform the typing and com- 
arison of all the 6185 plasmid sequences included in the 
odel. Instead, from these 6185 sequences, we considered 

95 plasmids typed with a PTU in a recent publication in- 
roducing COPLA ( 10 ). The pMLST typing retrie v ed from 

he PLSDB database was based on six different schemes 
IncA / C, IncF, IncHI1, IncHI2, IncI1 or IncN) and the 
yping provided in the PLSDB database was performed us- 
ng a minimum identity of 85% and minimal coverage of 
6% ( 22 ). In the case of plasmids annotated with the IncF 

cheme, we considered the replicons with multiple perfect 
its against known allelic variants as a single type (e.g. FIA 

,6) and unambiguous hits (marked with ‘?’ in the PLSDB 

nnotation) considered as an allelic variant missing (–). 
his created a FAB formula based on the replicons FIA, 
IB , FIC , FII for which hits against these r eplicons wer e
arked with the respective allelic variant and replicons with 

o hits typed as (–). 
To quantify the concordance of the clustering solutions, 

e compared MOB-suite, COPLA and pMLST against 
ge-cluster considering the adjusted Rand index ( 26 ). This 
etric compares two clustering solutions for the same set of 

oints and returns a value ranging from 0 (no similarity) to 

 (identical clustering). The pairwise comparisons were only 

erformed with sequences with a defined cluster for any of 
he typing tools, thus discarding plasmids labelled as –1 for 
ge-cluster or with an unknown PTU (‘–’) by COPLA. In 

he case of pMLST, we discarded plasmid sequences with 

ore than one Inc scheme annotated. To further inspect 
he le v el of concor dance between typing schemes, for each 

ge-cluster we computed its Simpson di v ersity for repli- 
on, MOB-suite clusters (‘primary cluster id’) and COPLA 

TUs. For pMLST, we only considered the mge-clusters 
or which the majority of plasmids were annotated with a 

https://github.com/thomasp85/ggforce
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pMLST type (mge-clusters: 1, 6, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40). We considered
the function di v ersity implemented in the vegan R package
(version 2.5–7) specifying the ‘simpson’ index. This value
can range from 0 (no di v ersity, same clustering solution)
to 1 (high di v ersity, distinct clustering solution). To illus-
trate the differences between the clusterings gi v en by mge-
cluster and MOB-suite, we performed a gene synteny anal-
ysis with clinker (version v0.0.21) ( 27 ) using two randomly
chosen sequences belonging to the same mge-cluster but
differing in their MOB-suite cluster. To visualize the di-
versity of clustering solutions within each mge-cluster, we
used the treemapify R package (version 2.5.5) which pro-
duces treemaps for displaying nested and hierarchical data
( https://github.com/wilkox/treemapify ). 

To assess the performance of mge-cluster assigning plas-
mid sequences with a distinct gene content and origin,
we considered all plasmid sequences (n = 1020) with the
species ‘ Staphylococcus aureus’ annotated from the PLSDB
database and used the operational mode – existing of mge-
cluster to assign these sequences to the clusters defined in
the E. coli mge-cluster model. In the same manner, we typed
all IncN plasmids (n = 206) from PLSDB belonging to a
species different to E. coli annotated in the database and
having uniquely a single replication gene in the field ‘Plas-
midFinder’. 

To illustrate the potential of mge-cluster to track the
distribution of a gene-of-interest, we searched for AMR
genes in our E. coli dataset using AMRFinderPlus (version
3.10.18) indicating as organism (-O) Esc heric hia, specifying
the – plus flag and other default settings ( 28 ). From the re-
sulting report, we searched for plasmid sequences encoding
for the gene mcr-1.1 (NCBI Reference Sequence accession
NG 050417.1). 

Assessing the robustness of mge-cluster with ONT-simulated
plasmids and simulated plasmid-predicted bins 

To simulate plasmids obtained only with Oxford Nanopore
Technologies (ONT), we considered the 5996 plasmids
used by mge-cluster after removing plasmids with no unit-
igs which constitute the E. coli model presented in the
manuscript (Supplementary Table S1). The simulation was
performed with Muta tion-Simula tor (version 3.0.1) ( 29 )
which introduces random SNPs and insertion / deletions (in-
dels) at a fixed rate. Based on our previous study ( 30 ), we
showed that ONT-only assemblies had an average of ∼130
SNPs / 100 kb and ∼140 indels / 100 kb which was matched
with the Muta tion-Simula tor arguments (- sn 0.0013, - in
0.00075, - de 0.00075). The shortest and longest length of
the indels was 7 bp (- inmin 7) and 9 bp (- inmax 9), re-
specti v el y, w hich corresponds to the most frequent ho-
mopolymer lengths wrongly called in ONT-only assem-
blies ( http://albertsenlab.org/wp-content/uploads/2020/02/
R10.3 dist len hp.pdf). Mge-cluster was run in the op-
era tional mode – cr eate (– perplexity 100 – min c luster 30)
considering as input 11992 sequences (5996 original plas-
mids and 5996 ONT-simulated plasmids). In addition, mge-
cluster was run in the operational mode – existing consider-
ing the E. coli model presented in this manuscript ( https:
//doi.org/10.6084/m9.figshare.21674078.v1 ). 
To simulate predicted plasmid bins, we selected 41 com-
plete genomes from our previous study ( 30 ) where: (i) short-
r eads, (ii) ONT r eads and (iii) Unicycler (hybrid) assem-
blies were all available. We extracted the short-read con-
tigs from the best SPAdes graph considered by Unicycler
(‘001 best spades graph.gfa’) and mapped them with Quast
(v5.0.2) against each of the r efer ence plasmids ( n = 108)
from these 41 complete genomes. Quast was run with the ar-
gument (– min-contig 1000) to map only contigs with a min-
imum size of 1 kb. Shorter contigs are neither frequently
classified nor binned by plasmid prediction tools, thus their
inclusion in the bins is not well justified. We used mge-
cluster in the operational mode – create with a perplexity
value of 5 (adjusted automatically by mge-cluster based on
the sample size) and minimum cluster size of 2 (to allow
each prediction to form an independent cluster with its as-
sociated r efer ence plasmid). 

For all cases, we assessed whether: (i) the r efer ence plas-
mid and simulated plasmid / bin had the same mge-cluster
assignment, (ii) the simulated plasmid / bin was unassigned
but the r efer ence plasmid belonged to a mge-cluster or (iii)
the simulated plasmid / bin and r efer ence plasmid belonged
to distinct mge-clusters. 

RESULTS 

Generating a typing scheme for Escherichia coli plasmids 

To evaluate the applicability and robustness of mge-cluster
on real data, we generated a plasmid typing scheme for
E.coli plasmids. We considered all plasmids from the cu-
ra ted PLSDB plasmid da tabase ( 22 , 31 ) tha t includes sam-
ples from distinct isolation sources, hosts and countries.
This dataset contained highly similar sequences that could
lead to an overestimation of the performance of mge-
cluster. Thus, redundant sequences were filtered using
cd-hit-est (see Materials and Methods) to select a sin-
gle r epr esentati v e plasmid among highly similar sequences
( n = 6185). The discarded plasmid sequences ( n = 675) were
used as a further test set for benchmarking the runtime and
memory r equir ed for mge-cluster. 

After removing uninformati v e unitigs ( k = 31) with
low variance (0.01, n = 680 491), mge-cluster consid-
ered 211198 unitigs as input to generate the classifica-
tion frame wor k. The resulting unitigs had an average size
of 37.52 bp (median = 33.00 bp). This left 189 plas-
mids (3.1%, 189 / 6185) without unitigs and these plas-
mids were excluded from subsequent clustering analy-
sis resulting in 5996 remaining plasmids in the analysis.
The filtered unitig presence / absence matrix was embed-
ded with openTSNE (perplexity = 100) and clusters were
called using HDBSCAN (min cluster = 30). In total, we
obtained 41 discrete plasmid clusters grouping 4784 se-
quences (79.8%, 4784 / 5996) with 1212 sequences remaining
unassigned (20.2%, 1212 / 5996) (Figure 2 , Supplementary
Table S1). 

The chosen perplexity value can impact the non-linear
resultant embedding such that low perplexity values tend
to preserve the local structure better, while sometimes arti-
ficially introducing some structure when none exists. Con-
v ersely, high perple xity values tend to preserv e more of the

https://github.com/wilkox/treemapify
http://albertsenlab.org/wp-content/uploads/2020/02/R10.3_dist_len_hp.pdf
https://doi.org/10.6084/m9.figshare.21674078.v1
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Figure 2. OpenTSNE embedding based on unitigs ( k = 31) of 5996 E. coli plasmids. Each point corresponds to a plasmid sequence and their assigned 
cluster (C) is labelled based on the cluster ID ( n = 41) defined by HDBSCAN. Sequences belonging to an HDBSCAN cluster ar e colour ed (from r ed to 
blue) based on their membership probability. Unassigned sequences correspond to plasmids with a membership probability of 0 of belonging to any defined 
cluster and are coloured in grey. The ellipses (in black) delimit the cluster coordinates and were estimated using the Khachiyan algorithm implemented in 
the ggforce R package. To facilitate finding clusters 19, 26, 29, 30 and 33, which are highlighted as examples in the text, we indicated their positions with 
an arrow in the plot. 
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lobal structure at the cost of merging small clusters to- 
ether. We evaluated the impact of varying this mge-cluster 
arameter (perplexity = 10, 30, 50, 200) by comparing their 
esulting clustering assignments using the adjusted Rand in- 
e x. This inde x can vary from 0 (completely distinct typ- 

ng models) to 1 (identical typing models) while adjust- 
ng for randomly assigning two sequences belonging to the 
ame cluster. We observed that mge-cluster produced as- 
ignments robustly (average Rand index = 0.95) to the cho- 
en perplexity values when considering sequences assigned 

y two resulting models (Table 1 ). In addition, we show 

hat the mge-cluster discrepancy between models can be ex- 
lained by the sequences which are unassigned by one of the 
odels but clustered in the other (Table 1 ). Consequently, 
e encourage users to run mge-cluster by setting distinct 
erplexity values to evaluate cluster stability. 
Plasmids can ra pidl y incorporate or lose genomic mod- 

les or e v en co-integrate with other sequences present in 

he same cell, which drastically affects their size. For each 
luster ( n = 41) (perplexity = 100, min cluster = 30), the 
nterquartile range (IQR) of the sequence length was on av- 
rage 18.66 kb but with pronounced differences depending 

n the cluster (Supplementary Table S2). As an example, 
luster 26 (Figure 2 ) with a mean length of 94.6 kb showed 

n IQR of 0.26 kb indicating an almost intact plasmid back- 
one , while , cluster 19 (Figure 2 ) with a mean length of
59.4 kb had an IQR of 51.2 kb indicating the presence of 
istinct gained / lost genomic modules shared by only a frac- 
ion of the plasmids assigned to this cluster. 

To quantify the percentage of shared sequences among 

lasmids from the same cluster, we used pyani to retrie v e 
verage nucleotide identity (ANI) and coverage values ( 32 ). 
n average, plasmids shared 62.3% of their sequence (pyani 

overage) with other members from the same cluster with an 

ssociated ANI of 95.7%. We observed that the average cov- 
rage shared between plasmids varied substantially among 

lusters indicating distinct degrees of plasmid modularity as 
re viously e xemplified with the IQR of the sequence length 
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Table 1. Comparison of the mge-cluster models over a range of perplexity values (10, 30, 50, 200). The models were compared against the mge-cluster 
solution, corresponding to a perplexity value of 100. The Rand index was first computed considering only points assigned to a cluster by the two clustering 
solutions and thus ignoring points which were either unassigned by one of the two models. Secondly, the Rand index was computed with all points (assigned 
and unassigned) to highlight the discrepancy between the models is mainly caused by sequences clustered by one of the two models but unassigned by the 
other 

mge-cluster 
perplexity Assigned points Unassigned points Number of clusters 

Rand index - only 
assigned points 

Rand index - all 
points 

10 3778 2218 45 0.90 (3,502) 0.29 (5,996) 
30 5187 809 44 0.95 (4,651) 0.61 (5,996) 
50 4887 1109 45 0.96 (4,579) 0.70 (5,996) 
200 4528 1468 38 0.98 (4,392) 0.70 (5,996) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/3/lqad066/7222077 by guest on 13 N

ovem
ber 2023
(Supplementary Table S2). Clusters 29, 30 and 33, formed
by large plasmids, displayed a low pyani coverage indicating
that plasmids from those clusters shared only a minor frac-
tion of their sequence. To further understand the content
of each mge-cluster, we visualized the di v ersity of replicons
(Supplementary Figure S2) predicted by the MOB-typer
module of MOB-suite ( 12 ) based largely on PlasmidFinder
( 6 ). 

Comparison of mge-cluster against other plasmid typing tools

To assess the le v el of concor dance with current typing
schemes, we compared the mge-cluster results against the
gold standard methods for plasmid typing. MOB-suite pro-
vides a fiv e-character fixed-length code (2 letters and 3
digits) to identify sequences belonging to the same group
(termed ‘primary cluster id’) (Supplementary Table S3),
while COPLA provides a PTU designation (Supplemen-
tary Tab le S4). Howe v er, the CPU time (167 minutes, 22
min wall-clock time) and memory (319.5 Mb) r equir ed for
COPLA to predict the plasmid type of a single sequence
(NZ CP024805.1) hampered us from predicting the entire
E. coli dataset of 6185 plasmids for a full comparison with
mge-cluster. Howe v er, 695 sequences (11.2%, 695 / 6185)
from our dataset were typed in the original publication de-
scribing COPLA [10] and were further considered in this
comparison. In addition, we retrie v ed from the PLSDB
database the information deri v ed from in silico pMLST data
(Supplementary Table S5). pMLST includes six different
schemes to assign each of the replicons present in the plas-
mids with a distinct allelic variant. The resulting allelic vari-
ant combination (FAB formula in the case of IncF plas-
mids) is frequently reported in studies to group plasmids
into different types. 

To compare the overall clustering concordance, we con-
sidered the adjusted Rand index which fluctuates from 0
(maximally different clustering) to 1 (identical clustering).
We observed a moderate agreement between mge-cluster
and MOB-suite with an index of 0.61, for COPLA the ad-
justed Rand index was 0.53 while pMLST showed the low-
est le v el of agr eement (0.37) (Figur e 3 , no thr eshold). No-
tab ly, we observ ed that increasing the membership proba-
bility threshold of mge-cluster to assign plasmids to partic-
ular clusters resulted in a higher le v el of ov erlap between
the tools reaching a maximum adjusted Rand index value
of 0.77 for MOB-suite and COPLA, and 0.51 for pMLST
(Figure 3 , threshold = 0.9). 

To define which mge-clusters had a higher le v el of overlap
with MOB-suite, COPLA and pMLST types, we calculated
the Simpson di v ersity of each mge-cluster. For instance,
if all plasmids from a particular mge-cluster were desig-
nated as a single type by MOB-suite, COPLA or pMLST,
this Simpson di v ersity value would be 0. In contrast, the
presence of multiple types defined by MOB-suite, COPLA
or pMLST would result in di v ersity values close to 1. For
pMLST, we only calculated the Simpson di v ersity of mge-
clusters for which the majority of plasmids had a pMLST
annotation since not all E. coli plasmids had an associated
Inc scheme (see Materials and Methods). The di v ersity of
MOB-suite and COPLA types is shown in Supplementary
Figures S3 and S4, respecti v ely. 

The overall Simpson diversity per cluster was 0.61, 0.46
and 0.21 for pMLST, MOB-suite and COPLA, respecti v ely.
We observed that by increasing the membership probabil-
ity threshold, the average diversity of MOB-suite types was
substantially reduced up to 0.23 (threshold = 0.9), in the
case of pMLST up to 0.43 (threshold = 0.9) with no changes
in the case of COPLA (0.21, threshold = 0.9) (Figure 4 ). 

We observed that mge-cluster grouped together plasmids
belonging to the same Inc scheme but distinct pMLST type,
exemplified by mge-clusters 1 (IncHI2 related) and 27 (IncN
related). For the plasmids typed by pMLST according to
the IncF RST scheme, we observed that mge-cluster fre-
quentl y clustered to gether plasmids with a distinct FAB for-
mula ( 33 ). For instance, mge-cluster 35 mostly consisted of
plasmids with the FAB formula F2:A-:B- (e.g. AP024132.2,
membership probability = 1.0) but also F24:A-:B1 (e.g.
NC 011747.1, membership probability = 1.0). Blastn
analyses between NC 011747.1 (F24:A-:B1) AP024132.2
(F2:A-:B-) and showed 92% query coverage and 99.93%
sequence identity (NC 011747.1 query; AP024132.2 sub-
ject). In mge-cluster 39, plasmid sequences CP057140.1
(membership probability = 1.0) and CP057627.1 (member-
ship probability = 1.0), which had a distinct FAB formula
(F56:A-:B- and F89:A6:B-), were clustered together. Blast
analyses (CP057140.1 query; CP057627.1 subject) re v ealed
98% query coverage and 99.92% sequence identity between
these plasmids. This can be explained by a high rate of
acquisition / loss of the replicons used to infer the FAB for-
mula as well as the accumulation of mutations. These re-
sults illustra te tha t pMLST typing tends to only group to-
gether plasmid sequences exhibiting a very limited level of
di v ergence. In contrast to the other tools considered here,
pMLST is only able to type a subset of the E. coli plasmids
since some sequences contain replicons for which a pMLST
scheme is not available. 

COPLA produced the same PTU designation (PTU-
FE) for 10 distinct mge-clusters, which resulted in a lower
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Each point in the comparison is sized according to the number of sequences used to compute the adjusted Rand index value between the tools. 
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impson di v ersity than for MOB-suite at the cost of merg- 
ng together plasmids with a distinct core gene content 
Supplementary Figure S4). This PTU-FE type was re- 
orted in the original COPLA article as problematic be- 
ause se v er al plasmid configur ations wer e pr esent r esulting
n a low intra-cluster density ( 10 ). 

MOB-suite showed a consistent agreement (Simpson 

alue < 0.2) in 13 mge-clusters (Figure 4 , Supplementary 

able S2). The disagreement occurred in the mge-clusters 
ith an average small plasmid length ( < 10 kb) (clusters: 2, 
, 12, 14, 20, 21). These clusters consisted of sequences with 

 pr edominant r eplicon type (Supplementary Figur e S2), 
owe v er, MOB-suite predicted those sequences in distinct 
lusters (Supplementary Figure S3). MOB-suite confirmed 

ith a high Simpson di v ersity value, that clusters 29, 30 and 

3 were formed by large plasmids from distinct types (Sup- 
lementary Table S2). 
For the remaining clusters we observed that mob-cluster 

ended to only group sequences that were highly similar 
n their gene content (high identity and coverage). To il- 
ustrate this, we considered a random sequence from mge- 
luster 31 predicted with a different type by MOB-suite 
NZ LT985213.1 for AA735, NZ CP010138.1 for AA334) 
nd performed a gene synteny analysis (Supplementary Fig- 
re S5). We observed that these two sequences, despite be- 

ng classified by MOB-suite as distinct types (AA735 and 

A334), had a blastn coverage and identity of 73.1% and 

9.6%, respecti v ely. The synteny analysis re v ealed both se- 
uences had an IncFII replicon with a well-conserved syn- 
eny (Supplementary Figure S5). Howe v er, NZ LT985213.1 

ad incorporated an extra module corresponding to the co- 
ntegration of an IncFIA replicon. MOB-suite uses a strin- 
ent Mash threshold (0.06) to group plasmid sequences, and 

onsequently, sequences that share a highly similar plas- 
id backbone, but have gained or lost genomic modules, 

r e v en co-integrated other plasmids, tend to be grouped 

y MOB-suite into distinct types. In the case of mge- 
luster, plasmids acquiring an extra genomic module have 
 lower membership probability of belonging to the clus- 
er since their unitig content differs, but are still consid- 
red to be part of the same cluster. This behaviour ex- 
lains why the increase in the membership threshold of 
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mge-cluster results in a higher agreement with MOB-suite
(Figure 3 ). 

Pr edicting no vel sequences with an existing mge-cluster
model 

Mge-cluster was built to generate a classification network
that can also assign the same cluster names without the re-
quir ement to r e-analyze any pr evious dataset and to keep
consistent cluster names ( –existing mode). We considered
the sequences discarded by cd-hit-est ( n = 675) to bench-
mark the runtime and memory r equir ed by mge-cluster to
assign these sequences to the previous clusters. In addition,
these sequences should be embedded and assigned to the
same cluster as the r epr esentati v e sequence from the cd-hit-
est step. 

Mge-cluster predicted these 675 samples using less CPU
and wall-clock time (23.3 min, ∼4 min wall-clock time) than
for MOB-suite (CPU time 32.2 min, ∼ 26 min). Howe v er,
the peak memory usage of mge-cluster (15.9 Gb) was sub-
stantially higher than for MOB-suite (4.5 Gb). From these
675 samples, 15 sequences corresponded to cd-hit clusters
for which its r epr esentati v e sequence was discarded in the
mge-cluster model because of the absence of unitigs and
were not evaluated further. Mge-cluster correctly assigned
99.2% (655 / 660) of the plasmids to the same cluster as their
corr esponding r efer ence sequence (Supplementary Figur e
S6). In fiv e cases (0.8%, 5 / 660), mge-cluster predicted an-
other cluster, including four cases where the model returned
an unassignment (-1) category. 

Ne xt, we e valuated the performance of mge-cluster pre-
dicting plasmids not present in E. coli and thus unseen by
the approach to build the mge-cluster model. For this, we
considered all Staphylococcus aureus plasmids ( n = 1020)
from the PLSDB database because of the absence of plas-
mid transmission e v ents between these two species ( 9 , 10 ).
Mge-cluster did not detect any E.coli -specific unitigs (0
from a total of 211198 unitigs) for 972 S. aureus plasmids
(95%) and thus those sequences were not assigned to any
of the mge-clusters from the E. coli model (Supplementary
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able S6). This is due to the high specificity of the unitigs 
sed in the mge-cluster model which had a minimum size of 
1 bp and an average size of 37.52 bp. From the remaining 

9 plasmids (5%), 28 plasmids were not assigned to any clus- 
er, 12 plasmids were assigned to the mge-cluster 29 and 8 

lasmids to the mge-cluster 30. We confirmed that the plas- 
ids assigned to mge-clusters 29 and 30, had a low number 

f unitigs present and thus corresponded to samples with 

 vector of nearly all zeros. In those cases, mge-cluster em- 
edded those sequences into clusters 29 and 30 which we 
reviously highlighted as random noise clusters. 
Lastly, we assessed the performance of mge-cluster pre- 

icting plasmids likely shared in other bacterial species from 

he same family ( Enter obacter ales ) as E. coli . For this, we
elected plasmids from the incompatibility group N (IncN) 
ince they have a conserved core genome, which was used 

o de v elop a specific pMLST scheme ( 6 ) and hav e been re-
orted across se v eral bacterial species belonging to Enter- 
bacterales ( 34 ) . We considered all IncN non- E.coli plas- 
ids from the PLSDB database containing uniquely a sin- 

le replication gene ( n = 206) and predicted their cluster- 
ng assignment with the E. coli mge-cluster model (Supple- 

entary Table S7). We observed that most IncN plasmids 
80.6%, 166 / 206) wer e pr edicted as part of the mge-cluster 
7 which contains a majority of E. coli plasmids belonging 

o this incompatibility group (Supplementary Figure S2) 
nd thus confirming that this plasmid type is shared and has 
 conserved genomic backbone among Enter obacter ales . In 

otal, 34 plasmids (16.5%) could not be assigned to any 

ge-cluster and were labelled as (–1) showing that some 
f these IncN plasmids might have acquired or recombined 

ith other genomic modules and thus have a clearly distinct 
nitig content. The remaining plasmids (2.9%, 6 / 206) were 
cattered among mge-clusters 29 ( n = 4), 14 ( n = 1) and 30
 n = 1). 

ge-cluster is robust to both long-read and short-read plas- 
id assemblies 

he plasmid typing scheme provided by mge-cluster was 
uilt based on complete plasmid sequences from the 
LSDB database. To obtain complete plasmid sequences, 
NT sequencing is widely used. Howe v er, assemb lies based 

nly on ONT reads can contain SNPs, and in particular in- 
ertions and deletions (indels), often introducing errors and 

alse pr ematur e stop codons tha t would af fect protein pre-
ictions ( 35 ). 
To estimate the robustness of mge-cluster to ONT-only 

lasmid assemblies, we randomly introduced SNPs and in- 
els in the 5996 plasmid sequences considered as input 

or the presented E. coli plasmid typing scheme. The rate 
f SNPs and indels (see Materials and Methods) present 

n ONT-only based plasmids was fixed to simulate ∼130 

NPs / 100 kb and ∼140 indels / 100 kb based on our previ-
us study ( 30 ). To assess if the r efer ence and ONT-simulated
lasmids would cluster together, we used the two oper- 
tional modes of mge-cluster with a perplexity value of 
00 and minimum cluster size of 2 in the – create mode. 
his minimum cluster size was determined so each pair 
f r efer ence and ONT-plasmid could constitute an inde- 
endent cluster. For both operational modes, we observed 
hat ∼98% of the ONT-simulated plasmids were clustering 

ogether with their associated r efer ence plasmids (Supple- 
entary Figures S7A, S7B and Supplementary Tables S8, 

9). In ∼2% of cases, the ONT-simulated plasmids were 
ither unassigned or incorrectly grouped into a distinct 
ge-cluster. 
Despite the growing number of complete plasmid se- 

uences and the adoption of long-read sequencing tech- 
ologies, short-read sequencing still remains the preferred 

echnology in many microbiological laboratories for per- 
orming routine whole-genome sequencing. To estimate 
he robustness of mge-cluster clustering predicted-plasmid 

hort-read contigs and complete plasmid sequences, we 
onsidered 41 E. coli complete genomes (108 plasmids) from 

ur previous study ( 30 ) (Supplementary Table S10). Short- 
 ead contigs wer e extracted and mapped against the 108 ref- 
rence plasmids to create bins with the unsorted short-read 

ontigs. To simulate the output of plasmid prediction tools, 
e onl y ma pped and included in the bins, short-read con- 

igs with a length larger than 1 kb. Mge-cluster was run with 

he – cr eate opera tional mode (– perplexity 5, – min c luster 2)
onsidering the 216 samples (108 r efer ence plasmids, 108 

hort-read bins). In ∼97% of the cases, the short-read bin 

as grouped in the same cluster together with its associ- 
ted r efer ence plasmid (Supplementary Figur e S7C). This 
s in line with the results based on ONT-simulated plas- 

ids (Supplementary Figure S7), indicating the robustness 
f mge-cluster to both the sequencing technology and the 
ompleteness of the assembly. 

howcasing mge-cluster in a real epidemiological study 

o elucidate if the typing scheme provided by mge-cluster 
ould be useful to infer plasmid transmission, e.g. in clinical 
ettings, we considered a prospecti v e observational cohort 
tudy ( 36 ) which involved patients admitted to two haema- 
ology wards at the Cambridge University Hospitals NHS 

oundation Trust in England. In this study, the authors per- 
ormed long-read sequencing of a r epr esentati v e set of E. 
oli samples and assessed if there was plasmid transmission 

mong patients using genomic and epidemiological data. 
n total, the authors considered 16 complete plasmid se- 
uences carrying the beta-lactamases genes bla CTX-M-15 or 
la CTX-M-14 (Supplementary Table S11). 

Mge-cluster grouped these 16 plasmids into 4 distinct 
lusters (Supplementary Figure S8, Supplementary Table 
11). These clusters consisted of plasmids present in dis- 
inct E. coli sequence types (ST) but also plasmids present 
n dif ferent pa tients (Supplementary Figure S8). Ludden 

t al. found that the plasmids carrying the bla CTX-M-15 
ene were variable in their replicon di v ersity but also in 

heir antibiotic resistance gene content ( 36 ). Mge-cluster 
rouped the bla CTX-M-15 plasmids into three distinct clus- 
ers (mge-clusters 1, 2, 3), including a group correspond- 
ng to a bacteriophage-like plasmid (LR595875, LR595878 

nd LR595890). Based on epidemiological links, the au- 
hors discarded the horizontal spread among patients of any 

f the bla CTX-M-15 plasmids present in the study cohort. 
The authors argued in the study that all bla CTX-M-14 plas- 
ids belonged to the incompatibility group (IncB / O / K / Z) 

nd mge-cluster grouped them into a single cluster (mge- 
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cluster 0). These bla CTX-M-14 plasmids were retrie v ed from
two patients (Supplementary Figure S8) and had a high
pairwise blastn coverage ( > 90%) and identity ( > 98%) con-
firming the assignment gi v en by mge-cluster. To determine
if plasmid transmission might have occurred between the
two patients, Ludden et. al performed a SNP analysis based
on the plasmid core genome ( 36 ). They observed that the
plasmids present in the two patients differed by hundreds
of SNPs, thus discarding a plasmid transmission scenario. 

Based on these results, we suggest that mge-cluster can
be utilised as a first step to broadly cluster the plasmid
sequences deri v ed from epidemiological studies. Howe v er,
each of the mge-clusters needs to be further inspected
using a more refined SNP analysis based on the plas-
mid core genome, and epidemiological data should prefer-
ably be added to better assess direct plasmid transmission
scenarios. 

Cluster distribution and visualization of a gene of interest in
the embedding space 

The typing scheme offered by mge-cluster is optimal for vi-
sualizing the genomes carrying any particular gene of spe-
cial interest and tracking its distribution in future sequenc-
ing studies. To illustrate this, we considered the AMR gene
mcr -1.1 w hich confers r esistance to colistin, a last-r esort an-
tibiotic for treating infections caused by multi-drug resis-
tant E. coli . This AMR gene was first reported in 2016 on a
plasmid with an IncI2-type backbone ( 37 ) that can be mo-
bilised among distinct MGEs by the presence of an ISApl1
transposon element situated upstream of the gene ( 38 ). 

We observed that 327 plasmids contained the mcr-1.1
gene, the vast majority of these present in only three mge-
clusters: 3 ( n = 168), 1 ( n = 71) and 16 ( n = 53) (Fig-
ure 5 ). This was in agreement with previous reports ( 39 , 40 )
showing this AMR gene to be mainly spread by the plas-
mid backbones IncI2 (mge-cluster 3), IncHI2 (mge-cluster
1) and IncX4 (mge-cluster 16) (Supplementary Figure S2).
Howe v er, we also observed that the AMR gene was present
in nine additional mge-clusters (30 / 327, 9.2%) (Figure 5 )
and 5 sequences (1.5%) could not be assigned to any mge-
cluster. This illustrates how a consistent typing provided by
mge-cluster can be used to explore whether these nine clus-
ters r epr esent spillov er e v ents of the gene to other plasmid
backbones for which the gene might be further disseminated
using new plasmid types. 

DISCUSSION 

The number of MGEs available in public databases has
grown ra pidl y since the introduction of long-read sequenc-
ing technologies. Howe v er, the conte xtualization and com-
parison of MGEs are hampered by their high rates of re-
combination which result in the absence of a conserved
marker that can be broadly used by standard phylogenetic
methods. Mge-cluster responds to this need by generating
discrete clusters from sequences generally evolving through
a fast and dynamic turnover of gene gain / loss events. 

We demonstrated the potential of mge-cluster by de v el-
oping an E. coli model to classify plasmid sequences. We
observed that the clusters generated by mge-cluster typi-
cally consisted of sequences with a shared plasmid back-
bone (coverage ∼62%) but distinct accessory content. Mge-
cluster and MOB-suite showed a moderate le v el of agree-
ment between clustering solutions. Some of the disagree-
ment between the tools is explained by mge-cluster group-
ing together plasmid sequences that have acquired an extra
replicon sequence due to the cointegration of another plas-
mid. This characteristic of mge-cluster is particularly ben-
eficial for tracking a plasmid in the context of longitudinal
studies for which the same plasmid can ra pidl y gain / lose
genomic modules. The current version of COPLA makes
the typing of large collections unfeasible due to the CPU
time r equir ed to run a single sample. Moreover, in the par-
ticular case of E. coli , COPLA erroneously merges clusters
from distinct plasmids under the PTU-FE group. In con-
trast to MOB-suite and COPLA, mge-cluster does not re-
quire a predefined distance threshold to generate the typing
model which facilitates broad applicability across distinct
species and datasets. pMLST, which is based on the assign-
ment of allelic variants in well-known replicon sequences,
sho wed the lo west agreement with mge-cluster. We demon-
stra ted tha t in se v eral e xamples, plasmids grouped together
by mge-cluster were annotated with distinct pMLST types
but had a high blastn coverage and identity. The rapid dy-
namics of acquisition / loss of replicons together with the in-
corporation of mutations in those replicon sequences limit
the use of pMLST typing for comparing plasmids with lim-
ited evolutionary divergence. 

Mge-cluster can be used to provide a typing scheme that
can be easily shared and reused by other researchers. For
generating a typing scheme, we recommend including only
complete, and curated plasmid sequences similar to those
provided in the PLSDB database ( 22 , 31 ). To avoid high lev-
els of redundancy in the initial dataset, a filtering step with
cd-hit-est ( 23 ) or MMseqs2 ( 41 ) is desirable to select only a
single r epr esentati v e sequence among almost identical plas-
mids (e.g. plasmids sequenced from an outbreak scenario
or longitudinal studies). We show that the clustering pro-
vided by mge-cluster is robust to the accuracy of long-read
technologies. Howe v er, to generate a typing scheme, we be-
lie v e that the inclusion of circular or true linear plasmids is
desirable in the – create operational mode. Sequences which
are not complete can be typed using the – existing opera-
tional mode. We show that mge-cluster can be used in other
scenarios, such as for the validation and typing of plasmid-
predicted bins based on short-read contigs ( 12 , 42 , 43 ). Fur-
thermore, mge-cluster can be used to corroborate the pre-
dictions of a gi v en tool (bin and r efer ence plasmid clus-
ter together) as well as to contextualize predicted plasmid
bins with existing complete plasmid sequences (e.g. from the
PLSDB database). 

For epidemiological purposes, clusters obtained with
mge-cluster should be interpreted in a similar manner as
MLST ( 44 ) or BAPS groups ( 45 ) that cluster strains based
on chromosomal housekeeping gene alleles and genome
alignments respecti v ely. Ev en if two plasmids from differ-
ent patients belong to the same cluster, a direct plasmid
transmission scenario cannot be automatically assumed.
For this, mge-cluster can be considered as a starting point to
perform secondary analyses, such as constructing SNP phy-
logeny based on the resulting cluster core genome. These
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econdary analyses can confirm or dismiss transmission 

inks, as recently illustrated in two studies presented by Lud- 
en et al. and Hawkey et al. ( 36 , 46 ). In the case of the study
f Ludden et al. , we show that mge-cluster was useful to 

roadly type the plasmids into discrete groups, which opens 
he possibility of sharing the models for further tracking the 
istribution of a plasmid or gene-of-interest. In this case, we 
uggest that pMLST can be a valid and useful typing op- 
ion since it provides a higher le v el of resolution than mge- 
luster and plasmids involved in recent HGT e v ents should 

ave the same pMLST type. 
W hile we demonstra ted the use of mge-cluster using a 

ingle species, our approach can also be run on more di- 
erse datasets such as the combination of plasmid sequences 
rom the Enter obacter ales family. We anticipate that mge- 
luster can, in addition, be used for generating discrete clus- 
ers from other types of MGEs with sufficient gene content 
i v ersity including phages, integrati v e and conjugati v e ele- 
ents (ICEs) or flanking sequences surrounding a gene-of- 

nterest (e.g AMR genes). 
The ability of mge-cluster to ra pidl y assign new plasmids 

ith a consistent type facilitates the comparison of plasmids 
eri v ed from distinct collections and boosts our capacity to 

onduct MGE surveillance in general. 

A T A A V AILABILITY 

he mge-cluster package can be installed from bio- 
onda https://anaconda.org/bioconda/mge-cluster under 
he open-source MIT license. Extensi v e documentation 

n mge-cluster usage is available at https://gitlab.com/ 
irarredondo/mge-cluster . 

https://anaconda.org/bioconda/mge-cluster
https://gitlab.com/sirarredondo/mge-cluster
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The code r equir ed to r eproduce the r esults and fig-
ur es pr esented in this manuscript is available as a Rmark-
down document at https://gitlab.com/sirarredondo/mge- 
cluster manuscript . 

The plasmid sequences retrie v ed from the PLSDB
database used to generate the E. coli mge-cluster for plas-
mid classification are publicly available at NCBI and their
accession numbers listed on Supplementary Table S1. The
accession numbers from the S. aureus and non- E.coli IncN
plasmids retrie v ed from the PLSDB database and consid-
ered to assess the performance of mge-cluster typing new
MGE data are available in Supplementary Tables S6 and
S7 respecti v ely. The complete plasmid sequences considered
deri v ed from Arredondo Alonso et al. 2021 ( 30 ) and the
simulated short-read bins are available as a figshare item
at https://doi.org/10.6084/m9.figshare.23294909 . The acces-
sion numbers from the complete plasmid sequences deri v ed
from Ludden et al. 2021 ( 36 ) are available in Supplementary
Table S11. 

The E. coli mge–cluster model presented in
this manuscript is available as a figshare item at
https://doi.org/10.6084/m9.figshare.21674078.v1 . 
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