
Faculty of Engineering Science and Technology
Department of Computer Science and Computational Engineering

Visual SLAM Approach with a Low-Power Remote Robot Agent
A Practical Implementation and Proposal for Improvements

Stian Endrè Jakobsen
DTE-3900 Master’s thesis in Applied Computer Science, Narvik, May 2023



This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis


“It has been discovered that C++ provides a remarkable facility for concealing
the trivial details of a program — such as where its bugs are.”

–David Keppel

“If you lie to the compiler, it will get its revenge.”
–Henry Spencer

“Oft expectation fails, and most oft there
Where most it promises; and oft it hits

Where hope is coldest, and despair most fits.”
–William Shakespeare





Abstract
This master’s thesis examines the viability of using a low-performance, low-
power-consumption remote robot agent to collect sensor data for use in a
vSLAM system. Selections for the components of the robot agent were made
based on results from a small initial study, the robot was assembled, and
software to run it was created. A remote server application was created to
communicate with the robot agent and receive sensor data from it, subsequently
processing and using the data with ORB-SLAM3.

The robot agent successfully collects and transmits sensor data to the server ap-
plication, which successfully processes and uses the data in a vSLAM approach
using ORB-SLAM3. Results indicate that the approach is viable, but due to
hardware limitations overall performance is lower than intended. An analysis
was performed and proposals for improvements to mitigate the limitations
were suggested. Suggestions for further work was given.





Acknowledgements
I would like to thank my supervisors Rune Dalmo and Børre Bang for their
input, tips, and advice during the course of my thesis work.

I would also like to thankmy classmates who faced the perils of higher education
together with me.

Lastly, I would like to extend thanks to my family for their care, support, and
limitless patience—without which it is highly likely this thesis would not have
come to fruition. In particular, a huge thank you to my father for his support
and aid with some of the practical aspects of the robot assembly process.





Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Task description . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Camera types . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Sensor calibration . . . . . . . . . . . . . . . . . . . 6
1.3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.4 State-of-the-art . . . . . . . . . . . . . . . . . . . . . 8

1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Robot agent . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Host platform for processing and decision-making . . 10
1.4.3 SLAM system . . . . . . . . . . . . . . . . . . . . . . 10

2 Method 11
2.1 Choice of tools and materials . . . . . . . . . . . . . . . . . 11

2.1.1 Experience . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Selections . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Motors, power, and chassis . . . . . . . . . . . . . . 15

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 System architecture . . . . . . . . . . . . . . . . . . 17
2.2.2 Camera data . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Network communication . . . . . . . . . . . . . . . 21
2.2.4 Visual SLAM and Rectification . . . . . . . . . . . . . 22

vii



viii contents

3 Results 23
3.1 Robot performance . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Cameras . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Networking . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Movement . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Power consumption . . . . . . . . . . . . . . . . . . 25

3.2 Remote host application . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Rectification . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 vSLAM . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Discussion 29
4.1 Picobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 PicobotServer . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Overall results . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Suggestions and Conclusion 35
5.1 Suggestions for future work . . . . . . . . . . . . . . . . . . 35
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography 39

A Task Description 45

B Project setup and use instructions 51

C ArduCAM OV5642 documentation 61



List of Figures
1.1 Radial distortion in chessboard image, from the OpenCV Cam-

era Calibration documentation [18] . . . . . . . . . . . . . 6
1.2 Camera calibration example with chessboard pattern drawn,

from the OpenCV Camera Calibration documentation [18] . 7

2.1 Picobot: low-resolution chessboard pattern calibration example 20

3.1 Picobot final iteration front and overhead view . . . . . . . . 24
3.2 Distorted and undistorted images. Top: distorted pre-rectification

images. Bottom: undistorted rectified images. . . . . . . . . 26
3.3 ORB-SLAM3 with rectified Picobot images initial results screen-

shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 ORB-SLAM3 small corridor test results screenshot . . . . . . 28
3.5 ORB-SLAM3 adjoining room test results screenshot . . . . . 28

B.1 Picobot wiring diagram example . . . . . . . . . . . . . . . 54

ix





List of Tables
2.1 Specifications for selection of microcontrollers in stock in Nor-

way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Order message byte structure . . . . . . . . . . . . . . . . . 21
2.3 Image sequence metadata structure . . . . . . . . . . . . . . 21

3.1 ArduCAM OV5642 fps benchmark results . . . . . . . . . . . 24
3.2 Picobot network benchmark results . . . . . . . . . . . . . . 25

xi





List of Abbreviations
RAM Random Access Memory

SRAM Static Random Access Memory

SLAM Simultaneous Localization and Mapping

vSLAM Visual SLAM

viSLAM Visual-Inertial SLAM

CPU Central Processing Unit

GPU Graphics Processing Unit

VR Virtual Reality

CNN Convolutional Neural Network

ORB Oriented FAST and rotated BRIEF

CV Computer Vision

OS Operating System

STL Standard Template Library (C++ library)

ROS Robot Operating System

MP Megapixel(s)

IP Internet Protocol

LwIP Lightweight IP

xiii



xiv l ist of abbreviat ions

RTOS Real-Time Operating System

API Application Programming Interface

DHCP Dynamic Host Configuration Protocol

POSIX Portable Operating System Interface

JPEG Joint Photographic Experts Group (image file format)



1
Introduction
In this chapter we describe the background, objectives, the fundamental prin-
ciples which form the basis for the project of this thesis, in addition to the
results of preliminary planning work done prior to the commencement of the
core thesis project work, including a description of facets at the core of this
thesis as well as the current state-of-the-art. The aforementioned contents
ultimately lay the foundation for the approach which is described in the last
section of this chapter, which the remaining thesis work derived its approach
from.

1.1 Background

During the master’s course in Virtual Reality, Graphics, and Animation in the
last semester before this master’s thesis began, the students were acquainted
with a programmable robot agent with which the students were intended to
carry out a form of room mapping, the results of which would be used to
create a virtual representation of the room in which the robot had moved. In
this specific scenario, the students’ control of the robot was limited to pre-
programmed movement instructions, and as such could not be meaningfully
controlled in real-time. Additionally, the sensor data—which laid the basis for
the creation of the aforementioned virtual room—was cumbersome to both
extract and parse owing to a lack of sensor sensitivity and communications
limitations with the robot agent.

1



2 chapter 1 introduction

The struggles and challenges during the course of the aforementioned virtual
reality (VR) project laid the foundations for an interest in better approaches to
solving such a roommapping project. One idea that presented itself was the use
of camera sensors to identify obstacles, as opposed to the sole motion-based
collision detection of the VR project, due to a belief that these would not only
provide an opportunity to prevent collisions rather than requiring them, but
also allowing for other types of recognition should the need arise.

Further study into this topic lead to an accidental tumble down the rabbit hole
of the Simultaneous Localization and Mapping (SLAM) problem, specifically
the visual approach to solving the problem by using optical sensors, such as
cameras. The initial idea that presented itself was the creation of a custom robot
agent platform to address the shortcomings faced in the previous project, while
relying on the work done in the Visual SLAM approach. The initial literature
study into the topic revealed that a notable amount of the approaches described
in literature relied on robot agents with significant amounts of computational
power, resulting in a corresponding hefty cost of components for each respect-
ive agent, to the point of becoming prohibitively expensive in the case of a
master’s thesis project. Additionally, the aforementioned computational power
demands proportional amounts of electricity, which in turn results in increased
requirements with regard to the size of the robot chassis and motor power,
owing to the size of battery packs with the required capacity. Thus, a desire
to attempt to mitigate these challenges arose whence this project thesis was
born.

1.2 Task description

The main core objective of this thesis was to examine the viability of solving or
mitigating some of the challenges described in section 1.1 through an approach
relying on low-performance, inexpensive components for the robot agent in
conjunction with a sufficiently powerful remote host platform where the power
balancing act of mobile platforms would not be an issue.

The original task given in the task description, which can be found in Ap-
pendix A, was divided into four parts, of which the literature study and se-
lection of materials was part one. As such, the remaining three research and
development parts were as follows

1. Creating a robot agent platform using a microcontroller and cameras,
capable of communicating wirelessly with the main application host
which processes data and makes decisions for SLAM



1.3 theory 3

2. Creating a host application which uses image processing and/or AI tech-
niques and frameworks to process sensor data, primarily photos, provided
by the robot agent, in order to make decisions and gradually map rooms
according to SLAM

3. Creating a client application which provides a visualization in real time
of the results from the SLAM approach created in part 2

where the final part of creating the client application was an optional bonus
task if timed allowed. Having completed the main development sub-objectives,
the remaining scientific research objective was to validate the results obtained
from the created applications and ascertain to what extent they were viable as
a SLAM approach, with particular emphasis on any shortcomings or strengths
of such an inexpensive, low-performance approach.

1.3 Theory

Given that one of the core objectives of this project was to achieve a form of
SLAM with certain novel requirements, one of the biggest aspects of this project
dealt with the concept of SLAM. As such, this section gives a brief introduction
to the concept of SLAM and its facets that are most relevant to this thesis
project.

As previously mentioned, the process of mapping a room through sensor data
with a mobile agent, whilst simultaneously keeping track of the agent’s position
within the room, is referred to as Simultaneous Localization and Mapping; also
known as SLAM. The concept of SLAM has been achieved using a multitude of
different types of sensors, such as ultrasonic sensors [1], LiDAR [2], and optical
cameras [3] in the form of both single-lens cameras providing monocular
images and dual-lens cameras providing binocular images [4]. Given that the
initial thesis task description, as seen in Appendix A, forced the usage of at
least two cameras as sensors, it was predominantly the visual SLAM approach
(vSLAM) that was of interest to this project, as well as visual-inertial SLAM
(viSLAM) given that the main distinguishing factor between the two is the
addition of an inertial measurement unit (IMU) [5] and there was an early
inclination to use an IMU with the project should time allow.

SLAM as a concept can be traced at least as far back as 1995 when the acronym
is claimed to have been introduced at the International Symposium on Robotics
Research, with the core ideas likely being far older [5, 6]. The key problem
that SLAM presents is asking whether it is possible for a mobile robot agent,
placed in an unknown environment, to incrementally create a map of this



4 chapter 1 introduction

environment while simultaneously determining its localization within said
environment [6].

As mentioned in Durrant-Whyte & Bailey (2006), SLAM has been a solved
problem for a while, with some early practical implementations described in
the aforementioned paper. Since then, improvements have been made in terms
of handling environment complexity, computation, feature representation, and
data association [6]. Extraction of information from the sensor devices is
one of the key stages of visual SLAM, with there being two main method
types to achieve this. The first, feature-based methods, rely on extracting
a sufficient amount of features and matching them between successive sets
of images. The second, direct methods, involve extraction of information or
parameters from pixel intensity values (e.g. brightness and illumination-based
cross-correlation) [7].

An issue with early visual SLAM relying on feature-based methods was coping
with non-textured areas, such as corridors and rooms with little furniture, as
one of the key steps of SLAM—data association—relies heavily on the ability
to distinguish between features. The result of this was reduced availability
of corner points, which could cause such vision-based SLAM approaches to
be unstable. Tomono suggested in 2009 an approach to cope with this by
detecting edge points using stereo image pair, estimating camera motion by
matching with the next image pair, and applying the Iterative Closest Point
(ICP) algorithm, repeating this in order to compute the camera trajectory and
3D map [8].

Some other common SLAM challenges are dealingwith non-static environments
(e.g. environments containing othermoving actors) [9], and loop closure where
the remote mapping agent has to recognize a previously-visited location and
updating accordingly, ensuring consistency of the map [10]. There is also
the potential issue of losing the mobile robot agent’s position in the map
when localization fails, which can be prevented or otherwise mitigated by
implementing a recovery algorithm, or sensor fusion with the motion model
thus making calculations based on sensor data. One of the more common
methods is using some form of Kalman filtering, often extended Kalman filter
(EKF) SLAM class of algorithms in the case of nonlinear motion models, particle
filters with Monte Carlo localization [11, 12].

The solutions for these issues are incorporated into a classic visual SLAM system
which can be divided into five distinct modules or parts: the sensor module,
front-endmodule, back-endmodule, loop closure module, andmappingmodule.
The sensor module is responsible for collection of data for use in the other
modules, the front-end module handles tracking of image features between
adjacent frames resulting in the initial motion estimation and mapping, the



1.3 theory 5

back-end module handles optimization of data from the front-end in addition
to further motion estimation. The loop closure module handles elimination of
accumulated errors, and the mapping module reconstructs the environment
based on the results from the preceding modules [13]. The actual "architecture"
for such a system varies depending on which approach one uses, with the one
described above being common in Graph-SLAM approaches [14].

1.3.1 Camera types

One commonality through the various approaches is the presence of camera
sensors. Common camera sensors used for visual SLAM can be divided into
the following categories:

• Monocular cameras are single-lens cameras that have the advantage of
being low cost and simple to deal with in terms of system complexity, but
can cause issues owing to the depth of landmarks being difficult to es-
timate, which may cause scale ambiguity for map building. Furthermore,
pixel depth may not be calculated in a static state [11, 13, 14].

• Binocular cameras are dual-lens cameras, like monocular cameras, are
usually low cost, but come with the added complexity and are computa-
tionally more expensive as a result of the double images being processed.
There is, however, the added benefit of pixel depth calculation being
possible in static states for these cameras, and have been proven to be
more robust than monocular cameras [13, 15, 14].

• RGB-D cameras differ frommonocular and binocular cameras in that they
provide direct pixel depth through time of flight or infrared structure-light,
but suffers in environments exposed to sunlight or other high-intensity
lights as they are easily disturbed by such interference (an example of
such a camera with either pixel depth measurement methods can be
found in Microsoft’s Azure Kinect v1 and v2 kits) [13, 16, 14].

• Event cameras, also known as neuromorphic cameras, differ from previ-
ously mentioned cameras in that they capture images not with a shutter
at a fixed rate, but rather operates each pixel independently and asyn-
chronously as changes in brightness occur. This allows them to exhibit
better performance in high-speed, high-dynamic conditions, but generally
at an increased price-point [13].



6 chapter 1 introduction

1.3.2 Sensor calibration

In most advanced computer vision tasks it is a requirement that the afore-
mentioned camera sensors are calibrated. The reasoning being that this is a
necessary step for the computer vision approaches to extract metric information
from 2D images, which in turn is required in order to mitigate the phenomenon
of distortion of which some camera types are more prone to than others [17].
This kind of distortion appears in two major kinds: radial and tangential
distortion. Radial distortion is a type of distortion that causes curvature in
straight lines, increasing the farther lines get from the centre of the image in
question [18]. An example of this type of distortion can be seen in figure 1.1.

Figure 1.1: Radial distortion in chessboard image, from the OpenCV Camera Calibra-
tion documentation [18]

Tangential distortion is a type of distortion where some areas in an image may
appear closer than expected, as a result of the camera lens not being perfectly
aligned parallel with the imaging plane. Radial distortion can be expressed
with the formula

G38BC>AC43 = G (1 + :1A2 + :2A4 + :3A6)
~38BC>AC43 = ~ (1 + :1A2 + :2A4 + :3A6)

(1.1)

and tangential distortion with the formula

G38BC>AC43 = G + [2?1G~ + ?2(A2 + 2G2)]
~38BC>AC43 = ~ + [?1(A2 + 2~2 + 2?2G~)]

(1.2)

in the case of distortion for use in OpenCV. Of note are the distortion coef-
ficients :8 and ?8 which represent the net radial and tangential distortion
respectively [18, 17].



1.3 theory 7

In order to successfully mitigate the distortion, it is necessary to obtain the
intrinsic and extrinsic parameters of the camera—or cameras in the case of
stereo vision—where intrinsic parameters include focal length (5G , 5~) and
optical centres (2G , 2~), which constitute the camera matrix  :

 =


5G 0 2G
0 5~ 2~
0 0 1

 (1.3)

which is unique for each specific camera. The extrinsic parameters include
translation and rotation vectors which are used to translate coordinates in
the image to their counterparts in the 3D real world space, and in the case of
stereo cameras translating coordinates in one camera to their corresponding
coordinates in the other camera [18].

Computing the intrinsic and extrinsic parameters for a set of cameras is usually
achieved by using sample images containing a well-defined pattern where the
geometry, points, and relative positions are already known. One commonly
used pattern in computer vision applications is a chessboard. By finding spe-
cific points on the chessboard in the sample images, it is possible to use the
discovered points in the image space in conjunction with their known points in
real-world space to compute the distortion coefficients, intrinsic and extrinsic
parameters [18, 17]. An example of the use of a chessboard pattern for the
calibration process can be seen in figure 1.2

Figure 1.2: Camera calibration example with chessboard pattern drawn, from the
OpenCV Camera Calibration documentation [18]



8 chapter 1 introduction

1.3.3 Algorithms

For visual SLAM there exists a sizable amount of different algorithms that have
been released throughout the years, each with their own use-cases and per-
formance. Due to the restriction of binocular cameras and real-time application,
only a brief look is taken at some of the relevant algorithms for this particular
use-case here, ignoring some like MonoSLAM that are limited to monocular
implementations [19].

1.3.4 State-of-the-art

For the purposes of this project, there are currently three state-of-the-art al-
gorithms for vSLAM that are of relevance: ORB-SLAM2 [3], CNN-SLAM [19],
and ORB-SLAM3 which has support for both vSLAM and viSLAM approaches,
given that its support for inertial sensors [20].

The ORB-SLAM2 (Oriented FAST and Rotated BRIEF) algorithm is a feature-
based algorithm that is considered the state-of-the-art of this class of SLAM
algorithms. It is a fairly accurate and performant algorithm, which allows for
the use of monocular, binocular, as well as RGB-D approaches. One downside to
this algorithm is its difficulty with recovering from a tracking failure situation
unless a high similarity frame is recognized. Additionally, the method requires
the collection of frames at the same rate as it processes the frames, which
may result in difficulties with making real-time embedded system operation a
reality. It has however been successfully implemented in embedded systems in
literature [19, 3].

CNN-SLAM is a real-time SLAM algorithm using convolutional neural networks
(CNN) to predict depth in its processing pipeline from collected frames, after the
processing the algorithm performs a pose-graph optimization in order to obtain
a globally optimized pose estimation. One benefit of this algorithm is that due
to relying on depth prediction to perform scale estimation, it does not suffer
from absolute scale limitation. A downside to this algorithm is the necessity of
the presence of both a CPU and a GPU for real-time operation [19, 21].

Finally, the ORB-SLAM3 algorithm is an updated version of the ORB-SLAM2
algorithm with the main relevant updates over its previous version being that
it is the first SLAM system able to reuse all previous information in every
algorithm stage, which result in a highly robust and accurate SLAM system
even compared to other state-of-the-art systems in literature, according to
Campos et al. [20].

At least two other studies have attempted a SLAM approach using moderately



1.4 approach 9

low-performance mobile agents with some success. Zhang et al. analysed
in [22] the performance of three different SLAM algorithms with their Intel
Core i5 powered agent (in conjunction with an STM32 controller), though their
approach still required processing be done in the agent itself. Another approach
was achieved by Karam et al. [23] where they examined the use of a low-cost
microdrone powered by two microcontrollers streaming sensor data from the
drone to a stationary host computer. This approach is possibly the closest to
what this thesis is attempting, differing in the choice of sensors where Karam
et al. [23] relied on LiDAR instead of stereoscopic cameras.

1.4 Approach

To summarize then, the main problem to be solved, or more accurately re-
searched, was the requirement in several current SLAM approaches for com-
putational devices with high power consumption in the mobile robot agent
and the corresponding size-requirement for such an agent. This in practice
involves "moving" the sensor module in a SLAM system’s architecture to a
remote (mobile) agent, with the rest of the system remaining stationary. As
such, a research question can be formulated: Is it possible to achieve adequate
performance in a vSLAM or viSLAM approach using low-performance, low-power-
consumption computational devices for sensor data collection, and offloading
computing to a stationary host platform? Additionally, the created platform’s
power consumption and corresponding battery life performance would be in-
teresting to examine as well. In order to determine to what extent the results
of this project answers the research question, a set of requirements for each
development objective have been created.

1.4.1 Robot agent

The requirements for the robot agent can be summarized as follows:

• The agent must be capable of receiving instructions through Wi-Fi from
a remote application.

• The agent must be capable of transmitting sensor data through Wi-Fi to
a remote application.

• The agent must be capable of executing movement orders received
through Wi-Fi from a remote application.

• The agent must be power-efficient enough to run for at least 1-2 hours



10 chapter 1 introduction

with continuous use.

1.4.2 Host platform for processing and decision-making

The requirements for the remote host platform can be summarized as fol-
lows:

• The platformmust be capable of sending instructions through the network
to the robot agent.

• The platform must be capable of receiving sensor data through the
network from the robot agent.

• The platform must be capable of using received sensor data with a SLAM
algorithm.

• The platform must be capable of using the SLAM results to compute
movement orders to be transmitted to the robot agent.

• The platform must be capable of transmitting movement orders to the
robot agent.

• The platform must be sufficiently computationally powerful enough to
perform SLAM in real-time.

1.4.3 SLAM system

It was not expected that the created system would outperform that of contem-
porary state-of-the-art approaches, the only point of interest in this project was
achieving a form of vSLAM or viSLAM with remote parsing. The minimum
ideal milestones for the overall project/SLAM system can be summarized as
follows:

• The system should be capable of yielding some results from SLAM in a
small, empty room. (less than 10<2)

• The system should be capable of yielding some results from SLAM in a
small room with sparse-density obstacles.

Capability successfully completing these two milestones to some extent—in
addition to the requirements for each sub-part of the system—would signify
achievement of some level of success expected for this project.



2
Method
2.1 Choice of tools and materials

As part of the preliminary thesis work, research was done to ascertain which
tools, hardware, and software would likely best suit the task at hand. The
research and ensuing selection of materials was based on a number of various
factors, such as ease of procurement, performance, but also the author’s exper-
ience. This section contains the result of this preliminary analysis, in addition
to some changes made to the initial selections in the course of the project
development period.

2.1.1 Experience

This subsection lists the author’s experience with the relevant tools, libraries,
and languages that laid the foundation for the initial choices being made, in
addition to the formal educational courses with relevant curriculum to the
subject.

Courses

• DTE-3605 - Virtual reality, Graphics and Animation - project [24]
• DTE-3609 - Virtual reality, Graphics and Animation - theory [25]

11



12 chapter 2 method

• DTE-3606 - Artificial Intelligence and Intelligent Agents- project [26]
• DTE-3608 - Artificial Intelligence and Machine Learning - theory [27]

Programming languages

• C++(11-20)
• Rust
• Python

Libraries

• OpenGL
• Boost C++ library
• Blaze C++ library
• TensorFlow library
• Scikit library
• Qt6

Tools

• Visual Studio Code
• Unreal Engine
• Qt editor

2.1.2 Selections

Hardware

In the state-of-the-art analysis it was discovered that one of the algorithms
required at minimum a quad-core ARM processor in order to run, with another
requiring a processor and GPU combination. From this it was deduced that the
remote control application would likely require processing power comparable
or in excess of this. As such, the author elected to rely on an Intel Core i9-12900k
16-core system with 32GBs of DDR5 6000MHz RAM, 4TBs of high-speed SSD
storage, and an Nvidia RTX 3090 GPU running Proxmox [28] as a hypervisor
for the remote host platform. The reasoning for this choice being that it is
sufficiently powerful to power any SLAM algorithm that may be reasonably



2.1 choice of tools and materials 13

chosen to employ, removing the processing power of the remote host application
from the equation, and does not require procurement for the project as it was
already in the ownership of this author.

Given this, the only hardware needed to be acquired was that of the mobile
robot agent itself. The robot agent’s required hardware components could
essentially be reduced to sensors, processing units, motors, power supply, and
chassis. Given that the problem description specified the use of at least one
microcontroller—and the overall goal of this project—the author was limited to
relying on microcontrollers as the remote agent’s processing unit. For sensors,
the specification outlines at minimum two cameras.

Microcontroller

As previously mentioned, the problem description specifies that the robot agent
must use a microcontroller. With this in mind, a search for some popular
microcontrollers easily available for purchase in Norway as of early-February
2023 was done.

SKU µcontr. Processor Memory I/O Wireless

Arduino Uno ATmega328 8-bit 1-core RISC 1 KB EEPROM, 2 KB SRAM, 16 KB flash 23GPIO No

Raspberry Pi Pico W RP2040 32-bit 2-core RISC 264 KB SRAM, 2 MB flash 26GPIO Yes

Arduino Micro ATmega32u4 8-bit 1-core RISC 1 KB EEPROM, 2.5 KB SRAM, 32 KB flash 20GPIO No

Arduino Nano ATmega328 8-bit 1-core RISC 1 KB EEPROM, 2 KB SRAM, 32 KB flash 14GPIO No

Table 2.1: Specifications for selection of microcontrollers in stock in Norway

Searches through two of Norway’s biggest webshop aggregator sites—Prisjakt
and Prisguiden [29, 30]—revealed that the great chip shortage was very much
still in effect as of early 2023 [31] and did indeed impact microcontroller avail-
ability as well. In table 2.1 specifications of some of the more readily available
microcontrollers present in Norwegian online retailers, as found through the
aforementioned aggregator websites, are presented. From this selection it was
noted that only the Raspberry Pi Pico W has wireless functionality out-of-
the-box. Furthermore, for the remainder of the entries, the Pico W retails for
roughly 149NOK whilst the Arduinos retails for between 330-350NOK; a great
deal more than the Pico W.

It should, however, be noted that some of the Arduino chips are available with
wireless functionality at around US$20 through the Arduino webshop, though
availability is still lacklustre compared to their Raspberry Pi counterparts.
Including shipping and import tax, the Arduino store price can be estimated to
approach that of the Norwegian webshops regardless. As such, the Raspberry
Pi Pico W was selected for this project due to its much lower price, generally



14 chapter 2 method

higher performance, and built-in wireless functionality. Another option—which
does not seem to be readily available in Norwegian webshops—are ESP32-
based microcontrollers offered by Espressif which offer comparable or better
performance than the Pico W at a similar price-point.

Sensors

With regard to sensors, this project required at minimum two cameras (or a
single stereoscopic camera). Furthermore, the cameras needed to be able to
easily interface with the selected microcontroller; ideally without requiring
extensive driver software. Unfortunately—as of early-February 2023—this au-
thor could not find any evidence of the Raspberry Pi foundation releasing any
official camera hardware for the Pico (nor from Arduino for that matter). As
such, it was necessary to search for third party alternatives.

Searches through the same aggregators as in chapter 2.1.2 revealed a single
type of camera available for the Pico through a webshop in Norway, but at the
price of 699NOK per camera, far in excess of what the author intended for an
inexpensive stereo approach given that two of these cameras would be around
1400NOK for the cameras alone. This specific camera was a 2MP camera with an
OV2640 sensor that connects to microcontrollers through the serial peripheral
interface (SPI) and inter-integrated circuit (I2C) to facilitate data transfer,
camera control, and sensor calibration [32]. Some further queries revealed that
while a stereoscopic camera does exist for use with Raspberry Pi products, they
are seemingly limited to the full versions such as the Raspberry Pi 3 and 4 [33],
both of which are full general purpose computers—not microcontrollers.

Subsequent searches for the OV2640 revealed that it was available at a cheaper
price point through the same website as the aforementioned stereoscopic
camera, in addition to a 5MP model—the OV5642—with a slight price increase.
The bump in resolution from 2MP to 5MP was something worth considering
as the option of higher resolution of the input data set could provide an
opportunity to evaluate whether image resolution can be tied to performance.
A possible alternative from the same manufacturer was a monochromatic
camera sensor which output QVGA resolution images, that is to say a quarter
of VGA resolution, at roughly half the price of the 5MP variant. However,
selection of the 5MP variant would allow for experimentation with higher
resolutions including QVGA, in addition to comparing the results of using
greyscale images versus RGB images in vSLAM. As such, two units of the 5MP
OV5642 SPI camera were selected as the visual sensors for use in the robot
agent, owing to a combination of availability, price, lack of other options, as
well as to facilitate the aforementioned experiments.



2.1 choice of tools and materials 15

2.1.3 Motors, power, and chassis

The remaining parts required to construct the robot agent are motors to
facilitate mobility, a motor driver module, parts to construct the robot’s chassis,
and a power supply of some sort. For the motors, some cheap 4.5V-9V DC
motors were selected as they were already available without procurement, fit
the microcontroller’s rated power output, and were thought to provide the
necessary mobility when connected to wheels. Likewise, for the driver module
a board fitted with a L298N H-bridge motor driver chip was initially selected,
but later replaced with a TB6612-based H-bridge motor driver chip due to
the latter’s lower power draw of ≈0.1V compared to the L298N’s ≈1.4V. The
robot’s chassis was to be constructed with leftover Lego bricks (in combination
with some drilling and glue) to simplify—and speed up—prototyping and
construction. An alternative could have been to create a 3D model and 3D-
print the chassis, but that was not part of the problem description and was as
such not prioritized unless it proved absolutely necessary. Lastly, as the Pico only
requires between 1.8V and 5.5V with a maximum power draw of 93mA [34],
a series of AA batteries were initially considered to supply power to the robot,
but after calculating the overall power draw of the various components, it was
decided that the use of a 26800mAh USB powerbank would be the better option
as it was already available and more than sufficient, being capable of delivering
5V up to 2.5A.

Software

Part of the task described in the problem description was to select program-
ming languages, frameworks, libraries, and other tools required to create the
software-side of the project, with no specific requirements having been given.
As such, selections were done based on the author’s previous experience with
the intention to facilitate an as smooth as possible development process while
ensuring that it was highly likely the selections would meet the necessary re-
quirements of the task. The overall programming tool of choice was the Visual
Studio Code (VSCode) code editor [35], as it was lightweight, multipurpose,
and the author had extensive experience with it.

Robot

For the task related to the programming of the robot agent and communication
with the remote application, we have chosen to rely on the Pico SDK, which
is the software development kit created for use with the Pico platform by
the Raspberry Pi foundation [36], and as such the programming language
for this part is C++. Additionally, we decided to use the FreeRTOS kernel



16 chapter 2 method

as it allowed for use of LwIP’s socket API for TCP communication, greatly
simplifying thework required for communication between the robot and remote
application [37]. Furthermore, the kernel provided a safe and easy-to-use
multithreading API whichwas thought to likely boost the overall performance of
the robot agent if implemented correctly [38]. As the robot runs the FreeRTOS
kernel, an option to easily communicate with the server application for SLAM
purposes could be to implement and use the open-source robot operating
system (ROS) [39], specifically the microcontroller port for use with RTOS
variants—micro-ROS [40]. This option was initially considered, but there was a
concern regarding whether such a move would overly simplify the development
process as well as introduce another potential point of failure as the port for
the Raspberry Pi Pico W platform was still relatively new at the time. Given
these concerns, in addition to some concerns regarding integration with the
camera drivers, it was decided to forego use of micro-ROS and develop the
communication system from scratch.

Remote host platform

The remote application receives sensor data from the robot through wireless,
subsequently processing the data with a visual SLAM algorithm that is then
used to create a 3D or 2D map with the robot’s location. The application
then transmits new movement orders to the robot, and the process repeats.
In order to facilitate this functionality, the application requires software that
allows it to communicate through either Wi-Fi or Bluetooth, apply some visual
SLAM algorithm, and map the room in 3D or 2D (possibly as part of the
SLAM algorithm). This could be achievable through manual implementation
of SLAM algorithms for example in consort with Point Cloud Library [41]
and OpenCV [42] on the remote application side, and through the use of the
aforementioned ROS [39], specifically micro-ROS [40], on the microcontroller-
side. The selection for this application was delayed until after the robot had
been assembled, as some trial and error was needed in order to determine
whether the use of ROS was possible or even desirable for this implementation.
Ultimately, as use of ROS was decided against in the robot agent, this became
the case for the remote host platform as well.

As for the selected SLAM algorithm,we elected to use ORB-SLAM3 library owing
to its decent performance and depth of detail in documentation regarding its
implementation, in addition to support for both vSLAM and viSLAm, as well as
monocular and stereoscopic variants of either approach should time allow [20].
Additionally, in choosing the ORB-SLAM3 library we were able to avoid the
arduous process of manually implementing a SLAM algorithm ourselves, which
would be beyond the scope of this project.



2.2 methods 17

As it was decided to run the host application on the hardware specified in
section 2.1.2 with Proxmox as a hypervisor, we were free to pick whichever
host OS we desire, provided it could run the aforementioned SLAM algorithm
libraries. Supporting every OS in existence would not be possible, and given
the high likelihood of having to write platform-specific socket code in order to
interface with the robot agent, it was—based on previous experience—desirable
to pick one OS and stick with it. As such, Linux was selected as the host OS for
the remote application, due to it being lightweight, the author having extensive
experience with it, and—from personal experience—the ease with which one
may create virtual machines or Linux containers in Proxmox.

Client application

The client application was initially intended to communicate with the remote
application, and function as a front-end for the end user by visualizing the
mapping done in addition to possibly providing some rudimentary user control
over the robot if possible. Due to previous experience with Qt [43], a framework
and tools used for creating graphical user interfaces, it initially decided to
create a desktop application in Qt with some rudimentary visualization being
displayed through OpenGL [44], a graphics API, in C++. However, during the
course of the project it quickly became clear that there would be no available
time to do such a thing, and the user interface provided by the ORB-SLAM3
algorithm would be adequate for the purposes of this thesis. As such, the client
application subtask was in large part omitted or otherwise merged with the
remote host application task.

2.2 Methods

In this section, we describe in detail the implementations made during the
development process for each respective subtask.

2.2.1 System architecture

The overall architecture of the system consists of a mobile robot agent, which
gathers and transmits sensor data bymoving through a room, and a remote host
platform which receives the information, parses it, and sends new movement
orders back to the robot agent. In the subsequent sections we take a look
at the internal architecture of the overall SLAM system and its constituent
subparts.



18 chapter 2 method

Picobot

The robot agent, nicknamed Picobot in development, consists of a Raspberry
Pi Pico W microcontroller, two OV5642 SPI camera sensors, two DC motors, a
TB6612 H-bridge motor driver, and a power supply in the form of a 26800mAh
battery powerbank. Picobot runs this project’s custom software powered by the
Pico SDK [36] and the FreeRTOS kernel [38], which is a free and open-source
operating system for microcontrollers that has been ported to the Raspberry
Pi Pico W. A wiring-diagram for the Picobot can be found in Appendix B. The
internal software is multithreaded and module-based, where a main function
launches separate RTOS tasks for each module’s functionality as needed or
otherwise dictated by instructions from the remote server application. On
startup, it launches a main task thread which initializes and connects to a
Wi-Fi network specified in a configuration file during the build process (more
details in Appendix B), after which, depending on the success of five such
connection attempts, it launches an internal TCP server to which the remote
server application is expected to connect.

The robot outputs its DHCP-assigned local IP address through serial (UART),
which the remote server application requires in order to facilitate a connection.
As the robot is not fitted with a display, the user is required to connect to it
with a serial interface, unless some changes are made to output serial through
USB (see Appendix B), or alternatively looking up the assigned IP in the Wi-Fi
network’s router interface for the Picobot’s assigned hostname.

After the initial connection with the remote server application has been estab-
lished, it is possible to issue orders through the server application’s interface
which are parsed by the robot’s TCP server module, and issued to other waiting
tasks in the system. Movement orders are for instance issued to the idling
movement module thread, which parses and executes movement orders in a
specific format (see Appendix B) before returning to idle until more orders are
received and forwarded to it. The robot runs a TCP client in a separate task for
transmitting sensor data back to the server application, in order to facilitate
being able to receive orders simultaneously while transmitting data. The TCP
client connects to an IP address and port number specified in an order received
from the server application, where a successful connection is a requirement
for capturing and transmitting sensor data such as photos captured with the
cameras.

The cameras are handled by a module running in yet another separate task
that interfaces with a driver supplied by the manufacturer [45], which was
subjected to someminormodifications in order to run the cameras concurrently
on separate SPI and I2C interfaces. This module provides single-capture or
multi-capture capability, meaning that it is possible to capture single-frame



2.2 methods 19

images and transmit them. In the case of single-capture, it is possible to specify
resolutions up to 5MP, though that incurs a time penalty in terms of both
capture and transmission speed. It is not possible to specify resolution through
commands from the server application, as that feature was not required for
this project. Regarding multi-capture, there are a number of different options
presented to the server application, though resolution is capped at 320x240
pixels. The user is able to select between capturing n-amount of pictures, with
an additional internal option for how the camera captures these, or continuous
capture until a stop signal is sent from the server application. Multi-capture is
achieved with two different approaches: first by continuous capture of single
images, or by capturing a certain number of frames continuously until either
the specified amount is reached or the aforementioned stop signal is issued.
The reasoning behind this design choice is discussed in detail in a later section,
but the difference is a noticeable amount of delay present in the first option that
is somewhat reduced when capturing several frames at a time before reading
and transmitting them to the server application.

PicobotServer

PicobotServer, the development nickname for the remote host platform ap-
plication, is a Linux-based multithreaded application that follows a similar
design pattern as the robot agent, but with modern C++20 and POSIX [46]
APIs instead of RTOS APIs. Similarly to the robot agent, it consists of a num-
ber of modules for the various functionalities being launched from a main
thread as needed. TCP server and client functionality was implemented with
the POSIX socket API, facilitating communication between the remote agent
and server application. On launch, the user is presented with a command line
interface (CLI) wherein they can launch the various components of the system
and issue orders (using pre-defined functions) for the remote agent. These
components run in separate threads and communicate through common C++
STL data structures in conjunction with concurrency features such as condition
variables, mutexes, and semaphores to facilitate thread safety and avoid race
conditions [47, 48].

In order to communicate with the remote robot agent, the user is required to
provide a connection function with the target robot’s IP address, as mentioned
in the previous section. After this connection is established a connection order
may be issued to the robot agent, ordering it to connect to the (server specified)
IP where it transmits any sensor data it collects following any capture orders.
When a capture order has been issued, the server threads responsible for
receiving sensor data through TCP sockets collects and forwards the received
data through a blocking queue to worker threads which manage writer threads
responsible for writing sensor data concurrently to the filesystem for further



20 chapter 2 method

consumption in the application.

The written data is then available to the rectification module that undistorts
and rectifies images with OpenCV features based on intrinsic and extrinsic calib-
ration performed on each robot’s unique set of cameras through the program’s
calibration module. These undistorted and rectified images are subsequently
written to another directory for consumption by the ORB-SLAM3 system. The
camera calibration process is performed as described in section 1.3.2 using
OpenCV camera calibration features for monocular and stereo cameras [18].
An example of a step in this calibration with a low resolution image taken by
Picobot with the chessboard pattern drawn can be seen in figure 2.1.

Figure 2.1: Picobot: low-resolution chessboard pattern calibration example

2.2.2 Camera data

The choice of hardware for the microcontroller presented some unique chal-
lenges when camera functionality was implemented and tested. Owing to the
Pico W’s SRAM size of 264kB, it became clear that storing and transmitting
entire images of 5MP resolution, even with the maximum JPEG compression af-
forded by the camera’s internal chip, would be an impossibility. Testing proved
that a single such image would at minimum hover around 600kB in size, more
than twice the amount of SRAM available. A workaround was devised where
images would be gradually read in chunks that fit in the Pico W’s SRAM, and
subsequently transmitted to the server application before continuing with the
read operations. This workaround allowed for capture of even 5MP still images,
though for the sake of attaining the highest frame rates possible for the SLAM
approach it would be necessary to downgrade the resolution significantly, both
in part due to network conditions, but also due to limitations with the camera



2.2 methods 21

sensors. As alluded to in a previous section, there are two possible approaches
to multi-capture with these camera sensors; single-frame multi-capture, where
a single frame is captured and transmitted before repeating the process, or
multi-frame multi-capture, where multiple frames are captured and transmit-
ted every capture before repeating. This is achieved by writing the number of
frames to be captured in each capture operation to the camera chip’s registry
before capture operations begin (more details in Appendix C), reducing the
time needed for capturing multiple frames consecutively. The camera then
captures the specified amount of images and stores them in its framebuffer,
which is subsequently read by the robot agent and transmitted, resulting in
image sequences being transmitted rather than individual images; each image
sequence then containing n-amount of JPEG-encoded images. For this type of
transmission it is thus necessary to parse the image sequence and extract each
individual JPEG before writing them to file, which is handled by a function
in the remote server application. The function scans the image byte sequence
for the JPEG magic bytes header [�� �9 �� �0], which may differ slightly
between the various JPEG file types [49, 50], and as such is only confirmed to
work with these particular camera’s JPEG format.

2.2.3 Network communication

As mentioned in previous sections, communication between the robot and
server is done through TCP with orders as strings (transmitted as bytes from
the network stack), and images as byte sequences. Order messages consist of
sets of bytes, with each set representing specific parts of the order message as
shown in table 2.2.

0 1 2 3

Type Order n-frames
}
Order message

Table 2.2: Order message byte structure

For image transmissions, a metadata message is (usually) transmitted ahead
of the payload sequences. An example of the metadata message structure for
a multi-capture sequence can be seen in table 2.3.

0 1 2 3

Type CamId
}
2-character parts

Timestamp start
Timestamp end
Sequence length


Variable length
segments

Table 2.3: Image sequence metadata structure



22 chapter 2 method

The key difference between the metadata for single images and image se-
quences is the addition of the ’timestamp end’ parameter. The timestamp para-
meters present in image sequence transmission metadata messages are used
to interpolate timestamps for each of the n-amount of JPEG images present in
the sequence, giving a rough (though not wholly accurate) timestamp for each
respective image in the sequence to be used for SLAM. As this is not necessary
for single frame captures, it is omitted from those metadata messages.

Following each metadata message are several data messages containing the
byte segments of either individual images or image sequences, whose total
length correspond to the sequence or image length parameter in the obtained
metadata message.

2.2.4 Visual SLAM and Rectification

For vSLAM, we created a module to interface with the ORB-SLAM3 library [20].
This module checks for images in specific directories for either camera where
the previously mentioned undistortion and rectification module has saved the
processed images, and continuously provides them to the SLAM system for
tracking. This module runs in a separate thread for the duration of the SLAM
system’s lifespan, grabbing image pairs as they arrive from the remote robot
agent and remaps them based on undistortion and rectification maps created by
using the intrinsic and extrinsic camera parameters previously obtained during
camera calibration. These remapped images are then continuously saved to the
aforementioned directory the ORB-SLAM3 module looks for images in.

As we are using pre-rectified images, the module is largely inspired by an
example provided by the ORB-SLAM3 creators for the Kitti datasets [51],
though with several changes made for the purposes of reading continuously
received and processed images. The SLAM systemwill keep running until either
a stop command for the system is issued in the user interface, or a certain
amount of time has passed without suitable images being fed to the system,
after which it will gracefully shut down all SLAM threads and save the data up
to that point in a specified directory.



3
Results
This chapter describes the results from various benchmarks, tests, and experi-
ments performed with the previously described subparts of the project.

3.1 Robot performance

The measurements of performance of the remote robot agent can be divided
into four major categories representing the features and expectations of the
robot as per the initial problem description: how well it captures images, how
well it transmits the images, how well it receives and handles orders such
as movement orders, and its general power consumption. Photos of the final
design of the remote robot agent can be seen in figure 3.1.

3.1.1 Cameras

In accordance with the initial requirements, the robot is capable of capturing
images for transmission to the remote application. The question is how well
it performs at this task. In order to determine how well the robot captures
images, it is necessary to determine some metrics by which it is measured
against. Higher frame-rates, as in higher capture rates of frames per second,
increase tracking of motion and lead to less motion blur, and it is as such
desirable to reach a certain threshold for frames per second (fps) in order to

23



24 chapter 3 results

Figure 3.1: Picobot final iteration front and overhead view

facilitate higher quality data from a robot in motion in real-time [52]. The
exact ideal amount for ORB-SLAM3 is not specified, but the data shown in the
research paper indicate a span between 10 and 60 fps would be ideal [20].
The OV5642 camera sensors we selected for this task are advertised as capable
of frame rates up to 120 fps at QVGA resolutions (320x240) [53], but no such
claims were made for the shield board which the sensor is connected to. As
such, we performed a number of benchmarks to determine the maximum fps
the camera board was capable of at the selected resolution of 320x240. Some of
the results from the QVGA resolution benchmark of the latest Picobot iteration
can be seen in table 3.1, with benchmarks for the higher resolutions showing a
mostly consistent doubling in average time per image with every doubling of
resolution. As such, with the selected resolution we can expect around 5 frames
per second on average from the cameras themselves with shorter bursts.

Resolution N-images per capture N-images total Avg. seconds per image Total time Avg. fps

320x240 1 5 0.27s 1.3458s ≈3.715

320x240 5 5 0.19s 0.95s ≈5.263

320x240 1 15 0.2695s 4.03734s ≈3.715

320x240 5 15 0.18833s 2.85s ≈5.309

320x240 1 60 0.315s 17.711s ≈3.387

320x240 5 60 0.215s 12.921s ≈4.643

Table 3.1: ArduCAM OV5642 fps benchmark results

3.1.2 Networking

Overall, the robot agent is capable of receiving instructions through Wi-Fi from
the remote application, and transmitting sensor data back to the application
as it is acquired. This subsection examines how well it achieves these tasks.
One metric for such performance is the rate at which captured images can be



3.2 remote host application 25

transferred in segments from the robot agent to the server application, as that
has an additional impact on the perceived fps for the SLAM system. In order
to determine the transfer rate, a two-part benchmark was performed where a
single large image was transferred, and the time from transfer start to when
the image was fully written to file in the receiving system was measured. The
benchmark executed a continuous capture and transmission of small image
files to measure throughput. Excerpts from the results from the benchmark
can be seen in table 3.2.

Resolution N-images Avg. seconds per image Total time Avg. image size (kB) Est. kbps
2560x1920 1 4.753s 4.753s 853KiB 1435.724
320x240 3015 0.597s 1800s 15.1KiB 202.345

Table 3.2: Picobot network benchmark results

3.1.3 Movement

The robot is capable of receiving movement orders from the remote server
application and can move reasonably well, though at relatively low speeds and
with notable minor shaking during movement owing to the overall construction
and relatively low-power of the DC motors.

3.1.4 Power consumption

While no extensive power consumption measurements were taken during
SLAM, we can extrapolate the general power consumption from some obser-
vations made during development and during the course of testing the other
functionalities of the robot. The power supply of the robot is a 26800mAh
USB power bank, and during the course of a six hour testing session where
cameras were used continuously while motors were used sporadically, power
levels dropped from full charge to roughly 56 percent charge. Assuming that
the power bank’s capacity is exactly 26800mAh, that would equate to a usage
of roughly 11792mAh, 1965mA per hour, which is well within the desired range
of a few hours running time specified in the initial task description.

3.2 Remote host application

Similarly to the robot agent, there were a number of requirements that needed
to be met in terms of functionality for the remote host application; ranging from
networking functionality to SLAM functionality. In this section we examine
the results of the remote host application both in terms of functionality as well



26 chapter 3 results

as some rudimentary performance metrics. First off, there was a requirement
that the remote application must be capable of transmitting orders to and
receiving sensor data from the remote robot agent. This has been successfully
achieved. Furthermore, the application must be capable of using the received
sensor data with a SLAM algorithm. In order to do so, it was, as mentioned in a
previous section, necessary to parse, rectify, and undistort the received image
data before passing it off to the SLAM system. The system successfully parses
the received image data into JPEG files with timestamps, interpolated in the
case of image sequences, which are then made available to the rectification
subsystem.

3.2.1 Rectification

The undistort and rectification system works as intended, as can be seen
in figure 3.2 where two distorted images from each camera (on top) are
layered above two undistorted and rectified images with red lines through
each, highlighting the effects of the rectification and undistortion.

Figure 3.2: Distorted and undistorted images. Top: distorted pre-rectification images.
Bottom: undistorted rectified images.

Benchmarks of the system indicates that it can undistort and rectify in excess
of 3000 image files in roughly 16 seconds, which is about 187.5 frames per
second and thus far in excess of both what the previously mentioned camera
fps results indicate as well as what is desired.



3.2 remote host application 27

3.2.2 vSLAM

The SLAM system is capable of using the received sensor data from the robot
agent to perform some form of SLAM, with varying results, though it is not
capable of using the results from the SLAM to compute new movement orders
for the remote agent, as that functionality has not yet been implemented.
Furthermore, SLAM performance and results are unstable and erratic as the
system frequently loses tracking and creates new maps when it finds a new
valid key frame. As the results in Figure 3.3 indicates, however, it is indeed
capable of using the images from the robot agent to some degree, extracting
features from the images. Tests of colour and greyscale images with the same
environment parameters yielded no discernible differences in results.

Figure 3.3: ORB-SLAM3 with rectified Picobot images initial results screenshot



28 chapter 3 results

Figure 3.4: ORB-SLAM3 small corridor test results screenshot

Additional testing yielded some results for path tracking, as indicated in Fig-
ure 3.4, with the system being able to track the rudimentary shape of a small
corridor as indicated by the created point cloud. The system is also capable to
some extent in certain circumstances of tracking paths into adjoining rooms,
as displayed in Figure 3.5.

Figure 3.5: ORB-SLAM3 adjoining room test results screenshot



4
Discussion
This chapter contains an analysis and discussion pertaining to the results and
methods from the previous sections, as well as the overall problem completion
for the thesis project.

4.1 Picobot

Development of the Picobot went through several iterations and was as such
easily the most time consuming aspect of this project, particularly due to the
nature of a set of issues that were discovered roughly halfway through the
development process. These issues are detailed in the respective subsequent
subsections herein.

Cameras

As seen in the camera section of the results chapter, camera functionality was
fully implemented with Picobot being able to capture and transmit images to
the full extent of the camera hardware’s capabilities; ranging from the lowest
resolution to the full 5MP resolution. Limitations were however found with
regard to how quickly images could both be captured, and the rate at which
they could be transmitted from the camera’s internal framebuffer to Picobot’s
microcontroller. A large portion of the development stage was spent attempting

29



30 chapter 4 discussion

to diagnose and optimize this performance to eke out as much performance
as possible from the camera stack, with the final iteration barely managing an
average 5 frames per second at the lowest possible resolution for the sensor. The
reason for this limitation has been analysed and identified to be a limitation
of the manufacturer’s board chip. As was briefly mentioned in the results, the
OV5642 camera sensor itself is capable of 15 fps at 5MP resolution, 30 fps at
1080p, 60 fps at 720p down to VGA resolutions, and finally 120 fps at QVGA
resolution [53]. However, the camera board/shield from ArduCAM with the
camera sensor attached does not advertise its possible frames per second for
the various resolutions. The actual capabilities of the chip are unknown, but
as the SPI speed is advertised to be 8MHz maximum, it is possible to calculate
that even at maximum transfer speed, the interface would likely top out at
a 1-2 5MP images per second in the best case scenario where 1MHz is 1mbps
transfer speed. This seems to closely match the discoveries shown in the results
section.

Networking

Rudimentary benchmarks for network speed and throughput were shown in
the results’ section to give an indication of the rough image transfer throughput
capabilities of Picobot, but it should be noted that due to the nature of the
manner in which images are transmitted from the robot to the remote agent
these results are not entirely indicative of the actual network capabilities of the
device. Specifically, in the case of the continuous capture benchmark results
particularly, there is additional delay introduced by the gradual read of data
from the SPI interface before transmission of each image’s individual chunks.
The tests could likely be further refined by measuring and removing the read
start and end of each chunk from each respective image transfer time, but for
the purposes of this thesis it was sufficient to demonstrate the overall image
transfer rates for continuous capture in a real world scenario. Furthermore,
the overall system occasionally exhibits hiccups and several second-long delays
every so often, which further skews the average transfer rate for continuous
capture; single capture transfer benchmarks are impacted to a lesser extent
owing to only a single capture command being issued in the benchmark.

Movement

Overall the movement system of Picobot works as intended, though it was
discovered during testing of the actual SLAM system that the speed and torque
of the selectedmotors were slightly problematic due to the frame rate limitation
of the camera system, where it would be desirable to move the robot at a slower
speed than was possible with the original motors. An attempted solution was



4.2 picobotserver 31

the use of motors with much greater torque at lower rotations per minute, but
availability and shipping delays prevented these from being put in extensive
use before the thesis deadline. As such, some of the test results in the results’
section were obtained through the use of human assistance, though this is
unlikely to have a profound effect on the overall results beyond being able to
accumulate the necessary data.

Power consumption

The power consumption of the Picobot was as expected and intended, as indic-
ated in the results where we found through anecdotal evidence that the overall
system likely averaged around 1.965A per hour with normal use, equating to
several hours of running time with the intended power supply using the ori-
ginal motors. Some rough calculations on the estimated power consumption of
each respective component added together yields a similar number with some
expected variation that may be attributed to manufacturing tolerances and
variation in power supply actual capacity versus expected capacity. That being
said, proper power consumption measurements would have to be taken in order
to with absolute certainty determine the actual consumption of the device. For
the purposes of this thesis, however, it was decided that the aforementioned
method was sufficient, as the performance demonstrated the capabilities of the
system.

4.2 PicobotServer

Development of the server application was a mostly straight-forward process
with little delay, with the most challenging aspects being the creation of the
calibration and rectification systems, and the ORB-SLAM3 module which inter-
faces with the ORB-SLAM3 library. Overall the system achieved its intended
purpose by demonstrating the possibility of using the collected sensor data
from Picobot. An exception would be the missing movement plotting feature
which was intended to extract information from the ORB-SLAM3 system and
provide updated movement orders to the robot agent as described in previous
chapters. An outline for how this feature could be implemented is included in
a later chapter of this paper.

Rectification

The rectification system appears to function properly as indicated by the res-
ults in Figure 3.2 despite the relatively low resolution. There were some initial



32 chapter 4 discussion

issues with the undistortion and rectification process that were eventually dia-
gnosed as being caused by two separate mistakes. The first being an accidental
swapping of cameras on the robot itself, where the expected left camera sensor
data actually was the right camera sensor data, and vice versa. This lead to
the undistort and rectification process transforming the images with a basis in
wrong camera poses, leading to weird and unpredictable calibration outputs
where often the image was entirely black. Swapping of the camera pins on the
robot completely solved this issue.

The second issue was an issue stemming from the checkerboard pattern on
the first chessboard used for calibration where the algorithm was seemingly
incapable of detecting the pattern’s corners. The exact reason for this error is
unclear, butmay be due to the internal workings of the OpenCV corner detection
algorithm expecting each respective checker row to end with the opposite
colour that it started with, which the initial chessboard did not. While not
completely conclusive evidence, this seems the most likely explanation owing to
the aforementioned pattern difference being the primary discernible difference
between the two chessboard patterns as they were of similar dimensions and
square sizes. As such, the issue was solved by swapping the chessboard in
favour of one where this pattern was followed. Overall, the system yielded
the expected results which allowed for use of the stereo cameras with the
ORB-SLAM3 algorithm as intended.

vSLAM

As seen in the vSLAM results, the system is capable of using the collected
and processed camera data to perform SLAM with the ORB-SLAM3 library to
some extent. While the system is capable of tracking the movement path—and
extracting features in order to map the real world by creating point clouds—it
is in its current state not capable of fully mapping a room and the robot’s path
through said room in most circumstances. As mentioned, it frequently loses
tracking and struggles to extract features in particularly bare environments,
often resetting and creating a new local map or outright crashing when this
happens. The reasons for this behaviour likely stem from a combination of the
shortcomings mentioned in previous sections, in addition to a need for further
fine-tuning of parameters specific for the ORB algorithm.

The combination of low resolution images, the rate at which they are captured,
their transmission rate, and further delays, are thought to be some of the
main factors impacting the SLAM performance of the system in its current
iteration. It is known that ORB systems are particularly sensitive to variations
in time for sensor data, such as the time between captured frames, which
impact performance in a real-time application of this form of SLAM given that



4.3 overall results 33

it prefers a collection of frames at the same rate at which it processes said
frames [3, 19]. Inspection of timestamps for images being processed at the
time of tracking failure give an indication of a correlation between greater
than usual delays in capture and processing, and some of the tracking failures.
Capture and transmission of images from Picobot occasionally exhibit several
second long stutters which may likely be attributed to variations in network
latency, internal system lag in the robot’s microcontroller, the camera board(s),
or a combination of the aforementioned. The stereo baseline (i.e. distance
between each sensor in a stereo system) is also another potential source of
inaccuracy in the system, as even tiny variations of around a thousandth of a
meter have yielded noticeably different results in testing. Due to the limited
precision with which the baseline was measured, further improvements in this
regard may be possible with appropriate measuring devices.

4.3 Overall results

Overall, the system components have exhibited varying degrees of satisfactory
performance. Considering the original requirements bullet lists in subsections
1.4.1, 1.4.2, and 1.4.3 we can attempt to measure some of the overall results
of the thesis project. For the requirements of the robot agent, it successfully
meets every requirement specified in its requirements list albeit with the
caveats discussed in previous sections. The host platform successfully meets
every requirement as well barring the one requirement regarding use of SLAM
results for further movement order computation. As for the SLAM system itself,
while it does yield some results in both scenarios described in its requirements,
it is hardly satisfactory due to the limitations mentioned in the previous section.
It is highly likely—probable even—that were the aforementioned limitations
with the robot agent successfully mitigated or non-present, different results
could have been obtained that would be more in line with the intended use-case
of the designed system.





5
Suggestions and Conclusion
5.1 Suggestions for future work

The final results of the project were the results of both the work done during
the course of the project period, but also a result of the initial choices made
during the pre-project analysis. With the wealth of experience and benefit of
hindsight—which is always 20/20—it is possible to suggest improvements in
some areas which may have produced overall different results.

For example, an alternative selection of materials for the robot agent such as
cameras with higher capture rate and greater transmission interface speeds, a
computational unit with more on-board memory as well as a wireless chip with
greater network speed and throughput, could likely provide the desired the
results. Based on the parameters of the Kitti dataset [51]—which successfully
operates at a frame rate of 15 fps for its ORB-SLAM3 example [54]—we can
set the minimum frame rate at 15 fps. With VGA resolution of 620x480, double
that of QVGA, and JPEG compression of the same rates as with the current
camera setup, it is likely each individual image would average roughly 30-40
KiB per image. With a frame rate of 15 fps—in a perfect world—would require
roughly 450-600 KiB transfer rate per second, or roughly 3686-4916kbps, in
order to accommodate this frame rate. It is as such possible to deduce that
the communication’s interface between the camera module and the wireless
chip of the microcontroller would need to be capable of speeds in excess of
this in order to facilitate 15 fps in the ORB-SLAM3 side of the system. The
RP2040 chip which powers the currently selected microcontroller is capable of

35



36 chapter 5 suggestions and conclusion

roughly 62.5mbps SPI speed at the default clock at 133MHz [55], with greater
speeds being achievable with some light overclocking. Given this, the main
bottlenecks that need addressing are the camera capture speeds, SPI speeds,
as well as the network speed of the wireless chip. The presence of more on-
board memory would also help alleviate these issues, as it would be possible to
concurrently capturing and transmission images with enough memory, rather
than the current sequential approach of capture and fully transferring the
image parts before subsequent capture orders. The minimum desirable amount
of on-board memory can be calculated to be image size ∗ fps, consequently
40KiB ∗ 15 = 600KiB in terms of space for purely image data, with more
needing to be added on top for other operations. The result being that it is
likely desirable to have minimum 1 MiB of on-board memory.

The aforementioned specifications are not guaranteed to mitigate the perform-
ance issues experienced with the current hardware configuration, but it is
thought to be likely. One primary motivation for using a microcontroller for
this project was the power consumption savings, and perceived challenge this
approachwould yield. If the use of a microcontroller could be foregone, in terms
of price and performance the Raspberry Pi Zero W would likely be a decent can-
didate for consideration. In terms of specifications, the Zero W provides 512 MiB
of on-board memory, a BCM43438 single-band 802.11 b/g/n 2.4GHz-capable
network chip—yielding theoretical network speeds of up to 72mbps, though in
reality likely much lower [56]—and the possibility of using native Raspberry
Pi cameras foregoing the need of custom driver software [57, 58]. In terms
of power consumption, the Zero W is expected to have a typical bare-board
consumption of 150mA [59]; slightly more than the Pico’s ≈93mA [34]. Docu-
mentation for the expected Pico W power consumption has not been found, but
is likely to be somewhat higher than the regular Pico as a result of the added
wireless chip and other minor differences. That said, as the power consumption
results showed it is unlikely that such an increase in power consumption would
significantly impact the overall robot’s possible battery runtime, though the
addition of more powerful cameras likely would. An additional possibility to
boost network speed with the Zero W could be the addition of a USB wireless
adapter, providing greater speeds than the single-band BCM43438.

Regarding design of the movement system such that it can extract information
from the SLAM system with which it can plan movement orders for the robot
agent, there are a number of different approaches that are possible. One
possible approach might be to process the point cloud of each map and classify
points belonging to various aspects of the room such as walls, floor, and ceiling,
subsequently processing these points together into positional data for objects
to avoid [60]. This information can then in turn be used to for example utilize
a chain-based path planning approach to navigate the room and obtain sensor
data from which the overall room layout can be constructed.



5.2 conclusion 37

5.2 Conclusion

In the final section of chapter one, a research question was posed: Is it pos-
sible to achieve adequate performance in a vSLAM or viSLAM approach using
low-performance, low-power- consumption computational devices for sensor data
collection, and offloading computing to a stationary host platform? This thesis
has examined the theory, methods, portrayed and discussed the results of the
project attempting to answer the research question.

In order to facilitate low-performance, low-power-consumption sensor data
collection for use with vSLAM, components for a robot agent meeting these
specifications were selected, put together, and software was created with which
to power and run the agent. The created robot agent can collect the necessary
data, transmit it to a stationary computation host platform, as well as receive
and execute movement orders sent to it from the platform. The quality of and
rate at which it collects the sensor data was not within the ideal range, but still
demonstrates in principle the viability of this approach.

A remote host application was created in order to test and demonstrate the
capabilities of a system using the collected sensor data from the aforementioned
robot agent. The application is capable of issuing orders to the robot, receiving
sensor data as it is transmitted, process the sensor data to make it suitable for
use with the vSLAM system, performing vSLAM with the processed sensor data,
and transmitting movement orders to the robot agent. The movement orders
are however not, as initially intended, computed from the results of the SLAM
process, but rather manually issued due to time constraints. Additionally, the
SLAM system does not run perfectly, but is regardless capable of demonstrating
in principle that the collected and processed sensor data is indeed viable for
use in a SLAM system, with some previously discussed caveats.

We can conclude that the thesis is partially successful in achieving its intended
goal of answering the research question, indicating that it is indeed possible
to achieve this form of SLAM with the selected parameters. It also highlights
issues with the current approach, and suggests ways to mitigate these issues
in order to achieve improved overall results for future attempts at this form of
remote vSLAM.





Bibliography
[1] F. A. Haq, B. S. B. Dewantara, and B. S. Marta, “Room mapping using

ultrasonic range sensor on the atracbot (autonomous trash can robot): A
simulation approach,” in 2020 International Electronics Symposium (IES),
pp. 265–270, 2020.

[2] M. Rivai, D. Hutabarat, and Z. M. J. Nafis, “2d mapping using omni-
directional mobile robot equipped with lidar,” TELKOMNIKA (Telecommu-
nication Computing Electronics and Control), vol. 18, no. 3, pp. 1467–1474,
2020.

[3] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras,” IEEE Transactions on Robotics,
vol. 33, no. 5, pp. 1255–1262, 2017.

[4] C. Toft, D. Turmukhambetov, T. Sattler, F. Kahl, and G. J. Brostow, “Single-
image depth prediction makes feature matching easier,” in Computer
Vision – ECCV 2020 (A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm,
eds.), (Cham), pp. 473–492, Springer International Publishing, 2020.

[5] M. Servières, V. Renaudin, A. Dupuis, and N. Antigny, “Visual and visual-
inertial slam: State of the art, classification, and experimental benchmark-
ing,” Journal of Sensors, vol. 2021, pp. 1–26, 2021.

[6] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping:
part i,” IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99–110,
2006.

[7] M. Magnabosco and T. P. Breckon, “Cross-spectral visual simultaneous
localization and mapping (slam) with sensor handover,” Robotics and
Autonomous Systems, vol. 61, no. 2, pp. 195–208, 2013.

[8] M. Tomono, “Robust 3d slam with a stereo camera based on an edge-
point icp algorithm,” in 2009 IEEE International Conference on Robotics
and Automation, pp. 4306–4311, 2009.

39



40 bibl iography

[9] S. Perera and A. Pasqual, “Towards realtime handheld monoslam in dy-
namic environments,” in Advances in Visual Computing (G. Bebis, R. Boyle,
B. Parvin, D. Koracin, S. Wang, K. Kyungnam, B. Benes, K. Moreland,
C. Borst, S. DiVerdi, C. Yi-Jen, and J. Ming, eds.), (Berlin, Heidelberg),
pp. 313–324, Springer Berlin Heidelberg, 2011.

[10] S. Perera, D. Barnes, and D. Zelinsky, Exploration: Simultaneous Local-
ization and Mapping (SLAM), pp. 268–275. Boston, MA: Springer US,
2014.

[11] E. Eade and T. Drummond, “Unified loop closing and recovery for real
time monocular slam.,” in BMVC, vol. 13, p. 136, 2008.

[12] A. Thallas, E. Tsardoulias, and L. Petrou, “Particle filter — scan matching
slam recovery under kinematicmodel failures,” in 2016 24thMediterranean
Conference on Control and Automation (MED), pp. 232–237, 2016.

[13] J. Cheng, L. Zhang, Q. Chen, X. Hu, and J. Cai, “A review of visual slam
methods for autonomous driving vehicles,” Engineering Applications of
Artificial Intelligence, vol. 114, p. 104992, 2022.

[14] I. Abaspur Kazerouni, L. Fitzgerald, G. Dooly, and D. Toal, “A survey of
state-of-the-art on visual slam,” Expert Systems with Applications, vol. 205,
p. 117734, 2022.

[15] H. Yin, Z. Ma, M. Zhong, K. Wu, Y. Wei, J. Guo, and B. Huang, “Slam-
based self-calibration of a binocular stereo vision rig in real-time,” Sensors,
vol. 20, no. 3, 2020.

[16] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d mapping
with an rgb-d camera,” IEEE Transactions on Robotics, vol. 30, no. 1,
pp. 177–187, 2014.

[17] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–
1334, 2000.

[18] OpenCV, “Camera calibration - opencv 4.7.0 documentation.” https:
//docs.opencv.org/4.7.0/dc/dbb/tutorial_py_calibration.html,
Accessed: 2023-04-10, 2022.

[19] A. Macario Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel, “A
comprehensive survey of visual slam algorithms,” Robotics, vol. 11, no. 1,
2022.

https://docs.opencv.org/4.7.0/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.7.0/dc/dbb/tutorial_py_calibration.html


bibl iography 41

[20] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. M. Montiel, and J. D. Tardos,
“ORB-SLAM3: An accurate open-source library for visual, visual–inertial,
and multimap SLAM,” IEEE Transactions on Robotics, vol. 37, pp. 1874–
1890, dec 2021.

[21] K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time dense
monocular slam with learned depth prediction,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6565–6574, 2017.

[22] X. Zhang, J. Lai, D. Xu, H. Li, and M. Fu, “2d lidar-based slam and path
planning for indoor rescue using mobile robots,” Journal of Advanced
Transportation, vol. 2020, pp. 1–14, 2020.

[23] S. Karam, F. Nex, B. T. Chidura, and N. Kerle, “Microdrone-based indoor
mapping with graph slam,” Drones, vol. 6, no. 11, 2022.

[24] UiT The Arctic University of Norway, “Dte-3605 - virtual reality, graph-
ics and animation - project.” https://uit.no/utdanning/emner/emne?p_
document_id=765882, Accessed: 2023-01-28, 2022.

[25] UiT The Arctic University of Norway, “Dte-3609 - virtual reality, graph-
ics and animation - theory.” https://uit.no/utdanning/emner/emne?p_
document_id=743948, Accessed: 2023-01-28, 2022.

[26] UiT The Arctic University of Norway, “Dte-3606 - artificial intelligence and
intelligent agents - project.” https://uit.no/utdanning/emner/emne?p_
document_id=765881, Accessed: 2023-01-28, 2022.

[27] UiT The Arctic University of Norway, “Dte-3608 - artificial intelligence
and intelligent agents - theory.” https://uit.no/utdanning/emner/emne?
p_document_id=743949, Accessed: 2023-01-28, 2022.

[28] Proxmox Server Solutions GmbH, “Proxmox virtual environment.” https:
//www.proxmox.com/en/, Accessed: 2023-02-24, 2023.

[29] Schibsted Media Group, “Prisjakt.” https://www.prisjakt.no, Accessed:
2023-01-28, 2023.

[30] Prisguiden AS, “Prisguiden.” https://www.prisguiden.no, Accessed:
2023-01-28, 2023.

[31] S. Ashcroft, “Timeline: causes of the global semiconductor shortage.”
https://supplychaindigital.com/top10/timeline-causes-of-the-
global-semiconductor-shortage, 2023.

https://uit.no/utdanning/emner/emne?p_document_id=765882
https://uit.no/utdanning/emner/emne?p_document_id=765882
https://uit.no/utdanning/emner/emne?p_document_id=743948
https://uit.no/utdanning/emner/emne?p_document_id=743948
https://uit.no/utdanning/emner/emne?p_document_id=765881
https://uit.no/utdanning/emner/emne?p_document_id=765881
https://uit.no/utdanning/emner/emne?p_document_id=743949
https://uit.no/utdanning/emner/emne?p_document_id=743949
https://www.proxmox.com/en/
https://www.proxmox.com/en/
https://www.prisjakt.no
https://www.prisguiden.no
https://supplychaindigital.com/top10/timeline-causes-of-the-global-semiconductor-shortage
https://supplychaindigital.com/top10/timeline-causes-of-the-global-semiconductor-shortage


42 bibl iography

[32] Digital Impuls, “Mini 2mp spi kamera modul.” https://www.
digitalimpuls.no/the-pi-hut/148459/mini-2mp-spi-kamera-modul-
for-pi-pico-med-gpio, Accessed: 2023-01-26, 2023.

[33] Uctronics, “Arducam 2mp stereo camera for raspberry pi.” https:
//www.uctronics.com/arducam-2mp-stereo-camera-for-raspberry-
pi-nvidia-jetson-nano-xavier-nx-dual-ov2311-monochrome-global-
shutter-camera-module.html Accessed: 2023-01-26, 2023.

[34] Raspberry Pi foundation, “Raspberry pi pico w datasheet.”
https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf,
Accessed: 2023-01-26, 2022.

[35] Microsoft, “Visual studio code.” https://code.visualstudio.com/, Ac-
cessed: 2023-01-28, 2023.

[36] Raspberry Pi foundation, “Raspberry pi pico sdk.” https://github.com/
raspberrypi/pico-sdk, Accessed: 2023-01-28, 2022.

[37] lwIP developers group, “lwip - a lightweight tcp/ip stack.” https://
savannah.nongnu.org/projects/lwip/, Accessed: 2023-02-16, 2023.

[38] Amazon Web Services, “Freertos - real-time operating system for micro-
controllers.” https://www.freertos.org/, Accessed:2023-02-14, 2023.

[39] Open Robotics, “Robot operating system.” https://www.ros.org/, Ac-
cessed: 2023-01-29, 2023.

[40] micro-ROS Community, “micro-ros - a lightweight and flexible ros client
library for microcontrollers.” https://micro.ros.org/, Accessed: 2023-
02-05, 2023.

[41] The Point Cloud Library, “Point cloud library.” https://pointclouds.org/,
Accessed: 2023-01-29, 2023.

[42] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[43] The Qt Company, “Qt - cross-platform software design and development
tools.” https://www.qt.io/, Accessed: 2023-01-28, 2023.

[44] Khronos Group, “Open graphics library (opengl) - a cross-language,
cross-platform graphics application programming interface.” https://
www.opengl.org/, Accessed: 2023-01-28, 2023.

https://www.digitalimpuls.no/the-pi-hut/148459/mini-2mp-spi-kamera-modul-for-pi-pico-med-gpio
https://www.digitalimpuls.no/the-pi-hut/148459/mini-2mp-spi-kamera-modul-for-pi-pico-med-gpio
https://www.digitalimpuls.no/the-pi-hut/148459/mini-2mp-spi-kamera-modul-for-pi-pico-med-gpio
https://www.uctronics.com/arducam-2mp-stereo-camera-for-raspberry-pi-nvidia-jetson-nano-xavier-nx-dual-ov2311-monochrome-global-shutter-camera-module.html
https://www.uctronics.com/arducam-2mp-stereo-camera-for-raspberry-pi-nvidia-jetson-nano-xavier-nx-dual-ov2311-monochrome-global-shutter-camera-module.html
https://www.uctronics.com/arducam-2mp-stereo-camera-for-raspberry-pi-nvidia-jetson-nano-xavier-nx-dual-ov2311-monochrome-global-shutter-camera-module.html
https://www.uctronics.com/arducam-2mp-stereo-camera-for-raspberry-pi-nvidia-jetson-nano-xavier-nx-dual-ov2311-monochrome-global-shutter-camera-module.html
https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf
https://code.visualstudio.com/
https://github.com/raspberrypi/pico-sdk
https://github.com/raspberrypi/pico-sdk
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
https://www.freertos.org/
https://www.ros.org/
https://micro.ros.org/
https://pointclouds.org/
https://www.qt.io/
https://www.opengl.org/
https://www.opengl.org/


bibl iography 43

[45] ArduCAM, “Arducam pico spi cam driver.” https://github.com/ArduCAM/
PICO_SPI_CAM, Accessed: 2023-02-16, 2021.

[46] The Open Group, “Posix™ 1003.1 frequently asked questions (faq version
1.18).” https://www.opengroup.org/austin/papers/posix_faq.html, Ac-
cessed: 2023-04-11, 2020.

[47] P. Plauger, M. Lee, D. Musser, and A. A. Stepanov, C++ Standard Template
Library. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1st ed., 2000.

[48] cppreference, “C++ concurrency support library - cppreference.com.”
https://en.cppreference.com/w/cpp/thread, Accessed: 2023-03-22,
2022.

[49] A. Albertini, “This pdf is a jpeg; or, this proof of concept is a picture of
cats,” PoC or GTFO 0x03, 2014.

[50] G. Kessler, “Gck’s file signatures table.” https://www.garykessler.net/
library/file_sigs.html, Accessed: 2023-04-26, 2023.

[51] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
kitti dataset,” International Journal of Robotics Research (IJRR), 2013.

[52] A. Handa, R. A. Newcombe, A. Angeli, and A. J. Davison, “Real-time
camera tracking: When is high frame-rate best?,” in Computer Vision –
ECCV 2012 (A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid,
eds.), (Berlin, Heidelberg), pp. 222–235, Springer Berlin Heidelberg, 2012.

[53] Uctronics, “Ov5642 sensor datasheet.” https://www.uctronics.com/
download/cam_module/OV5642DS.pdf, Accessed: 2023-01-28, 2009.

[54] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. M. Montiel, and J. D. Tardos,
“ORB-SLAM3 source code.” https://github.com/UZ-SLAMLab/ORB_SLAM3,
Accessed: 2023-03-25, 2021.

[55] Raspberry Pi foundation, “Rp2040 datasheet.” https://datasheets.
raspberrypi.com/rp2040/rp2040-datasheet.pdf, Accessed: 2023-05-04,
2023.

[56] M. Zolnierczyk, “Raspberry pi network speed test: Rpi2, rpi3, zero, zerow
(lan&wifi).” https://notenoughtech.com/raspberry-pi/raspberry-pi-
internet-speed/, Accessed: 2023-05-04, 2017.

[57] Raspberry Pi foundation, “Raspberry pi zero w product listing.” https://

https://github.com/ArduCAM/PICO_SPI_CAM
https://github.com/ArduCAM/PICO_SPI_CAM
https://www.opengroup.org/austin/papers/posix_faq.html
https://en.cppreference.com/w/cpp/thread
https://www.garykessler.net/library/file_sigs.html
https://www.garykessler.net/library/file_sigs.html
https://www.uctronics.com/download/cam_module/OV5642DS.pdf
https://www.uctronics.com/download/cam_module/OV5642DS.pdf
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://notenoughtech.com/raspberry-pi/raspberry-pi-internet-speed/
https://notenoughtech.com/raspberry-pi/raspberry-pi-internet-speed/
https://www.raspberrypi.com/products/raspberry-pi-zero-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-w/


44 bibl iography

www.raspberrypi.com/products/raspberry-pi-zero-w/, Accessed: 2023-
05-04, 2023.

[58] Cypress, “Bcm43438 datasheet (pdf) - cypress semiconductor.”
https://www.alldatasheet.com/datasheet-pdf/pdf/1018493/CYPRESS/
BCM43438.html, Accessed: 2023-05-04, 2017.

[59] Raspberry Pi foundation, “Raspberry pi hardware documentation.” https:
//www.raspberrypi.com/documentation/computers/raspberry-pi.html,
2023.

[60] I. Anagnostopoulos, V. Pătrăucean, I. Brilakis, and P. Vela, “Detection of
walls, floors, and ceilings in point cloud data,” in Construction Research
Congress 2016, pp. 2302–2311, 2016.

[61] ArduCAM, “Spi camera for raspberry pi pico (docs at bottom
of page).” https://docs.arducam.com/Arduino-SPI-camera/Legacy-SPI-
camera/Pico/Camera-Module/SPI-Camera/, Accessed: 2023-02-14, 2021.

https://www.raspberrypi.com/products/raspberry-pi-zero-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-w/
https://www.alldatasheet.com/datasheet-pdf/pdf/1018493/CYPRESS/BCM43438.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1018493/CYPRESS/BCM43438.html
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://docs.arducam.com/Arduino-SPI-camera/Legacy-SPI-camera/Pico/Camera-Module/SPI-Camera/
https://docs.arducam.com/Arduino-SPI-camera/Legacy-SPI-camera/Pico/Camera-Module/SPI-Camera/


A
Task Description
This appendix contains the initial task description fromwhich this thesis created
as originally received at the beginning of the project period.

45



Faculty of Engineering Science and Technology 
Department of Computer Science and Computational Engineering
UiT - The Arctic University of Norway

3D room mapping and modelling application 
utilizing a microcontroller agent with stereoscopic 
cameras

Stian Jakobsen

Thesis for Master of Science in Technology / Sivilingeniør



Problem descriptionThe  aim  is  to  create  an  application  capable  of  mapping  a  room  in  3D  fromsensor/camera  data  provided  by  two  cameras  from  a  microcontroller  agent/robotthrough wireless communication (likely Wi-Fi),  with parsing and mapping done by aseparate AI-fueled (TensorFlow, OpenCV etc.)  application which then gives the agentnew orders based on the mapping done in order to fully map the room. One of the aimsis to keep the robot agent as minimalized as possible, with as little processing power andpower consumption as  possible  (also  keeping cost  down for  each respective  agent).Finally,  if  time  allows,  modelling  the  mapped  room  in  real  time  with  a  graphicalmodelling interface program or game engine (such as Unreal Engine or Godot) might bedesirable to provide a client user interface to the system. 
ObjectivesThe project may be divided into four parts: 

1. Reviewing  material/research  on  the  subject(s),  choosing  hardware,  programminglanguages, frameworks, and other tools based on this review.
2. Creating the robot and programming the microcontroller with its cameras and servos,making it communicate wirelessly with the desired application host.
3. Creating  the  AI  application/container  with  chosen  image  depth  processing/AItechniques and frameworks with photo data from robot as basis for analysis, providingtranslated  movement  orders  to  robot  based  on  analysis.  Additionally,  providing  theprocessed data in a manner accessible by the client application.
4. Creating a client application visualizing the room as it is being created in real time fromthe  processed  data  provided  by  the  AI  application,  providing  capability  of  directlycontrolling  the  robot  with  user  input  if  so  desired  (thus  temporarily  disabling  AIapplication).

Suggested hardwareOnly hardware for the robot is necessary, as the required hardware for the other development is already in-place. Suggestions for robot microcontroller is the RP2040 in the form of the Raspberry Pi Pico W, as it is cheap, ubiquitous (which is nice considering the ongoing silicon shortage) and provides (likely) adequate performance in addition to Wi-Fi connectivity capabilities. Additionally, the maximum power consumption of the Pico W is less than 93mA and can as such be powered for extensive periods with simple AA-or AAA-batteries (as the Pico W requires between 1.8 and 5.5V DC). Servo motors should be easily and cheaply available, as well as wheels or belts for movement. Lastly, itis suggested to use two OV2640 (2MP) or OV5642 (5MP) cameras in tandem in place of a single stereoscopic camera. These cameras use the serial peripheral interface and/or i2c to communicate with microcontrollers, of which the Pico has two, and is as such idealfor use with microcontrollers.
DatesDate of distributing the task: <09.01.2023>Date for submission (deadline): <15.05.2023>



Contact informationCandidate 
Supervisors at UiT-IVT

Stian Endre?  Jakobsenstian.e.jakobsen@uit.noRune Dalmorune.dalmo@uit.noBørre Bangborre.bang@uit.no
General information 

This master thesis should include: 
T Preliminary work/literature study related to actual topic 

- A state-of-the-art investigation
- An  analysis  of  requirement  specifications,  definitions,  design  requirements,  givenstandards or norms, guidelines and practical experience etc.
- Description concerning limitations and size of the task/project 
- Estimated time schedule for the project/ thesis

T Selection & investigation of actual materials
T Development (creating a model or model concept)
T Experimental work (planned in the preliminary work/literature study part)
T Suggestion for future work/development
Preliminary work/literature studyAfter the task description has been distributed to the candidate a preliminary studyshould be completed within 3 weeks. It should include bullet points 1 and 2 in “Thework shall include”, and a plan of the progress. The preliminary study may be submittedas  a  separate  report  or  “natural”  incorporated  in  the  main  thesis  report.  A  plan  ofprogress and a deviation report (gap report) can be added as an appendix to the thesis.
In any case the preliminary study report/part must be accepted by the supervisor
before the student can continue with the rest of the master thesis. In the evaluationof  this  thesis,  emphasis  will  be  placed  on  the  thorough  documentation  of  the  workperformed.
Reporting requirementsThe thesis should be submitted as a research report and could include the followingparts;  Abstract,  Introduction,  Material  & Methods,  Results  & Discussion,  Conclusions,Acknowledgements, Bibliography, References and Appendices. Choices should be welldocumented with evidence, references, or logical arguments. The  candidate  should  in  this  thesis  strive  to  make  the  report  survey-able,  testable,accessible, well written, and documented. 



Materials  which are developed during the project (thesis)  such as software / sourcecode  or  physical  equipment  are  considered  to  be  a  part  of  this  paper  (thesis).Documentation for correct use of such information should be added, as far as possible, tothis paper (thesis).The text for this task should be added as an appendix to the report (thesis).
General project requirementsIf  the  tasks  or  the  problems  are  performed  in  close  cooperation  with  an  externalcompany, the candidate should follow the guidelines or other directives given by themanagement of the company.The  candidate  does  not  have  the  authority  to  enter  or  access  external  companies’information system, production equipment or likewise. If such should be necessary forsolving  the  task in  a  satisfactory  way a  detailed permission should be  given by themanagement in the company before any action are made.Any travel cost, printing and phone cost must be covered by the candidate themselves, ifand  only  if,  this  is  not  covered  by  an  agreement  between  the  candidate  and  themanagement in the enterprises.If the candidate enters some unexpected problems or challenges during the work withthe tasks and these will cause changes to the work plan, it should be addressed to thesupervisor at the UiT or the person which is responsible, without any delay in time.
Submission requirementsThis thesis should result in a final report with an electronic copy of the report includingappendices and necessary software, source code, simulations and calculations. The finalreport with its appendices will be the basis for the evaluation and grading of the thesis.The  report  with  all  materials  should  be  delivered  according  to  the  current  facultyregulation. If there is an external company that needs a copy of the thesis, the candidatemust arrange this. A standard front page, which can be found on the UiT internet site,should be used. Otherwise, refer to the “General guidelines for thesis” and the subjectdescription for master thesis.The supervisor(s) should receive a copy of the the thesis prior to submission of the finalreport.  The  final  report  with  its  appendices  should  be  submitted  no  later  than  thedecided final date.





B
Project setup and use
instructions

This appendix contains the various setup instructions for building and using
the created code for each respective sub-part of the project, in addition to the
required default hardware configurations needed.

Picobot

In order to run the Picobot-side of the project, a number of dependencies need
to be met:

Dependencies

• Raspberry Pi Pico W (or other RP2040-based boards with the same min-
imum capabilities, similar network stack, and GPIO. Only the Pico W has
been tested).

• ArduCAM OV5642 cameras (other SPI cameras can be added, but will
require modification to the camera handler class to accommodate the
changes in API).

51



52 appendix b project setup and use instructions

• AC++17 compatible compiler (onlyGCC 12.2.0 arm-none-eabi, as provided
by the arm-none-eabi-gcc Arch Linux package, has been verified to
work. Newer versions have been confirmed to crash as per Pico-SDK
version 1.5 and FreeRTOS-Kernel V202110.00-SMP. This may change as
these are updated).

• CMake (version 3.14 or newer).

• Raspberry Pi Pico SDK (version 1.4 and 1.5 tested, v1.5 or newer preferred).

• FreeRTOS-Kernel (SMP branch required, only tested with the V202110.00-
SMP release).

• ArduCAM OV5642 Raspberry Pi Pico/SPI driver (provided in the "third-
party" directory of the project, as we rely on a modified version).

• Optional: SecondPico (W-version optional) with Picoprobe andOpenOCD
for easy debug/development work with Pico.

Build instructions

1. Navigate to the Picobot repository root directory.

2. Ensure dependencies are satisfied.

3. Ensure FreeRTOS-Kernel and Pico-SDK paths are available as environ-
ment variables $FREERTOS_KERNEL_PATH and $PICO_SDK_PATH respect-
ively (see CMake file for more information).

4. Read and follow the instructions in subsection Connecting to Wi-Fi.

5. Create a build directory and navigate into it.

6. Create CMake configuration files (e.g. with command "cmake ../" op-
tionally specifying a generator such as Ninja if so desired).

7. Buildwithmake orninja if using theNinja generator (make flag "-$(nproc)"
recommended for faster build times when using make).

8. This should produce a picobot.uf2 binary which can be put on the
Pico W for execution (see Pico documentation for how to do this). An
alternative is using Picoprobe with the created picobot.elf.



appendix b project setup and use instructions 53

Usage instructions

After completing the build instructions and putting the binary on the Pico
through any of the officially supported methods, follow the instructions in
Wiring up the Picobot. Following completed wiring of the minimum-required
components (Picobot will not boot properly without both cameras connected
properly), Picobot is ready for boot up and use. On power-on, Picobot’s LED
will start blinking, indicating that it is attempting to connect to the specified
Wi-Fi network. If the connection attempt should fail, the blinking will continue
perpetually (or until the OS crashes/some exception happens which causes a
kernel panic). By default, Picobot makes 5 attempts at connecting to the Wi-Fi
before aborting. Should the connection succeed, the blinking will stop, and the
LED will be fully solid; indicating that the robot is ready for connections from
the server application. Picobot outputs its DHCP-assigned IP address through
serial output, either UART or USB depending on selections made in the CMake
file (see the Raspberry Pi Pico documentation for swapping UART output to
USB). An alternative and likely easier approach to obtaining the IP address
would be to look up the IP for the Picobot hostname in your router interface
or polling the local DNS. For actual use after this stage, follow the instructions
for the server application in the Picobotserver usage instructions.

Connecting to Wi-Fi

Picobot requires a Wi-Fi connection in order to function. Requirements for
the Wi-Fi network are the same as all Raspberry Pi Pico W boards, such as
only supporting 2.4GHz bands. Additionally, Picobot does not support enter-
prise security protocols and has only been tested with the WPA2-Personal
protocol. Any other protocol is likely to either not work or result in undefined
behaviour.

In order to connect Picobot to your Wi-Fi network, it is necessary to create the
file include/wifi_settings.hpp (next to main.hpp) and adding the code
seen in listing B.1 to the created file, substituting the string values with your
network’s SSID and WPA.
# pragma once

# define my_ssid " my_ssid "
# define my_wpa " my_wpa "

Listing B.1: wifi_settings.hpp example

Assuming the SSID and WPA are valid and correct, Picobot should now connect
to the Wi-Fi network on bootup.



54 appendix b project setup and use instructions

Wiring up the Picobot

In order to connect Picobot to its various peripherals such as camera sensors, it
is necessary to wire the various I/O pins of the peripherals to the assigned GPIO
pinouts on the Pico W. The pinout is set in the modules for each respective
module’s include file(s) (e.g. camera pinouts are set in the camera module’s
cam_pins.hpp file), and can be changed as desired with some caveats (though
alternative configurations have not been tested and as such should not be
considered "safe"). For example, it is possible to change the camera pinouts
provided each respective pin type is appropriately handled (i.e. SPI pins such
as the CS pin need to be wired to an SPI CS-capable GPIO pin, and similarly
PWM requires a PWM-capable GPIO pin). An example of the verified (and thus
recommended) pinout for Picobot can be seen in figure B.1, with the exception
of wiring for the motor power pins on the TB6612 H-bridge which have not
been included.

Figure B.1: Picobot wiring diagram example



appendix b project setup and use instructions 55

Motor power wiring for the TB6612 depends on the motor configuration and
DC motor capabilities, and as such need to be considered appropriately on a
per-case basis. For example, motors capable of running in the span of 4.5-9v
at 0.2A max draw were used during testing, and performed sufficiently with
motor power directly from the Pico W. In this case, the VM pin on the TB6612
was wired to +B~B on the Pico W as it could make do with the current and
voltage supplied from the Pico W running on USB power (through a 5V 2.5A
powerbank). Some additional testing was done with some other motors that
required 12V 0.5A per motor, and in this case it was necessary to connect a
standalone 12V (portable) power supply to the 5V-13V Vmotor pins on the
TB6612, omitting the VM pin altogether to avoid accidentally feeding the Pico
W 12V back through the TB6612.

PicobotServer

Like Picobot, the PicobotServer-side of the project has a number of dependen-
cies that need to be met in order to build properly:

Dependencies

• A C++20 compatible compiler (tested with GCC version 12.2.1 and Clang
14.0.6 for the x86-64 platform, any other versions or platforms are un-
verified and unsupported).

• CMake (version 3.14 or higher).

• Linux (tested with kernel 6.2.12 and libstdc++ version 6. Other kernel
versions may work, but are untested).

• Python (tested with version 3.10, errors with version 3.11 or higher) for
ORB-SLAM3.

• spdlog (logging library)

• OpenCV (version 4.4 minimum, tested with version 4.7.0)

• Pangolin (OpenGL library)

• Eigen (version 3 minimum, tested with 3.4.0-1)

• ORB-SLAM3 and all its additional dependencies beyond the above (only



56 appendix b project setup and use instructions

tested with release version 1.0)

• fmtlib (FOSS formatting library, until libstdc++ supports C++20 format)

Build instructions

1. Ensure the dependencies are met

2. Navigate to the project repository’s root directory (clone recursively if
using the git version)

3. If not using the bundled ORB-SLAM3 version, follow the instructions in
ORB-SLAM3 bugfixes as there are a number of mandatory fixes that need
to be manually implemented in this case.

4. Navigate to the ORB-SLAM3 directory (if using the bundled version, it is
in the thirdparty subdirectory)and build its thirdparty dependencies
(g2o, DBoW2, Sophus etc.)

5. Create a build directory for ORB-SLAM3, navigate into it, and create its
CMake configuration files with the cmake <path_to_orb_slam3_root>
command, optionally specifying a generator such as Ninja.

6. Build ORB-SLAM3 with make or ninja (using the build flag -j$(nproc)
is highly recommended for faster build speeds when using make).

7. Navigate back to the project root repository, create a build directory for
the server project, navigate into the build directory, and create its CMake
configuration files as with ORB-SLAM3.

8. Build the server application as before with ORB-SLAM3, using make or
ninja.

Usage instructions

Following completion of the build instructions, the server application is now
ready for use. It is a CLI application, and as such requires launching from
the terminal. Upon launch, the user may hit ’0’ to display the help menu,
showing the various options for each respective functionality of the application.
In order to start the SLAM process, a number of modules need to be started
and configured. Assuming that the remote agent used with the application is a
Picobot variant, follow the instructions below:



appendix b project setup and use instructions 57

1. Calibration of cameras using the option in the application. See further
instructions in camera calibration.

2. Obtain the remote agent’s IP address and use it with the "connect to
Picobot" option in the CLI.

3. Start the server’s TCP server module.

4. Start the SLAM system using the CLI.

Assuming every step is followed, and no error appears, the ORB-SLAM system
should spawn a graphical user interface displaying both the camera feed (i.e.
the latest image processed) and the map with point clouds generated by the
SLAM library. The application will continue to run continuously unless an error
occurs (such as no new images being fed to the SLAM system for a certain
amount of time) or the user decides to stop the SLAM system. This can be
achieved through a couple ways, but the recommended approach is to press
the shutdown button in the SLAM interface, or by selecting the SLAM system
shutdown option in the application’s CLI. While the SLAM system is running, it
is possible to send movement commands through the CLI to the remote agent,
in order to facilitate movement (as it currently does not support independent
movement decision-making). Once the system has shut down, a file is generated
containing data for the robot’s trajectory during the SLAM process. This can
be easily plotted using Python (the process for achieving this is not covered in
this paper).

Note that for ease of use and rapid testing purposes, the source code currently
foregoes a lot of the user input by manually declaring IP addresses, port
numbers, and directories in the source code of both the server application and
robot agent. Change these to match the user’s server and robot IP addresses
for easy testing.

Theminimum requirements for this application are currently unknown, as it has
only been tested on a relatively high-end system, and as such any performance
impacts from running it on a lower-powered system are unknown.

ORB-SLAM3 bugfixes

A number of bugs and outright errors require fixing in order to use ORB-
SLAM3 with this project’s sensor configuration and dependencies in the case
of not using the provided ORB-SLAM3 fork. Version 1.0 is still assumed. The
following changes need to be made in order to circumvent the aforementioned
errors:



58 appendix b project setup and use instructions

• The compiler flag -march=native needs to be removed from both the
ORB-SLAM3 repository’s CMakeLists file and the ORB-SLAM3 depend-
ency g2o’s CMakeLists files (found in the thirdparty/g2o subdirectory
in the ORB-SLAM3 directory), as this prevents a segmentation fault dur-
ing real-time use of rectified images. This fix has not been extensively
tested and may carry with it unknown consequences, but allowed for the
collection of data.

• An additional segmentation fault was found when using pre-rectified
images instead of having ORB SLAM3 rectify the images for us. This
error happens because the system attempts to read originalCalib2_
object for sensor type rectified (leading to a segmentation error as that
object’s size will be 0 in the case of rectified sensors). This can be
mitigated by modifying the file src/Settings.cc (found in the ORB-
SLAM3 directory) changing the lines shown in listing B.2 to those shown
in listing B.3.

output << "" << ": [";
for( size_t i = 0; i < settings . originalCalib2_ ->size (); i++){

output << " " << settings . originalCalib2_ -> getParameter (i);
}
output << " ]" << endl;

Listing B.2: Bugfix code before fix

output << "" << ": [";
if ( settings . cameraType_ != Settings :: Rectified ) {

for ( size_t i = 0; i < settings . originalCalib2_ ->size (); i
++) {
output << " " << settings . originalCalib2_ -> getParameter

(i);
}

}
output << " ]" << endl;

Listing B.3: Bugfix code after fix

Camera calibration

Calibration of cameras for use with the Picobot project assumes stereo cameras
of the same make and type, and does as such not cover use-cases where
dissimilar cameras are used (in terms of focal length, pixel size, resolutions,
and so on). Additionally, calibration requires connecting the Picobot to the
server application (or obtaining images from it in some other manner), in
order to obtain the calibration images. Following this connection having been



appendix b project setup and use instructions 59

established, and images being confirmed transmitted to the server, print a
chessboard photo (A4 size was used in this project) and attach it to something
flat such that no creasing happens.

Hold the chessboard in front of both cameras such that it is clearly visible in
photos taken by both cameras (it is recommended to hold it close enough such
that most if not the entire fame is filled by the chessboard), ensure that the
corners of the chessboard are visible in either camera. It is recommended to
capture minimum 30 photos for each camera, more photos may yield better
results, but may also reach a point of diminishing returns. After capturing
enough photos, move the photos from the capture directory into the respective
"cam1_calib" and "cam2_calib" subdirectories in the input directory (create
them if they don’t exist). Finally, select the camera calibration in the CLI and
follow the on-screen instructions. If no errors occur, the application should
indicate the projection error rate from the calibration of both cameras, and
output undistorted as well as rectified versions of the calibration images in
the output directory. Additionally, confirm the existence of the intrinsic and
extrinsic calibration files in the config directory.

Assuming these have been created, it is now necessary to create and fill in
the acquired parameters into an ORB-SLAM3 configuration file for the camera,
which will be used in the ORB-SLAM process. This configuration file only re-
quires the camera matrix for camera 1 as provided in the extrinsic configuration
file, as well as parameters for the resolution (camera width and height), frames
per second, whether the cameras are RGB or BGR, the stereo baseline (i.e. the
distance between the two camera sensors in meters), as well as the depth
threshold (manually adjusted from the recommended selected start value of
50.0). See the ORB-SLAM3 documentation for more information regarding
the specifics. Additionally, there are some ORB-SLAM-related parameters that
may be set and fine-tuned. An example file has been provided in the examples
subdirectory in the project root directory.





C
ArduCAM OV5642
documentation

This appendix contains an excerpt from the documentation for the ArduCAM
OV5642 5MP camera as obtained from ArduCAM’s website [61]. All rights
belong to ArduCAM.

61



ArduCAM Camera Shield Software Application Note

1 www.ArduCAM.co

5    ArduChip Functions
ArduChip is ArduCAM property technology which handles all the timing control over 

camera interface, LCD interface, frame buffer and SPI interface timings with a set of registers. 

The ArduChip register address is also called Command Code, user can use low level APIs with 

these command codes to achieve customized combination of actions that off the shelf APIs don’t

have.

Different ArcuCAM platform uses different ArduChip and has different functionalities. Here

is a list of possible hardware platforms:

5.1 Single Capture Mode

It is a basic capture function of the ArduChip. The capture command code is 0x84, and write 

‘1’ to bit[1] to start a capture sequence. And then polling bit[3] which is the capture done flag by 

sending command code 0x41. After capture is done, user have to clear the capture done flag by 

sending command code 0x41 and write ‘1’ into bit[0] before next capture command.

5.2 Multiple Capture Mode

By sending the command code 0x81 and with writing the number of images to be capture 

into bit[2:0], before starting the capture command as the single capture sequence does. Please note

that user should trade off between the resolution and number of images to be captured and do not 

make the frame buffer overflow.

5.3 Short Video Capture Mode

Use the same command as the Multiple Capture Mode. When the value bit[2:0] equals to 7,

the ArduCAM will continuously capture the images until the entire frame buffer is full. User

can save the captured MJPEG to AVI files to create short movie clips.

5.4 Single Read Operation

It is basic memory read function which start a single read operation and read a single byte 

each time. By sending command code 0x3D to start a single read operation, a single byte is read

out from the frame buffer.

Hardware Platform

Functions

Single 

Capture/

Read

Burst

Read

Multiple

Capture

Rewind Low 

Power

Mode

Short 

Video

Capture

ArduCAM-Mini-2MP √ √ √ √

ArduCAM-Mini-5MP-Plus

(OV5642)
√ √ √ √ √ √



ArduCAM Camera Shield Software Application Note

1 www.ArduCAM.co

5.5 Burst Read Operation

It is advance capture function which can read multiple bytes out of the frame buffer by just

sending a single command code 0x3C.

Please note that for these hardware platforms (ArduCAM-Mini-2MP, ArduCAM-Mini-5MP) 
the first read byte should be ignored in the first read transaction, because it is a dummy byte. In 
the following read transaction, the first byte read is the last read byte in the last read transaction,
it is very important. And do not use other SPI command between burst read transaction. Detail 
timing can be found from Figure 5.

Figure 6 Burst read timing diagram 2

5.6     Rewind Read Operation

Rewind read is useful for some application that need access the same pixel data multiple 

times. By sending the command code 0x84 and write ‘1’ to bit[5] in the data phase, it will reset the

memory read pointer to ZERO. Then user can read the image data from the start of the memory.

5.7     Low Power Mode

For some battery powered device power consumption is very important. There are two levels

to achieve low power mode, user have to combine these modes according to their own power 

strategy.

5.7.1 Power down the sensor circuit

It is achieved by controlling the power enable pin of the onboard LDOs. The power enable 

pin is controlled by the GPIO[2] of ArduChip. By sending the command code 0x86 and write ‘1’ 

to bit[2] to enable the LDOs, or write ‘0’ to bit[2] to disable the LDOs to save power. Note that 

power down the sensor circuit, the camera settings are lost. User should reinitialize the sensor 

when power up the sensor circuit again.

5.7.2     Sensor standby

It is achieved by controlling the power enable pin of the onboard LDOs. The power enable 

pin is controlled by the GPIO[1] of ArduChip. By sending the command code 0x86 and write ‘1’ 

to bit[1] to set the sensor into standby mode, or write ‘0’ to bit[1] to set the sensor out of standby 

mode. Note that the sensor settings are not lost when in standby mode, and reinitialize is not 

needed.



ArduCAM Camera Shield Software Application Note

1 www.ArduCAM.co

6 ArduCAM APIs
There are a set of API functions that issue different commands to ArduCAM shield.

6.1 void InitCAM (void)

InitCAM function initializes the hardware information of the user system, such as the SPI

chip select port initialization and image sensor slave address initialization.

6.2 void flush_fifo (void)

flash fifo function is used to reset the fifo read pointer to ZERO.

6.3 void start_capture (void)

start_capture function is used to issue a capture command. After this command the ArduCAM

hardware will wait for a start of a new frame then store the entire frame data to onboard frame 

buffer.

6.4 void clear_fifo_flag (void)

Once a frame image is buffed to onboard memory, the capture completion flag is asserted

automatically.  The  clear_fifo_flag  function  is  used  to  clear  this  flag  before  issuing  next

capture command.

6.5 void write_reg(uint8_t addr, uint8_t data)

Param1: ArduChip register address (or command code)

Param2: data to be written into the register

ite_reg is a basic function to write the ArduChip internal registers.

6.6 uint8_t read_reg(uint8_t addr)

Param1: ArduChip register address (or command code)

Return value: register value

read_reg is a basic function to read ArduChip internal register value.

6.7 uint32_t read_fifo_length(void)

Return value: 32 bit length of captured image

read_fifo_length function is used to determine the length of current captured image. Note the

Rev.C shield doesn't support this feature.

6.8 void set_fifo_burst(void)

set_fifo_burst function is used to set the read memory into burst read mode. It should be 

called before burst memory read operation. Note the Rev.C shield doesn't support this feature.

6.9  int wrSensorRegs8_8(const struct sensor_reg*)

Param1: sensor setting data array

Return value: error status

wrSensorRegs8_8 function is used to write array of settings into sensor’s internal register

over I2C interface and sensor’s register is accessed with 8bit address and 8bit data.

6.10    int wrSensorRegs8_16(const struct sensor_reg*)

Param1: sensor setting data array

Return value: error status

wrSensorRegs8_16 function is used to write array of settings into sensor’s internal register

over I2C interface and sensor’s register is accessed with 8bit address and 16bit data.

6.11    int wrSensorRegs16_8(const struct sensor_reg*)

Param1: sensor setting data array

Return value: error status



ArduCAM Camera Shield Software Application Note

1 www.ArduCAM.co

wrSensorRegs16_8 function is used to write array of settings into sensor’s internal register

over I2C interface and sensor’s register is accessed with 16bit address and 8bit data.

6.12    int wrSensorRegs16_16(const struct sensor_reg*)

Param1: sensor setting data array

Return value: error status

wrSensorRegs16_16 function is used to write array of settings into sensor’s internal register

over I2C interface and sensor’s register is accessed with 16bit address and 16bit data.

6.13    byte wrSensorReg8_8(int regID, int regDat)

Param1: sensor internal register address 

Param2: value to be written into the register

Return value: error status

wrSensorReg8_8 function is used to write a single sensor’s internal register over I2C

interface and sensor’s register is accessed with 8bit address and 8bit data.

6.14    byte wrSensorReg8_16(int regID, int regDat)

Param1: sensor internal register address 

Param2: value to be written into the register

Return value: error status

wrSensorReg8_16 function is used to write a single sensor’s internal register over I2C

interface and sensor’s register is accessed with 8bit address and 16bit data.

6.15    byte wrSensorReg16_8(int regID, int regDat)

Param1: sensor internal register address 

Param2: value to be written into the register

Return value: error status

wrSensorReg16_8 function is used to write a single sensor’s internal register over I2C

interface and sensor’s register is accessed with 16bit address and 8bit data.

6.16    byte wrSensorReg16_16(int regID, int regDat)

Param1: sensor internal register address 

Param2: value to be written into the register

Return value: error status

wrSensorReg16_16 function is used to write a single sensor’s internal register over I2C

interface and sensor’s register is accessed with 16bit address and 16bit data.

6.17    byte rdSensorReg8_8(uint8_t regID, uint8_t* regDat)

Param1: sensor internal register address

Param2: value read from the register 

Return value: error status

rdSensorReg8_8 function is used to read a single sensor’s internal register value over I2C

interface and sensor’s register is accessed with 8bit address and 8bit data.

6.18    byte rdSensorReg16_8(uint16_t regID, uint8_t* regDat)

Param1: sensor internal register address

Param2: value read from the register 

Return value: error status

rdSensorReg16_8 function is used to read a single sensor’s internal register value over I2C

interface and sensor’s register is accessed with 16bit address and 8bit data.

6.19    byte rdSensorReg8_16(uint8_t regID, uint16_t* regDat)

Param1: sensor internal register address

Param2: value read from the register 



ArduCAM Camera Shield Software Application Note

1 www.ArduCAM.co

Return value: error status

rdSensorReg8_16 function is used to read a single sensor’s internal register value over I2C

interface and sensor’s register is accessed with 8bit address and 8bit data.

6.20    byte rdSensorReg16_16(uint16_t regID, uint16_t* regDat)

Param1: sensor internal register address

Param2: value read from the register 

Return value: error status

rdSensorReg16_16 function is used to read a single sensor’s internal register value over I2C

interface and sensor’s register is accessed with 16bit address and 16bit data.

6.21    void OV2640_set_JPEG_size(uint8_t size)

Param1: resolution code

OV2640_set_JPEG_size function is used to set the desired resolution with JPEG format for

OV2640. Current support resolution is shown as follows:

#define OV2640_160x120 0 //160x120

#define OV2640_176x144 1 //176x144

#define OV2640_320x240 2 //320x240

#define OV2640_352x288 3 //352x288

#define OV2640_640x480 4 //640x480

#define OV2640_800x600 5 //800x600

#define OV2640_1024x768 6 //1024x768

#define OV2640_1280x1024 7 //1280x1024

#define OV2640_1600x1200 8 //1600x1200

6.22    void OV5642_set_JPEG_size(uint8_t size)

Param1: resolution code

OV5642_set_JPEG_size function is used to set the desired resolution with JPEG format for

OV5642. Current support resolution is shown as follows:

#define OV5642_320x240 0 //320x240

#define OV5642_640x480 1 //640x480

#define OV5642_1024x768 2 //1024x768

#define OV5642_1280x960 3 //1280x960

#define OV5642_1600x1200 4 //1600x1200

#define OV5642_2048x1536 5 //2048x1536

#define OV5642_2592x1944 6 //2592x1944

6.23    void set_format(byte fmt)

set_format function is used to set the sensor between RGB mode and JPEG mode. The

InitCAM function should be called after set_format function.



ArduCAM Camera Shield Software Application Note

1 www.ArduCAM.co

7    Registers Table
Sensor and FIFO timing is controlled with a set of registers which is implemented in the 

ArduChip. User can send capture commands and read image data with a simple SPI slave interface.

The detail description of registers’ bits can be found in the software section in this document. Not 

all the registers are implemented in a given hardware platform, please check the hardware develop 

guide for detail register description for certain hardware you've got.

As mentioned earlier the first bit[7] of the command phase is read/write byte, ‘0’ is for read 

and ‘1’ is for write, and the bit[6:0] is the address to be read or write in the data phase. So user has 

to combine the 8 bits address according to the read or write commands they want to issue.

Table 1 ArduChip Register Table

Register Address

bit[6:0]

Register Type Description

0x00 RW Test Register

0x01 RW Capture Control Register

Bit[2:0]: Number of frames to be captured

The value in this register + 1 equal to the number 

of frames to be captured.

The value=7 means capture continuous frames 

until the frame buffer is full, it is used for short

video clip recording.

0x02 RW Bus Mode

Determine who is owner of the data bus, only one 

owner is allowed.

Bit[7:2]: Reserved

Bit[1]: Camera write LCD bus

Bit[0]: MCU write LCD bus

0x03 RW Sensor Interface Timing Register 

Bit[0]: Sensor Hsync Polarity,

0 = active high, 1 = active low

Bit[1]: Sensor Vsync Polarity 

0 = active high, 1 = active low

Bit[2]: LCD backlight enable 

0 = enable, 1 = disable

Bit[3]: Sensor PCLK reverse

0 = normal, 1= reversed PCLK

0x04 RW FIFO control Register

Bit[0]: write ‘1’ to clear FIFO write done flag 

Bit[1]: write ‘1’ to start capture

Bit[4]: write ‘1’ to reset FIFO write pointer

Bit[5]: write ‘1’ to reset FIFO read pointer

0x05 RW GPIO Direction Register

Bit[0]: Sensor reset IO direction



ArduCAM Camera Shield Software Application Note

1 www.ArduCAM.co

Bit[1]: Sensor power down IO direction 

Bit[2]: Sensor power enable IO direction

0 = input, 1 = output

0x06 RW GPIO Write Register

Bit[0]: Sensor reset IO value

Bit[1]: Sensor power down IO value 

Bit[2]: Sensor power enable IO value

0x3B RO Reserved

0x3C RO Burst FIFO read operation

0x3D RO Single FIFO read operation

0x3E WO LCD control register with RS=0

0x3F WO LCD control register with RS=1

0x40 RO ArduChip version

Bit[7:4]: integer part of the revision number 

Bit[3:0]: decimal part of the revision number

0x41 RO Bit[0]: camera vsync pin status

Bit[3]: camera write FIFO done flag

0x42 RO Camera write FIFO size[7:0]

0x43 RO Camera write FIFO size[15:8]

0x44 RO Camera write FIFO size[22:16]

0x45 RO GPIO Read Register

Bit[0]: Sensor reset IO value

Bit[1]: Sensor power down IO value 

Bit[2]: Sensor power enable IO value






	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Background
	1.2 Task description
	1.3 Theory
	1.3.1 Camera types
	1.3.2 Sensor calibration
	1.3.3 Algorithms
	1.3.4 State-of-the-art

	1.4 Approach
	1.4.1 Robot agent
	1.4.2 Host platform for processing and decision-making
	1.4.3 SLAM system


	2 Method
	2.1 Choice of tools and materials
	2.1.1 Experience
	2.1.2 Selections
	2.1.3 Motors, power, and chassis

	2.2 Methods
	2.2.1 System architecture
	2.2.2 Camera data
	2.2.3 Network communication
	2.2.4 Visual SLAM and Rectification


	3 Results
	3.1 Robot performance
	3.1.1 Cameras
	3.1.2 Networking
	3.1.3 Movement
	3.1.4 Power consumption

	3.2 Remote host application
	3.2.1 Rectification
	3.2.2 vSLAM


	4 Discussion
	4.1 Picobot
	4.2 PicobotServer
	4.3 Overall results

	5 Suggestions and Conclusion
	5.1 Suggestions for future work
	5.2 Conclusion

	Bibliography
	A Task Description
	B Project setup and use instructions
	C ArduCAM OV5642 documentation

