UIiT The Arctic University of Norway

Faculty of Science and Technology
Department of Computer Science

Estimating the Available Energy Flexibility
A case study of Helgeland

Johanne Holst Klaeboe
DTE-3900 Master's thesis in Computer Science May 2023




This thesis document was typeset using the UiT Thesis IKTEX Template.
© 2023 — http://github.com/egraff/uit-thesis


http://github.com/egraff/uit-thesis

Abstract

This thesis project was commissioned by Cegal and aimed to investigate the
potential for demand-side flexibility in the Helgeland region, as well as evaluate
forecasting methods for a demand-response system. The future energy situation
in the area was analyzed, while the experimental part investigated forecasting
methods which can be applied in a demand-response system. Finally, the project
investigated the potential of a commercial building to provide demand side
flexibility, analyzing the financial aspects of such participation.

The research findings indicate that the energy and load balance in the Helge-
land region may decrease in the coming years, potentially leading to tight load
balance conditions.

LSTM and XGBoost has been the investigated forecasting methods in this study;,
where both models showed promising results, though further improvements
are recommended.

The commercial building investigated had the capacity to provide 23.87 KW
flexibility, and the financial analysis suggested that the consumer would benefit
from participating in a demand response system, depending on the needs of
flexibility.

This thesis project contributes to the development of a demand-response system
and highlights the areas for further research on forecasting methods and
potential asset providers in the Helgeland region.
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Introduction

In this chapter, the background and significance of the thesis will be discussed.
The problem statement will be highlighted, along with the importance of the
project. Additionally, relevant theories and previous research related to the
topic will be presented. A description of the project will be provided, along
with theories related to the task.

1.1 Introduction

This thesis is initiated by Cegal [1], a global tech company specializing in the
energy domain, which aims to develop a tool for efficient grid usage. They want
to create a system that can provide flexibility to the energy system. A key factor
for the system is the ability to predict future energy demand accurately. This
project will investigate different machine learning algorithms to predict energy
demand and explore the future energy situation in the Helgeland region to
determine the need of flexibility in the region. Furthermore, a portion of the
thesis will focus on examining the capability of an individual consumer to offer
flexibility.
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1.2 Background

This section will go through the motivation and necessity behind having flexi-
bility in the energy system as well as research related to flexible energy.

1.2.1 Motivation

Reducing emissions is a target for Norway’s green transition. This will require
electrification of different sectors. As part of the electrification, there is a
need for a well-developed and efficient use of the power grid. Upgrading the
transmission grid is costly, and according to [2], there is anticipated that the
upgrade will cost more than NOK 4 billion yearly up to 2030. The electrification
of Norway is expected to cause higher peak load which in turn will require
more optimal use of the grid capacity. By taking advantage of demand-response
technology a more efficient use of the grid can be accomplished.

Energy Balance

20

15

10

2021 2025 2030 2040

s Production W Consumption == Balance

Figure 1.1: Illustration of the anticipated changes in energy production, consumption,
and balance. The vertical axis on the right side represents the energy
balance, while the left side correspond to production and consumption,
both in TWh. Numbers from NVE’s long-term analysis [3].

In 2021 The Norwegian Directorate of Water Resources and Energy (NVE)
published a report analysing the long-term power marked [3]. In the report they
are considering the future energy production and consumption. They are basing
their analysis on that a significantly amount of new developments in energy
production is going to come from wind and solar power. In Norway today, 89%
of the energy production is produced by hydroelectric power plants [4] where
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some of them have water reservoirs, making it possible to regulate the energy
production, which in turn adds flexibility into the energy system. However,
wind and solar power is not possible to regulate and is highly dependent on
the weather. According to NVE’s estimations of 2040, there will be periodes
in future Europe where high energy demand coincides with low amount of
sunlight and wind, which can be challenging if the periodes are long-lasting.
NVE suggest that the energy system requires significant flexibility to address
the aforementioned challenges. NVE also evaluates the future energy balance
in Norway, which is predicted to decline. In Figure 1.1 their estimations of the
future energy balance can be observed together with the estimated energy
production and consumption. From the figure it can be observed that in 2021
Norway had an annual energy surplus of 20 TWh. However, NVE projects that
this surplus will reduce to 7 TWh in 2030 due to a rise in energy demand
and low increase in production. The energy commission released their report
about the long-term perspective of Norwegian energy politics this year [5]. The
energy commission’s estimation aligns with NVE’s regarding the future energy
balance, but they anticipate a potential energy shortage of 35 TWh in dry years
by 2030. It has to be noted that the numbers illustrated in Figure 1.1 is based
on years with normal weather conditions. Dry years referes to years where
the amount of influx to the water reservoirs is low. Dry years occurring after
one another can cause uncertainty in the energy supply. The largest reservoir
in Norway has a capacity of 7,8 TWh which corresponds to three years of
normal influx. However, the reservoir can be emptied in 7-8 months with full
production [6]. The energy commission proposes solutions such as importing
energy, building more multi-year reservoirs, or implementing demand side
flexibility to address this challenge. They also suggest making the energy
system more efficient and flexible to cope with the challenges. NVE has also
researched the connection between the energy balance and the energy price
[7]. According to their findings, a positive energy balance in Norway can lead
to lower energy prices in the country when energy prices in Europe are high.
For instance, if the energy balance in Norway is very high, say 40 TWh, the
energy produced in the country will stay within its borders, leading to low
energy prices.

The electrification of different sectors in Norway is expected to cause higher
peak loads presenting challenges in load balancing. Load balance refers to the
balance between energy production and consumption during peak load hours.
NVE conducted an analysis on Norway and the Nordic countries’ load balance
up to 2030 [8]. The report concludes that Norway can currently manage the
highest peaks with its energy production, but the combined Nordic countries
are experiencing energy shortages during peak load hours. By 2030, there
are concerns about having a negative load balance even with a moderate
increase in consumption. The report suggests that an increase in demand-side
flexibility can be a determining factor in ensuring a positive load balance in



4 CHAPTER 1 / INTRODUCTION

2030. Additionally, grid reinforcements and better utilization of the grid can
contribute to solving local load issues.

The challenges previously discussed are also highlighted in Statnett’s 2023
long-term market analysis [9]. The report indicates that the most cost-effective
approach to achieving green transmission targets is through a combination of
renewable energy production and flexibility. This is in line with the findings of
a committee established to evaluate measures for developing the Norwegian
electricity grid [10], which recommends flexible resources as a viable solu-
tion for addressing short-term overloads and reducing the need for new grid
development.

In spite of having a positive energy balance and being able to manage high
peak loads, some areas in the Norwegian grid are experiencing insufficient
capacity to cater to new industries or cope with the electrification of various
sectors. ASKO Vestby is one such example where they wanted to replace their
fossil-fuel trucks with electric ones, but the grid lacked the capacity to support
the additional demand for electricity. To resolve this, they opted for a non-firm
contract, allowing the local grid operator to disconnect the charging station
during times when the demand is too high for the grid [11]. Similarly, industries
in Lofoten were denied connection to the grid due to the same issue [12]. In [13],
the authors support this problem by stating that 40 connection applications
to the grid were turned down. This issue is not unique to Norway as other
countries such as Ireland are also grappling with it. For instance, Microsoft
and Amazon’s plans to construct data centers have been hampered by grid
connection permissions in Ireland [14].

In [15] it was investigated whether Norway is equipped to handle the challenges
that has been presented. The authors concluded that the need for flexibility to
maintain energy system balance is increasing. They recommended that flexi-
bility resources should be distributed throughout the country in order for the
resources to be available where needed. The authors also suggested using alter-
native flexibility sources, as an increase in the use of hydroelectric power plants
is expected to be expensive. Moreover, they advocated for utilizing demand
side flexibility from various sources to address peak load challenges.

The reports discussed in the preceding paragraphs all suggest that the Norwe-
gian energy system is confronted with multiple challenges. It appears that a
flexible energy system is necessary to address these challenges. In the following
section, we will explain the concept of energy flexibility and review relevant
research conducted on this topic.
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1.2.2 Energy Flexibility

The Norwegian energy system is predicted to face challenges in the near
future. To address these challenges, providing more flexibility to the system
can potentially help optimize the grid management and serve as an alternative
to costly grid development. This section will provide an overview of energy
flexibility and its current applications.

Energy flexibility refers to the energy systems ability to adjust supply and
demand by using available resources. Flexible resources play a crucial role
in ensuring stability in the grid, especially as more unregulated renewable
energy is integrated into the energy system. As previously mentioned, hydro-
electric power plants provide 89% of the Norwegian energy supply, and some
of these plants have water reservoirs that can be regulated. Such reservoirs are
considered flexible resources.

Demand side flexibility (DSF) refers to the energy flexibility provided by the
end consumers. It allows consumers to either be disconnected from the power
grid for short periods of time or to shift their energy consumption from peak load
hours to another time of the day. DSF can be divided into two types: implicit
and explicit flexibility. The difference between them is related to the motivation
behind the offered flexibility. Implicit flexibility is related to the users adjusting
their consumption in response to prices, while explicit flexibility has the goal
of motivating the consumers to provide flexibility by increasing their earnings.
Explicit flexibility can be provided by the end consumer or a service provider
that controls the consumers’ consumption or production. One type of service
provider is aggregators who work as an intermediary between the flexibility
provider and the buyer. When an aggregator has multiple flexibility providers,
they can obtain flexibility from several resources to sell as one bid [10].

In the previous section, it was mentioned that ASKO faced difficulties connect-
ing their charging stations to the grid and resolved the issue by providing
the local grid operator with DSF and making the charging station a flexible
resource. However, this was only part of the solution. Together with Smart
Innovation Norway, they designed a system which obtained information about
grid availability from the DSO. Using this information, the system could use
other flexible resources, such as batteries, ventilation systems, and cooling ma-
chines, to adjust the demand and prevent disconnection of the entire charging
station. This solution was presented during the Smart Innovation Workshop
2022 [11]. However, it was also suggested that a market-based approach, such
as the establishment of a local flexibility market (LFM), also could contribute
to solving the problem.

There has been a lot of research on developing LFMs in order to address the
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challenges the energy system is facing. The following section will provide an
overview of the theory underlying LFMs, and present some related research
on the topic.

1.2.3 Local Flexibility Market

Local flexibility markets are marketplaces operating in a geographical area
where energy flexibility provided by prosumers can be bought by flexibility
users, commenly the local grid operator (DSO). Figure 1.2 illustrates the basics

of a LFM where an aggregator collects flexible resources from various prosumers
and sells the flexibility to either the DSO or the balancing responsible party

BRP DSO

W
&7

AGGREGATOR

p 1@

PROSUMERS

Figure 1.2: Illustration of a local flexibility market [16].

In Subsection 1.2.1 the challenges of the Norwegian energy system were high-
lighted. Nevertheless, these issues are not unique to Norway, and many other
countries are facing similar challenges. As a result, there has been a significant
amount of research on implementing LFMs globally. In [17] it was investigated
how to make power systems more flexible by aggregating distributed resources
through aggregator companies in the Netherlands. In [18] it is presented a
method to create a local flexibility market in Northern Germany to prevent
grid congestions. In the UK there has been developed a marketplace, Piclo Flex,
for trading energy flexibility [19] and in Italy there is a flexibility project called
RomeFlex [20].



1.2 / BACKGROUND 7

The INVADE project is trying to create better energy services in order to
increase the amount of energy flexibility. They are researching the use of
cloud-based flexibility management system integrated with electric vehicles
(EVs) and batteries together with existing infrastructure at the pilot sites in
Bulgaria, Germany, Spain, Norway and the Netherlands [21]. In Norway they
are investigating the use of vehicle-to-home (V2H) technology, enabling a two-
way flow of electricity. According to their project description this can be a
win-win situation where the end user can save money if they can avoid high
loads at times where the prices are high, and the DSO can potentially postpone
grid investments [22].

Another project in Norway, the NorFlex project, has investigated the potential
of having a local flexibility market where demand side flexibility is provided to
both the DSO and the transmission system operator (TSO), which in Norway is
Statnett. NorFlex is a collaboration between Agder Energi, Glitre Energi, NODES
and Statnett. Flexibility was provided by rapid charging facilities, commercial
buildings, schools, sports facilities, nursing homes and horticultures. Agder
Energi and Glitre Energi as DSOs bought flexibility through the marketplace
NODES and resources which were not bought by the DSOs were aggregated
and made available to the TSO as a resource in the balancing market. The goal
of the project was to create a solution which could benefit all participants, and
demonstrate how flexibility can be used by DSOs to increase efficiency of grid
operations, increase grid capacity and postpone grid investments. Flexibility
providers benefited by earning money when offering their flexibility assets [23]
[24] [25] [26].

The NorFlex project used the marketplace NODES for trading energy flexibility.
However, NODES is involved with several projects which involves unlocking de-
mand flexibility. In Norway they are involved in NorFlex, SmartSenja, CINELDI,
FlexLab and Engene. They are also involved outside Norway, including IntraFlex
and sthlmflex. The latter is a project in Sweden where they are investigating
a TSO/DSO coordination, where the regional DSO can buy flexibility from
the neighbouring DSO. IntraFlex is a project in the United Kingdom which is
looking into the impact of flexibility activation on the balancing responsible
parties. NODES role is to provide a place where the buyer and the sellers can
agree on a price [11].

In this section, we have discussed LFMs and summarized some of the existing
research on the subject. We have learned that the buyers in these markets
are the balancing responsible party and the local grid operator. The next two
sections will focus on these buyers, describing their roles and responsibilities
in the Norwegian energy system.
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1.2.4 Transmission system operator

Norway has three grid levels: transmission grid, regional grid and distribution
grid. The transmission grid is operated by the transmission system operator
(TSO) which in Norway is Statnett. The grid transports electricity on a national
basis. The TSO is responsible for keeping the production and consumption
in balance [27] [28]. In order to keep the grid in balance there exists several
markets to buy energy reserves. There are different types of reserves depending
on the time of need. Frequency Containment Reserves (FCR) [29], automatic
Frequency Restoration Reserves (aFRR) [30], manual Frequency Restoration
Reserves (mFRR) [31] and Fast Frequency Reserves (FFR) [32]. The mFFR-
market is the last reserve which is activated. It has to be activated within 15
minutes after the unbalance occurred and has a minimum duration of one
hour. The reserves for the mFRR-market includes both reserves in the form of
production and reduction in consumption.

At a workshop hosted by Smart Innovation Norway in 2022, NVE presented
some limitations of balancing markets [11]. According to the presentation,
the minimum bid size in the market is currently 10 MW, which is considered
quite high in the context of DSF. The market also lacks automated solutions,
which makes it difficult to manage multiple bids. The presentation suggested
implementing automated solutions to optimize the market and reduce the
bid size. Additionally, it was stated that changes are expected in the Nordic
balancing markets within the next 1-2 years, where the market processes will
be fully automated, the bid size reduced to 1 MW, and the time resolution
reduced to 15 minutes.

In 2019/2020, the eFleks project [33] tested the use of demand side flexibility
in the mFRR-market in Norway. The project involved collaboration between
Statnett, Tibber, Entelios, Enfo, and Siemens. Tibber and Entelios provided
DSF, with Tibber using panel heaters and electric vehicles with a size of 1 MW
and Entelios providing 4 MW from a portfolio of industrial loads and 1.37
MW from commercial buildings. The project report suggests that lowering
the minimum bid size was essential in using demand side flexibility in the
mFRR-market.

1.2.5 Distribution system operator

The regional grid connects the distribution and transmission grid, with the
distribution grid being the link between the regional grid and the end consumer.
The distribution and regional grids are owned and operated by the local grid
operator, also known as the distribution system operator (DSO). In Norway,
each area has a designated DSO responsible for the distribution and regional
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grids. The DSO is in charge of maintaining, utilizing, and operating the grids
they own. Customers using the grid must pay a grid tariff to the local DSO, in
addition to their electricity consumption. The income generated from the grid
tariff covers the DSO’s costs, which include the transportation of electricity,
efficient operations, and the development of the grid [34]. Therefore, if the
DSO needs to expand the grid to increase capacity, customers may experience
an increase in the grid tariff.

The grid tariff consists of two parts: a fee for the electricity consumption per
kilowatt hour and a fixed monthly fee. Starting from July 1st, 2022, the grid
tariff has been updated to encourage consumers to distribute their energy
consumption throughout the day. The fixed monthly fee is now based on the
capacity needs of each customer, and the cost for the first part of the grid
tariff can vary depending on the time of day and year. Using electricity during
off-peak hours, such as at night or on weekends, can be cheaper. The purpose
of these changes is to incentivize consumers to use the grid more efficiently,
which can lead to cost savings for both consumers and the local grid operator
[35].

As presented in Subsection 1.2.1, there are several examples of where the grid
is almost utilized and new industries wanting to establish either gets declined
or has to agree on a non-firm contract. Which is the case at Innlandet, where
new grid customers has to either wait until the grid is reinforced or agree
on a non-firm agreement in order to connect to the grid [36]. The non-firm
agreement is a contract which allows the DSO to disconnect the grid customer
in case of operational problems.

1.2.6 Helgeland

A part of this theis aims to investigate the future energy situation at Helgeland
in order to see if there is a viable opportunity of establishing a LFM in the area.
The historical and current energy situation in Helgeland will be presented
further.

Helgeland is a region in the southern part of Nordland county which is within
price area NO4 Figure 1.3. Statnett is currently investigating different actions
that is needed concerning the grid capacity in several regions in Norway. In
Nordland it is expected major industrial investments which can lead to change
in the energy balance in the area if no new production is added. They are
planning to increase the capacity in the grid. Today the grid can handle an
increase of 2200 MW in demand in NO4. However, an increase in demand of
2200 MW without an increase in production will increase the probability of
disconnection in dry years [37].
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© NO4

Figure 1.3: Energy price areas from NVE [38]

Linea owns the distribution grids at Helgeland and according to Linea’s power
system report from 2022, 79% of the electricity consumption at Helgeland in
the last 10-year period is from power-intensive industry [39]. The electricity
production in the region the last 10-year period has been at approximately 7.3
TWh per year. Average electricity consumption for the same time period has
been at approximately 6.2 TWh per year, which gives Helgeland an annual
average energy surplus of 1.1 TWh.

1.3 Project

As mentioned in the project description in Section 1.1, Cegal aims to develop
a tool that can provide flexibility to the energy system to accommodate the
challenges the Norwegian energy system is facing. Currently they are working
with a system which can communicate with Statnett’s product, eBestill [40],
in order to automate the bidding process between the energy production
companies and Statnett in the balancing market. In addition, Cegal wants to
develop a demand-response system which can provide flexibility automatically
to a local flexibility market. Additionaly, Cegal wants to investigate the potential
of creating a local flexibility market at Helgeland. As a contribution to this, the
thesis will explore the energy balance in the area and look into one consumers’
ability to participate in a local flexibility market in terms of their ability and
financial aspects.
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Developing a demand-response system is a complex task. For the system to
effectively manage the consumers’ trades against a LFM, it needs to have
an estimate of the energy consumption. This thesis will contribute to this
by investigating different forecasting methods which can be used to predict
the consumption for two purposes. Both the total consumption in the area
and one consumers consumption. A prediction of the total energy demand
in the Helgeland region can provide valuable information to the demand-
response system about when flexibility is needed, while a prediction of the
consumers’ consumption can provide a baseline which can be used to calculate
the compansation that the consumer should get.

The project has three goals. First is to explore various forecasting methods
that can be utilized in the demand-response system as described earlier where
both short-term and long-term forecasting is of interest. The second objective
is to analyze the future energy demand in the Helgeland region to assess the
necessity of flexibility in the area. The third aim is to examine the potential of
a local prosumer’s participation in a LFM.

1.3.1 Research Questions

Based on the project description and goals, the following research questions
can be formulated:

1. Is there a viable opportunity for establishing a local flexibility market in
the Helgeland region?

2. Are the proposed forecasting methods capable of predicting the total
energy consumption in the area as well as predicting the consumers
energy consumption for short-term and long-term?

3. What are the potential benefits and ability for the prosumers to participate
in a local flexibility market?

1.4 Technical Background

In this section, we will provide technical background information that the
project is based on. We will start by going deeper into the NODES marketplace,
which was introduced in Subsection 1.2.3. After, we will provide an overview
of time series forecasting in general, as well as previous research on load
forecasting.



12 CHAPTER 1 / INTRODUCTION

1.4.1 NODES Marketplace

The NODES marketplace is an independent platform for trading flexibility
among grid operators, producers, and consumers. As shown in Figure 1.4, the
flexibility providers are located on the right side of the platform, while the
buyers are on the left. The buyers include grid operators such as DSOs, TSOs,
and BRPs. The flexible resources available for trading are owned by prosumers,
who may have contracts with aggregators, acting as intermediaries and offering
the flexibility to the market. The flexible resources can include DSF assets, such
as electric vehicles or building heating systems, as well as energy production
resources.
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Figure 1.4: Illustration of NODES market design [41].

In the NorFlex project, the NODES marketplace was utilized to trade flexibility,
as mentioned in Subsection 1.2.3. ShortFlex and LongFlex were the two products
traded during the project. ShortFlex allowed flexibility to be traded between
7 days and two hours before the physical delivery, and orders had a duration
of one hour. However, NODES supports products with durations of 30 and 15
minutes as well. Prices fluctuated during the project, but eventually settled
between 8500-10 ooo NOK/MWHh. LongFlex, on the other hand, is a NODES
product for flexibility reservation. Two LongFlex contracts were utilized in the
NorFlex project with different durations, namely LongFlex season and LongFlex
week. The weekly contract’s prices ranged from 70 - 500 NOK/MWh, while
seasonal contracts were priced between 75 - 250 NOK/MWh. Over 2400 assets
were provided into the market by eight participating aggregators from January
2021 until March 2022. During this period, more than 12000 trades occurred
with a total volume exceeding 600 MWh. NODES operates with a resolution
of 0.001 MW, which implies that at least 1 KW of flexibility is required to make
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a valid trade [42] [11].

Income = MW = p * % (1.1)

For ShortFlex products the recived sum for each trade was calculated by Equa-
tion 1.1, where MW is the traded quantity, p the price and % represents the
payment percentage, which is a factor determined by the delivery percentage
regarding the actual delivered flexibility.

Available income = MW * p * h (1.2)

Income for LongFlex contracts was calculated by Equation 1.2 where MW is
the traded quantity, p the available price and h hours in the contract.

This section has provided an overview of the NODES marketplace, including
the products traded in the NorFlex project, the number of participants and
trades, and the minimum resolution for valid trades. It has also outlined how
prosumers can offer their flexible resources to the market through aggregators,
and how they are compensated for providing flexibility.

1.4.2 Forecasting

This section will discuss the general theory behind forecasting time series
and related research on forecasting energy consumption, which forms the
foundation of the selected forecasting methods utilized in this thesis.

Forecasting is a tool which is used for a number of applications. Examples of
such applications are weather forecasts [43], forecasting stock prices [44] and
forecasting electricity prices [45]. In general, having an accurate prediction of
future values is a useful tool in planning and decision making.

In [46] different methods for forecasting electric load is presented. They are
divided into conventional methods and computational intelligent methods.
Whereas the conventional methods includes time series models and regression
models. Time series methods models the electricity demand as a function of
historical data, which assumes that the data follow a certain stationary pattern.
Regression models on the other hand, uses a linear combination of variables
in order to predict one variable. The authors also presented some computa-
tional intelligent methods which has been used for forecasting electricity load.
Amoung these: Artifical Neural Networks and Expert Systems.
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All electricity consumers today has smart electricity meters which hourly regis-
ters the energy consumption [47]. Hence, forming a time series. A time series
is a set of data points that are indexed or ordered by time. Time series are
commonly encountered in various fields such as finance and economics, where
stock prices or interest rates can be modeled as time series. In physical sciences,
temperature and other meteorological observations are often recorded as time
series. Time series data can be discrete, meaning observations are taken at
specific intervals of time, or continuous, where observations are recorded con-
tinuously. Typically, observations in a time series are dependent on previous
values, meaning they can be deterministic or stochastic. Deterministic time
series can be predicted exactly based on past observations, while stochastic
time series have a degree of randomness or unpredictability, and future values
can only be estimated with some level of uncertainty [48].

A time series containing electricity consumption can thus be described as a
discrete time series, whereas a prediction of the next value can be refered to
as a stochastic value.

1.4.3 One-step Forecasting

One-step forecasting involves predicting the next value in a time series. The
forecasting process can rely on both dependent and independent variables,
where the dependent variable is the one being predicted, and independent
variables are those that may impact the dependent variable. The model uses
these variables at each time step to forecast the next value. While single-step
forecasting is useful in managing resources and maintaining balance in the
grid, it may be limiting for long-term planning since it only predicts the next
time step.

1.4.4 Multi-step Forecasting

Multi-step forecasting is used when the aim is to predict multiple future values
in a time series. Similar to one-step-ahead forecasting, multi-step forecasting
can utilize both dependent and independent variables to predict future observa-
tions. The main difference is that multi-step forecasting predicts several future
values instead of just one. However, accurately predicting multiple steps into
the future can be challenging as the accuracy tends to decrease with increasing
forecasting horizon [49]. Accurate forecasting of electricity consumption for
several hours can give grid operators more time to manage resources to keep
the grid in balance.
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1.4.5 Forecasting Energy Consumption

Predicting energy consumption is important for several reasons. Knowing the
future electricity consumption can help the grid operators and utilities plan
which resources is needed in order to meet demand. Accurate predictions can
help ensure that available capacity has the ability to meet demand at all times,
which in turn can help balancing the grid and preventing power outages. The
predictions can also be used as a tool to identify opportunities for energy
efficiency measures. Understanding when and where energy is used creates
an opportunity for consumers and utilities to develop strategies in order to
reduce or shift their energy usage. Prediction of electricity consumption can
also create cost savings. By anticipating changes in demand, utilities can make
decisions based on the expected demand when selling or buying energy. This in
turn can reduce the costs of the electricity consumer. There is a lot of research
on load forecasting. However, this section will give a brief presentation of some
related research.

In [50] it was conducted a review of forecasting methods used in energy
planning models where forecasting energy demand and load was the main
objectives of the forecasting. The review investigated 483 energy planning
models between 1985 and 2017. They found that among the 50 methods used
in the models, statistical methods were 18% more used than computational
intelligence (CI) methods and mathematical programming. However, it was
found that CI methods had better accuracy than the statistical ones. CI methods
uses a combination of fuzzy logic, neural networks, evolutionary computation,
learning theory and probability methods.

In [51] they created models for predicting the consumption load for electric
snowmobiles. They found out that using a XGBoost model to forecast the con-
sumption load on short-term (1 hour horizon) gave quite good results and using
LSTM for long-term (day-ahead) prediction gave satisfactory results.

In [52] several CI methods was tested for energy load forecasting. The different
algorithms were used to predict one hour a head load and was compared by
Mean Absolute Error (MAE), R-squared, Root Mean Squared Error (RMSE) and
Coefficient Variation of Root Mean Squared Error (CVRMSE). The models com-
pared in the study was two deep learning models, Multi-layer Perceptron (MLP)
and Long short-term memory recurrent neural network (LSTM), and three ma-
chine learning algorithms, Decision tree, Random Forest and Extreme Gradient
Boosting (XGBoost). Their results showed that XGBoost, MLP and LSTM were
the models that had best results when evaluating their metrics.

In [53] two machine learning model was compared for multi-step forecasting
of electric load on three different datasets. ARIMA and LSTM was compared
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where the evaluation of the models is based on their respective RMSE. Different
prediction horizons were tested from 2 steps ahead to 10 steps ahead. From their
results it was concluded that LSTM outperformed the ARIMA model.



Methods and Data

During this project, various methodologies were employed. This chapter will
begin by outlining the general approach taken and then provide more detailed
descriptions of the specific methodologies used.

2.1 Approach

The primary goal of this thesis has been to answer the research questions stated

in Subsection 1.3.1. In order to accomplish this, the following objectives were
established:

1. Investigate the future energy situation in the Helgeland region to deter-
mine the need for flexibility.

2. Explore and evaluate forecasting methods for predicting energy consump-
tion.

3. Evaluate the accuracy of the selected methods for both short-term and
long-term predictions.

4. Investigate the potential cost and earnings for one potential consumer
participating as a flexibility provider in a LFM.

17
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To achieve these objectives, different research methodologies were employed.
A review of the existing literature on future energy estimations in the Helge-
land region was conducted. During the experimental phase of the project, a
suitable forecasting model was sought after by reviewing previous research
on forecasting techniques. Additionally, an interview was conducted with a
potential consumer to obtain insights into the possible flexibility the consumer
could provide.

2.2 Literature Review

To address the first objective of the thesis, which relates to the first research
question on the potential for establishing a local flexibility market in Helgeland,
a literature study was conducted. In Subsection 1.2.6, we presented an overview
of the current and historical energy consumption and production in the region.
To obtain future estimates, we searched for literature on the need for grid
investments in the area.

2.3 Available Data

The experimental part of this project was to develop a forecasting method for
predicting the energy demand to be able to know when the need for flexibility
is, as well as predicting the energy consumption to the flexibility provider,
which can be used as a baseline. To this end, two datasets containing historic
energy consumption has been worked on throughout this project. The different
data used during the experimental phase is represented in this section.

2.3.1 Consumption Data

As mentioned in Section 2.5, the original plan was to study the DSF potential of
multiple consumers at Helgeland. To this end, consumption data was collected
from 17 different consumers operating in various business areas, which are
listed in Table 2.1. To maintain anonymity, the consumers have been grouped
based on their main business area. However, this study has primarily focused on
the consumer with business code N (Consumer N), which has been interviewed
and studied in detail.
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Code | Description Datasets
B Mining and extraction 3
R Cultural, entertainment and leisure activities 4
L Sales and operation of real estate 4
0 Public administration and defence, and social security 3
schemes subject to public administration
I Accommodation and catering business 1
C Industry 1
N Commercial service provision 1

Table 2.1: The number of datasets provided for this thesis with their main business
area and code

Furthermore, the total energy consumption in the Helgeland area was obtained
by aggregating data from 66 exchange points. This data was combined into a
single dataset and will be referred to as the Helgeland dataset.

This section presented data collected from Elhub [54], which includes hourly
measurements of energy load in KWh. However, for ease of readability, the
Helgeland dataset was converted to MWh. It is worth noting that Elhub only
stores historical data for up to three years [55], so each dataset used in this
study contains a maximum of three years of data.

2.3.2 Weather data

Hourly weather statistics were obtained from the Norwegian Centre for Climate
Services [56]. The data includes information on temperature, precipitation,
and medium wind from the Mosjgen Lufthavn weather station. However, there
was a data gap between 1 October and 22 October 2021, so statistics from a
nearby weather station were utilized during that period.

2.4 Forecasting Methods

In relations to Objective 2 and 3 from Section 2.1, two forecasting methods has
been investigated, namely the XGBoost and LSTM models. The selection of
these methods is based on the related research presented in Subsection 1.4.5,
as well as our own knowledge and experience with the methods. The focus has
been on predicting the total energy consumption at Helgeland, which can be
utilized in the demand-response system to assess the requirement for flexibility.
Furthermore, the energy consumption of Consumer N (referenced in Table 2.1)
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is predicted which can provide a baseline for flexibility provision.

Two models were created for each of the forecasting methods. One for single-
step prediction (1 hour ahead) and one for multi-step prediction (4 hours
ahead). The decision to make a four-hour prediction was based on several
factors. Firstly, the ShortFlex product trade at NODES had a deadline of two
hours before the physical delivery, as presented in Subsection 1.4.1. Secondly,
it was deemed unlikely that the consumer investigated in this thesis could
provide flexibility for more than four hours. Therefore, there was no need
for a baseline calculation exceeding four hours to determine the financial
compensation.

In order to evaluate and compare the performance of the models, error rates
were calculated using unseen data. Python was used to implement both models,
along with NumPy [57] and Pandas [58] to format and analyze the data.

The next two subsections will provide an overview of the two forecasting
methods used in this study, along with their implementation details.

2.4.1 Long Short Term Memory

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN)
which is designed to avoid the vanishing gradient problem. The method was
proposed in 1997 [59]. RNN is a type of neural network that can remember
the past, allowing information to persist.

Neural networks contain several layers. Layers holds the neurons, where each
neuron is a mathematical operation that multiplies the weight of the neu-
ron with the input. The sum of the operation is then passed through the
activation functions to the other neurons. The input to a neural network is
multi-dimensional. The input layer will then have an equal number of neurons
as the number of variables passed into the network. The weight associated with
a neuron represents how much the output depends on the input passed through
the neuron. During training the weights changes. An activation function is
used to compute the weighted sum of the inputs. There are several different
functions that can be used as the activation function. There are two processes
in neural networks, feedforward, and backpropagation. The feedforward is the
process of getting the initial output, in other words, sending the input through
all the layers and getting an output. Backpropagation is updating the weights at
each neuron based on the error of the output. The goal of the backpropagation
is to try to minimize the error for the output. The input layer receives the input,
the output layer predicts the final output, hidden layers are in between the
input and output layer and do most of the computations in the network.
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However, RNN struggles with the vanishing gradient problem. Gradients are
found using backpropagation where the derivative of each layer is multiplied
by each other, from the final layer to the initial layer. When the derivatives are
getting close to zero, the gradient in the early layers of the network "vanishes".
Gradients are used to update the weights of the neuron. Thus, a small gradient
will lead to initial layers not updating their weights which is called the vanishing
gradient problem.

As stated, LSTM is designed to avoid this problem. In LSTM, the regular
neurons used in RNNs are replaced with memory cells, where each memory
cell contains an internal state. An illustration of a memory cell can be observed
in Figure 2.1, where the top horizontal line represents the internal state. It
can also be observed that there exists different processes in the cell, called
gates. The first gate is called the forget gate, in figure denoted at f;. It uses
the Sigmoid function and determines what information should be remembered
and forgotten in the cells state. The Sigmoid function takes any input and
turns it into a number between o and 1. The second gate is called the input
gate, denoted at i; in the figure. The input gate decides how much of the new
information should be stored in the current internal state. This process uses
both Sigmoid and Tanh, where the former is used to determine which values to
update and the latter to assign weights to the values. The last process is called
the output gate, denoted as o;. It uses Sigmoid and Tanh to decide which part
of the current cell state to be selected as output.
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Figure 2.1: Illustration of a single LSTM cell [60] where the different gates are repre-
sented as f;, ir and o;.

The LSTM model implementation is performed using Keras in Tensorflow
[61]. To obtain a satisfactory LSTM model, the number of LSTM layers and
hyperparameters were experimented with. Typically, adding more LSTM layers



22 CHAPTER 2 / METHODS AND DATA

can capture complex patterns in the data, but it can also cause overfitting,
especially when dealing with limited training data. The Adam optimizer with
a clip value of 0.3 was used to prevent gradient explosion during training, and
the learning rate was set to 0.001.

The short-term LSTM model built in this study consists of five LSTM layers,
with each layer having 120 units, followed by a dropout layer with a rate of o.2.
The dropout layer randomly drops out 20% of the inputs to the layer during
training, helping to reduce overfitting. Finally, the model has a dense layer that
generates the prediction.

Early stopping was applied to save time and prevent overfitting during training.
MSE was monitored during training, and if no changes to the MSE occurred for
three epochs, training was stopped, and the model was restored to the weights
with the lowest MSE.

The multi-step LSTM model was constructed using the same hyperparameters,
but with each of the five LSTM layers having 110 units.

2.4.2 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is a tree boosting system introduced
in 2016 that is known for its scalability and high performance [62]. It is an
ensemble learning method based on decision trees and gradient boosting.
Ensemble methods combine multiple models to improve prediction accuracy
over that of a single model. Each model is trained on the same data, but they may
differ in terms of architecture, parameters, or random initialization. XGBoost
builds decision trees sequentially, with each subsequent tree correcting the
errors of the previous tree. The final prediction is obtained by aggregating the
predictions of all the models, where the weights are higher for more accurate
models. XGBoost uses gradient descent optimization to minimize the loss
function of the decision trees to gradually reduce prediction errors. In gradient
boosting, decision trees are scaled with a learning rate.

To implement the XGBoost model, the XGBoost library [63] was utilized with
hyperparameters adjusted to obtain optimal models. For the short-term model,
2000 estimators (corresponding to the number of decision trees) were used with
a maximum tree depth of 5 and a learning rate of 0.01. The long-term model, on
the other hand, utilized 4000 decision trees with a maximum depth of 7 and a
learning rate of 0.01. Similar to the LSTM model, early stopping was employed
to prevent overfitting in both short-term and long-term models.
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2.4.3 Feature Selection

To accurately forecast a consumer’s load, it is crucial to understand the factors
that influence their behavior. In [64] there were identified several factors that
affect a consumer’s load profile, which can be categorized into four groups:
time, weather, economy, and random disturbances. The authors highlighted that
the time factor has the greatest impact on a consumer’s load, with periodicity
occurring on a daily, weekly, monthly, and yearly basis. Weather was identi-
fied as the most important independent variable, with temperature, humidity,
precipitation, wind speed, and cloud cover having an impact. The economy
was also found to affect load, with higher electricity prices leading to lower
consumption. Random disturbances were attributed to high peaks caused by
industrial load starting up or shutting down, as well as special events such as
religious or cultural celebrations.

Various analyses were performed on the two datasets used in this project
to identify the factors that influence load behavior. The first step was to
determine whether temperature had a significant impact on the load behavior
by examining the correlation coefficient between the two variables and plotting
them on a scatter plot. Another important aspect was to identify any time-
dependent patterns in the datasets, such as seasonality or trend. This was
done by analyzing the daily average load profile as well as the load output
for the entire dataset. The autocorrelation plot was also examined to identify
the relationship between past and future observations. Additionally, various
timestamp-related features, such as hour of the day, day of the week, month,
year, day of the year, day of the month, week of the year, and quarter, were
extracted. However, the use of these timestamp features was determined by
analyzing the model’s performance with different input combinations.

2.4.4 Data Splitting

The datasets were divided into three subsets for each model: training, validation,
and test sets. 80% of the data was used for training, with the remaining 20%
split evenly between validation and testing. In Figure 2.2 the two datasets
splitted into the three subsets can be observed. On the top is the commercial
building (Consumer N) and at the bottom the Helgeland dataset.
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Figure 2.2: The two dataset split into the subsets: training, validation and test set.

2.4.5 Performance Metrics

Assessing the performance of the forecasting models is done by utilizing com-
monly used error metrics for regression problems. The Root Mean Squared
Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE) are employed in our evaluation in
order to accommodate objective 3 Section 2.1.

The MAE calculates the average absolute error in a prediction set where all
individual differences are of equal weight. MSE measures the average of the
squared differences between the actual and predicted values. RMSE is derived
from MSE by taking its square root, and it yields an error measure in the same
unit as the actual values. It is important to note that MAE, MSE, and RMSE
are scale-dependent error metrics, meaning that they should not be utilized to
compare models across different datasets. However, MAPE is scale-independent
and can provide a better understanding of the error in relative terms. One
disadvantage of MAPE is its sensitivity to cases where the actual value is o,
which can result in an undefined or infinite error [65]. The various error metrics
can be defined as:
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The performance metrics are obtained by testing the models using a set of
unseen test data. This ensures an unbiased and independent assessment of
the models. In these metrics, N represents the total number of predictions
made, p represents the predicted value, and r represents the actual or target
value.

2.5 Potential Flexibility Providers

It was initialy meant to investigate several consumers ability to provide DSF,
however, due to the time limitations of the project only one consumers abil-
ity and possible benefits of providing DSF was investigated. The consumer
that has been investigated is Consumer N from Table 2.1. This section de-
scribes the methodologies used in order to accommodate objective 4 from
Section 2.1.

2.5.1 ldentifying demand-side-flexibility

This study investigated one consumers ability to offer DSF. More specifically,
this consumer is a commercial building located at Helgeland. To identify
the resources that could potentially be flexible, an interview was conducted
with the consumer. During the interview, the consumer was asked about the
equipment that could be disconnected. However, certain requirements had
to be met in order for the resources to be considered. Since the delivery
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resolution in both the mFFR market and the NorFlex project, as well as the
time resolution in the dataset, is one hour, it was necessary for the resources
to be able to be disconnected for at least one hour. Additionally, disconnecting
the resources for at least one hour should not cause any discomfort in the
day-to-day management.

2.5.2 Financial Aspects

In this project, it was not only important to determine the flexible assets that
commercial buildings could offer, but also to estimate the potential earnings
for the consumer and the associated costs. To enable the disconnection of
loads, specific equipment must be installed, and its cost was determined by
consulting a former electrician employed at Cegal. However, only the cost
of the physical equipment and installation was considered, and the cost of
the software required to automatically offer the flexibility to the market was
excluded.

In order to find an approximately income for the consumer we have used the
income calculations presented in Subsection 1.4.1. Although, we are assuming
that the consumer delivers all the flexibility that the commercial building can
provide in one trade. Additionally, it was stated in Subsection 1.4.1, that the
price per MWh for the ShortFlex product settled between 8500-10 ooo NOK in
the NorFlex project. To have a fixed price which can be used in Equation 2.5 we
have set the price to be 9ooo NOK/MWh. Thus, using the load of the resources
(KW) multiplied by the duration (h) of the disconnection further multiplied by
the price of flexibility gives the potential earnings of one trade:

I; =KW X h X 9NOK/KWh (2.5)



Results

The results obtained from the various methods described in Chapter 2 are
presented below. Firstly, we will show the future energy balance estimation at
Helgeland. Then, we will present the findings from the experimental part of the
project, including the analysis described in Subsection 2.4.3 for determining the
input to the models, and the results from the two forecasting models. Finally,
we will present the results obtained from investigating Consumer Ns potential
to participate in a LFM.

3.1 Future energy situation at Helgeland

During the search for anticipated future energy scenarios at Helgeland, two
reports were found: one from Linea (DSO) at Helgeland, which studied two
scenarios related to the future energy balance and load balance in the region
[39], and another report on future energy demand at Helgeland, conducted by
Kunnskapsparken Bodg in 2020 [66].

The Linea report presents two scenarios that estimated the possible future
developments in energy consumption and production in the Helgeland area.
The first scenario, named "basis," is deemed the more probable one. The
second scenario, "high," is based on high levels of electrification and new
demand, resulting in higher estimated production than in the "basis" scenario.
Both scenarios provide estimates for production, consumption, and balance,

27
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presented for the total energy balance, and the maximum and minimum load
balance in a year. Figure 3.1 displays the balances for both scenarios. The load
balance is represented as minimum and maximum which are based on seasons.
Minimum load balance is when the production is expected to be at its lowest
and the consumption at its highest. In turn, the maximum load balance is when
production is at its highest and consumption low.
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Figure 3.1: Energy and load balance for the two scenarios at Helgeland in 2032. Num-
bers from Linea’s report [39].

The report conducted by Kunnskapsparken Bodg investigated the estimated
energy demand based on planned future development in the area. This was
further analysed against the estimated production in the area as was done
in Lineas report to find the future energy balance. Their estimations of the
future production and demand is based on planned development of the two.
They also considered the likelyhood of the planned development of new energy
production and industries. The analysis is based on three different time hori-
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zons: short-term (0-5 years), medium-term (5-10 years) and long-term (10-15
years). In Table 3.1 the estimated energy balance from their analysis can be
observed.

short-term (0-5 medium-term long-term
years) (5-10 years) (10-15 years)
GWh -448 -3201 -1301

Table 3.1: Estimated energy balance for different time horizons. Numbers from [66].

Based on the report by Kunnskapsparken, it was found that the industrial sector
in Helgeland is the main consumer of energy in the region. The report suggests
that if new industries are established or the existing ones are expanded, the
energy demand in the area is expected to double.

Numbers from both reports showes that the energy balance is going to decrease
in all scenarios compared to the energy balance today. When production is at
its lowest and the consumption at its highest, typically in the winter, Figure 3.1
showes that the basis scenerio has a small positive load balance compared
to the total energy balance and to times when the production is high and
consumption low, which is typically during the spring.

3.1.1 Summary

The important findings regarding the future energy situation at the Helgeland
region can be summarized as follows:

* Helgeland is likely to experience a decrease in energy balance, with an
increase in demand outpacing the estimated new production.

* The load balance is expected to be tight or even negative during periods
of high demand.

3.2 Data Analysis

In Subsection 2.4.3, we discussed the techniques used for selecting the appro-
priate features to use as input for the forecasting models. Here, we will present
the results of the data analysis conducted on two datasets: the total energy
consumption at Helgeland and the energy consumption of Consumer N.
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3.2.1 Load Profiles

The daily energy consumption pattern for Consumer N is illustrated in Fig-
ure 3.2, which shows the average consumption per hour throughout a day. The
figure shows a clear trend of higher consumption during the daytime and lower
consumption during nighttime. Which is not surprising since this is a building
where most of the activities occur during opening hours, which in this case are
from 7 AM to 11 PM.

Daily load profile

0 1 2 = 4 = 6 7 8 9 10 11 12 13 14 il 16 17 18 19 20 21 22 23zl

Hour of the day

v

0

KWh
g &

N
15

=
15

o

Figure 3.2: Average daily load profile for Consumer N.

The load profile for the entire dataset is displayed in Figure 3.3. The graph
highlights that electricity consumption is elevated during winter periods, with
smaller peaks during the summer, suggesting a seasonal pattern that repeats
yearly.

Load profile
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Figure 3.3: The load output for Consumer N.
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The average daily load profile of the total energy consumption at Helgeland is
presented in Figure 3.4. It is evident from the figure that the highest consump-
tion occurs in the morning and late afternoon on average.
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Figure 3.4: The load output for Helgeland.

The load profile for the whole Helgeland dataset is illustrated in Figure 3.5. The
figure shows that there is a noticeable trend of increasing energy consumption
from 2020 to 2023, as well as some yearly seasonality with higher consumption
during winter months and smaller peaks during summer. The dataset consists
of consumption data aggregated from 66 exchange points, as stated in Sub-
section 2.3.1, but there are missing values for at least three exchange points
every hour throughout the three years of data. However, it is worth noting
that Linea’s report, mentioned in Subsection 1.2.6, states an average annual
consumption of 6.2 TWh over the past decade, while the total consumption
from Elhub data from 31 January 2020 until 1 March 2023 is 18.1 TWh, resulting
in an approximate annual consumption of 6.0 TWh. This suggests that the
missing consumption data is not significant.
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Figure 3.5: Electricity load profile at Helgeland.

3.2.2 Linear Relationship

In Figure 3.6, the linear relationship between the energy consumption of Con-
sumer N and temperature is displayed. The correlation coefficient, which was
calculated to be -0.114, indicates a weak negative linear relationship between
the two variables. The scatter plot does not seem to reveal a clear linear rela-
tionship between them, the plot reveals a cluster of points in between 60 KWh
and 20 KWh which suggest that an hourly consumption between those values
is not affected by the temperature. However, when the temperature rises to 20
degrees the consumption is slightly increasing, and when the temperature is
below 5 degrees we can observe some incresing tendencies in the consump-
tion. This suggests a curvilinear relationship where the energy consumption
increases when the temperature is below 5 degrees and slightly increases when
the temperature is above 15 degrees.
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Figure 3.6: Relationship between energy consumption and temperature.

The plot in Figure 3.7 illustrates the linear relationship between the tempera-
ture and the total energy consumption at Helgeland. The calculated correlation
coefficient of -0.405 suggests a negative correlation between the two variables,
which is confirmed by the scatter plot. Lower temperatures correspond to
higher energy consumption, whereas higher temperatures correspond to lower
energy consumption.
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Figure 3.7: Relationship between energy consumption and temperature, at Helgeland.

3.2.3 Autocorrelation

The autocorrelation plot of the consumption variable is displayed in Figure 3.8.
The plot indicates a correlation between past and future values in the dataset,
suggesting that the time series is not completely random. Additionally, the plot
shows a clear pattern of daily seasonality, with significant peaks at lag intervals
corresponding to 24-hour intervals.
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Figure 3.8: Autocorrelation for the energy use for the Consumer N.

From Figure 3.9 it can be seen that the past an future values of the energy
consumption in the Helgeland dataset is highly correlated. This suggests that
there is a strong persistence in the dataset, where each observation is dependent
on the previous.

Autocorrelation - Helgeland

1.00 -
[ T —

0.75 4

0.50 4

0.25 1

0.00

—0.25

—0.50 4

—0.75

-1.00

T
0 20 40 60 80 100

Figure 3.9: Autocorrelation for the energy use for the Helgeland dataset.
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3.2.4 Summary
The analysis of the data yielded several findings:
* Daily seasonality was observed in both datasets.

* The Helgeland dataset showed a negative linear correlation with temper-
ature, for Consumer N, a curvilinear relationship between consumption
and temperature was observed.

* Autocorrelation analysis indicated a strong daily seasonal pattern in
Consumer N and persistence in the Helgeland dataset.

Considering the patterns observed in the data analysis, it was concluded that
using temperature and 24-hour lags as input variables would be appropriate
for the models.

3.3 Forecast

This section presents the experimental outcomes obtained from the forecasting
models utilized in this project. It is divided into two subsections, namely
the single-step prediction results and the multi-step prediction results. The
outcomes are displayed as error metrics calculated when testing the models
with unseen data, along with illustrations of the predicted values compared to
the target values.

3.3.1 One-step Prediction

The results from Consumer N shows that the best performing model for one
hour ahead prediction is the XGBoost model Table 3.2. The overall error metrics
are lower using the XGBoost model compared to the LSTM model. The best
results was obtained by having a feature vector containing the hour of the day,
month, the day of the week, temperature as well as the last 24 observations of
the energy consumption for Consumer N.

The results presented in Table 3.2 show that the average difference between the
predicted and actual values was 2.364 MAE for XGBoost, with some variability
observed between the RMSE and MAE values. Nevertheless, the RMSE was
not significantly greater than the MAF, indicating that there were no extreme
errors.
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MSE (KWh) RMSE (KWh) MAE (KWh) MAPE %
LSTM 15.54 3.94 2.681 6.370
XGBoost 13.71 3.703 2.364 5.670

Table 3.2: Error metrics calculated for Consumer N using unseen test data when
attempting to predict one hour ahead.

In Figure 3.10 the actual values (blue line) and the predicted values (orange
line) are illustrated where XGBoost performance is on the top of the figure and
LSTM on the bottom.
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Figure 3.10: On top is the XGBoost performance during testing on the Consumer N
dataset. On the bottom is the LSTM model performance.

In Figure 3.11, the relationship between the predicted and actual values for
both models is visualized through scatter plots. The red line indicates perfect
prediction, while the y-axis shows the actual observations and the x-axis shows
the predicted values. It can be observed that the error variance is not uniform
for all the observations. The plots reveal that there is larger variance in the
error in the range of 35 to 50 KWh as well as consumption exceeding 60 KWh,
where most of the values are underestimated.
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Figure 3.11: Illustration of the relationship between actual observations and predic-
tions on the testset for Consumer N.

The performance of the LSTM and XGBoost models on the test data from the
Helgeland dataset is presented in Table 3.3. The input vector for this dataset
included the hour, temperature, and energy consumption from the previous
24 hours. The results show that the XGBoost model has a lower MAE and
MAPE than the LSTM, indicating that the XGBoost model has a lower bias
than the LSTM. However, the LSTM produced a slightly lower RMSE and MSE,
suggesting that the LSTM has a lower variance than the XGBoost.
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MSE (MWh) | RMSE (MWh) | MAE (MWh) MAPE %

LSTM 2433.49 49.33 31.05 3.908

XGBoost 2442.02 49.41 30.27 3.861

Table 3.3: Error metrics calculated for Helgeland using unseen test data when at-
tempting to predict one hour ahead.

The performance of the XGBoost and LSTM models for one hour prediction
of the total consumption at Helgeland is presented in Figure 3.12. It can be
observed that both models have a delay of one hour in their predicted values
when compared to the actual values.
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Figure 3.12: On top is the XGBoost performance during testing on the Helgeland
dataset. On the bottom is the LSTM model performance.

The relationship between the actual observations and the predicted values
in MWh is presented in Figure 3.13, where the red line represents a perfect
relationship. The XGBoost model’s performance is shown at the top of the figure,
while the LSTM model’s performance is shown at the bottom. Both models
exhibit a clear linear relationship between the actual values and predictions.
However, some observations are still clearly over or underestimated.
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Figure 3.13: Illustration of the relationship between actual observations and predic-
tions on the testset for Helgeland.

3.3.2 Multi-step Prediction

In Table 3.4 the MSE, RMSE, MAE and MAPE when testing Consumer N on
the XGBoost and LSTM model for 4 hour ahead prediction can be observed. It
can be observed that for this dataset the XGBoost had the best performance.
Thus, the XGBoost came on top for this dataset both for one hour and four
hour ahead prediction. When comparing the XGBoost performance for four
hour ahead with the single step it can be seen that the errors has increased.
More specifically the MAE increased with 0.293 KWh, RMSE increased by 0.404
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KWh and the MSE increased by 3.16 KWh. Calculating the increases in percent
gives us the relative measure of the deterioration where the MSE increased by
23.05%, RMSE 10.91% and MAE 12.39%.

MSE (KWh) RMSE (KWh) MAE (KWh) MAPE %
LSTM 21.29 4.614 3.195 8.006
XGBoost 16.87 4.107 2.657 6.379

Table 3.4: Error metrics calculated for Consumer N using unseen test data when
attempting to predict four hour ahead.

The performance of the XGBoost and LSTM models on four-hour ahead pre-
diction can be observed in Figure 3.14. The green line represents the actual
values for the next four hours, the orange line represents the predicted values,
and the blue line represents the past four observations.
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Figure 3.14: On the top is the XGBoost model performance during testing on the
Consumer N dataset for four hour prediction. The bottom plot is the
LSTM model performance.

In Figure 3.15, we can observe the relationship between the actual observations
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and the predicted values for both the XGBoost (top) and LSTM (bottom) models
on the Consumer N dataset. The figure shows variability in the error, and similar
to the one-hour-ahead prediction, the largest variance can be observed in the
range of 35-50 KWh and above 60 KWh. However, while the one-hour-ahead
prediction underestimated most of the values over 60 KWh, the four-hour-ahead
prediction tends to overestimate them.
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Figure 3.15: Illustration of the relationship between actual observations and predic-
tions on the testset for Consumer N when predicting four hour ahead.

The resulting error metrics for predicting four hours ahead with the XGBoost
and LSTM models on the Helgeland dataset are presented in Table 3.5. It can
be observed that the XGBoost model produced slightly lower MAE and MAPE
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values while the LSTM scored better on the RMSE and MSE. This is consistent
with the findings for the one-step-ahead prediction.

Upon investigating the increase in error metrics for the XGBoost model from
one-step to four-step prediction, we found that the MAE increased by 20.86
MWh, RMSE increased by 29.58 MWh, and MSE increased by 3797.11 MWh.
In relative terms, the MSE increased by 155.49%, MAE by 60.91%, and RMSE
by 59.87%. The relative increase in error metrics for the Helgeland dataset is
quite high compared to the increases found for the Consumer N dataset.

MSE (MWh) | RMSE (MWh) | MAE (MWh) MAPE %
LSTM 6172.64 78.56 52.72 6.678
XGBoost 6239.13 78.99 51.13 6.630

Table 3.5: Error metrics calculated for Helgeland using unseen test data when at-
tempting to predict four hour ahead.

The XGBoost and LSTM models’ performance on the test data is displayed
in Figure 3.16. The blue line represents the historical observations, the green
line represents the actual values, and the orange line represents the predicted
values. Both models have overestimated their predictions, but XGBoost (top
figure) appears to slightly follow the pattern to the actual values.
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Figure 3.16: On the top is the XGBoost model performance during testing on the
Helgeland dataset for four hour prediction. The bottom plot is the LSTM
model performance.

In Figure 3.17, the scatter plots depict the relationship between the predicted
values (x-axis) and the actual observations (y-axis) on the test set for both
the XGBoost and LSTM models. The red line represents the perfect prediction,
and the plots show that both models have large errors across all values, with
significant deviations from the perfect prediction line. This suggests that the
models have not captured the underlying pattern in the data.
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Figure 3.17: Illustration of the relationship between actual observations and predic-
tions on the testset for Helgeland when predicting four hour ahead.

3.3.3 Summary

In summary, the results of the single-step and multi-step forecasting experi-
ments are as follows:

* The XGBoost model performed better than the LSTM model in terms of
all error metrics for the single-step prediction of the Consumer N dataset.
The models had the largest variance in errors when the actual values
were between 35-60 KWh and above 60 KWh.
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* For multi-step predictions on the Consumer N dataset, the XGBoost model
produced better results than the LSTM model. However, we observed
a larger increase in error variance. When predicting four hours ahead,
the XGBoost model had a 12.39% increase in MAE, a 10.91% increase in
RMSE, and a 23.05% increase in MSE compared to one-hour predictions.

* In one-step predictions on the Helgeland dataset, both models exhibited
a one-hour delay in their predictions. While the XGBoost model outper-
formed the LSTM model in terms of MAE and MAPE, the LSTM model
achieved lower RMSE and MSE scores.

* For four-hour predictions on the Helgeland dataset, the XGBoost model
achieved lower MAE and MAPE scores compared to the LSTM model.
However, the LSTM model had lower RMSE and MSE scores, as observed
in one-step predictions. Both models showed high bias in their predic-
tions. When comparing the one-step to four-step predictions, the relative
increase in error metrics was 60.91% for MAE, 59.87% for RMSE, and
155.49% for MSE.

3.4 Flexibility Provider

We will now present the findings from our investigation into the potential
of Consumer N to provide DSF, as well as the financial aspects of offering
flexibility:.

3.4.1 Flexibility Resources

The consumer with code N in Table 2.1 provided information about the resources
which could potentially be flexible. These resources is listed in Table 3.6. There
was few constraints regarding when these resources could be disconnected,
however there was a time constraint of the duration which was 2 hours.

Equipment KW
Freezer boxes 15.7
Refrigerator 7.2

Cold room 0.75
Freezer room 0.24
Total 23.86

Table 3.6: The resources available to be flexible for Consumer N.
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3.4.2 Financial Aspects

When calculating the potential earning by using Equation 2.5 we assume that
all the resources presented in Table 3.6 is disconnected at the same time for
one hour. From Equation 3.1 we can observe that the potential earning from
one trade gives the consumer a earning of 214.74 NOK.

I; =23.86 KW % 1 h * 9 NOK/KWh = 214.74 NOK (3.1)

From conversation with a Cegal employee we found that an estimated cost of
the equipment needed and the installation would be approximately 25 ooo
NOK. It has to be noted that this is a rough estimate and that the price can vary
dependent on the load that is supposed to be controlled as well as how much
electrical work that is needed. From the initial cost and the earning found in
Equation 3.1 we can calculate the number of trades (with a duration of one
hour) the assets needs to be disconnected in order for Consumer N to break
even:

_ 25000 NOK

= U O 11642 .
214.74 NOK (3.2)

3.4.3 Summary

Findings regarding the commercial buildings cost and benefits can be summa-
rized as follows:

* The amount of flexibility Consumer N could provide was a total of 23.86
Kw

* One trade with a duration of one hour would result in a income of 214.74
NOK

* Given the cost and income of one trade it would take 117 trades for
Consumer N to break even






Discussion

This chapter comments and discusses the results represented in the previous
chapter. It will go through the results in the same order as they are represented
in Chapter 3. Lastly, we will discuss our results up against the research questions
raised in Subsection 1.3.1.

4.1 Future energy situation at Helgeland

In Section 3.1 findings about the estimated energy balance at Helgeland was
respresented. The numbers represented was from two seperate reports where
both reports presented different scenarios of the energy balance and load
balance based on the development in energy production and consumption in
the area. Although the energy balance represented in Table 3.1 and at the
top of Figure 3.1 is considered the likely scenarios, it has to be noted that the
reports are from 2020 and 2022, meaning that the future plans for developing
new energy production and/or planned power-intensive industry in the area
might have changed and should be further investigated in order to find the
likelyhood of the scenarios today. In addition, interviewing both Statnett and
Linea about their experience of the grid capacity in the Helgeland region today
would have been a different approach in order to collect information about the
need for flexibility in the area. However, this was not prioritized during this
project.

49
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4.2 Data Analysis and Forecasting

The initial aim of the experimental part of this project was to investigate
forecasting models that could be used to predict the total energy demand in
the area and predict the energy consumption to a potential asset provider
which can be used as a baseline. The two datasets was analysed and further
used in a LSTM and XGBoost model respectivly. We will further comment on
our results regarding the analyses conducted on the datasets as well as the
resulting predictions.

4.2.1 Data Analysis

The results from the analysis of the two datasets were presented in Section 3.2.
The average daily load profile for Consumer N exhibited daily seasonality, while
the total load output suggested yearly seasonality with a slight increase during
winter and summer. The average daily load profile for the Helgeland region
showed a daily pattern with two peaks, one in the morning and another in
the late afternoon, which is consistent with the peak consumption periods for
households and secondary/tertiary industries around 9 AM and 10 AM [67].
The load output for the entire region suggested a possible increasing trend in
consumption. However, missing data in the dataset (as noted in Subsection 2.3.1)
makes it difficult to determine the accuracy of this trend in reflecting the actual
pattern in the region. It should also be noted that both datasets only contain
three years of hourly measured observations, which may not be sufficient to
draw conclusions on yearly seasonality or trends in the data.

In section 3.2.2, we explored the linear relationship between consumption
and temperature. While none of the scatter plots indicated a clear linear
relationship, using temperature as an input produced better results than not
including it. However, we found that for Consumer N, there appeared to be a
curvilinear relationship between consumption and temperature. Specifically,
consumption was affected when the temperature exceeded 20 degrees or was
below 5 degrees. To investigate whether this relationship has changed over
the last three years, we could have examined the relationship for each year
separately, as we suspect that the installation of a new ventilation system in the
building may have impacted the relationship. Furthermore, other independent
variables, such as those mentioned in section 2.4.3, could have been explored.
During this project, we have only considered temperature as an independent
variable.
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4.2.2 One-step and Multi-step Forecast

In the results presented in Subsection 3.3.1 for single step predictions, the
actual and predicted values plotted in Figure 3.10 and Figure 3.12 suggest a
delay in the predictions. This is most likely due to the input vector containing
the previous 24 observations, and the models relying too heavily on the last
seen observation. To address this issue, incorporating more historical data in
the input vector, such as the consumption data from the last 48 or 72 hours,
could be explored to better capture the underlying patterns in the data and
reduce this bias.

In Subsection 3.3.2, the results of the multistep predictions were presented, and
as expected, the error rates increased compared to the single step predictions.
This is due to the fact that predicting further into the future is generally
harder. However, there was a significant difference in the increase of error rates
between the two datasets. It is believed that this difference can be attributed
to the input vectors used. The input sequence was not changed when going
from single step to multistep predictions, and therefore, the absence of features
such as the month and day of the week for the Helgeland dataset may have
resulted in a weaker model. Hence, it is recommended to conduct additional
research on suitable independent and dependent variables to be included in
the input vector.

During testing of the LSTM model, we observed different error metrics without
making any changes to the hyperparameters or data. For example, in Table 3.2,
the Consumer N dataset had a MSE of 15.54 KWh, RMSE of 3.94 KWh, MAE
of 2.681 KWh, and MAPE of 6.37%. However, when we trained the model
again with the same settings, we obtained a MSE of 18.22 KWh, RMSE of 4.269
KWh, MAE of 2.996 KWh, and MAPE of 7.122%. Similar variations were also
observed when training the LSTM with the Helgeland dataset. The reason for
this variation is likely the addition of the dropout layer after each LSTM layer,
as explained in Subsection 2.4.1. During training, the dropout layer randomly
selects neurons to ignore. As a result, each training run produces a slightly
different model, which can result in slightly different prediction results. Thus,
obtaining reproducible results with the LSTM model can be challenging.

The XGBoost model came on top for the Consumer N dataset, for one hour ahead
prediction as well as four hour ahead prediction. For the Helgeland dataset the
MAE and MAPE had better scores on the XGBoost model, while the RMSE and
MSE proved better on the LSTM model. This suggest that the XGBoost model
was better at predicting the direction of the observation, while the LSTM model
was better at predicting the magnitude of the observation.

This project has investigated XGBoost and LSTM to forecast the consumption,
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one hour ahead and four hours ahead, for the two datasets, Consumer N and
Helgeland. Due to reciving the Helgeland data later than the Consumer N data
there has been spent more time on hyperparameter tuning the models based
on the Consumer N dataset as well as experimenting with the input vector. Ad-
ditionally, due to the computational resources needed when training an LSTM
model and the time constraint for this project the LSTM model can probably
be better optimized by experimenting more with the hyperparameters.

4.3 Flexibility Provider

The flexible resources available for disconnection were identified in Section 3.4,
along with the estimated investment required to install equipment for discon-
nection. Additionally, the potential earnings from disconnecting all resources
for one hour were calculated based on rough estimates of cost provided by
a Cegal employee, as described in Subsection 2.5.2. It should be noted that
the installation cost is highly dependent on the load of the resources, and the
income from one trade is based on prices used in the NorFlex project, but may
not accurately reflect actual earnings. Thus, the calculated income should be
taken as an indication, rather than an accurate representation of potential
earnings.

The analysis showed that the commercial building could provide a limited
amount of flexibility, namely 23.86 KW, which is considerably smaller than the
peaks observed in the total consumption, as shown in Figure 3.4. Nonetheless,
the required amount of flexibility in a specific area depends on the grid capacity,
and it may be worth investigating further and consulting with the local DSO
to determine the relevance of the identified flexibility volume. However, it
is clear that this amount of flexibility is not sufficient to be of significant
value in the mFFR-market used by the TSO to manage the grid. Although,
the amount required in the NODES marketplace was only 1 KW, as stated in
Subsection 1.4.1, making the amount of flexibility provided by the commercial
building sufficient.

Additionally, the load of the flexible resources listed in Table 3.6 was found
by reading of the lable of the equipment. Hence, some loads may refer to
the equipment running on maximum load, which probably is not the case all
the time. Thus, there is some uncertainty regarding how much volume the
commercial building can provide.

The analysis showed that Consumer N would need to provide all of their flexible
assets for about 117 hours to break even. Given the load balance estimated in
Section 3.1 and the average daily load profile in Figure 3.4, it is reasonable
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to assume that flexibility may be required for at least two hours every day.
Therefore, the 117-hour threshold for Consumer N to break even does not
appear to be overly demanding.

Although there are some uncertainty with the findings regarding the cost,
income of a trade and the amount of flexibility that can be provided from the
investigated consumer we would say, based on our findings, that the consumer
could benefit from participating in a LFM. However, given that the area the
commercial building is located in needs flexibility.

4.4 Addressing the Research Questions

In Subsection 1.3.1, three research questions were presented that this thesis
aims to answer. In the following paragraphs, we will provide our findings in
response to these questions.

4.4.1 Question 1

Research question 1 aimed to investigate the feasibility of establishing a LFM
in the Helgeland region. Our analysis of the future energy situation in the
area suggests that there is a viable opportunity in terms of energy and load
balance. However, the success of an LFM depends on the participation of
multiple prosumers who can offer flexibility. Since this thesis only investigated
one consumer, further research is necessary to identify other potential asset
providers and evaluate the overall viability of an LFM in the region. The
different consumers listed in Table 2.1 can be a starting point for identifying
and analyzing additional potential asset providers.

4.4.2 Question 2

The second research question was whether the proposed forecasting methods
could accurately predict the total energy consumption in the area, as well
as short-term (one hour) and long-term (four hours) energy consumption
for individual consumers. From our results, both models showed promising
performance in terms of prediction accuracy. However, XGBoost was found to
be the most accurate model for the consumer dataset, while the two models’
accuracy was quite similar for the total consumption dataset. Based on this,
we recommend using XGBoost for forecasting energy consumption. However,
further research should be conducted to explore the impact of variables in the
input vector on the models’ performance.
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4.4.3 Question 3

Research question 3 aimed to explore the benefits and ability of prosumers
to participate in a LFM. However, only one consumer’s potential benefits and
ability to participate were investigated. In general, the main benefit of offering
demand side flexibility to a LFM is the potential financial compensation. The
investigated commercial building had potential flexible assets, indicating the
ability to participate. However, the earnings from participation depend on the
needs of the DSO and TSO, and are therefore difficult to estimate. However,
the benefits of a LFM can be viewed from a wider perspective. If a LFM in
the Helgeland region could impact grid management such that grid upgrades
are no longer necessary due to capacity issues, the benefits would extend
beyond those offering flexibility to all customers of the DSO. This is because
all customers must pay the grid tariff, which covers the DSO’s costs.



Conclusion

In this thesis, we have explored the energy situation of the Helgeland region
to assess the need for flexibility in the area. We have also examined the
capability of one consumer to provide demand-side flexibility. Additionally, a
significant scientific contribution of this thesis has been the investigation of
forecasting methods for predicting future energy demand in the region, as
well as the energy consumption of a single consumer. Specifically, we have
explored two methods, LSTM and XGBoost, for both single-step and multi-step
predictions.

According to the findings, it appears that the energy balance in Helgeland
is anticipated to decrease, which implies that the demand will exceed the
estimated new production. Furthermore, during peak demand periods, the load
balance is predicted to come under strain. However, based on this information
alone, it is difficult to draw a conclusion regarding the feasibility of a LFM.
Nevertheless, it does suggest that there may be an opportunity for one.

It was found that the consumer investigated in this thesis is capable of providing
up to 23.87 KW of flexibility. Based on the financial analysis conducted, it can
be concluded that the consumer would benefit from participating in a LFM.
However, the degree of benefit is highly dependent on the TSOs and DSOs
demand for flexibility.

The experimental part of this project is a contribution to the development of
a demand-response system at Cegal. The study investigated two forecasting
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methods that can estimate the need for flexibility and predict consumer energy
consumption, providing a baseline for financial compensation. The results show
promising performance for both XGBoost and LSTM models. However, further
investigation is required to identify and incorporate relevant independent and
dependent variables in the input vector.

5.1 Future Work

Based on our experience, we recommend using XGBoost for this problem as
it is easier to understand, requires less hyperparameter tuning, and is less
computationally expensive than LSTM. However, if the forecasting horizon
were to increase, it may be worth revisiting the LSTM model.

In terms of future work on the short-term and long-term models, we suggest
exploring the potential of using additional independent and dependent vari-
ables as input to see if the models can capture the underlying pattern in the
dataset more accurately. Independent variables, such as electricity prices and
weather data, including humidity and precipitation, could be of interest.

To obtain a clearer understanding of the feasibility of establishing a LFM
at Helgeland, we suggest engaging in discussions with the local DSO and
TSO to determine their level of interest. Moreover, it would be beneficial to
investigate additional prosumers who may be interested in participating in
such a market.
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