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Abstract—Uncertainty is unavoidable in classification tasks and
might originate from data (e.g., due to noise or wrong labeling),
or the model (e.g., due to erroneous assumptions, etc). Providing
an assessment of uncertainty associated with each outcome is of
paramount importance in assessing the reliability of classification
algorithms, especially on unseen data. In this work, we propose
two measures of uncertainty in classification. One of the measures
is developed from a geometrical perspective and quantifies a
classifier’s distance from a random guess. In contrast, the second
proposed uncertainty measure is homophily-based since it takes
into account the similarity between the classes. Accordingly, it
reflects the type of mistaken classes. The proposed measures are
not aggregated, i.e., they provide an uncertainty assessment to
each data point. Moreover, they do not require label information.
Using several datasets, we demonstrate the proposed measures’
differences and merit in assessing uncertainty in classification.
The source code is available at github.com/pioui/uncertainty.

Index Terms—Classification, uncertainty, evaluation measure,
categorical distribution, geometry-based uncertainty, homophily-
based uncertainty.

I. INTRODUCTION

THE most commonly used approaches to evaluate the per-
formance of a classifier rely on comparing the outcome

of the classifier with the ground truth. Several measures might
be used for this purpose, such as: overall accuracy, kappa co-
efficient score, and confusion matrix, to name a few [1], [2],
[3]. These measures report how well the classifier has learned
from the training data. However, these quantities heavily rely
on the correctness of the labels. Accordingly, in the case of
erroneous labels, a bad classifier might show a better perfor-
mance than a good classifier that overcomes wrong labeling
[4]. Moreover, as rich and dense as it can be, the labeled data
cannot represent all possible variations among and across the
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classes. This is especially true when the data represent very
complex phenomena such as remote sensing data, medical im-
ages, etc. In fact, the labeled data within these data sets are
usually scarce, i.e., the portion of unlabeled pixels is more
extensive than the labeled pixels. As such, there is a need for
a metric to evaluate the performance of a classifier on unseen
data. This measure is more beneficial if it is specific to each
prediction and not aggregated as the commonly used measures
[1], [2], [3]. In fact, aggregated measurements cannot convey
which particular samples are challenging for the classifier to
characterize. Accordingly, the properties of such samples and
what made them problematic cannot be deduced. A key to
this shortcoming, especially in the absence of ground truth, is
assessing the classification’s uncertainty.

Despite the various ways in which scientists interpret
the concept of uncertainty, it is generally associated with
probability [5]. Moreover, variance and entropy are the
standard measures to reflect the uncertainty from probability
distributions [6]. Variance is typically used as an uncertainty
measure in the case of regression, while entropy is more suited
for classification [5]. In fact, since the predictions in classifi-
cation are categorical, i.e., the labels are nominal, their mean
is unquantifiable. Accordingly, the variance, conventionally
defined as a function of the mean, is inapplicable. Yet, in
the binary classification, the predictions follow a Bernoulli
distribution, and accordingly, the variance of this distribution
applies [7]. A straightforward remedy to this issue is to treat a
multiclass scenario as binary. However, in this case, a classifier
of four categories that outputs probabilities [0.51, 0.49, 0, 0] is
equivalent to a classifier that outputs [0.51, 0.19, 0.15, 0.15],
although it is clear that the second model is closer to a random
classifier and should produce a higher uncertainty accordingly.
Different attempts exist in the literature for computing the
variance of categorical data. Nonetheless, the general practice
is substituting probabilities by relative frequencies in the
Gini-Simpson index or Shannon entropy [8].

Many factors can contribute to uncertainty in classification.
Noise, for instance, is an unavoidable source of uncertainty.
It can stem from measurement instruments, observation con-
ditions (such as clouds in optical data), or incorrect labeling.
Moreover, the data in many applications are scarce and only
represent partial information about the considered phenomena.
This lack of information also adds up to the uncertainty. Un-
certainty can also emanate from the chosen model. Generally,
several assumptions that might be inaccurate are postulated
for the sake of simplicity, such as independence, linearity, or
gaussianity. Even complex models introduce uncertainty, given
that they comprise a large number of parameters and given the
underlying risk of overfitting.
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The source of uncertainty is, however, irrelevant in this work.
Whatever the source of uncertainty, in classification, it always
comes down to separability. The separability of data refers to
the extent to which different classes or categories in a dataset
can be clearly distinguished. This can be hindered by all the
reasons mentioned above. The separability becomes less pro-
nounced when data points lie in ambiguous regions or fall near
the boundary between categories. In such cases, the model’s
uncertainty in making predictions increases. The model may
struggle to make confident predictions because the input data in
those regions may share similarities with different classes com-
pared to instances representative of a single category. Further-
more, untrained areas refer to regions of the feature space where
the model has not encountered any examples during training.
Since the model lacks exposure to these areas, it has no prior
knowledge or reference points to make accurate predictions.
Consequently, predictions made in these untrained areas are
also expected to be inaccurate and uncertain.

Therefore, we are particularly interested in assessing the
confidence, i.e., the certainty of a model in its prediction, and
the confusion, i.e., the margin of this confidence compared to
other possible classes, of a classifier. Such a measure won’t
only assess the quality of a classifier but will also provide addi-
tional input to the end-user and help make informed decisions.
In some applications, certain misclassifications might be very
costly. Sea-ice classification, for instance, is challenging and
vulnerable to many errors that might put polar navigation at
risk [9]. Likewise, in medical applications, not detecting cancer
might be life-threatening. Providing an uncertainty measure
along with the classification maps will help make better deci-
sions by giving up on uncertain routes or running additional
tests to recheck the uncertain results when needed.

Classification uncertainty can be derived from the posterior
probability. The higher the probability that a data point belongs
to a specific class, the lower the uncertainty. Conversely, the
most uncertain scenario is where the classifier cannot make a
decision, and a uniform distribution produces it. Accordingly,
we define a geometry-based measure of uncertainty as a func-
tion of the distance between the posterior probability and the
discrete uniform distribution in the feasible space of probability
distributions. Several measures of uncertainty can be derived
depending on the distance defined in this space. In particular,
entropy is a special case when the distance considered in this
space is given by the Kullback-Leibler divergence.

Based on this definition of uncertainty, we can quantify how
far is the classifier from a random guess. Moreover, we can
assess the quality of a classifier by examining its confidence
in correct and wrong outcomes. Although this uncertainty un-
veils some properties of the classifier, it is lacking. It only
reflects confidence and confusion of a classifier but not the
type of confusion. Confusing close classes from a features
point of view emanates from inseparability. However, confus-
ing distant classes from a features perspective is alarming and
might signal a lousy model, noisy data point or label, etc.
In this work, in addition to the geometry-based uncertainty,
we introduce a homophily-based uncertainty that incorporates

information from the class distributions and reflects the types
of confused classes.

The remainder of this manuscript is organized as follows.
Firstly, some related works are discussed in Section II. Then,
the theory of uncertainty is given in Section III. In Section IV,
we show how the proposed measures assess uncertainty in clas-
sification and reveal valuable information about the considered
data and model. Section V concludes this article.

II. RELATED WORK

Uncertainty is generally associated with probability and, ac-
cordingly, with Bayesian approaches. For instance, Gaussian
processes are well known for accurately estimating uncertainty
[10]. This motivated the development of deep Bayesian net-
works. The Bayesian approaches enabled the characterization
of uncertainty into aleatoric or epistemic [5]. Aleatoric uncer-
tainty arises from randomness, while epistemic one arises from
lack of information. As such, epistemic refers to the uncertainty
that can be improved as opposed to the aleatoric one. However,
it should be noted that these two notions might have different
definitions under different circumstances, models, and domains
of application [5]. More details on techniques for quantifying
these uncertainties in machine learning and deep learning can
be found in [5], [11].

To circumvent the computational cost of Bayesian methods,
non-Bayesian approaches have also been proposed to quan-
tify uncertainty. These approaches consist of approximating
the Bayesian inference through dropout [12], ensemble neural
networks [13], [14], or modeling the neural network outputs by
a probability distribution [15], [16].

Other approaches propose associating probabilistic models
with performance measures. Brodersen et al. model the overall
accuracy with beta-binomial distribution [17]. Caelen models
the confusion matrix by a Dirichlet-multinomial distribution
[18], while Tötsch et al. model it by three beta-binomials [19].
Using the size of the dataset, these approaches evaluate how the
classifier is better than random assignment.

While these methods address estimating a well-calibrated
probability distribution, we are interested in quantifying un-
certainty from the estimated probabilities. The related works
include variance and entropy [6]. Variance quantifies the dis-
persion of values from their mean. The greater the variance, the
more imprecise and, therefore, the more uncertain the estimate.
Entropy is a measure of information and, respectively, lack of
information. The more probable an event, the lower the entropy
and, therefore, the lower the uncertainty. Alternative measures
of information have also been proposed. We might cite, for
instance, Rényi-entropy, which is a generalization of Shannon’s
entropy [20], Tsallis entropy which is one of the non-additive
entropies [21] and from the new proposed measures we cite
t-entropy [22], which is a function of the inverse tangent.

Several measures of uncertainty were also developed under
the framework of credal sets [23], [24]. In fact, despite the
powerful capabilities of probability, it has been criticized for its
inability to model the lack of information (ignorance). Several
generalizations have been proposed to overcome this limitation,
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including imprecise probability and Dempster–Shafer theory,
also known as evidence theory [25], [26]. The commonality
of these theories consists of considering a set of distributions.
For instance, a set of candidate priors is considered instead
of a single prior probability in imprecise probability theory.
However, it should be noted that these methods are out of the
scope of this article since our article assumes a trained classifier.

III. THEORY OF UNCERTAINTY

We consider a classification problem with C classes. Given a
training data with N instances, D = {(x1, y1), . . . , (xN , yN )},
the aim of the classifier given a new input x∗ is to infer its
corresponding class y∗, i.e., estimate p(y∗|D,x∗). Accordingly,
the classifier generates C estimates, p∗ = [p∗1, . . . , p∗C ]

T , that
correspond to the posterior probability of each of the C classes,
p∗c = p(y∗ = c|D,x∗), with c ∈ {1, . . . , C}. The minimum er-
ror of classification is achieved by choosing the class with
the highest posterior probability. In the following, we develop
two measures of uncertainty associated with the outcome y∗,
geometry-based and homophily-based.

A. Geometry-Based Uncertainty

The most uncertain outcome of a classifier is that of no
information when the classifier cannot make a decision and
gives equal probabilities for all classes. Conversely, the most
certain case is when all belief is put on only one class.

The space of the possible probabilities, p∗, form a standard
(C − 1)-simplex, ΔC−1, i.e.,

ΔC−1 =

{
p∗ ∈ R

C :
C∑

c=1

p∗c = 1, p∗c ≥ 0 for c= 1, . . . C

}

(1)

The simplex center is the discrete uniform distribution,[
1
C , . . . , 1

C

]T
, corresponding to the most uncertain scenario,

and vertices correspond to the cases of certainty, i.e., the per-
mutations of the point [1, 0, . . . , 0]T . In Fig. 1, we present a
standard 2-simplex.

Given that the case of certainty is the farthest point from the
center and the total uncertainty is at the center, we quantify
uncertainty by how far a classifier’s outcome is from the cen-
ter of the simplex. Accordingly, we define a geometry-based
uncertainty as follows.

Definition 1: (Geometry-based uncertainty). Let p∗ be a
probability vector associated with a classifier’s outcome y∗, and
d a distance measure defined on the standard (C − 1)-simplex,
ΔC−1, where C denotes the number of classes. The geometry-
based uncertainty of y∗ is,

GUn|d(y∗)� 1−
(
d(p∗,uC)

d(e,uC)

)n

(2)

where n is a non-negative integer, uC =
[
1
C , . . . , 1

C

]T
, and

e= [1, 0, . . . , 0]
T .

This definition of uncertainty can be interpreted as the mea-
sure of how far is the classification output from a random

Fig. 1. The standard 2-simplex whose vertices are [1, 0, 0], [0, 1, 0], and
[0, 0, 1], and whose center is [ 1

3
, 1
3
, 1
3
].

classification (random guess). In the following, we discuss some
of the properties of the geometric uncertainty.

Property 1: Let p∗ be the probability vector associated with
a classifier’s outcome y∗, with n a non-negative integer, and d
the distance measure defined on the standard (C − 1)-simplex
ΔC−1, then GUn|d(y∗)

• is non-negative;
• is upper bounded by 1, i.e., GUn|d(p∗)≤ 1;
• is maximized by the discrete uniform distribution;
• is minimized by the permutations of [1, 0, . . . , 0]T ;
• increases with n.
Proof: The proof is straightforward
In the definition of geometry-based uncertainty in (2),

the distance d and n are the free parameters, thus corre-
sponding to their individual assignments, we can obtain a
particular geometric-based uncertainty. For instance, we can
consider the Riemannian metric given by the Fisher-Rao dis-

tance, dFR(p1,p2) = 2 arccos
(∑C

c=1

√
p1c

p2c

)
, the Euclidean

distance, dE(p1,p2) =
√∑C

c=1(p1c − p2c)2, or the Kullback-

Leibler divergence, dKL(p1||p2) =
∑C

c=1 p1c log
(

p1c

p2c

)
[27],

[28]. Based on the former distances, we present the following
measures of geometric uncertainties,

Example 1: (Fisher-Rao uncertainty). Let p∗ a probabil-
ity vector associated with a classifier’s outcome y∗, where
p∗ = [p∗1, . . . , p∗C ]

T , C is the number of classes. The Fisher-
Rao uncertainty of y∗ is,

GUn|FR(y∗) = 1−

⎛
⎜⎝arccos

(∑C
c=1

√
p∗c
C

)
arccos

(√
1
C

)
⎞
⎟⎠

n

(3)

where n is a non-negative integer.
Example 2: (Euclidean uncertainty). Let p∗ a probabil-

ity vector associated with a classifier’s outcome y∗, where
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p∗ = [p∗1, . . . , p∗C ]
T , C is the number of classes. The Eu-

clidean uncertainty of y∗ is,

GUn|E(y∗) = 1−

⎛
⎝
√∑C

c=1(p∗c − 1
C )2√

1− 1
C

⎞
⎠

n

(4)

where n is a non-negative integer.
Remark 1: For n= 2, GU2|E is proportional to the Gini-

Simpson index, also called Gini impurity [7]. Accordingly, it
is also related to Tsallis entropy [21]. In fact, GU2|E(y∗) =
C

C−1

(
1−

∑C
c=1 p

2
∗c

)
, where the multiplicand of the right-

hand side is the Gini-Simpson index which is also a special
case of Tsallis entropy.

Example 3: (Kullback-Leibler uncertainty). Let p∗ a
probability vector associated with a classifier’s outcome y∗,
where p∗ = [p∗1, . . . , p∗C ]

T , C is the number of classes. The
Kullback-Leibler uncertainty of y∗ is,

GUn|KL(y∗) = 1−
(∑C

c=1 p∗c log (Cp∗c)

log (C)

)n

(5)

where n is a non-negative integer.
Remark 2: It is straightforward to show that, for n= 1, the

GU1|KL is the normalized Shannon entropy.
Please note that distances other than those considered in this

work can be defined on ΔC−1. Accordingly, other measures of
uncertainty can be formulated. For instance, when we define the
Rényi divergence, dR(p1||p2) =

1
α−1 log

(∑C
c=1

pα
1c

pα−1
2c

)
, on the

simplex ΔC−1, we identify the Rényi-entropy as a geometric
uncertainty measure for n= 1 [20].

B. Homophily-Based Uncertainty

We derive the homophily-based uncertainty from the defini-
tion of variance, generally considered the standard measure of
uncertainty. The variance of p(y∗|D,x∗) can be written as,

Var(y∗) =
1

2

C∑
i=1

C∑
j=1

p∗ip∗j(i− j)2 (6)

where i and j refer to the ordinal encoding assigned to the C
classes (ref. proof in Appendix A). Since the ordinal encoding
is arbitrary and does not have a meaningful ranking of the
classes, the difference (i− j)2 in (6) is not adequate. In fact, for
C = 3, the posterior probabilities [0.5, 0.5, 0] and [0.5, 0, 0.5]
have variances 0.25 and 1, respectively. However, the difference
(i− j)2 can be interpreted as the squared Euclidean distance
between classes i and j. Alternatively, and more generally, we
model this difference by the square of the d(i, j), where d(i, j)
denotes the distance between classes i and j.

In classification, several samples from each class are avail-
able, which can be used to compute d(i, j). For instance, the
pairwise distance between the classes can be quantified through
similarity measures between their corresponding probability
density functions, such as Wasserstein distance [29] or En-
ergy distance [30]. Accordingly, we propose a homophily-based
measure of uncertainty as follows,

Definition 2: (Homophily-based uncertainty). Let p∗ a
probability vector associated with a classifier’s outcome y∗,
where p∗ = [p∗1, . . . , p∗C ]

T , C is the number of classes. The
homophily-based uncertainty of y∗ is,

HU(y∗)�
pT
∗ (H�H)p∗

pT
max(H�H)pmax

=

∑C
i=1

∑C
j=1 p∗ip∗jd(qi, qj)

2

pT
max (H�H)pmax

(7)

where .T and � denote the transpose operator and Hadamard
product, respectively. Where H= (d(qi, qj))1≤i,j≤C and
d(qi, qj)≥ 0 denotes the distance/similarity measure between
the probability distributions qi and qj corresponding
to classes i and j, respectively. And where pmax =
argmax (pT

∗ (H�H)p∗).
Please note that H, by definition, is a symmetric matrix with

non-negative elements and zero values on the main diagonal.
The denominator in (7) is a scaling factor so that HU(y∗) is
in the interval [0, 1]. The probability distribution qi is esti-
mated using the data samples of class i. Please note that pmax

can be determined by quadratic optimization algorithms [31].
In the following, some of the properties of the homophily-
based uncertainty.

Propterty 2: Let p∗ a probability vector associated with a
classifier’s outcome y∗, then HU(y∗) is

• concave;
• positive;
• upper bounded by 1, i.e., HU ≤ 1;
• minimized by the permutations of [1, 0, . . . , 0]T .
Proof: ref. Appendix B
The uncertainty in (7) is said homophily-based since it con-

siders how close two classes are from a distribution point
of view and, hence, how likely they are to be mistaken by
a classifier. Note that the homophily-based uncertainty HU
can be viewed as a weighted sum, where larger weights are
given to distant classes. As such, mistaking distant/dissimilar
classes will be assigned a higher uncertainty than mistaking
close/similar classes. Accordingly, the homophily-based uncer-
tainty quantifies how far a classifier is from a classifier that
confuses distant classes.

Remark 3: If all classes are assumed equidistant, i.e.,
d(qi, qj) = d(qk, ql), ∀i, j, k, l ∈ {1, . . . , C}, (i �= j) and
(k �= l), the homophily-based uncertainty equals GU2|E(y∗)
(ref. proof in Appendix C).

The flowchart in Fig. 2 depicts the proposed measures
of uncertainty and their relation to the existing ones
in literature.

C. Gaussian Example

In order to understand the effect of classes’ separability on
uncertainty, we consider a two-dimensional dataset consisting
of three Gaussian classes with means μ1, μ2, and μ3. We
assume that all classes share the same covariance matrix, Σ,
for the sake of simplicity. In this case, the posterior probability
density of x is given by [7],
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Fig. 2. Flowchart of the proposed uncertainty measures and their links to
the existing ones in literature.

p(y = k|x) =
(
1 + exp

(
(μi − μk)

T
Σ−1

(
x− μi + μk

2

))

+exp

((
μj − μk

)T
Σ−1

(
x−

μj + μk

2

)))−1

where i, j, k ∈ {1, 2, 3} and i �= j �= k. The posterior probabil-
ity depends on the differences between the means and Σ that
characterize the class separation. It also depends on the position
of the data point x with respect to the means, which assesses
its closeness to the classes.

Let us consider the case μ1 = [0, 0]T , μ2 = [2, 0]T , μ3 =
α× [1, 1]T and Σ= I , where I is the identity matrix. In
Fig. 3, we show the uncertainty values obtained using differ-
ent uncertainty measures, GU2|FR, GU2|E or normalized Gini-
index, GU1|KL or normalized entropy, and HU for two data
points, x= [1, 1]T and x= [2.5, 2.5]T , as a function of α. The
distance between classes required to calculate the homophily-
based uncertainty in (7) is calculated using the infinity-norm
between the means, i.e., d(qi, qj) = ||μi − μj)||∞1 for i, j ∈
{1, 2, 3}.

It may be observed that all geometric uncertainties have
similar shapes but reflect different levels of uncertainty. The two
peaks of the geometric uncertainties correspond to α values for
which the data point is at an equal distance from the classes.
The data point x= [1, 1]T is at an equal distance from the three
classes for α= 0 and α= 2, leading to a posterior probability
[ 13 ,

1
3 ,

1
3 ]. While x= [2.5, 2.5]T is at an equal distance from the

classes 2 and 3 forα= 5±
√
13

2 , leading to a posterior probability
[0, 1

2 ,
1
2 ]. Please note that the point [2.5, 2.5]T is always closer

to two of the three classes. It cannot be at an equal distance
from the three classes. The uncertainty levels decrease when the
data points get closer to one of the classes. Moreover, the curves
flatten when the third class does not affect the estimation of the
data point, i.e., the confusion only involves classes 1 and 2.

Compared to the geometric uncertainties, the homophily-
based uncertainty shows different behavior. HU has two peaks
but with varying levels of uncertainty. The first peak that implies

1||z||∞ =
∣
∣
∣
∣[z1, . . . , zN ]T

∣
∣
∣
∣
∞ =max(|z1|, . . . , |zN |)

closer classes, i.e., a low value of α, reflects a lower uncertainty
than the second peak. Moreover, when class three deviates
further from the two other classes, instead of flattening as the
geometric uncertainties, HU decreases since the closeness of
classes 1 and 2 relative to class 3 increases.

In summary, the maximum uncertainty is reached when the
classifier cannot make a choice. This is the case when a data
point is equidistant from two or more classes. This uncertainty
increases with the number of classes involved. Moreover, the
uncertainty based on homophily reflects different values for
the same case of confusion, i.e., equal posterior probabili-
ties, depending on whether this confusion concerns close or
distant classes.

IV. EXPERIMENTAL EVALUATION AND ANALYSIS

This section demonstrates how geometry-based and
homophily-based uncertainty measures can be used to
assess classification quality. The measures of uncertainty we
investigate are the binary variance, three of the geometry-based
uncertainties GU2|FR, the normalized entropy, i.e., GU1|KL,
and the normalized Gini-index, i.e., GU2|E, in addition
to the homophily-based uncertainty based on the Energy
distance HU.

We explore several scenarios. In Subsection IV-A, we con-
sider a remote sensing dataset and study the uncertainty of three
classifiers. Subsection IV-B examines the uncertainty behavior
across different noise levels in signal modulation data. Further-
more, Subsection IV-C investigates the impact of classes’ sepa-
rability on uncertainty measures in a medical imaging scenario.
Finally, Subsection IV-D compares the proposed uncertainty
measures and some of the existing ones.

The homophily-based uncertainty in (7) requires the calcu-
lation of H, and we consider the Energy distance to this aim.
Inspired by Newton’s potential energy, Székely introduced the
Energy distance in 1984 [30]. Let Qi and Qj be the cumulative
distribution functions for classes i and j, respectively. In the
case of a one-dimensional dataset, H based on the Energy
distance is defined as:

H=

(√∫
||Qi(x)−Qj(x)||2 dx

)
(i,j)∈{1,...,C}2

(8)

This distance is implemented using the SciPy package [32].
In the case of a multidimensional dataset, we report the mean
of the Energy distance over different channels plus the cor-
responding standard deviation to account for the variability
between channels.

A. Trento

We consider the Trento dataset acquired over a rural area near
the city of Trento, Italy [33]. It is composed of measurements
from LiDAR and Hyperspectral imaging. The Optech ALTM
3100EA acquired the LiDAR data, while the hyperspectral data,
consisting of 63 bands ranging from 402.89 to 989.09 nm,
were obtained via the AISA Eagle sensor. Both datasets have
a spatial resolution of 1 m and a size of 600× 166 pixels.
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Fig. 3. Effect of class separation on Uncertainty. (a) Visualization of classes, their means, and the two data points of interest. (b)–(e) Uncertainty values
obtained using the different metrics for two data points of interest as a function of α.

Fig. 4. False color composite of Trento dataset (a), and its corresponding
ground truth (b).

Six classes of interest were identified: Apple trees, Buildings,
Ground, Wood, Vineyards, and Roads. A false-color composite
of the hyperspectral data and the corresponding ground truth
are shown in Fig. 4. The identified classes are summarized
in Table V.

Equation (9) represents the normalized matrix obtained using
Energy distance, defined in (8), for the Trento dataset.

HTrento =

c1 c2 c3 c4 c5 c6⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

0 0.89 0.58 0.35 0.36 0.88 c1
0.89 0 0.56 0.85 1 0.33 c2
0.58 0.56 0 0.6 0.73 0.65 c3
0.35 0.85 0.6 0 0.51 0.91 c4
0.36 1 0.73 0.51 0 0.95 c5
0.88 0.33 0.65 0.91 0.95 0 c6

(9)

The maximum and minimum (non-zero) values of (9) are
shown in blue and red, respectively. We observe that classes
from the same category report a low cost, vegetation classes (c4-
Wood, c1-Apple Trees, and c5-Vineyards), and urban classes (c2-
Buildings and c6-Roads). The maximum distance was achieved
between c2-Buildings and c5-Vineyards.

We evaluate two classifiers: a kernel-based classifier, Support
Vector Machine (SVM) [34], and a decision tree classifier,
Random Forest (RF) [35]. The RF and SVM classifiers were
implemented using the Sklearn Python package [36]. In what
follows, we compare

• a sub-optimal SVM for which the hyperparameters have
been set to their default value;

• the optimal SVM (OptSVM) for which the best hyperpa-
rameters have been identified using a search grid;

• RF with optimal hyperparameters (OptRF).
In Table I, we report the overall accuracy and kappa co-

efficient obtained for the three classifiers. The corresponding
confusion matrices are conveyed in Tables II–IV.

Classification maps. Figs. 5–7 represent the classification
maps predicted by the three considered models, SVM, OptSVM
and OptRF, respectively along with the uncertainty maps ob-
tained by the different considered measures.

In Fig. 5, we notice that c2-Buildings are confused with
c6-Roads, c1-Apple Trees with the c3-Ground, and vegetation
classes are mistaken for each other. The uncertainty measures
reflect high confidence for some regions classified as c4-Wood
or c5-Vineyards. Moreover, the binary variance exhibits the
highest uncertainty for other pixels, while geometry-based un-
certainties demonstrate moderate values. However, compared to
the other measures, homophily-based uncertainty shows mostly
a low uncertainty of the order of 0.2.

In Fig. 6, we observe that the optimal SVM fixed some confu-
sion between classes, especially between c2-Buildings and c6-
Roads. This is also reflected by the uncertainty measures, which
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TABLE I
PERFORMANCE MEASURES OBTAINED ON

DIFFERENT CLASSIFIERS FOR TRENTO DATASET

SVM OptSVM OptRF

OA k OA k OA k
87.3 83.1 92.9 90.5 96.4 95.2

TABLE II
CONFUSION MATRIX FOR TRENTO DATASET USING SVM

Predicted Class

c1 c2 c3 c4 c5 c6

T
ru

e
cl

as
s c1 80.6 0 0 0.1 19.3 0

c2 0 81.0 0 0 0 19.0
c3 3.3 0.2 95.2 0.2 0.6 0.4
c4 0.1 0 0 96.8 3.0 0
c5 8.7 0 0 3.1 88.2 0
c6 0.4 26.6 0.2 1.8 0.8 70.1

TABLE III
CONFUSION MATRIX FOR TRENTO DATASET USING

OPTSVM

Predicted Class

c1 c2 c3 c4 c5 c6

T
ru

e
cl

as
s c1 87.0 0 0 0 13.0 0

c2 0 87.9 0 0 0 12.0
c3 2.7 0 96.7 0.2 0.4 0
c4 0.2 0 0 98.6 1.2 0
c5 4.8 0 0 1.2 94.0 0
c6 0.1 14 0 1.4 0.6 83.8

show more confidence in results than the suboptimal SVM.
However, the homophily-based measure displays a very high
uncertainty for pixels at the borders of classes.

In Fig. 7, we observe that the OptRF classifier shows more
accurate predictions than the models based on SVM with less
confusion between classes. Indeed, it reports the highest overall
accuracy and kappa coefficient, followed by the OptSVM (ref.
Table I). Nevertheless, it exhibits higher uncertainty, especially
compared to OptSVM. Moreover, it exhibits more pixels with
higher homophily-based uncertainty.

Classes similarity. In order to understand the behavior of
homophily-based uncertainty, we compare it to its counterpart
HUeq that assumes equidistant classes. Accordingly, HUeq only
reflects the confusion between classes while HU includes the
classes’ similarity according to (9). Please recall that HUeq

corresponds to the normalized Gini-index.
In Fig. 8, we show the mean and standard deviation of

the homophily-based uncertainties, HUeq and HU obtained for
the predictions misclassified as c2-Buildings, c4-Wood or c5-
Vineyards while the correct class c6-Roads comes as the second
best class.

We notice that HU reflects lower values than HUeq when
misclassifying c6-Roads as c2-Buildings. Conversely, it reflects
slightly higher values than HUeq when misclassifying c6-Roads
as c4-Wood or c5-Vineyards. Indeed, according to equation (9),
c2-Buildings is the closest to c6-Roads while c4-Wood or c5-
Vineyards are the more distant to c6-Roads. This confirms that
HU gives more weight to distant classes, reflecting lower values

TABLE IV
CONFUSION MATRIX FOR TRENTO DATASET USING OPTRF

Predicted Class

c1 c2 c3 c4 c5 c6

T
ru

e
cl

as
s c1 89.3 0 0 0 10.7 0

c2 0 97.8 0 0.1 0 2.1
c3 0.4 0 95.4 0 1.9 2.3
c4 0.1 0 0 99.9 0 0
c5 3.9 0 0 1.6 95.9 0
c6 0 1.7 0.2 0.9 1.1 95.9

TABLE V
THE IDENTIFIED CLASSES WITHIN TRENTO AND

BREAST CANCER DATASETS

Trento Dataset Breast Cancer Dataset

c1 Apple trees Tumor
c2 Buildings Stroma
c3 Ground Lymphocytic-infiltrate
c4 Wood Necrosis
c5 Vineyards Other
c6 Roads –

than HUeq for closer classes and higher values than HUeq for
distant classes.

Number of confused Classes. The number of confused
classes reflects the indecisiveness of the classifier. The greater
this number, the closer we get to a random guess, and the higher
should be the uncertainty. In Fig. 9, we report the different
uncertainty measures as a function of the confused classes for
the three considered models. The number of confused classes is
determined as the number of classes with a probability greater
than 1

C . All uncertainty measures increase with the number of
confused classes except for variance. Variance decreases in the
case of four confused classes. In fact, variance decreases if
the probabilities of the less likely classes sum up to a value
greater than the probability of the most likely class. For in-
stance, the posterior probabilities [0.35, 0.25, 0.25, 0.15] and
[0.65, 0.35, 0, 0] report the same binary variance, while it is
clear that the first case is more uncertain. Indeed, variance only
considers the classifier’s confidence, i.e., the highest posterior
probability. Accordingly, it rejects information on confusion
and only evaluates a binary scenario. As a conclusion of this
test, variance is not a good measure of uncertainty.

Empirical cumulative distributions. We compare the dis-
tribution of uncertainty measures in the case of correct and
incorrect predictions. In Fig. 10, we represent the empirical
cumulative distribution functions using different uncertainty
measures obtained on the predictions using SVM, OptSVM,
and OptRF. We observe that all uncertainty measures report
lower values for correct predictions than for wrong predictions.
Moreover, at first glance, variance seems to be the best rep-
resentation of uncertainty since it yields the lowest values for
erroneous predictions. However, as explained earlier, variance
does not incorporate information on the confusion, which might
yield a wrong estimation of uncertainty. Accordingly, since
Gini-index reports the highest values for the wrong predictions
for all models, we deem it the best measure of uncertainty
among the geometry-based measures.
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Fig. 5. Classification results of Trento dataset using SVM (a) and its corresponding uncertainties (b)–(d).

Fig. 6. Classification results of Trento dataset using OptSVM (a) and its corresponding uncertainties (b)–(d).

Model quality. We investigate the quality of the three consid-
ered models based on uncertainty. By comparing the geometric-
based measures of uncertainty in Fig. 10, we notice that all
models report lower uncertainties for their correct predictions
than their incorrect predictions. Moreover, OptRF conveys
higher uncertainties for its wrong predictions, followed by
SVM and OptSVM. Accordingly, OptRF can be deemed as
more trustworthy.

However, please note that OptRF reports a homophily-based
uncertainty larger than 0.5 for almost 8% of the wrong estimates
as opposed to SVM and OptSVM, which convey this high
uncertainty for only 1% and 1.5% of the estimates, respectively.
Accordingly, we can assume that random forest, as opposed
to SVM, confuses between distant classes. Indeed, we find
some pixels classified as c6-Roads in the regions classified as
c5-Vineyards. This presumption is confirmed by the confusion
matrices of the three models presented in Tables II–IV. But
overall, since homophily-based uncertainty reports low values

for a large proportion of the estimates, we can conclude that
most of the confusions involve close classes.

According to the aforementioned analysis, we can con-
clude that OptSVM is a classifier that confuses similar classes,
while OptRF confuses between distant classes. However, Op-
tRF shows higher uncertainty regarding misclassifications. The
confusion in OptSVM is probably due to the under-exploitation
of the height information from Lidar data, given the imbalance
in the dimensionalities of both modalities. Please note that
OptRF automatically overcomes this limitation since it uses a
single feature for node splitting.

Outliers. As mentioned before, confusing two close classes
is not alarming since they are more challenging to separate
from a data perspective. However, mistaking two distant classes
is a red flag and might be the symptom of a bad classifier, an
instance of wrong labeling, or the presence of outliers, etc. In
order to understand how homophily-based uncertainty can be
used to detect such problematic instances, we consider a data
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Fig. 7. Classification results of Trento dataset using OptRF (a) and its corresponding uncertainties (b)–(d).

Fig. 8. Mean and standard deviation of homophily-based uncertainties obtained for data points labeled as c6-Roads that were misclassified as c2-Buildings,
c4-Wood or c5-Vineyards while the correct class comes as the second best class.

Fig. 9. Different measures of uncertainty as a function of the number of confused classes. The confused classes are identified as the classes with a posterior
probability larger than 1

C
.

point that shows a homophily-based uncertainty greater than 0.8
by the three considered models. Recall that a high homophily-
based uncertainty reflects confusion between distant classes.
In Fig. 11, we show the mean of each class’s hyperspectral
signature and the corresponding standard deviation presented
by a shaded region. The mean and standard deviation are
calculated using only data points of high density to exclude
outliers, if any. Fig. 11(b)–(d) represents the spectral signature
of the considered data point. The signatures of the classes are

presented with different levels of opacity that reflect the
magnitude of the estimated posterior probability by each
classifier. The higher the posterior probability, the more opaque
is the shaded region. Please note that the spectral signature of
the considered data point differs from the classes’ signatures,
which might signal a new class or an outlier. This point’s
spectral signature is closer to the vegetation classes in the
visible spectrum and closer to the urban classes in the infrared
spectrum. Indeed, SVM and OptSVM confuse mainly between
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Fig. 10. Empirical cumulative distribution functions of different uncertainty measures of the classification estimates obtained using SVM, OptSVM, and
OptRF: (top) right predictions, (bottom) wrong predictions.

TABLE VI
THE IDENTIFIED CLASSES WITHIN THE

SMC DATASET

SMC Dataset

c1 16QAM c7 DSB-AM
c2 64QAM c8 GFSK
c3 8PSK c9 PAM4
c4 B-FM c10 QPSK
c5 BPSK c11 SSB-AM
c6 CPFSK

c6-Roads and c4-Wood, while OptRF confuses between
c6-Roads, c4-Wood and c2-Vineyard. Please note that the
considered data point is mislabeled as c6-Roads.

B. Signal Modulation

Previously, we studied the impact of the number and type
of confused classes on uncertainty measures. We have also
demonstrated how these measures can assess a classifier’s qual-
ity and detect problematic instances, such as outliers. Now, we
consider the Signal Modulation Classification (SMC) task and
investigate the impact of noise and data drift on uncertainty.

We generate a synthetic dataset using the MATLAB code
from [37]. The generated waveforms are impaired with ad-
ditive Gaussian noise, with signal-to-noise ratio (SNR) tak-
ing either 15dB or 50dB values. The waveforms are passed
through a Rician multipath fading channel with a path delay of
[0, 1.8, 3.4] samples with the corresponding average path gains
of [0,−2,−10] dB. The K-factor equals 4, and the maximum
Doppler shift is set to 4Hz, equivalent to a walking speed at 906
MHz carrier frequency. This dataset includes eleven classes,

eight digital and three analog modulation types. Each waveform
is represented by a frame that consists of 1024 samples and has
a sample rate of 200 kHz. We consider center frequencies of
902 MHz and 100 MHz for the digital and analog modula-
tion types, respectively. The classes include Binary Phase Shift
Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 8-
ary Phase Shift Keying (8-PSK), 16-ary Quadrature Amplitude
Modulation (16-QAM), 64-ary Quadrature Amplitude Modu-
lation (64-QAM), 4-ary Pulse Amplitude Modulation (PAM4),
Gaussian Frequency Shift Keying (GFSK), Continuous Phase
Frequency Shift Keying (CPFSK), Broadcast FM (B-FM), Dou-
ble Sideband Amplitude Modulation (DSB-AM), and Single
Sideband Amplitude Modulation (SSB-AM). Table VI summa-
rizes the identified classes within this dataset. For more details
on SCM, please refer to the review articles [38], [39], [40].

A convolutional neural network (CNN) is utilized for modu-
lation classification as suggested in [37]. The CNN architecture
comprises six convolution layers and one fully connected layer.
Except for the last convolution layer, each layer is followed by a
batch normalization layer, a rectified linear unit activation layer,
and a max pooling layer. An average pooling layer replaces the
max pooling layer in the final convolution layer. The output
layer incorporates softmax activation to provide scores for each
label. To obtain probabilities for the respective labels, we apply
isotonic calibration [41].

Noise effect. In order to study the effect of noise on the uncer-
tainty measures, we consider two SMC datasets with different
SNRs, specifically, 50dB and 15dB.

In Fig. 12(a) and 12(b), we represent the T-distributed
Stochastic Neighbor Embedding (t-SNE) of the features
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Fig. 11. Mean, bold lines, and standard deviation, shaded area, of the different classes’ spectral signature. The opacity of the spectral signatures in subfigures
(b)–(d) reflects the posterior probability estimates obtained by different classifiers considering the data point in the dashed line.

extracted using the considered deep learning model on both
datasets [42]. We notice that, as expected, a reduced noise
level tends to enhance the distinctiveness and separability
of the classes. Indeed, the dataset with an SNR of 15dB
shows an overlap between several classes where some to-
tally overlap, such as c3-8PSK and c10-QPSK. Conversely, the
dataset with an SNR of 50dB shows better separation between
classes where few classes partially overlap, such as c1-16QAM
and c2-64QAM.

Fig. 12(c)–(f) depicts the estimated empirical density func-
tions of various uncertainty measures associated with the wrong
and correct predictions of the modulation test data, considering
two different noise levels. The uncertainty measures are calcu-
lated based on the classifiers’ predictions, specifically on the
test set, using the same noise level they were trained on. For
correct and wrong predictions, we notice that a larger portion
of data points exhibits higher uncertainty at an SNR of 15 dB
compared to the 50dB scenario. For instance, almost 15% of
the misclassified data points exhibit a Gini-index strictly larger
than 0.6 for an SNR of 15dB as opposed to only 3% for an
SNR of 50dB. Moreover, 66% of the misclassified data points
exhibit a homophily-based uncertainty strictly larger than 0.15
for an SNR of 15dB as opposed to only 0.3% for an SNR of
50dB. Accordingly, the considered measures effectively cap-
ture the effect of noise on classification quality. Moreover, the
homophily-based uncertainty properly highlights the decline in
classes’ separability due to the noise.

Data drift. We consider the case of data drift when the test
data is different from the training data. We study a scenario
where the CNN is trained only on data with an SNR of 50 dB
(resp. 15dB) and which has been tested with data having SNR
values of 15 dB (resp. 50dB).

In Fig. 13(a) and 13(b), we represent the t-SNE of features
extracted using the considered deep learning model for both
scenarios. t-SNE was calculated using training and test datasets.
It is obvious that the scenario where the data drifts from 50dB to
15dB is more difficult because it shows a lot of overlap between
the classes. This outcome is anticipated since the test set is more
problematic than the training set. Conversely, in the case of a
data drift from 15dB in training to 50dB in testing, the classifier
has been trained on more complicated data.

The uncertainty measures shown in Fig. 13(c)–(f) for correct
and incorrect predictions appropriately reflect the data drift
impact. For example, the Gini index has an uncertainty greater

Fig. 12. Effect of noise. (Top) t-SNE of the features extracted by the
CNN model. (Middle) Empirical cumulative distribution functions of different
uncertainty measures obtained on the correct predictions. (Bottom) Empirical
cumulative distribution functions of different uncertainty measures obtained
on the wrong predictions. The left column corresponds to the model trained
and tested on 50dB data. The right column corresponds to the model trained
and tested on 15dB data.

than 0.6 for more than 97% of the data points in the complicated
scenario, compared to only 13% in the case of a drift from
15dB in training to 50dB in testing. Moreover, the uncertainty
based on homophily shows an uncertainty greater than 0.2 for
almost 99% of the data points, compared to only 5% in the more
manageable scenario.
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Fig. 13. Data drift. (Top) t-SNE of the features extracted by the CNN model.
(Middle) Empirical cumulative distribution functions of different uncertainty
measures obtained on the correct predictions. (Bottom) Empirical cumulative
distribution functions of different uncertainty measures obtained on the wrong
predictions. The left column corresponds to the model trained on 15dB data
and tested on 50dB data. The right column corresponds to the model trained
on 50dB data and tested on 15dB data.

Fig. 14. Empirical cumulative distribution functions of different uncertainty
measures obtained on the correct predictions (left) and incorrect predictions
(right) for the data points labeled as c3-Lymphocytic-infiltrate.

C. BCSS

Using the Breast Cancer Semantic Segmentation (BCSS)
dataset, we investigate classes’ separability effect on un-
certainty. This dataset consists of hematoxylin and eosin-
stained whole-slide images (WSIs) corresponding to a case of

Fig. 15. Empirical cumulative distribution functions of different uncertainty
measures obtained on the correct predictions (left) and incorrect predictions
(right) for the data points labeled as c4-Necrosis.

histologically-confirmed breast cancer. This image of formalin-
fixed paraffin-embedded tissues was acquired from the Can-
cer Genome Atlas, with triple-negative status determined
from clinical data files. The original dataset consists of 151
images; in this work, we consider the region of interest
within the image “TCGA-D8-A1JG-01Z-00-DX1.BA6D5CC7-
3A9B-4D17-A86A-B159D345A216” [43]. Five classes of in-
terest were identified: Tumor, Stroma, Lymphocytic-infiltrate,
Necrosis, and a class Other comprising other tissue types
of no interest. Table V summarizes the identified classes
within this dataset. Equation (10) represents the normalized
classes’ distance matrix obtained using Energy distance on the
BCSS dataset.

HBCSS =

c1 c2 c3 c4 c5⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

0 0.46 0.34 0.51 0.74 c1
0.46 0 0.26 0.8 0.33 c2
0.34 0.26 0 0.55 0.47 c3
0.51 0.8 0.55 0 1 c4
0.74 0.36 0.47 1 0 c5

(10)

The maximum and minimum (non-zero) values of (10) are
shown in blue and red, respectively. The minimum distance is
between c2-Stroma and c3-Lymphocytic-infiltrate classes while
the largest distance is between c4-Necrosis and c5-Other.

In the following, we use OptRF to classify the BCSS
dataset. We analyze the uncertainty distributions of correct
and wrong predictions of classes c3-Lymphocytic-infiltrate and
c4-Necrosis. We represent the corresponding empirical cumu-
lative functions in Figs. 14 and 15.

We observe that 24% of the accurate predictions for the
c3-Lymphocytic-infiltrate class exhibit a Gini index greater
than 0.6. In contrast, only 3% of accurate predictions for the
c4-Necrosis class surpass this threshold. Furthermore, 77% of
the incorrect predictions for the c3-Lymphocytic-infiltrate class
have a Gini index greater than 0.6, while 87% of misclassifica-
tions for the c4-Necrosis class fall into this category.

What is particularly interesting to note is that while the
homophily-based uncertainties of accurate predictions for both
classes follow similar trends, the homophily-based uncertainties
for misclassifications are significantly different. In fact, only
6% of misclassifications for c3-Lymphocytic-infiltrate have a
homophily uncertainty larger than 0.2, whereas more than 91%
of misclassifications for c4-Necrosis have a homophily-based
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TABLE VII
COMPARISON OF UNCERTAINTY MEASURES

Gini-Index Entropy GU2|FR HU t-Entropy Rényi-Entropy Tsallis-Entropy
α= 1 α= 2 α= 1.5

μ γ1 μ γ1 μ γ1 μ γ1 μ γ1 μ γ1 μ γ1

Trento dataset

OptSVM
Correct 0.12 1.58 0.1 1.38 0.17 0.96 0.04 4.6 0.11 1.62 0.07 1.93 0.11 1.53
Wrong 0.45 -0.71 0.33 0.08 0.35 1.19 0.12 3.45 0.4 -0.54 0.28 -0.1 0.39 -0.51

OptRF
Correct 0.13 1.43 0.11 1.27 0.14 0.96 0.04 4.53 0.12 1.47 0.07 1.81 0.12 1.39
Wrong 0.52 -1.06 0.38 0.4 0.37 1.25 0.18 2.71 0.46 -0.69 0.33 -0.04 0.45 -0.57

ResNet50
Correct 0.005 11.1 0.005 9.39 0.01 5.76 0.002 21.27 0.004 11.13 0.003 12.28 0.005 10.65
Wrong 0.33 -0.11 0.24 -0.27 0.24 -0.44 0.1 3.17 0.29 -0.1 0.2 0.07 0.28 -0.16

SCM dataset - 50dB

CNN
Correct 0.04 3.21 0.02 2.95 0.02 2.52 0.003 5.99 0.03 3.23 0.02 3.5 0.03 3.14
Wrong 0.41 -0.8 0.24 -0.27 0.19 0.1 0.03 4.26 0.35 -0.65 0.2 -0.24 0.32 -0.67

SCM dataset - 15dB

CNN
Correct 0.16 0.93 0.09 1.14 0.08 1.4 0.05 1.15 0.14 0.99 0.08 1.25 0.13 0.99
Wrong 0.53 0.1 0.31 1.81 0.24 2.1 0.16 1.19 0.46 0.77 0.28 1.42 0.42 1

BCSS dataset

OptRF
Correct 0.47 -0.74 0.39 -0.67 0.41 -0.69 0.11 0.17 0.43 -0.67 0.33 -0.48 0.43 -0.7
Wrong 0.68 -0.37 0.55 -0.53 0.53 - 0.82 0.15 -0.22 0.62 -0.28 0.49 -0.13 0.61 -0.35

uncertainty larger than 0.2. This indicates that c4-Necrosis is of-
ten confused with distant classes, in contrast to c3-Lymphocytic-
infiltrate. This discrepancy can be attributed to the fact that
c3-Lymphocytic-infiltrate is closely related to other classes,
resulting in low distances between them, while c4-Necrosis
exhibits relatively larger distances. This demonstrates the ca-
pacity of homophily-based uncertainty to capture the type
of confusion as opposed to the geometry-based metrics that
show relatively comparable trends for both classes in the case
of misclassifications.

D. Comparison

We compare the proposed measures with some of the exist-

ing ones. Namely, the Rényi entropy
log(

∑C
c=1 p∗c)

1−α [20], the

Tsallis entropy, k
1−α

(
1−

∑C
c=1 p

α
∗c

)
[21], and the t-entropy∑C

c=1 p∗c tan
−1 (p−α

∗c )− π
4 [22]. All the measures are scaled

to the interval [0, 1].
In Table VII, we report the average, μ, and skewness, γ1,

of different uncertainty measures corresponding to correct and
erroneous predictions of several models and different datasets.
We observe that all measures report a larger uncertainty for the
wrong predictions than the correct ones. Specifically, Rényi en-
tropy reports the lowest uncertainty for the correct predictions,
while Gini-index reflects the largest values for the incorrect
ones. Moreover, the largest margin between the averages cor-
responding to the correct and wrong predictions is ensured by
the Gini-index followed by t-entropy.

The skewness coefficient γ1 quantifies the asymmetry of a
probability distribution. A positive skewness implies that a large
portion of the data points lies on the left. Conversely, a negative
skewness indicates that a large portion of the data points lies
on the right. Accordingly, we believe a good measure of uncer-
tainty should convey large absolute skewness values. Moreover,
a positive skew is preferred for correct predictions since it

implies that numerous data points have low uncertainty. Con-
versely, a negative skew is desired for the wrong predictions,
indicating that most data points exhibit more significant uncer-
tainty. The uncertainty measures that respect these requirements
mostly are Gini-index, t-entropy, and Tsallis entropy. In the
case of the SMC dataset with 15dB SNR, all measures report
a positive skew for incorrect predictions. However, Gini-index
reports the lowest value. Therefore, Gini-index is deemed the
best measure of uncertainty among the ones compared here.

Furthermore, we observe that the homophily-based measure
shows high skew values for all models and datasets except
for the wrong predictions of BCSS. High skew values imply
that the confusion mainly involves close classes. Moreover, the
homophily-based uncertainty shows the highest average for the
correct predictions of the BCSS dataset. Accordingly, BCSS
dataset classification confuses distant classes in case of cor-
rect and wrong predictions, implying a low separability of the
classes. This is also reflected by the other uncertainty measures
exhibiting larger values than for other datasets.

By comparing the SMC datasets with 50dB and 15DB, we
observe that the measures that show a significant increase
in uncertainty are Gini-index, homophily-based uncertainty,
t-entropy, and Tsallis entropy. Moreover, By comparing all
models, we notice that ResNet50 shows the lowest uncertainty
values for its correct and wrong predictions, making this clas-
sifier less reliable.

V. CONCLUSION

In this article, we proposed two measures of classifica-
tion uncertainty: geometry-based and homophily-based. The
geometry-based uncertainty is a function of the distance of class
probabilities to the center of the feasible space of probabili-
ties, given by the uniform distribution. In contrast, homophily-
based uncertainty is a function of the average pairwise distances
between classes.
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We derive different measures of geometry-based uncertainty
depending on different distances on the standard simplex (space
of feasible probabilities), the Euclidean distance, the Kullback-
Leibler distance, and the Fisher-Rao distance. The derived
uncertainties quantify how far the classifier is from the ran-
dom guess but behaves differently. According to our analysis,
Euclidean-based uncertainty, i.e., Gini-index, is more suitable
for assessing uncertainty in classification.

Moreover, we derived a homophily-based uncertainty that
accounts for the separability of the classes. Accordingly, for the
same set of probabilities, it reflects lower or larger uncertainties
whether the confusion involves close or separate classes.

By combining homophily-based and geometry-based uncer-
tainties, we demonstrated how to reveal relevant details on the
model and data in the experimental section. Instead of evaluat-
ing the number of correct classifications, uncertainty measures
assess the quality of a classifier by understanding,

• How certain is the classifier about the correct
classifications?

• How uncertain is the classifier about misclassifications?
• What type of classes is the classifier mistaking?
Mistaking close classes is a sign of low separability. In con-

trast, mistaking distant classes is a sign of a bad model, noisy
data points, or the existence of outliers. The proposed uncertain-
ties are not aggregated, i.e., they are specific to each prediction
and do not require a ground truth. The conclusions that can be
drawn using the proposed uncertainties are confirmed by the
confusion matrices resulting from the classification operation.

APPENDIX A
REFORMULATION OF VARIANCE

Gini in [44] noted that variance can be formulated as distance
between data points,

Var =
C∑
i=1

i2p∗i −
C∑

i,j=1

p∗ip∗jij =
1

2

N∑
i,j=1

p∗ip∗j (i− j)
2

APPENDIX B
CONCAVITY OF HU

Consider the function f(p) = pT (H�H)p, where p is a
probability vector, i.e., all its elements are non-negative and sum
up to one. Using that f is non-negative (sum of non-negative
terms, f(p) =

∑C
i=1

∑C
j=1 pipjω

2
ij), it is straightforward to

prove that f((1− α)p1 + αp2)≥ (1− α)f(p1) + αf(p2),
∀α≤ 1. Using Brauer minimum principle [45], and since the
simplex ΔC−1 is convex and compact by construction, the
minimum of HU is attained at the vertices, i.e., permutations
of [1, 0, . . . , 0]T .

APPENDIX C
CONNECTION BETWEEN GEOMETRY-BASED AND HOMOPHILY

BASED UNCERTAINTIES

In the case of equidistant classes, the homophily-based
uncertainty writes,

HUeq(y∗)�
2C

C − 1

C∑
i=1

C∑
j>i

p∗ip∗j (11)

By substituting p∗1 by (1−
∑C

i=2 p∗i) in (4) and (11), we
find that

GU2|E(y∗) =
2C

C − 1

⎛
⎝ C∑

i=2

p∗i −
C∑
i=2

p2∗i −
C∑
i=2

C∑
j>i

p∗ip∗j

⎞
⎠

= HUeq(y∗)
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