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A B S T R A C T

The northwestern Barents Sea (NW-BS) is a highly productive region within the transitional zones of an Atlantic
to Arctic-dominated marine ecosystem. The steep latitudinal gradients in sea ice concentration, Atlantic and
Arctic Water, offer an opportunity to test hypotheses on physical drivers of spatial and temporal variability
of net primary production (NPP). However, quantifying NPP in such a large ocean region can be challenged
by the lack of in situ measurements with high spatial and temporal resolution, and gaps in remote sensing
estimates due to the presence of clouds and sea ice, and assumptions regarding the depth distribution of alga
biomass. Without reliable data to evaluate models, filling these gaps with numerical models is limited by the
model representation of the physical environment and its assumptions about the relationships between NPP
and its main limiting factors. Hence, within the framework of the Nansen Legacy Project, we combined in
situ measurements, remote sensing, and model simulations to constrain the estimates of phytoplankton NPP in
the NW-BS. The region was subdivided into Atlantic, Subarctic, and Arctic subregions on the basis of different
phytoplankton phenology. In 2004 there was a significant regime change in the Atlantic subregion that resulted
in a step-increase in NPP in tandem with a step-decrease in sea ice concentration. Contrary to results from other
Arctic seas, this study does not find any long term trends in NPP despite changes in the physical environment.
Mixing was the main driver of simulated annual NPP in the Atlantic subregion, while light and nutrients
drove annual NPP in the Subarctic and Arctic subregions. The multi-source estimate of annual NPP ranged
79–118 gC m−2 yr−1 in the Atlantic, 74–82 gC m−2 yr−1 in the Subarctic, and 19–47 gC m−2 yr−1 in the Arctic.
The total NPP in the NW-BS region was estimated between 15 and 48 Tg C yr−1, which is 15–50% of the total
NPP needed to sustain three of the most harvested fish species north of 62◦N (roughly 90 Tg C yr−1). This
research shows the importance of continuing to strive for better regional estimates of NPP.
1. Introduction

The Barents Sea is a highly productive marginal shelf sea of the
Arctic Ocean (Wassmann et al., 2006a). The physical environment is
regionally structured by distinct distributions of Atlantic Water (AW),
Arctic Water (ArW), and a seasonal sea ice cover (e.g., Loeng, 1991;
Efstathiou et al., 2022). The resulting ocean stratification is generally
weak and thermally driven in the south, while strong and salinity
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driven in the north (Wassmann et al., 2006a; Silva et al., 2021; Lun-
desgaard et al., 2022). The heterogeneity of the physical environment
drives spatial and temporal patterns in the structure of the food web
and biodiversity patterns (e.g., Søreide et al., 2003; Wassmann et al.,
2006a; Kortsch et al., 2019). Environmental gradients are particularly
steep in the northwestern Barents Sea (NW-BS). The south of the NW-
BS is generally ice free and dominated by relatively warm and salty
AW inflow (Loeng, 1991; Efstathiou et al., 2022). In contrast, the north
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Table 1
Nomenclature.

Abrev. Definition

NPP Regional-averaged Net Primary Production integrated over
depth (0–100 m) and time (gC m−2 time−1).

Chl-a Chlorophyll-a concentration (mg m−3). Averaged between
0–30 m depth for cross-comparison analysis, or between
0–100 m depth for bioregionalization analysis.

Nutr Macronutrient concentration (mmol m−3). Averaged over
depth (0–100 m), time and area.

T Temperature (◦C). Averaged over depth (0–100 m), time, and
area.

MXD Seasonal maximum mixing layer depth (m). Averaged over
area. Seasonal periods considered: Annual, Spring, Summer,
Autumn. Sign convention is positive downward (e.g., larger
positive numbers represent deeper MXD).

PAR Photosynthetically available radiation (W m−2): irradiance
integrated between 400 and 700 nm wavelengths. Averaged
over time, area and mixing layer depth.

SIC Sea ice concentration (%). Averaged over time and area.

snowH Snow depth (m). Averaged over time and area.

iceH Sea ice thickness (m). Averaged over time and area.

Lys Total number of days with light (days). Measured as number
of days with PAR > 0 W m−2.

OWL Total number of Open Water days with Light (days).
Measured as number of open water days (SIC < 10%) with
some light (PAR > 0 W m−2)

AWz0 Atlantic Water volume (m3) between the depth of 0 and
100 m. Averaged over time and area.

AWz100 Atlantic Water volume (m3) between the depth of 100 and
200 m. Averaged over time and area.

AW was defined using potential density (range 27.7–27.97 kg m−3) and conservative
temperature greater than 2 ◦C (Rudels et al., 2000).

is seasonally ice-covered and dominated by an upper ocean inflow of
fresher and colder ArW (Loeng, 1991; Reigstad et al., 2002; Koul et al.,
2022), with a minor influence of AW carried eastward along the shelf
break north of Svalbard and branching off at subsurface depths to enter
the NW-BS (Lind and Ingvaldsen, 2012; Lundesgaard et al., 2022).

Regional patterns in net primary production (NPP) follow the gen-
eral distribution of sea ice concentration (SIC) and water masses. Both
NPP and secondary production typically are higher in AW relative
to ArW-influenced regions (e.g., Rey, 1991; Reigstad et al., 2002;
Basedow et al., 2014). Model estimates of annual gross primary pro-
duction (GPP) suggest that the Barents Sea can be subdivided into
three subregions: (i) a high GPP domain in the ice-free area, (ii) a
moderate GPP domain in the seasonal ice-covered area, and (iii) a
low GPP domain in permanently ice-covered area (Wassmann et al.,
2010; Wassmann, 2011). However, considering the locally pronounced
climate variability (Dalpadado et al., 2014), a bioregonalization of the
NW-BS based on phytoplankton phenology would add crucial informa-
tion about the temporal variability of phytoplankton, which may serve
better to understand the physical drivers of NPP (Ardyna et al., 2017;
Marchese et al., 2019; Silva et al., 2021; Marchese et al., 2022).

The NW-BS has experienced climate change related progressive
warming (1981–2020) of the sea surface temperature (0.25 ◦Cdecade−1;

ohamed et al., 2022b) and air temperature (ca. 2.7–4 ◦Cdecade−1;
saksen et al., 2022). Regional losses in SIC (ca. 15–10%decade−1;
saksen et al., 2022) and longer open water period (ca. 3.4-months;
ohamed et al., 2022a) have lead to higher underwater photosynthetic

vailable radiation (PAR; Bélanger et al., 2013). These changes can
trongly influence the spatial and temporal patterns of marine primary
roducers (Leu et al., 2015) and throughout the Arctic, they have led
2

o a positive response of NPP (Dalpadado et al., 2014; Renaut et al.,
018; Lewis et al., 2020).

The fundamental role of NPP in the fuelling of food webs and carbon
ptake makes it a central measure of ecosystem functioning and an im-
ortant indicator of the effects of climate change. However, upscaling
f marine NPP over large regions is challenging due to the lack of in
itu measurements at high spatial and temporal resolution. Therefore,
pscaling methods necessarily involve some knowledge about the rela-
ionships between NPP and its main limiting factors, as well as about
he variability of such factors. These methods may be based on remote
ensing or modelling techniques. However, while long-time series of
emote sensing chlorophyll-a (Chl-a) and NPP could be obtained by
ombining data from the first ocean colour sensor, namely the Coastal
one Colour Scanner (CZCS, 1979–1986), with the data (1998– ongoing)
rom more recent and modern sensors (Oziel et al., 2022), they are
ignificantly limited in areas with sea ice and cloud cover. In such
ases, numerical models become necessary tools that support the study
f seasonality and interannual variability in NPP (Wassmann et al.,
006a).

Both ‘‘pure’’ modelling techniques and remote sensing-based algo-
ithms (also partly based on modelling techniques) rely on a number
f highly uncertain assumptions. Moreover, it is difficult, if possible,
o evaluate the results of upscaling exercises, except by comparisons
f calculated values and observations that may be available only at
imited spatial and temporal coverage, due to the logistical challenges
f measuring NPP. Therefore, we argue that using different approaches
ay help constrain NPP estimates in a manner analogous to the usage

f modelling ensembles, allowing for some cross-validation of obtained
esults. Consistent with this, we combine in situ NPP measurements
ith remote sensing and model-based NPP estimates to quantify phyto-
lankton NPP in NW-BS and to analyse its temporal (over > 40 years)
nd spatial variability.

We subdivide the NW-BS based on a bioregionalization analysis
ith simulated Chl-a concentration. We produce a range of regional
stimates of climatology, annual, and seasonal NPP employing a com-
ination of different techniques from multiple sources. A 42-yearlong
imulation was used to test the hypothesis of increasing phytoplank-
on NPP in the NW-BS related to recent climate change and identify
hysical drivers (listed in Table 1) in defined subregions (e.g., Reigstad
t al., 2002; Wassmann, 2011). This study is part of The Nansen Legacy
roject (https://arvenetternansen.com), the collective effort of the Nor-
egian research community to get a more holistic understanding of the
nvironmental and ecosystem changes witnessed in the Barents Sea.

. Methods

The NW-BS is defined as the area between 75–84◦N and 20–40◦E
Fig. 1). The multi-source data for Chl-a and NPP are derived from
n situ stations, remote sensing, and two coupled physical–biological
cean models. Temporal and spatial resolution varied with the data
nd output (Table 2). This section follows with a brief description of
he datasets and the methods used to analyse them. Additional details
ertaining to the origin of the data and output and how they were
rocessed are included in the Appendix (Text A1).

.1. In situ data

Chl-a and NPP were measured along a south–north transect that
rossed the region defined as NW-BS (Fig. 1; Table 11). Water samples
ere taken at discrete depths (10, 20, 40, 60, 90m, and Chl-a maximum)
t the same stations for one or more years (2018, 2019, and 2021)
etween spring and summer. In situ, Chl-a was measured at stations
1–P5 in 2018–2021, P6 and P7 in 2019 and 2021, PICE in 2018, and
ICE in 2019. These data were extracted from the database of the Nor-
egian Marine Data Centre (NMDC) established through The Nansen
egacy (Vader, 2022). NPP was measured at stations P1, P2, P4 and

https://arvenetternansen.com
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Table 2
Overview of the NPP and Chl-a data sets with a period of available data, temporal and spatial resolution, and source information.

In situ MODIS-A Takuvik TOPAZ BLING

Data type Measurement Remote sensing Remote sensing Model Model
Period 2018–2021 2003–2021 2003–2011 2019–2021 1980–2021
Grid size Punctual 4 km 9 km 6.25 km 12 km
Time Punctual Daily Daily Daily 5-day averages
Access Link A Link B Link C Link D Link E

Link A (https://doi.org/10.21335/NMDC-1371694848); Link B (https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2022); Link C (http://www.
takuvik.ulaval.ca/); Link D (https://doi.org/10.48670/moi-00003); Link E (http://knossos.eas.ualberta.ca/anha/model.php).
Fig. 1. Northwestern Barents Sea (NW-BS) polygon outlined in black (75–84◦N and 20–
40◦E), and the Nansen Legacy sampling stations (red circles). The background colour
is the regional bathymetry (m).

PICE in 2018 and P1, P4–P7 in 2019 and are analysed in an interannual
2018/2019 comparison study in Amargant-Arumi et al. (2023). The
analysis followed standard procedures (The Nansen Legacy, 2022) with
specific details listed in the appendix (Text A). These data were used
for cross-validation with remote sensing and model estimates.

2.2. Remote sensing data

Time series of surface Chl-a (2002–2021) were derived from the
Moderate Resolution Imaging Spectroradiometer sensors on board the
Aqua satellite (MODISA; Hu et al., 2012). The time series of depth-
integrated NPP (2003–2011) was produced by the Takuvik model from
the Université du Québec à Rimouski (UQAR)- Takuvik International
research group. The Takuvik NPP model was chosen for this study
because it is spectrally resolved and specially tuned for Arctic Wa-
ters (e.g., Bélanger et al., 2013; Huot et al., 2013; Vernet et al.,
2021; Mayot et al., 2020). The model derives NPP from remote-sensing
Chl-a in surface waters that is projected downward to 100m water
depths assuming a Gaussian vertical distribution based on statistical
analysis and phenology (Ardyna et al., 2013). The Takuvik model
incorporates other remote sensing products (e.g., clouds, ozone, and
sea ice concentration and in-water diffuse attenuation coefficient) to
estimate PAR in the water column and derive critical parameters of
phytoplankton NPP (Bélanger et al., 2013). NPP estimates consider only
light limitation and assume that Nutr limitation is implicit from the
Chl-a concentrations.

The accuracy of the remote sensing data depends on good visibility
of the surface ocean, which is negatively affected by clouds and sea ice
cover. Between 1993 and 2022, NW-BS experienced high cloud and ice
3

cover, with >70% of the sea surface covered by sea ice or clouds each
month (Figure 1.1). The average fraction of cloud and ice cover over the
same period was >80% throughout the region (Fig. 2a). Consequently,
there are large temporal and spatial gaps in the Chl-a and NPP data
from remote sensing. On average, there are only 4 to 5 months per year
(of a possible 10 months with sufficient daylight) with at least one day
of available data in the southern parts of NW-BS (latitudes 75–78◦N),
while none to less than 3 months with data are represented above 79◦N
(Fig. 2b–c).

To achieve greater temporal and spatial coverage for the NPP
estimates, it is common practice to fill in the gaps. These gaps are
commonly addressed by careful spatio-temporal aggregation (Oziel
et al., 2022), using monthly means (Bélanger et al., 2013) or by other
methods that use information on the dominant spatial and temporal
patterns (Marchese et al., 2017). The Takuvik simulation used in this
study did not fill the gaps and serves to highlight the temporal and
spatial limitations of remote sensing estimates (Fig. 3).

2.3. Coupled physical–biogeochemical model output

We used two state-of-the-art coupled ocean and biogeochemical
models, BLING (Biology Light Iron Nutrient and Gas) and TOPAZ
(Tracers of Phytoplankton with Allometric Zooplankton), to provide the
evolution of essential biogeochemical variables along with the changing
physical environment. The physical and biological components in both
physical models are coupled online with the same timestep, using
a one-way coupling. Models were used to explore cause-and-effect
relationships and disentangle the effects of environmental changes on
biological processes. The model output was also used to upscale NPP
and to fill temporal gaps in the seasonal cycle of in situ and remote
sensing NPP. We follow with a discussion of similarities and differences
between the models and remote sensing and a brief description of the
models (more details are given in the Appendix Text A).

One of the main differences between remote sensing and model-
derived NPP is that the former is based on remotely observed Chl-
a concentrations, combined with simplified assumptions about their
vertical distribution, whereas the latter is based on simulated Chl-a
concentrations. In both cases, Chl-a concentrations or another biomass
proxy (e.g., phytoplankton carbon or nutrient concentration, here des-
ignated generically by [Phy]) are used to calculate the areal production
from known response functions of the production rates normalized to
biomass, with limiting factors such as light, temperature, and nutrients
(Nutr). However, while remote sensing-based algorithms keep updating
Chl-a concentrations over time from available measurements, coupled
physical–biogeochemical models calculate phytoplankton biomass us-
ing the mass conservation equation (Eq. (1)). The model calculations
are thus, based on regional advection and turbulent exchanges, and
on biogeochemical gains and losses such as photosynthesis, respiration,
sinking, mortality, etc. (Eq. (1)). In some models, biomass is expressed
as carbon (or Nutr) concentration, which can be converted to Chl-a
using known conversions or algorithms relating [Phy] production to
Chl-a concentration (e.g.; Cloern et al., 1995). Thus, one may argue
that there is an extra layer of uncertainty related to Chl-a variability.

𝛥[𝑃ℎ𝑦]
+ ∇(𝑣.[𝑃ℎ𝑦]) = ∇(𝜆.∇[𝑃ℎ𝑦]) + (Prod − Met − Sink − Mort).[𝑃ℎ𝑦]
𝛥𝑡
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Fig. 2. Illustration of cloud and sea ice cover and associated gaps in the remote sensing data. (a) The percentage of the surface ocean covered by sea ice or clouds averaged
between 1993–2022 (from https://hermes.acri.fr/index.php?class=archive). Number of months per year with at least one day available (b) MODIS-A Chl-a time series (2003–2021)
and (c) Takuvik NPP (2003–2011).

Fig. 3. Number of days per year with NPP data available within the NW-BS. Derived from Takuvik simulation without filling gaps in the remote sensing data.

https://hermes.acri.fr/index.php?class=archive
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where, the (∇) operator is a first-order spatial derivation, 𝛿
𝛿𝑥 + 𝛿

𝛿𝑦 +
𝛿
𝛿𝑧 .

The second term on the left side and the first term on the right side
of Eq. (1) represent the advective and turbulent transport of [Phy],
respectively. The remaining terms represent the rates of photosynthetic
production (Prod), metabolism (Met), cell sinking (Sink), and mortal-
ity (Mort). Prod is typically calculated using response functions for
light, temperature, and Nutr, which differ between models and remote
sensing.

In this paper, TOPAZ output refers to the output of TOPAZ5-
ECOSMO physical and biological reanalysis between 2019 and 2021.
TOPAZ was chosen because it incorporates weekly assimilation of
observations that are available in near real-time from in situ profilers
and remote sensing. Thus, the TOPAZ simulation used here uses a
hybrid approach, where Chl-a data are periodically assimilated from
remote sensing-based measurements, reducing model uncertainty but
affecting mass conservation. In addition to NPP and Chl-a concentration
(Link D in Table 2), we also downloaded daily SIC (https://doi.org/10.
48670/moi-00001) to evaluate against satellite records. An in-depth
description and evaluation of TOPAZ model can be found in previous
work (e.g., Schrum et al., 2006; Sakov et al., 2012; Daewel and Schrum,
2013; Yumruktepe et al., 2022).

BLING output refers to the ensemble output from 1980–2021 of
hree simulations of the coupled physical model (NEMO-LIM2) and
iogeochemical model (BLINGv0DIC) run over overlapping periods and
orced by a range of atmospheric conditions (Table 12). BLING model
as initialized from climatology in 1958 which gives sufficient time

or the surface ocean to spin-up. The ensemble output was chosen
ver individual output because it reduces the sensitivity of the model
olution to atmospheric forcing and initial conditions. BLING model
as chosen because it has the advantage of having a relatively low
umber of biogeochemical tracers (five compared to 12 in TOPAZ)
llowing us to perform multiple long simulations at a relatively lower
omputational cost. Despite its lower complexity, BLING has shown
ood performance in the North Atlantic and Arctic (e.g., Galbraith
t al., 2010, 2015; Castro de la Guardia et al., 2019; Deschepper
t al., 2023). In addition to NPP and Chl-a, we also considered several
hysical variables (listed in Table 1) for the analysis of NPP drivers. An
n-depth description and evaluation of BLING can be found in previous
ork (e.g., Galbraith et al., 2010, 2015; Castro de la Guardia, 2018).

The variables in the two models evolve according to the equations
f state and mass conservation (e.g., Eq. (1)), but while the TOPAZ
olution is relaxed to the observations with the aim of improving the
olution, BLING is a fully prognostic model that does not assimilate the
bservations. The data assimilated by TOPAZ include SIC, ice thickness
iceH), sea surface temperature, sea level height, and surface Chl-a
oncentration (Sakov et al., 2012). Before its assimilation, the remote
ensing-derived surface Chl-a concentrations are projected downward
o 100m assuming a Gaussian function (Uitz et al., 2006), similar to the
pproach used in the Takuvik NPP model. Another difference between
he two models is that the phytoplankton biomass in BLING is not
dvected by ocean currents (e.g., the second term in Eq. (1) is null).
herefore, BLING represents only autochthonous production, which can
e a limitation in areas with relatively strong ocean currents, such as in
he north of Svalbard where biomass advection is suggested to increase
he NPP by as much as 50% (Vernet et al., 2019). Meanwhile, TOPAZ is
tructurally limited in ice covered regions, because the physical model
oes not allow light penetration through the sea ice, thus preventing the
rowth of phytoplankton below the sea ice (Yumruktepe et al., 2022).

Both models use a representation of the same two phytoplank-
on groups, diatoms and flagellates, which are also responsible for
ost of the phytoplankton productivity and biomass in the NW-BS

egion (Rat’kova and Wassmann, 2002; Kohlbach et al., 2023a). Both
odels derive the NPP from the sum of the product of biomass and

he productivity of each group. However, in BLING, NPP is limited by
emperature, light, and Nutr, whereas in TOPAZ, NPP is only limited
5

y light and Nutr.
2.4. Bioregionalization: K-mean clustering analysis

The goal of the bioregionalization analysis was to identify subre-
gions with distinctly different phytoplankton phenological character-
istics in NW-BS. K-mean clustering analysis is a statistically robust
method that allows regionalization of gridded data products based on
different spatial patterns in seasonality between grid cells. Bioregional-
ization analysis commonly uses Chl-a derived from remote sensing tools
and normalized in space. The method has been successfully applied to
identify drivers of the pelagic ecosystem in the Southern Ocean (Ardyna
et al., 2017), the Labrador Sea (Marchese et al., 2019), the North
Sea (Silva et al., 2021) and the eastern Pacific Ocean (Marchese et al.,
2022). However, in NW-BS, remote sensing products have large tempo-
ral and spatial discontinuities due to sea ice and cloud cover (Fig. 2a,b).
Therefore, we used simulated seasonal Chl-a climatology (1980–2021)
rom BLING averaged from depth 0–100m to match the integration
epth of the NPP analysis (noting that similar results were obtained
f using 0–30m layer).

The K-mean clustering analysis considers the Euclidean distance
o form the clusters. We imposed a maximum of 40 clusters and
00 iterations. The best number of clusters was selected based on a
ilhouette score of at least 0.6, a minimal number of negative silhou-
tte values, a similar number of grid points within each cluster, and
ollowing Ardyna et al. (2017) we also selected statistically different
hytoplankton bloom parameters. Phytoplankton bloom parameters
ere defined using the BLING 5-day mean time series smoothed with
10-day running mean (Silva et al., 2021). A grid cell was defined as
aving a phytoplankton bloom when the maximum Chl-a concentration
as greater than 0.5mgm−3 (Perrette et al., 2011; Silva et al., 2021).
or grid cells with a phytoplankton bloom, we determined the peak
ay of the bloom as the day of maximum Chl-a concentration and
stimated the seasonality of the bloom as the difference between the
nnual maximum and minimum Chl-a concentrations (Ardyna et al.,
017). Significance was evaluated using the Kruskal–Wallis H-test (H-
est) and reported using the level of significance (𝑝) and Chi-squared
𝜒2) value with the groups’ and error’s degrees of freedom of the groups
nd the error (𝑑𝑓 ) indicated as subscript and separated by a comma
that is, 𝜒2

𝑑𝑓1,𝑑𝑓2).
Polygons were created for each cluster (subregion) and used to

ompute regional averages for each data and output source. In situ
tations within each subregion were combined to obtain regional av-
rages, assuming that the discrete station(s) was representative of the
ubregion. The Takuvik NPP was poorly available in the north (Fig. 3),
o we assumed that the few available grid cells were representative of
he northern region.

.5. Data analysis

We cross-compared Chl-a, NPP, and SIC at each station using avail-
ble estimates from in situ, remote sensing, and model outputs. A
ignificant Pearson linear correlation was used to measure similarities
etween the output and the data. We considered significance as 𝑝 ≤
.05. For Chl-a cross-comparison purposes, we assumed that the MODIS-
Chl-a concentration approximated the values within the active mixing

ayer. The averaged active mixing layer is 30m in the ice-covered
egion of the Barents Sea (Peralta-Ferriz and Woodgate, 2015) and
long the Nansen Legacy station transect (ranging 10 – 50m between
arch and September; Sandven et al., 2023). The mixing depth of
0m was supported by regional observations of phytoplankton biomass
oncentrating in the upper 30m of the water column (Reigstad et al.,
002), and approximate the averaged depth of the euphotic zone in
he NW-BS region (28.5m in Table 2 of Vernet et al., 1998). Therefore,
hl-a concentrations from other sources were averaged from 0 to 30m

depth.
The NPP from the in situ and the model output were interpolated
from the surface to 100m using 1m bins, then integrated from the depth

https://doi.org/10.48670/moi-00003
https://doi.org/10.48670/moi-00003
https://doi.org/10.48670/moi-00003
https://doi.org/10.48670/moi-00003
https://doi.org/10.48670/moi-00003
https://doi.org/10.48670/moi-00001
https://doi.org/10.48670/moi-00001
https://doi.org/10.48670/moi-00001
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of 0 to 100m to match the processing of the Takuvik NPP data set. The
depth of 100m is a good choice for NPP because processes that affect
phytoplankton, such as surface heating and mixing, can penetrate to al-
most 100m (60–80m) in the Barents Sea (Loeng, 1991; Wassmann et al.,
2006a). The daily values of the NPP were integrated for each season
and year. BLING 5-day mean NPP output was interpolated daily prior
to temporal integration. Temporal interpolation was also necessary to
fill the gaps in the seasonal climatology of the Takuvik output and in
situ NPP data. We use the smoothing spline interpolation method (de
Boor, 1978) when the grid cell/station had a fair amount of data before
and after the maximum in the data (e.g., stations P1, P3, P5). However,
when there were significant temporal gaps, this interpolation method
was inadequate (e.g., stations P2, P4, P6, P7, SICE18, SICE19, PICE1).
Thus, we develop a seasonal function for each grid cell using the BLING
output (details in the Appendix Text A). The BLING seasonal function
was used to interpolate when temporal gaps in remote sensing and in
situ data were significant. BLING was chosen over TOPAZ due to its
longer integration period and because it performed better in seasonal
ice-covered regions due to the limitations related to under-ice blooms
in the TOPAZ biogeochemical model (Yumruktepe et al., 2022).

The trends in the time series were calculated using linear regression
and are reported with slope (𝑏), and coefficient of determination (𝑟2).
Interannual variability in time series from model output and remote
sensing data was compared using the Pearson linear correlation co-
efficient (𝑟) on the detrended time series (Mohamed et al., 2022a);
note that the time series presented in the figures are non-detrended.
We identified periods of significant change (e.g., regime change) in
the time series using the MATLAB 2022b change point analysis pack-
age (Lavielle, 2005; Killick et al., 2012). We focus on mean statistics
to find the most abrupt change in the time series using a minimum of
10 years between the change points. The significant difference between
the medians of the two periods was then assessed and reported by the
H-test.

Taking into account only the BLING output, normalized Principal
Component Analysis (PCA) was used to identify patterns in the time
series 1980–2021. Stepwise linear regression analysis was used to derive
the most parsimonious model to predict the NPP. The input to the
model included the physical variables listed in Table 1, and avoided
multicollinearity by excluding predictor variables with a Variance In-
flation Factor (VIF) > 10 following Goldsmit et al. (2021). Stepwise
linear regression analysis used forward and backward iteration methods
to include (or exclude) variables in (from) the model, based on the
selection criterion of the adjusted r2 improving by at least 0.1, while
maintaining model significance. Highest adjusted-r2 and lowest Root
Mean Square Error (RMSE) identify the best models.

3. Results

3.1. Cross-evaluation of output and data

A comparison of the SIC output of the models with remote sensing
data revealed that both BLING and TOPAZ had a good representation
of the SIC with a high Pearson correlation (𝑟 > 0.90; Fig. 4a, b).
Both models also captured the increase in SIC and shortening of open
water seasons along the Nansen Legacy station transect with increasing
latitude (Figure 1.5). In BLING sea ice melted later in spring and formed
earlier in autumn, resulting in higher SIC (11 ± 2%) and longer ice-
covered seasons relative to remote sensing data. However, the BLING
SIC output from 1980 to 2021 captured the observed interannual vari-
ability of SIC in the NW-BS (Pearson correlation coefficient: 𝑟 = 0.8,
𝑝 < 0.05; Figure 1.2). The rate of SIC loss during the same period in
BLING was 5%decade−1 (linear regression: 𝑟2 = 0.3, 𝑝 < 0.05), nearly
identical to the remote sensing-derived estimate of 6%decade−1 (linear
regression: 𝑟2 = 0.5, 𝑝 < 0.05; Figure 1.2).

A comparison of model Chl-a and NPP output with remote sensing
and in situ data revealed a better overall representation of the data
6

Fig. 4. Evaluation of BLING (a,c,e) and TOPAZ (b,d,f) model output versus remote
sensing (black) and in situ data (green). Scatter plots of: (a–b) daily SIC from
passive microwave sensors (1980–2021; Comiso, 2017), (c–d) daily Chl-a concentration
averaged 0–30m depth, and (e–f) daily NPP integrated 0–100m depth. Displaying
Pearson correlation coefficient 𝑟 and significance level 𝑝 between model output and
observational data. Data points are classified as ice-free (no outline, modelled annual
SIC < 50%) and ice-covered (red outline, modelled annual SIC > 50%). The diagonal
grey line in a–f is the ideal 1 ∶ 1 relationship between the model and the observations.

by the BLING model compared to the TOPAZ model in seasonally
ice-covered waters (Fig. 4c–f). Chl-a was poorly represented by both
models, both of which generally overestimated Chl-a concentration at
low values and underestimated it at high values (Fig. 4c, d). However,
large uncertainties arise from the Chl-a estimates, as there was also
little agreement between Chl-a from MODIS-A and the in situ data
(𝑟 = 0.23, 𝑝 > 0.05).

NPP was much better represented by the two models, with a sig-
nificant Pearson correlation between the output and data (𝑟 = 0.52 in
BLING and 𝑟 = 0.30 in TOPAZ; Fig. 4e, f). However, BLING consistently
overestimated NPP in relation to observed data, and TOPAZ had a large
underestimation error in ice-covered waters (e.g., red circles in Fig. 4a–
d). The Pearson correlation between BLING output and data was higher
if only in situ data was considered (Chl-a concentration: 𝑟 = 0.60,
𝑝 < 0.05; NPP: 𝑟 = 0.73, 𝑝 < 0.05). BLING captured some aspects of the
seasonality of in situ NPP and Chl-a but overestimated its magnitude
(Figures 1.3 and 1.4).

The modelled seasonality of the NPP and Chl-a concentrations at
each station was difficult to cross-evaluate due to the large temporal
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Table 3
Phytoplankton net primary production (NPP) in each subregion of the Northwestern Barents Sea (NW-BS). Regional mean of integrated annual
and depth (0–100 m) NPP (𝐠𝐂 𝐦−2 𝐲𝐫−1) with standard deviation, or range provided when available. Source data type numerical model (NM),
remote sensing (RS). If the estimate is not available, it is marked as n.a.

Source Type Period Atlantic Subarctic Arctic

BLING NM 1980–2021 118 ± 30 82 ± 23 47 ± 12
TOPAZ NM 2019–2021 45 ± 10 24 ± 3 10 ± 2
Takuvik RS 2003–2011 78 ± 29 65 ± 15 18 ± 10
In situ 14C 2018, 2019 35 ± 14 43 37 ± 8
Literaturea NM/RS 1981–2011 107 ± 63 88 ± 17 41 ± 23

Reigstad et al. (2011) NM 1995–2007 93–121 n.a. 50–60
Wassmann et al. (2006a,b) NM 1981, 1984, 120–160 75–100 40–60

1998, 1999
Dalpadado et al. (2014) RS 1998–2011 167 n.a. 44
Pabi et al. (2008) RS 1998–2006 10–20 n.a. 1–10

a Mean does not consider outliers (more than 3 standard deviations from the mean).
gaps in the observed data (Figs. 2 and 3). Seasonal cycles were based
on the climatology of the available periods in each data set. In TOPAZ
the bloom was more abrupt and later relative to BLING, which better
reflected the seasonality of remote sensing, particularly in the southern
stations with more frequent data (Figures 1.3 and 1.4). The BLING
model captured the length of the growing season in relation to the
observations (Figures 1.3 and 1.4). However, the observed seasonality
in the in situ data is skewed towards the model output as the snapshot
measurements were extrapolated using the BLING seasonal function
(Text A).

The seasonally integrated NPP of the model and the data (Fig. 5)
suggest that summer was the period with the highest NPP (June–
August, 74 ± 9% of the annual NPP), followed by spring (March–May,
13 ± 10% of the annual NPP), and autumn (September–November,
13 ± 7% of the annual NPP). Seasonally integrated NPP showed a
strong latitudinal gradient with a higher NPP in the southern stations
compared to the northern stations for the climatology estimates of
BLING, TOPAZ, and Takuvik. In situ data showed that the NPP in-
creased from P1 to P4 and then decreased towards the north. The in
situ NPP estimates for the P4 station had an exceptionally high NPP.
Comparing the annually integrated NPP between model output and ob-
servations (Fig. 5d), BLING climatology overestimated the annual NPP
in almost all stations (BLING vs. Takuvik mean ± standard deviation:
21 ± 18 gCm−2 yr−1; RMSE = 27; BLING vs. in situ: 27 ± 27 gCm−2 yr−1;
RMSE = 36.7), while the opposite was true for TOPAZ climatology
(TOPAZ vs. Takuvik: −14 ± 12 gCm−2 yr−1; RMSE = 18; TOPAZ vs. in
situ: −11 ± 17 gCm−2 yr−1; RMSE = 19).

3.2. NW-BS subregion NPP estimates and trends

The k-mean clustering analysis of the BLING Chl-a output suggested
a division of NW-BS into three subregions (Fig. 6). We classified the
subregions as Atlantic, Subarctic, and Arctic based on geographical
area (Fig. 6a). Each subregion has unique seasonal cycles of Chl-a
concentration (Fig. 6b) and significantly different phytoplankton bloom
parameters (Fig. 6c–e; Table 13). The peak in Chl-a concentration was
10 and 30 days earlier in the Atlantic relative to the Subarctic and Arctic
subregions, respectively. The annual mean Chl-a concentration in the
Atlantic subregion was 30% and 50% higher than in the Subarctic and
Arctic subregions, respectively. The seasonality of Chl-a concentration
was highest in the Atlantic, followed by Subarctic and Arctic subregion.

The NPP regionally averaged and annually integrated followed a
decreasing gradient from south to north, with the largest NPP in
the Atlantic relative to the Subarctic and Arctic subregions based
on the output of BLING and TOPAZ, Takuvik, and published val-
ues (Fig. 7; magnitudes in Table 3). Interestingly, in situ estimates
did not reveal differences between subregions, however, they orig-
inated in two different years with strongly different environmental
settings (Amargant-Arumi et al., 2023). For example, in situ estimates
of the integrated NPP in the Atlantic subregion were 48.6 gCm−2 yr−1 in
7

Fig. 5. Time and depth-integrated NPP at each station estimated by BLING (blue),
Takuvik (black), TOPAZ (orange), and in situ (green). Depth integration (0–100m).
Temporal integration periods are (a) spring: March to May, (b) Summer: June to August,
(c) Autumn: September to November, and (d) annual: January to December. Standard
deviations are included when possible. For in situ and Takuvik the estimates are based
on the fitted seasonal cycles (solid line in Figure 1.3). Note the different 𝑦-axis on each
panel.

2018 and 20.8 gCm−2 yr−1 in 2019. Also for the Arctic subregion, the NPP
in 2018 (45.5 gCm−2 yr−1) was higher than for 2019 (27.6 gCm−2 yr−1).
In the Subarctic subregion, the regional and annual NPP estimate was
derived from a measurement in the late summer of 2019.
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Fig. 6. Bioregionalization results for the NW-BS using BLING output. (a) Spatial pattern with symbols represent sampling stations as in Fig. 1. (b) Seasonal climatology of Chl-a in
each subregion showing mean (solid line) and standard deviation (shading). Vertical black lines denote the temporal boundaries of the four seasons as defined in this study. (c–d)
Parameters of the phytoplankton bloom: (c) Peak day, (d) annual mean, and (e) seasonality (annual maximum minus annual minimum). Black asterisk symbols in (c–d) indicate a
significant difference between subregions (Table 13) and excluding outliers (red plus-symbols). The lower and upper edges of the box are the 25 and 75 percentiles, respectively.
The error bars denote the maximum and minimum values. The middle lines denote the medians, and the black-filled circles denote the means.
The BLING and Takuvik estimates were closest to published values
that were derived from a combination of output and remote sensing
data (Table 3). Relative to published values, BLING overestimated the
NPP in the Atlantic and Arctic subregions by 11 and 6 gCm−2 yr−1,
respectively, and underestimated it in the Subarctic subregion by
6 gCm−2 yr−1. However, Takuvik and TOPAZ consistently underesti-
mated the published values by approximately 25 and 50 gCm−2 yr−1,
respectively, in each subregion.

There were no long-term temporal trends in the annual NPP of
BLING (1980–2021) or Takuvik (2003–2011) in any subregion. However,
our analysis of BLING time series including NPP alongside the physical
variables from Table 1, detected a change point in 2004 in the Atlantic
subregion. The BLING time series showed a step increase in NPP in
the Atlantic subregion in 2004, which coincided with a step decrease
in SIC (Fig. 8). Between the two periods the NPP increased by 16%
(median: 𝑀80−03 = 111.2 gCm−2 yr−1, M04−21 = 132.4 gCm−2 yr−1; H-test
𝜒2
1,41 = 10.6, 𝑝 < 0.01), while the SIC decreased from a median of 39%

before the regime shift to 11% after the regime shift (H-test 𝜒2
1,41 = 24.6 ,

𝑝 < 0.01).
The BLING and Takuvik data sets had high interannual variability

in the annual NPP (Fig. 8a–c). The interannual variability of BLING’s
time series was similar to that of the Takuvik data over the overlapping
period (2003–2011) in the Arctic subregion, but not in the Atlantic or
Subarctic subregion. This was confirmed by a high Pearson correlation
between the time series of BLING and Takuvik NPP in the Arctic
subregion (𝑟 = 0.78; 𝑝 < 0.05), but low in the Atlantic (𝑟 = −0.57; 𝑝 =
0.11) and Subarctic (𝑟 = 0.27; 𝑝 = 0.48) subregions. Strong interannual
variability driven by environmental settings was also evident in the in
situ data (see above). The interannual variability of SIC (1980–2021)
8

Fig. 7. Climatology of annual and depth-integrated (0–100 m) NPP in the NW-BS
averaged over each subregions. Literature estimates combine remote sensing and model
output and include different periods between 1981 to 2011 (sources listed in Table 3).
The period considered in BLING 1980–2021, Takuvik 2003–2011, TOPAZ 2019–2021, in
situ 2018–2019. For in situ and Takuvik the estimates are based on the fitted seasonal
cycles from BLING (Text A). Values for NPP in Table 3.

in BLING followed that of remote sensing-derived SIC data in each
subregion (Fig. 8d–f). The Pearson correlation for the detrended time
series was high in the Atlantic (𝑟 = 0.81; 𝑝 < 0.05), Subarctic (𝑟 = 0.69;
𝑝 < 0.05), and Arctic subregions (𝑟 = 0.68; 𝑝 < 0.05). BLING output also
captured the observed rate of SIC loss between 1980 and 2021 in all
subregions. BLING SIC decreased in the Atlantic subregion at a rate of
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Fig. 8. Interannual variability of NPP and SIC on the three subregions of the NW-BS (solid line is the mean, shaded area is the standard deviation). In (a) and (d) vertical line
marks an abrupt change in slope and mean of BLING NPP time series, and in (a) horizontal dotted lines are period mean.
−8%decade−1 (𝑟2 = 0.4; 𝑝 < 0.05), in the Subarctic subregion at a rate of
−5%decade−1 (𝑟2 = 0.2; 𝑝 < 0.05) and in the Arctic subregion at a rate
of −2%decade−1 (𝑟2 = 0.1; 𝑝 < 0.05). Similarly, remote sensing SIC data
suggest a rate of −7%decade−1 (𝑟2 = 0.4; 𝑝 < 0.05) in the Atlantic and
Subarctic subregions, and a rate of −5%decade−1 (𝑟2 = 0.3; 𝑝 < 0.05) for
the Arctic subregion.

The seasonal NPP estimated by the BLING output (Figure 1.7)
suggested that in the three subregions, summer was the period of
highest phytoplankton NPP, contributing 54±8%, 66±9%, and 73 ± 5%
of the annual NPP in the Atlantic, Subarctic, and Arctic subregions,
respectively. Spring was the second-highest contributing period with
35 ± 6%, 22 ± 8%, and 16 ± 5% of the annual NPP in the Atlantic,
Subarctic, and Arctic subregions, respectively. The contribution was
lowest in autumn (approximately 11 ± 3% in the three subregions) and
almost null during winter (not shown).

In the Atlantic subregion, there was small positive trend in spring
NPP (linear trend: 6.8 gCm−2 season−1 decade−1, 𝑟2 = 0.2, 𝑝 < 0.05),
driven by a step increase in spring NPP after 2004 (median: M1980–2003 =
33.8 gCm−2 spring−1, median: M2004–2021 = 56.0 gCm−2 spring−1; H-test
𝜒2
1,41 = 17.8, 𝑝 < 0.01). In the Subarctic subregion, there was a small

negative trend in summer (6.3 gCm−2 season−1 decade−1, 𝑟2 = 0.2, 𝑝 <
0.05) and autumn (0.6 gCm−2 season−1 decade−1, 𝑟2 = 0.1, 𝑝 < 0.05).
In the Arctic subregion, there was a small negative trend in summer
(3.2 gCm−2 season−1 decade−1, 𝑟2 = 0.2, 𝑝 < 0.05).

3.3. Physical drivers of NPP

A PCA and stepwise regression analysis were performed to identify
the physical variables that accounted for most of the interannual vari-
ability in each subregion and season (Figs. 9–11). Principal Components
(PC) 1 and 2 explained at least 50% of the interannual variability
in the physical environment between years, and individually captured
42 ± 13% and 24 ± 8% of the variance, respectively. In the PC space
of all subregions and seasons, we distinguish between the years before
the simulated change point in the Atlantic subregion as triangles (1980
–2003), and the years after the change point as circles (2004 –2021).
Consistently, years before the change point clustered closer together
relative to the later period. In the PC space, the distance between points
is analogous to the difference between individual years with respect
to the variables considered. Thus, the two clusters indicated different
environmental conditions before and after 2004, with years after 2004
having higher environmental heterogeneity.

AW and surface temperature (T) emerged as the dominant vectors
along the direction of separation between the two periods clustered in
9

every subregion and season. Therefore, these variables played a crucial
role in distinguishing the two periods. The variables dominating the
environmental heterogeneity within each period can be identified by
having the largest vector along the direction of the spread of individual
years within each cluster. SIC, T, and PAR emerged consistently as the
dominant vectors along the direction of the spread of the triangles;
therefore, these variables contributed the most to the environmental
heterogeneity from 1980 to 2003. The number of days with light (Lys)
and surface Nutr concentration consistently emerged as the largest vec-
tors along the direction of the spread of the circles, indicating that these
variables contributed the most to the environmental heterogeneity from
2004 to 2021.

Additionally, the colour of the symbols within the PC space served
to highlight the differences in NPP between years (warmer colour indi-
cating higher NPP). In the Atlantic subregion, in particular, the annual,
spring, and summer panels (Fig. 9a–c) showed that years after 2004
had higher NPP compared to years before 2004. SIC, iceH, PAR, AW
volume and 𝑇 emerged as the dominant vectors along the direction of
the NPP gradient, suggesting that these contributed more significantly
to the differences in NPP between the two periods. SIC, iceH vectors
oppose the gradient of the NPP thus their association with NPP was
negative, while PAR, AW volume, and 𝑇 vectors follow the gradient of
the NPP thus their association was positive.

Stepwise linear regression allowed us to isolate the best set of
NPP predictors for each subregion and season Table 1, but excluding
variables with a high colinearity index allowed us to isolate the best
set of NPP predictors for each subregion and season (Table 4). The best
predictor of annual NPP in the Atlantic subregion was the depth of
the maximum mixing layer, MXD (positive association), while in the
Subarctic and Arctic subregions, PAR and Nutr (positive association).
The best predictor of spring NPP in the three subregions was PAR
(positive association). However, none of the variables considered could
achieve a good level of predictability of the NPP in autumn and summer
in the Atlantic subregion (for example, the models are not significant
or had low adjusted 𝑟2). The summer NPP in the Subarctic subregion
was best predicted by the number of open water days with light (OWL;
positive association) and the volume of AW (negative association),
while the autumn NPP was best predicted by MXD (positive associa-
tion). Summer NPP in the Arctic subregion was best predicted by OWL
(positive association) and snow depth (snowH; negative association),
while the autumn NPP was best predicted by PAR and MXD (positive
association).

These NPP models highlighted the general importance of multiple
factors, and the timing of these factors, for positive changes in NPP
throughout the NW-BS. The absence of SIC as a predictor of NPP
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Fig. 9. Principal component analysis (PCA) of environmental variability in the Atlantic subregion of the NW-BS considering four seasons (a) annual, (b) spring, (c) summer, and (d)
autumn. Symbols indicate years before 2004 (triangles) and after 2004, inclusive (circles). The colour within each symbol is the normalized NPP [range 0–1]. The PCA considered
the standardized physical variables from BLING output as listed in Table 1.The variance explained by the first two principal components is given in the bottom left of each panel.

Fig. 10. Same as Fig. 9 but for the Subarctic subregion.
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Fig. 11. Same as Fig. 9 but for the Arctic subregion.
Table 4
Stepwise linear models to predict NPP from selected variablesa in each season and subregion of NW-BS.

Model Equation Adjusted 𝑟2 RMSEb

Atlantic annual NPP = 28.2 + 0.6 × MXD 0.46 22.2
Atlantic spring NPP = −5.3 + 66 × PAR 0.90 5.69
Atlantic summer NPP = 70 − 357 × snowH 0.25 13.5
Atlantic autumn Not significant

Subarctic annual NPP = −64.8 + 190.4 × Nutr + 51.7 × PAR 0.64 13.9
Subarctic spring NPP = −3.0 + 54.4 × PAR 0.88 3.97
Subarctic summer NPP = 41.9 + 2.8 × OWL − 0.1 × AWz0 − 0.01 × AWz100 0.46 11.9
Subarctic autumn NPP = 3.4 + 0.1 × MXD 0.43 1.52

Arctic annual NPP = 41.4 + 394 × PAR × Nutr 0.76 6.04
Arctic spring NPP = −6.1 + 64.0 × PAR 0.86 1.35
Arctic summer NPP = 31.6 + 4.8 × OWL − 156 × snowH 0.46 6.79
Arctic autumn NPP = 10.0 + 0.01 × MXD + 12.8 × PAR 0.73 0.84

a Variables’ definition and units are listed in Table 1.
b RMSE abbreviation stands for Root Mean Squared Error.
was surprising. However, this variable had a high colinearity index,
which led to its exclusion as a predictor variable. SIC was negatively
correlated with PAR and maximum mixing layer depth (MXD), which
are variables selected within the stepwise linear models presented in
Table 4.

4. Discussion

4.1. Limitations of the datasets

The data sets used here have limitations regarding their temporal
resolution, methodology, and assumptions (Table 5). These limitations
are a source of uncertainties and are the main reasons for the dif-
ferences in the quantitative estimates of NPP and Chl-a presented
in Table 3 and Figs. 4, 5 and 7. There is greater certainty in the
qualitative aspects of the results than in absolute values, since seasonal
11
and regional patterns, such as seasonality and bioregionalization anal-
ysis, show convergence into distinct patterns (e.g., Fig. 6, 1.3–1.5). In
this sense, the cross-comparison of the four data sets with published
estimates was essential to highlight the limitations and advantages of
each data set within the NW-BS. We start our discussion by addressing
how limitations can affect results and propose ways in which we may
reduce their impact in future studies.

4.1.1. The need for more frequent sampling
The poor availability of in situ data in NW-BS, combined with

temporal and spatial variability, limits, at various levels, the use of
single data sources as reference points. However, in situ data are often
used as a reference to evaluate the range of magnitude and seasonality
of variables from other data and output sources. We found that extrap-
olation of available in situ data (one observation per year per station)
was not sufficient to resolve the observed seasonal variability (Reigstad
et al., 2002; Matrai et al., 2007), and due to the methodology used
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Table 5
Summary of limitation of the data sources.

Dataset Type Sources of uncertainties

BLING NM (1) no advection of biomass; (2) convert biomass to
carbon using a fixed carbon to phosphate ratio of 106;
(3) derived Chl-a from biomass as a function of light and
iron concentration; (4) derive NPP from biomass; (5) the
biological model depends on the representation of
physics.

TOPAZa NM (1) no biomass under sea ice; (2) Chl-a is derived from
carbon (biomass) as a function of light and Nutr; (4)
assimilation of Chl-a using a Gaussian function to
extrapolate from the surface to 100 m; (5) NPP is not
temperature limited; (6) the biological model depends on
the representation of physics.

Takuvik RM (1) space and time gaps; (2) use a Gaussian function to
extrapolate Chl-a from the surface to 100 m; (3) convert
Chl-a to carbon using a fixed carbon to Chl-a ratio of 90;
(4) derive NPP from Chl-a; (5) NPP is not temperature
limited.

In situ 14C (1) space and time gaps; (2) may include the impact of
transient events, such as storms.

a TOPAZ is coupled with ECOSMO biogeochemical model.

here, it was biased towards the seasonality of the BLING model (details
in Text A). However, the integrated annual NPP derived from this
extrapolation was consistent with other data sources in this study,
except for station P4 (Fig. 5). The relatively high NPP of this station
disrupted the gradual increase in NPP from south to north, which
contrasted with the results of other data presented in this study and
published elsewhere (e.g., Wassmann et al., 2006a; Pabi et al., 2008;
Reigstad et al., 2011; Arrigo et al., 2011).

In general, the in situ NPP was at the low end of the estimated
range (Fig. 5 and Table 3). However, based on measurements from 2018
nd 2019, in situ NPP may represent extremes of the climatology state,
hile the NPP estimated by the other data sources are averaged over

onger periods and thus may be more representative of the climatology
tate. Alternatively, the low annual NPP of the in situ data could be
xplained by the fact that the NPP was limited in Nutr at the time of
ampling (summer) and therefore carried the limitation of Nutr to the
nnual estimate. Previous work has suggested that low phytoplankton
roduction can be explained by a stronger Nutr limitation (Matrai
t al., 2007), which may be associated with the retreat of sea ice
reating oligotrophic conditions in summer (Kohlbach et al., 2023a).
urthermore, we found that the annual in situ NPP in 2018 was higher
han in 2019, yet Amargant-Arumi et al. (2023) suggests that the
wo years had similar production in summer. Thus, the Nutr-limited
ummer measurements do not reflect the annual behaviour of NPP, and
ay not be sufficient to derive the annual estimates that were, in the

ontext of this paper, used to evaluate the magnitude of data/output
oming from other sources.

Clearly, seasonal in situ sampling including spring, summer, and
utumn is required to estimate annual new/regenerated production
albeit still limited by spatial restrictions). We recommend spring and
ummer should be high-priority periods for field sampling, as they have
he highest contribution to the annual NPP (Fig. 5). Interannual vari-
bility in the duration and timing of phytoplankton blooms may remain
n inherent challenge in field sampling. For example, the difference of
0 to 30 days in the timing of the bloom between the ice-free region
Atlantic subregion) and the ice-covered regions (Subarctic and Arctic
ubregions; Fig. 6c) will likely cause logistical problems in the planning
f field campaigns. This strong latitudinal gradient in the timing of the
loom corroborates the observations in 1999 (Matrai et al., 2007).

Additionally, individual weather patterns, cloudiness, mixing, Nutr
pwelling, development of zooplankton, etc., will still impact the in situ
12

easured values. This, highlighting the value of using models to extend
and contrast from the single-day in situ measurement to seasonal and
interannual patterns as done in this study. We suggest that novel in situ
measurement approaches using profiling floats should be used here to
achieve daily estimates of NPP over complete seasons throughout the
region (Stoer and Fennel, 2023).

4.1.2. Significant gaps in the remote sensing coverage
Gaps in the Takuvik NPP output highlighted the regional limitation

of remote sensing products in NW-BS due to the high cloud cover
and sea ice. Therefore, we cannot recommend them to investigate the
seasonal or temporal dynamics of phytoplankton in the NW-BS. Alterna-
tively, the gaps could be filled using trained algorithms (e.g., Bélanger
et al., 2013; Dalpadado et al., 2014; Arrigo and van Dijken, 2015),
but not without creating uncertainties in trends (Babin et al., 2015).
Remote sensing data had low NPP values in the Arctic subregion,
but this was biased by the lack of data due to the presence of sea
ice. In addition, the vertical extrapolation of surface Chl-a to depth
100m used by remote sensing to calculate NPP has a tendency to
underestimate NPP in waters with a sub-surface Chl-a maximum (Lee
et al., 2015); which is a typical feature of our study region (Sandven
et al., 2023). In the near future, remote sensing data sets could be
complemented with data from ARGO float (see above), moorings, and
autonomous underwater vehicles to form a 3D view of the ocean that
could help close the gaps and increase the certainty of remote sensing
NPP estimates and data assimilation models like TOPAZ.

4.1.3. Structural differences: Chl-a/biomass ratios, sea ice, and biomass
advection

The differences between the NPP and Chl-a in the output of the
model, remote sensing and in situ data may be due to the selection
of photosynthetic parameters and stoichiometry (Schrum et al., 2006).
In particular, uncertainties are associated with the variability of Chl-
a/biomass ratios. Remote sensing and in situ data calculate the Chl-a
concentration from ocean colour, observed fluorescence of in situ flu-
orometers, or during expeditions using fluorometric determination of
Chl-a in filtered seawater samples. However, remote sensing and in situ
data calculate NPP using a fixed Chl-a to carbon ratio, which can lead
to inaccuracies in annual integrated NPP estimates because this ratio is
a function of light and Nutr (e.g.; Cloern et al., 1995; Burt et al., 2018).
Meanwhile, the models derive Chl-a and NPP from biomass, which has
a layer of uncertainty related to errors in the model’s representation
of ocean physics. The models derive Chl-a concentration taking into
account the variable Chl-a to carbon ratio as a function of Nutr and
light limitation. However, this can also introduce errors in the Chl-a
estimates, which may explain its poorer cross-comparison relative to
NPP (Fig. 4c–f).

Uncertainties in the biomass estimates of these coupled ocean-
biogeochemical models are also sensitive to the representation of ocean
physics, particularly sea ice and mixing (Mousing et al., 2023), and
structural differences between the two models associated with the cal-
culations of advection and turbulent exchanges and in biogeochemical
gains and losses. TOPAZ assimilates some of the ocean’s physical and
biological properties, leading to a relatively good comparison with
remote sensing NPP in the ice-free region (Fig. 4). However, TOPAZ
underestimated the NPP in seasonally ice-covered regions due to a
lack of light under sea ice, resulting in zero NPP under sea ice. This
highlighted the advantage of assimilating observed ocean properties,
but also the significant structural limitation of assuming zero biomass
under sea ice. Field observations in NW-BS noted phytoplankton in
the pre-bloom stage under sea ice (Rat’kova and Wassmann, 2002),
with a biomass of 20 gCm−2 under SIC of 20 and 80% (Reigstad et al.,
2002). Elsewhere in ice-covered waters, large phytoplankton blooms
have been observed to develop at very low light levels below the pack
ice (e.g., Assmy et al., 2017; Søgaard et al., 2021). Such blooms may
occur as early as the onset of sea ice melt and extend to open water in

the late spring (Ardyna et al., 2020) and can draw down Nutr before the



Progress in Oceanography 219 (2023) 103160L. Castro de la Guardia et al.

W
t
o
i
m
d
p
p
s
t
w
s
D
o
s
W
D

4

p
2
s
f
t
p
a
o
e
o
(

t
s
B
t
n
s
t
m
P
A
o
e
a
a

i
m
i
t
j
t
s
a

4

b
A
b
b
b
p
t
s
t
(
c
p

m
t
T
A
T
p
s
e
t
l
L
e

c
t
a
t
s
a
R
h
b
t

area becomes ice-free and detectable by satellites (Arrigo et al., 2017;
Ardyna et al., 2020). In fact, PAR under sea ice can be substantially
more than previously considered (Pavlov et al., 2017), and especially
high under new sea ice with a thin snow cover (Kauko et al., 2017).
Improving the representation of light under sea ice will most likely
improve TOPAZ’s NPP estimates in the Arctic subregions.

BLING incorporates a representation of light transmission through
sea ice and enables productivity beneath the ice. However, there is a
delayed melting of sea ice in BLING (Figure 1.5) that may be partially
responsible for a seasonal delay in the peak of NPP. In BLING the
phytoplankton bloom peaked in late May to mid-June, while field
studies suggest that the peak in productivity occurs in spring (mid-
May) after the retreat of sea ice (Vernet et al., 1998; Matrai et al.,
2007). Measurements in the south of NW-BS in 1999 showed that
phytoplankton production followed the retreating edge of the ice, with
the peak day in May at 75◦N, and later in July at 77◦N (Rat’kova and

assmann, 2002; Matrai et al., 2007). Thus, we cannot rule out that
he later bloom in BLING may also be an artefact of regional averaging
ver large latitudinal ranges (e.g., Atlantic subregion latitudinal range
s 75–77.5◦N). Another important structural difference is that the BLING
odel does not consider advection phytoplankton. Vernet et al. (2019)
emonstrated the importance of advected biomass in NPP along current
athways of the AW and suggested that the peak of autochthonous
roduction was June (which is similar to BLING). Thus, the delayed
easonal cycle in BLING could also be a result of not representing phy-
oplankton advection. This seasonal delay in BLING may also explain
hy the period with the highest integrated productivity in the three

ubregions was summer (June–August) instead of spring (March–May).
espite the structural limitations mentioned, the annual climatology
f the BLING NPP was closer to the published values in the three
ubregions than the other data and output used in this study (e.g., Fig. 6
assmann et al., 2006a; Pabi et al., 2008; Reigstad et al., 2011;
alpadado et al., 2014).

.1.4. Advection of biomass and npp north of svalbard
The stations (P6–P7) were located within the main AW advection

athway north of Svalbard (Lind and Ingvaldsen, 2012; Koenig et al.,
016; Lundesgaard et al., 2022; Koenig et al., 2023). The relatively
hallow depth of AW along the continental slope north of Svalbard
acilitates the transfer of its properties (e.g., Nutr, biomass and heat)
o surface waters (Koenig et al., 2016, 2017). Model sensitivity ex-
eriments (Vernet et al., 2019) recently demonstrated that biomass
dvection can significantly enhance NPP along the shelf break north
f Svalbard, where these stations were located. However, we found no
vidence of enhanced NPP at these northern stations compared to the
ther stations along the south-to-north transect in any of our data sets
Fig. 5).

A plausible explanation for the inability to properly resolve advec-
ion in this region could be the poor seasonal and spatial coverage of in
itu and remote sensing (which also affects the TOPAZ model), whereas
LING is inheritable limited as it does not advect biomass. Furthermore,
he strong presence of sea ice at these northernmost stations would
ot allow for increases in phytoplankton NPP, prior to the in situ
ampling, again pointing towards a delay in the phytoplankton bloom
iming with increasing latitude. In situ Chl-a concentration, which had
ore frequent sampling, showed a local increase in biomass at stations
4–P7 (Figures 1.4 and 1.6). The advection of biomass and Nutr in
W has been suggested to explain the regionally higher concentration
f Chl-a, particularly at station P6 (Kohlbach et al., 2023a; Koenig
t al., 2023; Kohler et al., 2023). In support of this, other studies have
lso observed high zooplankton biomass at station P6 supported by
13

dvective biomass (Wold et al., 2023). e
4.1.5. NPP estimates do not include ice algae NPP
The estimates of NPP presented in this study do not include the

contribution of ice algae or the competition for Nutr between phyto-
plankton and ice algae, although both groups are abundant in the ice
covered regions of the Barents Sea (Hegseth and von Quillfeldt, 2022).
The NPP of ice algae has previously been estimated at between 16 and
22% of total NPP in the ice-covered regions of the Barents Sea (Hegseth,
1998), but the exact contribution of ice algae is probably sensitive to
the type, age, and thickness of sea ice (Hegseth and von Quillfeldt,
2022). The suggested range agrees well with observations from other
Arctic regions: 3–25% on the Arctic shelves (Legendre et al., 1992;
Michel et al., 1993; Gosselin et al., 1997), up to 57% in the permanently
ice covered central Arctic Ocean (Gosselin et al., 1997) and 30–40%
n the seasonally ice covered region of the Canadian Arctic based on
odel output (Silva et al., 2021). One future direction would be to

nclude estimates of the contribution of ice algae to NW-BS and quantify
he combined long-term trends of ice algae and phytoplankton NPP
ointly. Based on previous work (Wassmann et al., 2006a), we expect
he contribution of ice algae (autochthonous or allochthonous) to be
mall and obviously spatially limited to the northern parts of the study
rea.

.2. Bioregions confirmed the strong link with the physical environment

Our bioregionalization of NW-BS using simulated phytoplankton
iomass for the period 1980–2021 identified three subregions: (1) an
tlantic subregion with a major bloom peak in spring and a smaller
loom peak in autumn, (2) a Subarctic subregion with only one distinct
loom in spring, and (3) an Arctic subregion with only a summer
loom that was less intense than in the other subregions. The use of
hytoplankton biomass for the regionalization analysis was novel, but
he resulting three subregions support the three main GPP domains
uggested by Wassmann et al. (2010) and Wassmann (2011). Similarly
o these authors, we found (i) a high NPP subregion in the ice-free area
Atlantic subregion), (ii) a moderate NPP subregion in the seasonal ice-
overed area (Subarctic subregion), and (iii) a low NPP subregion in the
ermanently ice-covered area (Arctic subregion).

Our three subregions also have differences in the physical environ-
ent; for example, from south to north, the annual mean SIC increases,

he AW volume decreases, 𝑇 cools, MXD shoals, and PAR decreases.
he boundaries of the subregions largely follow the distribution of AW,
rW and SIC (Ingvaldsen and Loeng, 2009; Wassmann et al., 2010).
hus, it is not surprising, that the resulting three subregions support
revious subdivisions based on distinct physical features, such as sea
urface temperature (Rey, 1991), dominant water masses (Dalpadado
t al., 2014), and sea ice conditions (Mohamed et al., 2022a). All of
hese studies confirmed the strong link between the dynamics of high-
atitude phytoplankton and the physical environment (Ådlandsvik and
oeng, 1991; Wassmann et al., 2006a; Lind and Ingvaldsen, 2012; Koul
t al., 2022).

The estimates of NPP for each subregion were constrained by the
ombination of model output and observational data; which was par-
icularly important given the limitations of the data sets. Taking into
ccount the range in annual NPP estimates (Table 3), we were able
o show an overall negative gradient from the Atlantic to the Arctic
ubregion, which corroborates previously published work from models
nd in situ observations (Wassmann et al., 2006a; Pabi et al., 2008;
eigstad et al., 2011; Dalpadado et al., 2014; Arrigo et al., 2011). The
igher NPP in the southern relative to the northern Barents Sea has
een associated with a higher Nutr, higher PAR, and lower sea ice in
he southern areas relative to the northern areas (Rey, 1991; Reigstad

t al., 2002, 2011).
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4.3. Step change increase in autochthonous NPP

The BLING output suggests that after 2004 the environmental het-
rogeneity increased throughout the NW-BS and was accompanied
y a step increase in NPP in the Atlantic subregion that parallelled
decrease in SIC in the same subregion. In the BLING simulation,

he volume of AW in the three subregions increased between 2003
nd 2015 and could be responsible for the simulated step change in
IC and NPP in 2004 in the Atlantic subregion. A different coupled
hysical–biogeochemical model (1966–2015) also showed an increase in
W influx into the southern Barents Sea between 2001 and 2010, and

dentified it as the main driver of the sudden decrease in SIC that led to
regional increase in NPP (Koul et al., 2022). Our interpretation of the

tep increase in NPP, thus follows the previously noted coupling of high
nterannual and decadal variability of NPP and physical environment,
specially the influx of AW and SIC (Wassmann et al., 2006a; Koul
t al., 2022). However, in the Subarctic and Arctic Subregions there
as no parallel increase in NPP even when SIC also decreased. This

ould be partially explained by the shoaling trends in MXD and lower
urface Nutr in these subregions that opposed the deepening of MXD
n the Atlantic subregion. Slagstad et al. (2015) showed that NPP may
ot increase if increasing AW and decreasing SIC combine with stronger
tratification and lower Nutr replenishment to surface water.

The absence of clear temporal trends in annual NPP for our study
rea in the BLING output (1980–2021) and Takuvik data (2003–2011)
ontrasts with published studies using remote sensing data that sug-
ested that NPP in the Barents Sea increased by 5, 28 and 88%yr−1

or the periods 1998–2010, 1998–2012, 1998–2018, respectively (Bélanger
t al., 2013; Arrigo and van Dijken, 2015; Lewis et al., 2020). However,
his comparison is biased as the other studies filled the spatial and
emporal gaps in the remote sensing data, in contrast to the Takuvik
ata we used (e.g., Fig. 3), thus, adding a layer of uncertainty to the
rends (Babin et al., 2015) that could explain the wide range of NPP
rends estimated by these studies. Additionally, the published positive
rends in NPP considered the whole Barents Sea and could thus be
riven by the disproportional increase in NPP in near-coastal waters
nd the northeastern Barents Sea (NE-BS) (Bélanger et al., 2013; Arrigo
nd van Dijken, 2015; Lewis et al., 2020). These other regions have
stronger influence of river runoff and inflowing AW which can fuel

he NPP by increasing Nutr (Dalpadado et al., 2014; Koul et al., 2022;
rey et al., 2022). Meanwhile, in NW-BS, the stronger influence of Nutr-
oor ArW makes NPP less likely to respond positively to loss of SIC and
ncrease in PAR compared to NE-BS (Slagstad et al., 2015). NPP in NW-
S is also less sensitive to atmospheric warming (e.g., Slagstad et al.,
011, 2015). It should also be noted that the loss of sea ice and thus the
ncrease in light availability for phytoplankton growth has been lower
n the NW-BS relative to the NE-BS (e.g., Arrigo and van Dijken, 2015;
ohamed et al., 2022a), most likely because the strong topographic

teering of the polar front in the NW-BS sends most of the warm AW
o the NE-BS (Oziel et al., 2020).

Increasing the concentration of Nutr is hypothesized to drive the
ore recent increase in NPP throughout the Arctic Ocean (Arrigo and

an Dijken, 2015; Lewis et al., 2020). However, our BLING simulation
ndicates that Nutr increased from 1980 to 2010 but decreased thereafter
n the NW-BS, which could be a major reason explaining our observed
bsence of positive trends in NPP and the seasonal declines in NPP in
he Subarctic and Arctic subregions. Rey (2012) and Hátún et al. (2017)
lso found a declining Nutr in AW entering the southern Barents Sea
1990–2013) and linked it to decadal changes in the depth of deep con-
ection in the western subpolar gyre. However, in the European sector
f the Arctic and north of Svalbard, including our Arctic subregion, a
ata compilation from 1980 to 2016 found no evidence of decreasing
utr in the AW (Duarte et al., 2021). Therefore, it is unclear what
rives the decreasing concentration of Nutr in the BLING output, but
he simulation results suggest that it could be linked to phenological
14

hanges in NPP and connectivity between subregions: the positive trend
in spring NPP in the Atlantic subregion could imply that the peak
productivity is shifting from summer to spring as sea ice decreases in
the model; thus, Nutr-depleted waters are advected north, causing the
negative trend in summer and in autumn NPP in the Subarctic and
Arctic subregions.

Alternatively, the allochthonous influx of biomass is also hypothe-
sized to be positively associated with the increase in NPP throughout
the Arctic in remote sensing (Arrigo and van Dijken, 2015; Lewis et al.,
2020). Using a model simulation Vernet et al. (2019) suggested that
allochthonous biomass is responsible for more than 50% of the gross
primary production along the main current pathways of AW north
of Svalbard. The advection of biomass in the AW current (and thus
allochthonous production) is significantly lower within the interior
NW-BS compared to the north of Svalbard and NE-BS (Vernet et al.,
2019; Oziel et al., 2020). The BLING model does not resolve the
advection of phytoplankton or zooplankton; hence, the absence of
positive NPP trends in BLING could support the hypothesis that the
allochthonous influx of biomass drives the recent increase in NPP,
particularly in the north of the domain.

4.4. Physical drivers of simulated NPP

The NPP drivers varied between the subregions and seasons (Ta-
ble 4), but PAR and MXD were the most important predictor vari-
ables. Other predictors, such as OWL, AW volume, and Nutr, were
seasonally and/or regionally important. Field observations and other
model outputs have suggested a strong correlation between SIC and
NPP (Wassmann et al., 2006a; Matrai et al., 2007; Koul et al., 2022).
However, in the present study, SIC was excluded from most stepwise
regression models due to its high correlation with other predictor
variables; however, this does not imply that there is no association
between SIC and NPP (which is apparent in Fig. 8). The role of SIC is
inherently included in variables like PAR, which is directly dependent
on the presence of ice and the associated snow cover.

We found that the simulated annual NPP in the Atlantic subregion
was best predicted by MXD (positive association) and in the Subarctic
and Arctic by Nutr and PAR (positive associations). The overwhelm-
ing importance of MXD in the Atlantic subregion supports previous
research that identified deepening MXD as one of the main drivers
of increased NPP by increasing Nutr in the southern Barents Sea and
the Arctic Shelf Seas (Wassmann et al., 2006a; Slagstad et al., 2015;
Silva et al., 2021). In the Arctic and Subarctic subregions, BLING
corroborates the hypothesis that Nutr and PAR have a decisive role in
explaining the interannual variability of NPP (Arrigo and van Dijken,
2015; Lewis et al., 2020). The seasonal drivers of NPP varied, but
during the highly productive season, summer, NPP responded posi-
tively to increasing OWL in the Subarctic and Arctic subregions, and
negatively to increasing AW volume and snowH in the Subarctic and
Arctic subregions, respectively. Positive responses to OWL and negative
responses to snowH can be explained by the direct relationship between
these variables and PAR (Leu et al., 2015). Meanwhile, the negative
response of NPP to the volume of AW contradicts the general view
that the presence of AW increases the amount of NPP in the Barents
Sea (Koul et al., 2022). However, in these two subregions, MXD shoaled
in summer at the same time that AW volume increased, suggesting a
strengthening stratification that can negatively affect NPP by reducing
Nutr resupply to surface water (Slagstad et al., 2015).

NPP forms the base of the pelagic marine food web and can be
linked to the energy transferred to higher trophic levels and to the cor-
responding production of harvestable resources (Ottersen and Stenseth,
2001). Thus, as the regional environment becomes more heterogeneous
year-to-year, it raises questions about the implications for the regional
ecosystem. The linear models for NPP presented in Table 4 in addition
to identifying the main drivers of the simulated NPP, could be used as
a first approach to estimate the response of the pelagic ecosystem when

the NPP data are unavailable.
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4.5. Contribution of NW-BS to norwegian fisheries

NW-BS is an important fishing ground for commercial harvested
fish stocks, including herring (Clupea harengus), Atlantic cod (Gadus
morhua), capelin (Mallotus villosus), saithe (Polliachus virens) and had-
dock (Melanogrammus aeglefinus) (e.g., Gjøsæter, 2009). Fish are highly
dependent on secondary production (e.g., zooplankton), and may also
feed on smaller fish and benthic invertebrates. However, seasonal
zooplankton growth is closely coupled with the phytoplankton NPP in
the NW-BS (Kohlbach et al., 2023b). Thus, in an exercise to determine
the importance of NW-BS for Norwegian fisheries, we upscaled the
phytoplankton NPP for the NW-BS area (Fig. 1) and compared it with
the primary production required (PPR, sensu Pauly and Christensen,
1995) to sustain the yields (Y) of some of the main fish species via the
food web. PPR can be estimated using the equation: PPR = Y∕(0.1TL−1);

here TL stands for trophic level and 0.1 is the assumed energy transfer
fficiency.

We calculate the PPR (Table 14) for Atlantic cod, haddock, and
aithe using TL values reported in the Fishbase (https://www.fishbase.
e, the Norwegian fish database) and approximate values for Y of
ome of the main commercial species reported in the last 10 years
n the Norwegian Fisheries Directorate (Fiskeridirektoratet, 2021). We
stimate a PPR of 90 TgC yr−1 to support the yields of these three species
ithin the broad Atlantic–Arctic Ocean (between 30–60◦E and 62–80◦N;
igure 1.8). Arrigo and van Dijken (2015) estimated the total NPP
f 130 TgC yr−1 over approximately the same broad area. Taking into
ccount the model and observations of this study, we estimate that the
otal NPP in NW-BS ranges from 15 to 48×,TgC yr−1, which is within the
ame order of magnitude as the PPR in the broad area of the Atlantic–
rctic Ocean. The results suggest that the current fish catch depends
n a significant fraction (approximately 1∕3) of the NPP in the NW-BS,
mplying that changes in NPP could directly affect the marine harvest.

With this exercise, we highlight the importance of NPP in NW-BS for
orwegian fisheries, bringing attention to the importance of properly
atching geographical and temporal NPP estimates with fishing yields

owards sustainable management of marine resources. Considering that
e did not include other important fishing resources, such as herring
nd capelin, it is rather likely that a much larger fraction of NPP
s required to sustain the Norwegian fisheries’ harvest, leading to
onsiderable pressure on the marine ecosystem. Any future trends on
utochthonous and allochthonous NPP should be incorporated into fish-
ries management to help adjust fishing yields and redirect efforts to
ifferent trophic levels to keep PPR under controlled levels. Therefore,
mproving the methods used to estimate and upgrade NPP to different
ishing areas, including modelling tools, is of utmost importance to the
ustainable management of the Barents Sea marine ecosystem.

.6. Conclusion

We highlight the complexity of estimating annual and seasonal NPP
n the NW-BS using different tools. Although NPP is a key measure
f ecosystem performance and an indicator of the impacts of climate
hange the absence of reliable ground-truth data hampers an accurate
ssessment of its magnitude. Models are practical for NPP estimation
nd trend analysis, however, they again need reliable data for eval-
ation. Therefore, we suggest that more efforts are needed to merge
odel outputs with observations and to compare the various estimation
ethods to refine NPP assessments.

The three delineated regions based on the phytoplankton phenology
ithin the NW-BS highlighted the intimate connection between the
biotic and biotic components of the ecosystem. The spatial diversity
f these subregions yields distinct physical drivers of NPP in seasons
nd spaces. In particular, although we did not detect an increase in
nnual NPP in response to substantial sea ice loss in the three regions,
ither from remote sensing or simulation, after 2004 the simulation
15

itnessed a regime change with increased interannual heterogeneity U
n the physical environment. Further analysis could shed light on the
vents that led to the regime change and its influence on NPP.

Our study brings to light the substantial contribution of the NW-BS
egion to locally harvested fish resources despite its relatively small
ize. Therefore, we cannot overstate the importance of continuing
fforts to predict and understand these ecologically important metrics,
nnual and seasonal NPP.

RediT authorship contribution statement

Laura Castro de la Guardia: Conception and design of study,
nalysis and/or interpretation of data, Writing – original draft, Writing
review & editing. Tania Hernández Fariñas: Conception and design
f study, Analysis and/or interpretation of data, Writing – review &
diting. Christian Marchese: Conception and design of study, Anal-
sis and/or interpretation of data, Writing – review & editing. Martí
margant-Arumí: Acquisition of data and output, Analysis and/or

nterpretation of data, Writing – review & editing. Paul G. Myers:
cquisition of data and output, Analysis and/or interpretation of data,
riting – review & editing. Simon Bélanger: Acquisition of data and

utput, Analysis and/or interpretation of data, Writing – review &
diting. Philipp Assmy: Conception and design of study, Acquisition
f data and output, Analysis and/or interpretation of data, Writing –
eview & editing. Rolf Gradinger: Conception and design of study,

Acquisition of data and output, Analysis and/or interpretation of data,
Writing – review & editing. Pedro Duarte: Conception and design of
study, Analysis and/or interpretation of data, Writing – original draft,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The following data sets were used in this study:
• Polygon of subregions provided as csv file as supporting material

attached to this paper.
• In situ chl-a data in Table 11 and https://doi.org/10.21335/

NMDC-1371694848.
• In situ NPP data Table 11.
• MODIS-A chlorophyll-a data (DOI: 10.5067/AQUA/MODIS/

3M/CHL/2022).
• Percent sea ice and cloud cover fraction (https://hermes.acri.fr/

ndex.php?class=archive).
• SIC derived from remote sensing

https://doi.org/10.5067/7Q8HCCWS4I0R).
• TOPAZ output for NPP and Chl-a concentration (https://doi.org/

0.48670/moi-00003).
• TOPAZ output for SIC (https://doi.org/10.48670/moi-00001).
• BLING model output (http://knossos.eas.ualberta.ca/anha/model.

hp) and contact Paul G. Myers (pmyers@ualberta.ca).

cknowledgements

We acknowledge the excellent support received by the crew of RV
ronprins Haakon and the participating scientists of the Nansen Legacy

ield expeditions. The authors are grateful to the NEMO development
eam and the Drakkar project for providing the model and continuous
uidance, the efforts of NASA Goddard Space Flight Center, Ocean Ecol-
gy Laboratory, the Ocean Biology Processing Group for maintaining
hl-A and SIC data sets, the Takuvik Research Laboratory based at the

niversity of Laval for making available and maintaining the Takuvik

https://www.fishbase.se
https://www.fishbase.se
https://www.fishbase.se
https://doi.org/10.21335/NMDC-1371694848
https://doi.org/10.21335/NMDC-1371694848
https://doi.org/10.21335/NMDC-1371694848
https://hermes.acri.fr/index.php?class=archive
https://hermes.acri.fr/index.php?class=archive
https://hermes.acri.fr/index.php?class=archive
https://doi.org/10.5067/7Q8HCCWS4I0R
https://doi.org/10.48670/moi-00003
https://doi.org/10.48670/moi-00003
https://doi.org/10.48670/moi-00003
https://doi.org/10.48670/moi-00001
http://knossos.eas.ualberta.ca/anha/model.php
http://knossos.eas.ualberta.ca/anha/model.php
http://knossos.eas.ualberta.ca/anha/model.php


Progress in Oceanography 219 (2023) 103160L. Castro de la Guardia et al.
NPP data, the Digital Research Alliance of Canada, Westgrid and Com-
pute Canada (https://alliancecan.ca/en) and the Norwegian Research
Infrastructure Services (NRIS) and Sigma2 (https://www.sigma2.no/)
for computational resources to perform our analysis, simulations, and
archival of model experiments. Special thanks to Tobias Vonnahme for
conducting the 2018 NPP assessments onboard RV Kronprins Haakon,
and to colleagues Melissa Chierici and Elizabeth Jones at the Institute
of Marine Research, Norway and Agneta Fransson at the Norwegian
Polar Institute, Tromsø for their support with the laboratory analysis.
All authors approved the version of the manuscript to be published.

Funding information

This study was supported by the Research Council of Norway
through the project The Nansen Legacy [𝑅𝐶𝑁 #276730]. Further funding
was provided by the Norwegian Metacenter for Computational Science
application 𝑁𝑁9300𝐾 – Ecosystem modelling of the Arctic Ocean around
Svalbard.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.pocean.2023.103160.

References

Ådlandsvik, B., Loeng, H., 1991. A study of the climatic system in the Barents Sea.
Polar Res. 10, 45–50. http://dx.doi.org/10.3402/polar.v10i1.6726.

Amargant-Arumi, M., Müller, O., et al., 2023. Interannual differences in sea ice regime
in the north-western Barents Sea cause major changes in summer pelagic production
and export mechanisms. Prog. Oceanogr. (in press).

Ardyna, M., Babin, M., Gosselin, M., Devred, E., Bélanger, S., Matsuoka, A., Trem-
blay, J.-E., 2013. Parameterization of vertical chlorophyll a in the Arctic Ocean:
impact of the subsurface chlorophyll maximum on regional, seasonal, and annual
primary production estimates. Biogeosciences 10, 4383–4404. http://dx.doi.org/10.
5194/bg-10-4383-2013.

Ardyna, M., Claustre, H., Sallée, J.-B., D’Ovidio, F., Gentili, B., van Dijken, G.,
D’Ortenzio, F., Arrigo, K.R., 2017. Delineating environmental control of phyto-
plankton biomass and phenology in the Southern Ocean. Geophys. Res. Lett. 44,
5016–5024. http://dx.doi.org/10.1002/2016GL072428.

Ardyna, M., Mundy, C.J., Mayot, N., Matthes, L.C., Oziel, L., Horvat, C., Leu, E.,
Assmy, P., Hill, V., Matrai, P.A., Gale, M., Melnikov, I.A., Arrigo, K.R., 2020. Under-
ice phytoplankton blooms: Shedding light on the invisible part of arctic primary
production. Front. Mar. Sci. 7, http://dx.doi.org/10.3389/fmars.2020.608032.

Arrigo, K.R., Matrai, P.A., van Dijken, G.L., 2011. Primary productivity in the Arctic
Ocean: Impacts of complex optical properties and subsurface chlorophyll maxima
on large-scale estimates. J. Geophys. Res.: Oceans 116, http://dx.doi.org/10.1029/
2011JC007273.

Arrigo, K.R., Mills, M.M., van Dijken, G.L., Lowry, K.E., Pickart, R.S., Schlitzer, R.,
2017. Late spring nitrate distributions beneath the ice-covered northeastern chukchi
shelf. J. Geophys. Res.: Biogeosci. 122, 2409–2417. http://dx.doi.org/10.1002/
2017JG003881.

Arrigo, K.R., van Dijken, G.L., 2015. Continued increases in Arctic Ocean primary
production. Prog. Oceanogr. 136, 60–70. http://dx.doi.org/10.1016/j.pocean.2015.
05.002, synthesis of Arctic Research (SOAR).

Assmy, P., Fernández-Méndez, M., Duarte, P., Meyer, A., Randelhoff, A., Mundy, C.J.,
Olsen, L.M., Kauko, H.M., Bailey, A., Chierici, M., Cohen, L., Doulgeris, A.P.,
Ehn, J.K., Fransson, A., Gerland, S., Hop, H., Hudson, S.R., Hughes, N., Itkin, P.,
Johnsen, G., King, J.A., Koch, B.P., Koenig, Z., Kwasniewski, S., Laney, S.R.,
Nicolaus, M., Pavlov, A.K., Polashenski, C.M., Provost, C., Rösel, A., Sandbu, M.,
Spreen, G., Smedsrud, L.H., Sundfjord, A., Taskjelle, T., Tatarek, A., Wiktor, J.,
Wagner, P.M., Wold, A., Steen, H., Granskog, M.A., 2017. Leads in Arctic pack
ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7,
40850. http://dx.doi.org/10.1038/srep40850.

Babin, M., Bélanger, S., Ellingsen, I., Forest, A., Le Fouest, V., Lacour, T., Ardyna, M.,
Slagstad, D., 2015. Estimation of primary production in the Arctic Ocean using
ocean colour remote sensing and coupled physical–biological models: Strengths,
limitations and how they compare. Prog. Oceanogr. 139, 197–220. http://dx.doi.
org/10.1016/j.pocean.2015.08.008, overarching perspectives of contemporary and
future ecosystems in the Arctic Ocean.

Basedow, S.L., Zhou, M., Tande, K.S., 2014. Secondary production at the Polar Front,
Barents Sea 2007. J. Mar. Syst. 130, 147–159. http://dx.doi.org/10.1016/j.jmarsys.
2013.07.015.
16
Bélanger, S., Babin, M., Tremblay, J.-E., 2013. Increasing cloudiness in Arctic damps
the increase in phytoplankton primary production due to sea ice receding.
Biogeosciences 10, 4087–4101. http://dx.doi.org/10.5194/bg-10-4087-2013.

Burt, W.J., Westberry, T.K., Behrenfeld, M.J., Zeng, C., Izett, R.W., Tortell, P.D., 2018.
Carbon: Chlorophyll ratios and net primary productivity of Subarctic Pacific surface
waters derived from autonomous shipboard sensors. Glob. Biogeochem. Cycles 32,
267–288. http://dx.doi.org/10.1002/2017GB005783.

Castro de la Guardia, L., 2018. Modelling the Response of Arctic and Subarctic Marine
Systems To Climate Warming (Ph.D. thesis). University of Alberta, Edmonton,
Canada, http://dx.doi.org/10.7939/R31G0J98H.

Castro de la Guardia, L., Garcia-Quintana, Y., Claret, M., Hu, X., Galbraith, E.D.,
Myers, P.G., 2019. Assessing the role of high-frequency winds and sea ice loss on
arctic phytoplankton blooms in an ice-ocean-biogeochemical model. J. Geophys.
Res.: Biogeosci. 124, 2728–2750. http://dx.doi.org/10.1029/2018JG004869.

Cloern, J.E., Grenz, C., Vidergar-Lucas, L., 1995. An empirical model of the phyto-
plankton chlorophyll : carbon ratio-the conversion factor between productivity and
growth rate. Limnol. Oceanogr. 40, 1313–1321. http://dx.doi.org/10.4319/lo.1995.
40.7.1313.

Comiso, J.C., 2017. Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP
SSM/ISSMIS, version 3. [1980–2021]. http://dx.doi.org/10.5067/7Q8HCCWS4I0R,
[accessed: 2022].

Daewel, U., Schrum, C., 2013. Simulating long-term dynamics of the coupled North
Sea and Baltic Sea ecosystem with ECOSMO II: Model description and validation.
J. Mar. Syst. 119–120, 30–49. http://dx.doi.org/10.1016/j.jmarsys.2013.03.008.

Dalpadado, P., Arrigo, K.R., Hjøllo, S.S., Rey, F., Ingvaldsen, R.B., Sperfeld, E., van
Dijken, G.L., Stige, L.C., Olsen, A., Ottersen, G., 2014. Productivity in the Barents
Sea - Response to recent climate variability. PLOS ONE 9, 1–15. http://dx.doi.org/
10.1371/journal.pone.0095273.

de Boor, C.A., 1978. Practical guide to splines. In: Applied Mathematical Sciences.
Springer, New York, NY.

Deschepper, I., Myers, P.G., Lavoie, D., Papakyriakou, T., Maps, F., 2023. Understanding
the physical forcings behind the biogeochemical productivity of the Hudson Bay
Complex. J. Geophys. Res.: Biogeosci. 128, e2022JG007294. http://dx.doi.org/10.
1029/2022JG007294, e2022JG007294 2022JG007294.

Duarte, P., Meyer, A., Moreau, S., 2021. Nutrients in water masses in the Atlantic
Sector of the Arctic Ocean: Temporal trends, mixing and links with primary
production. J. Geophys. Res.: Oceans 126, e2021JC017413. http://dx.doi.org/10.
1029/2021JC017413, e2021JC017413 2021JC017413.

Efstathiou, E., Eldevik, T., Årthun, M., Lind, S., 2022. Spatial patterns, mechanisms,
and predictability of Barents Sea ice change. J. Clim. 35, 2961–2973. http://dx.
doi.org/10.1175/JCLI-D-21-0044.1.

Fiskeridirektoratet, 2021. Economic and Biological Figures from Norwegian Fisheries
2021. Tech. Rep. 2464-3157, Fiskeridirektoratet, Norway, Statistikk, https://www.
fiskeridir.no/English/Fisheries/Statistics/Economic-and-biological-key-figures/.

Frey, K.E., Comiso, J.C., Cooper, L.W., Garcia-Eidell, C., Grebmeier, J.M., Stock, L.V.,
2022. Arctic Ocean Primary Productivity: The Response of Marine Algae To Climate
Warming and Sea Ice Decline. Tech. Rep. 48682, National Oceanic and Atmospheric
Administration. Office of Oceanic and Atmospheric Research, United States, http:
//dx.doi.org/10.25923/0je1-te61, NOAA Arctic Report Card Series.

Galbraith, E.D., Gnanadesikan, A., Dunne, J.P., Hiscock, M.R., 2010. Regional impacts
of iron-light colimitation in a global biogeochemical model. Biogeosciences 7,
1043–1064. http://dx.doi.org/10.5194/bg-7-1043-2010.

Galbraith, E.D., Kwon, E.Y., Bianchi, D., Hain, M.P., Sarmiento, J.L., 2015. The impact
of atmospheric pCO2 on carbon isotope ratios of the atmosphere and ocean. Glob.
Biogeochem. Cycles 29, 307–324. http://dx.doi.org/10.1002/2014GB004929.

Gjøsæter, H., 2009. Commercial fisheries (fish, seafood and marine mammals).
In: Skshaug, E., Johnsen, G., Kovacs, K. (Eds.), Ecosystem Barents Sea. Tapir
Academic Press, Cambridge, United Kingdom and New York, NY, USA, pp.
373–414, book chapter 16, https://www.researchgate.net/publication/283899239_
Commercial_fisheries_fish_seafood_and_marine_mammals.

Goldsmit, J., Schlegel, R.W., Filbee-Dexter, K., MacGregor, K.A., Johnson, L.E.,
Mundy, C.J., Savoie, A.M., McKindsey, C.W., Howland, .K.L., Archambault, P.,
2021. Kelp in the eastern Canadian arctic: Current and future predictions of habitat
suitability and cover. Front. Mar. Sci. 8, http://dx.doi.org/10.3389/fmars.2021.
742209.

Gosselin, M., Levasseur, M., Wheeler, P.A., Horner, R.A., Booth, B.C., 1997. New
measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep
Sea Res. Part II 44, 1623–1644. http://dx.doi.org/10.1016/S0967-0645(97)00054-
4.

Hátún, H., Azetsu-Scott, K., Somavilla, R., Rey, F., Johnson, C., Mathis, M., Mikolajew-
icz, U., Coupel, P., Tremblay, J.-E., Hartman, S., Pacariz, S.V., Salter, I., Ólafsson, J.,
2017. The subpolar gyre regulates silicate concentrations in the North Atlantic. Sci.
Rep. 7, 14576. http://dx.doi.org/10.1038/s41598-017-14837-4.

Hegseth, E.N., 1998. Primary production of the northern Barents Sea. Polar Res. 17,
113–123. http://dx.doi.org/10.3402/polar.v17i2.6611.

Hegseth, E.N., von Quillfeldt, C., 2022. The sub-ice algal communities of the Barents
Sea pack ice: Temporal and spatial distribution of biomass and species. J. Mar. Sci.
Eng. 10, http://dx.doi.org/10.3390/jmse10020164.

Hu, C., Lee, Z., Franz, B., 2012. Chlorophyll-a algorithms for oligotrophic oceans:
A novel approach based on three–band reflectance difference. J. Geophys. Res.:
Oceans 117, http://dx.doi.org/10.1029/2011JC007395.

https://alliancecan.ca/en
https://www.sigma2.no/
https://doi.org/10.1016/j.pocean.2023.103160
http://dx.doi.org/10.3402/polar.v10i1.6726
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb2
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb2
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb2
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb2
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb2
http://dx.doi.org/10.5194/bg-10-4383-2013
http://dx.doi.org/10.5194/bg-10-4383-2013
http://dx.doi.org/10.5194/bg-10-4383-2013
http://dx.doi.org/10.1002/2016GL072428
http://dx.doi.org/10.3389/fmars.2020.608032
http://dx.doi.org/10.1029/2011JC007273
http://dx.doi.org/10.1029/2011JC007273
http://dx.doi.org/10.1029/2011JC007273
http://dx.doi.org/10.1002/2017JG003881
http://dx.doi.org/10.1002/2017JG003881
http://dx.doi.org/10.1002/2017JG003881
http://dx.doi.org/10.1016/j.pocean.2015.05.002
http://dx.doi.org/10.1016/j.pocean.2015.05.002
http://dx.doi.org/10.1016/j.pocean.2015.05.002
http://dx.doi.org/10.1038/srep40850
http://dx.doi.org/10.1016/j.pocean.2015.08.008
http://dx.doi.org/10.1016/j.pocean.2015.08.008
http://dx.doi.org/10.1016/j.pocean.2015.08.008
http://dx.doi.org/10.1016/j.jmarsys.2013.07.015
http://dx.doi.org/10.1016/j.jmarsys.2013.07.015
http://dx.doi.org/10.1016/j.jmarsys.2013.07.015
http://dx.doi.org/10.5194/bg-10-4087-2013
http://dx.doi.org/10.1002/2017GB005783
http://dx.doi.org/10.7939/R31G0J98H
http://dx.doi.org/10.1029/2018JG004869
http://dx.doi.org/10.4319/lo.1995.40.7.1313
http://dx.doi.org/10.4319/lo.1995.40.7.1313
http://dx.doi.org/10.4319/lo.1995.40.7.1313
http://dx.doi.org/10.5067/7Q8HCCWS4I0R
http://dx.doi.org/10.1016/j.jmarsys.2013.03.008
http://dx.doi.org/10.1371/journal.pone.0095273
http://dx.doi.org/10.1371/journal.pone.0095273
http://dx.doi.org/10.1371/journal.pone.0095273
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb20
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb20
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb20
http://dx.doi.org/10.1029/2022JG007294
http://dx.doi.org/10.1029/2022JG007294
http://dx.doi.org/10.1029/2022JG007294
http://dx.doi.org/10.1029/2021JC017413
http://dx.doi.org/10.1029/2021JC017413
http://dx.doi.org/10.1029/2021JC017413
http://dx.doi.org/10.1175/JCLI-D-21-0044.1
http://dx.doi.org/10.1175/JCLI-D-21-0044.1
http://dx.doi.org/10.1175/JCLI-D-21-0044.1
https://www.fiskeridir.no/English/Fisheries/Statistics/Economic-and-biological-key-figures/
https://www.fiskeridir.no/English/Fisheries/Statistics/Economic-and-biological-key-figures/
https://www.fiskeridir.no/English/Fisheries/Statistics/Economic-and-biological-key-figures/
http://dx.doi.org/10.25923/0je1-te61
http://dx.doi.org/10.25923/0je1-te61
http://dx.doi.org/10.25923/0je1-te61
http://dx.doi.org/10.5194/bg-7-1043-2010
http://dx.doi.org/10.1002/2014GB004929
https://www.researchgate.net/publication/283899239_Commercial_fisheries_fish_seafood_and_marine_mammals
https://www.researchgate.net/publication/283899239_Commercial_fisheries_fish_seafood_and_marine_mammals
https://www.researchgate.net/publication/283899239_Commercial_fisheries_fish_seafood_and_marine_mammals
http://dx.doi.org/10.3389/fmars.2021.742209
http://dx.doi.org/10.3389/fmars.2021.742209
http://dx.doi.org/10.3389/fmars.2021.742209
http://dx.doi.org/10.1016/S0967-0645(97)00054-4
http://dx.doi.org/10.1016/S0967-0645(97)00054-4
http://dx.doi.org/10.1016/S0967-0645(97)00054-4
http://dx.doi.org/10.1038/s41598-017-14837-4
http://dx.doi.org/10.3402/polar.v17i2.6611
http://dx.doi.org/10.3390/jmse10020164
http://dx.doi.org/10.1029/2011JC007395


Progress in Oceanography 219 (2023) 103160L. Castro de la Guardia et al.
Huot, Y., Babin, M., Bruyant, F., 2013. Photosynthetic parameters in the Beaufort Sea in
relation to the phytoplankton community structure. Biogeosciences 10, 3445–3454.
http://dx.doi.org/10.5194/bg-10-3445-2013.

Ingvaldsen, R.B., Loeng, H., 2009. Physical oceanography. In: Skshaug, E., Johnsen, G.,
Kovacs, K. (Eds.), Ecosystem Barents Sea. Tapir Academic Press, Cambridge, United
Kingdom and New York, NY, USA, pp. 33–64, book chapter 2.

Isaksen, K., Nordli, Ø., Ivanov, B., Køltzow, M.A.Ø., Aaboe, S., Gjelten, H.M.,
Mezghani, A., Eastwood, S., Førland, E., Benestad, R.E., Hanssen-Bauer, I.,
Brækkan, R., Sviashchennikov, P., Demin, V., Revina, A., Karandasheva, T., 2022.
Exceptional warming over the Barents area. Sci. Rep. 12, 9371. http://dx.doi.org/
10.1038/s41598-022-13568-5.

Kauko, H.M., Taskjelle, T., Assmy, P., Pavlov, A.K., Mundy, C.J., Duarte, P., Fernández-
Méndez, M., Olsen, L.M., Hudson, S.R., Johnsen, G., Elliott, A., Wang, F.,
Granskog, M.A., 2017. Windows in Arctic sea ice: Light transmission and ice
algae in a refrozen lead. J. Geophys. Res.: Biogeosci. 122, 1486–1505. http:
//dx.doi.org/10.1002/2016JG003626.

Killick, R., Fearnhead, P., Eckley, I.A., 2012. Optimal detection of changepoints with a
linear computational cost. J. Amer. Statist. Assoc. 107, 1590–1598. http://dx.doi.
org/10.1080/01621459.2012.737745.

Koenig, Z., Lind, S., Lundesgaar, O., Muilwijk, M., Sandven, H., Assmy, P., Assmann, K.,
Chierici, M., Fransson, A., Gerland, S., Jones, E., Renner, A.H.H., Granskog, M.A.,
2023. From winter to late summer in the northwestern Barents Sea Shelf: Sea ice
and upper ocean evolution and impacts on nutrient and phytoplankton dynamics.
Prog. Oceanogr. In revision.

Koenig, Z., Provost, C., Villacieros-Robineau, N., Sennéchael, N., Meyer, A., 2016.
Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms
during N-ICE2015: Salty surface mixed layer and active basal melt. J. Geophys.
Res.: Oceans 121, 7898–7916. http://dx.doi.org/10.1002/2016JC012195.

Koenig, Z., Provost, C., Villacieros-Robineau, N., Sennéchael, N., Meyer, A., Lel-
louche, J.-M., Garric, G., 2017. Atlantic waters inflow north of Svalbard: Insights
from IAOOS observations and Mercator Ocean global operational system during
N-ICE2015. J. Geophys. Res.: Oceans 122, 1254–1273. http://dx.doi.org/10.1002/
2016JC012424.

Kohlbach, D., Goraguer, L., Bodur, Y.V., Müller, O., Amargant-Arumí, M., Blix, K.,
Bratbak, G., Chierici, M., Dąbrowska, A.M., Dietrich, U., Edvardsen, B., García, L.M.,
Gradinger, R., Hop, H., Jones, E., Lundesgaard, Øyvind, Olsen, L.M., Reigstad, M.,
Saubrekka, K., Tatarek, A., Wiktor, J.M., Wold, A., Assmy, P., 2023a. Earlier sea-
ice melt extends the oligotrophic summer period in the Barents Sea with low
algal biomass and associated low vertical flux. Prog. Oceanogr. 213, 103018.
http://dx.doi.org/10.1016/j.pocean.2023.103018.

Kohlbach, D., Lebreton, B., Guillou, G., Wold, A., Hop, H., Graeve, M., Assmy, P.,
2023b. Dependency of Arctic zooplankton on pelagic food sources: New insights
from fatty acid and stable isotope analyses. Limnol. Oceanogr. http://dx.doi.org/
10.1002/lno.12423, n/a.

Kohler, S.G., Heimburger-Boavida, L.-E., Assmy, P., Oliver Muller, S.T., Digernes, M.G.,
Ndungu, K., Ardelan, M.V., 2023. Biotic transformation of methylmercury at the
onset of the Arctic spring bloom. Prog. Oceanogr. In revision.

Kortsch, S., Primicerio, R., Aschan, M., Lind, S., Dolgov, A.V., Planque, B., 2019.
Food-web structure varies along environmental gradients in a high-latitude marine
ecosystem. Ecography 42, 295–308. http://dx.doi.org/10.1111/ecog.03443.

Koul, V., Brune, S., Baehr, J., Schrum, C., 2022. Impact of decadal trends in the surface
climate of the north atlantic subpolar gyre on the marine environment of the
barents sea. Front. Mar. Sci. 8, http://dx.doi.org/10.3389/fmars.2021.778335.

Lavielle, M., 2005. Using penalized contrasts for the change-point problem. Signal
Process. 85, 1501–1510. http://dx.doi.org/10.1016/j.sigpro.2005.01.012.

Lee, Y.J., Matrai, P.A., Friedrichs, M.A.M., Saba, V.S., Antoine, D., Ardyna, M.,
Asanuma, I., Babin, M., Bélanger, S., Benoît-Gagné, M., Devred, E., Fernández-
Méndez, M., Gentili, B., Hirawake, T., Kang, S.-H., Kameda, T., Katlein, C.,
Lee, S.H., Lee, Z., Mélin, F., Scardi, M., Smyth, T.J., Tang, S., Turpie, K.R.,
Waters, K.J., Westberry, T.K., 2015. An assessment of phytoplankton primary
productivity in the arctic ocean from satellite ocean color/in situ chlorophyll-a
based models. J. Geophys. Res.: Oceans 120, 6508–6541. http://dx.doi.org/10.
1002/2015JC011018.

Legendre, L., Ackley, S.F., Dieckmann, G.S., Gulliksen, B., Horner, R., Hoshiai, T.,
Melnikov, I.A., Reeburgh, W.S., Spindler, M., Sullivan, C.W., 1992. Ecology of sea
ice biota. Polar Biol. 12, 429–444. http://dx.doi.org/10.1007/BF00243114.

Leu, E., Mundy, C., Assmy, P., Campbell, K., Gabrielsen, T., Gosselin, M., Juul-
Pedersen, T., Gradinger, R., 2015. Arctic spring awakening – Steering principles
behind the phenology of vernal ice algal blooms. Prog. Oceanogr. 139, 151–170.
http://dx.doi.org/10.1016/j.pocean.2015.07.012.

Lewis, K.M., van Dijken, G.L., Arrigo, K.R., 2020. Changes in phytoplankton concentra-
tion now drive increased Arctic Ocean primary production. Science 369, 198–202.
http://dx.doi.org/10.1126/science.aay8380.

Lind, S., Ingvaldsen, R.B., 2012. Variability and impacts of Atlantic Water entering the
Barents Sea from the north. Deep Sea Res. Part I 62, 70–88. http://dx.doi.org/10.
1016/j.dsr.2011.12.007.

Loeng, H., 1991. Features of the physical oceanographic conditions of the Barents Sea.
Polar Res. 10, 5–18. http://dx.doi.org/10.3402/polar.v10i1.6723.

Lundesgaard, Ø., Sundfjord, A., Lind, S., Nilsen, F., Renner, A.H.H., 2022. Import of
Atlantic Water and sea ice controls the ocean environment in the northern Barents
Sea. Ocean Sci. 18, 1389–1418. http://dx.doi.org/10.5194/os-18-1389-2022.
17
Marchese, C., Albouy, C., Tremblay, J.-É., Dumont, D., D’Ortenzio, F., Vissault, S.,
Bélanger, S., 2017. Changes in phytoplankton bloom phenology over the North
Water (NOW) polynya: a response to changing environmental conditions. Polar
Biol. 40, 1721–1737. http://dx.doi.org/10.1007/s00300-017-2095-2.

Marchese, C., Castro de la Guardia, L., Myers, P.G., Bélanger, S., 2019. Regional
differences and inter-annual variability in the timing of surface phytoplankton
blooms in the Labrador Sea. Ecol. Indic. 96, 81–90. http://dx.doi.org/10.1016/
j.ecolind.2018.08.053.

Marchese, C., Hunt, B.P.V., Giannini, F., Ehrler, M., Costa, M., 2022. Bioregionalization
of the coastal and open oceans of British Columbia and Southeast Alaska based
on Sentinel-3A satellite-derived phytoplankton seasonality. Front. Mar. Sci. 9,
http://dx.doi.org/10.3389/fmars.2022.968470.

Matrai, P., Vernet, M., Wassmann, P., 2007. Relating temporal and spatial patterns of
DMSP in the Barents Sea to phytoplankton biomass and productivity. J. Mar. Syst.
67, 83–101. http://dx.doi.org/10.1016/j.jmarsys.2006.10.001.

Mayot, N., Matrai, P.A., Arjona, A., Bélanger, S., Marchese, C., Jaegler, T., Ardyna, M.,
Steele, M., 2020. Springtime export of arctic sea ice influences phytoplankton
production in the greenland sea. J. Geophys. Res.: Oceans 125, e2019JC015799.
http://dx.doi.org/10.1029/2019JC015799.

Michel, C., Legendre, L., Therriault, J.-C., Demers, S., Vandevelde, T., 1993. Spring-
time coupling between ice algal and phytoplankton assemblages in southeastern
Hudson Bay, Canadian Arctic. Polar Biol. 13, 429–444. http://dx.doi.org/10.1007/
BF00233135.

Mohamed, B., Nilsen, F., Skogseth, R., 2022a. Interannual and decadal variability of
sea surface temperature and sea ice concentration in the Barents Sea. Remote Sens.
14, http://dx.doi.org/10.3390/rs14174413.

Mohamed, B., Nilsen, F., Skogseth, R., 2022b. Marine heatwaves characteristics in the
barents sea based on high resolution satellite data (1982–2020). Front. Mar. Sci.
9, http://dx.doi.org/10.3389/fmars.2022.821646.

Mousing, E.A., Ellingen, I., Hjøllo, S.S., Husson, B., Skogen, M.D., Wallhead, P., 2023.
Why do regional biogeochemical models produce contrasting future projections of
primary production in the Barents Sea? J. Sea Res. 192, 102366. http://dx.doi.org/
10.1016/j.seares.2023.102366.

Ottersen, G., Stenseth, N.C., 2001. Atlantic climate governs oceanographic and eco-
logical variability in the Barents Sea. Limnol. Oceanogr. 46, 1774–1780. http:
//dx.doi.org/10.4319/lo.2001.46.7.1774.

Oziel, L., Baudena, A., Ardyna, M., Massicotte, P., Randelhoff, A., Sallée, J.-B., Ing-
valdsen, R.B., Devred, E., Babin, M., 2020. Faster Atlantic currents drive poleward
expansion of temperate phytoplankton in the Arctic Ocean. Nature Commun. 11,
1705. http://dx.doi.org/10.1038/s41467-020-15485-5.

Oziel, L., Massicotte, P., Babin, M., Devred, E., 2022. Decadal changes in Arctic Ocean
chlorophyll a: Bridging ocean color observations from the 1980s to present time.
Remote Sens. Environ. 275, 113020. http://dx.doi.org/10.1016/j.rse.2022.113020.

Pabi, S., van Dijken, G.L., Arrigo, K.R., 2008. Primary production in the Arctic
Ocean, 1998–2006. J. Geophys. Res.: Oceans 113, http://dx.doi.org/10.1029/
2007JC004578.

Pauly, D., Christensen, V., 1995. Primary production required to sustain global fisheries.
Nature 374, 255–257. http://dx.doi.org/10.1038/374255a0.

Pavlov, A.K., Taskjelle, T., Kauko, H.M., Hamre, B., Hudson, S.R., Assmy, P., Duarte, P.,
Fernández-Méndez, M., Mundy, C.J., Granskog, M.A., 2017. Altered inherent optical
properties and estimates of the underwater light field during an Arctic under-
ice bloom of Phaeocystis pouchetii. J. Geophys. Res.: Oceans 122, 4939–4961.
http://dx.doi.org/10.1002/2016JC012471.

Peralta-Ferriz, C., Woodgate, R.A., 2015. Seasonal and interannual variability of pan-
Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data,
and the dominance of stratification for multiyear mixed layer depth shoaling. Prog.
Oceanogr. 134, 19–53. http://dx.doi.org/10.1016/j.pocean.2014.12.005.

Perrette, M., Yool, A., Quartly, G.D., Popova, E.E., 2011. Near-ubiquity of ice-edge
blooms in the Arctic. Biogeosciences 8, 515–524. http://dx.doi.org/10.5194/bg-8-
515-2011.

Rat’kova, T.N., Wassmann, P., 2002. Seasonal variation and spatial distribution of
phyto- and protozooplankton in the central Barents Sea. J. Mar. Syst. 38, 47–75.
http://dx.doi.org/10.1016/S0924-7963(02)00169-0, seasonal C-cycling variability
in the open and ice-covered waters of the Barents Sea.

Reigstad, M., Carroll, J., Slagstad, D., Ellingsen, I., Wassmann, P., 2011. Intra-regional
comparison of productivity, carbon flux and ecosystem composition within the
northern Barents Sea. Prog. Oceanogr. 90, 33–46. http://dx.doi.org/10.1016/j.
pocean.2011.02.005, arctic Marine Ecosystems in an Era of Rapid Climate Change.

Reigstad, M., Wassmann, P., Wexels Riser, C., Øygarden, S., Rey, F., 2002. Variations
in hydrography, nutrients and chlorophyll a in the marginal ice-zone and the
central Barents Sea. J. Mar. Syst. 38, 9–29. http://dx.doi.org/10.1016/S0924-
7963(02)00167-7, seasonal C-cycling variability in the open and ice-covered waters
of the Barents Sea.

Renaut, S., Devred, E., Babin, M., 2018. Northward expansion and intensification of
phytoplankton growth during the early ice-free season in Arctic. Geophys. Res. Lett.
45, 10590–10598. http://dx.doi.org/10.1029/2018GL078995.

Rey, F., 1991. Photosynthesis-irradiance relationships in natural phytoplankton popula-
tions of the Barents Sea. Polar Res. 10, 105–116. http://dx.doi.org/10.1111/j.1751-
8369.1991.tb00638.x.

http://dx.doi.org/10.5194/bg-10-3445-2013
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb36
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb36
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb36
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb36
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb36
http://dx.doi.org/10.1038/s41598-022-13568-5
http://dx.doi.org/10.1038/s41598-022-13568-5
http://dx.doi.org/10.1038/s41598-022-13568-5
http://dx.doi.org/10.1002/2016JG003626
http://dx.doi.org/10.1002/2016JG003626
http://dx.doi.org/10.1002/2016JG003626
http://dx.doi.org/10.1080/01621459.2012.737745
http://dx.doi.org/10.1080/01621459.2012.737745
http://dx.doi.org/10.1080/01621459.2012.737745
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb40
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb40
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb40
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb40
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb40
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb40
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb40
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb40
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb40
http://dx.doi.org/10.1002/2016JC012195
http://dx.doi.org/10.1002/2016JC012424
http://dx.doi.org/10.1002/2016JC012424
http://dx.doi.org/10.1002/2016JC012424
http://dx.doi.org/10.1016/j.pocean.2023.103018
http://dx.doi.org/10.1002/lno.12423
http://dx.doi.org/10.1002/lno.12423
http://dx.doi.org/10.1002/lno.12423
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb45
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb45
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb45
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb45
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb45
http://dx.doi.org/10.1111/ecog.03443
http://dx.doi.org/10.3389/fmars.2021.778335
http://dx.doi.org/10.1016/j.sigpro.2005.01.012
http://dx.doi.org/10.1002/2015JC011018
http://dx.doi.org/10.1002/2015JC011018
http://dx.doi.org/10.1002/2015JC011018
http://dx.doi.org/10.1007/BF00243114
http://dx.doi.org/10.1016/j.pocean.2015.07.012
http://dx.doi.org/10.1126/science.aay8380
http://dx.doi.org/10.1016/j.dsr.2011.12.007
http://dx.doi.org/10.1016/j.dsr.2011.12.007
http://dx.doi.org/10.1016/j.dsr.2011.12.007
http://dx.doi.org/10.3402/polar.v10i1.6723
http://dx.doi.org/10.5194/os-18-1389-2022
http://dx.doi.org/10.1007/s00300-017-2095-2
http://dx.doi.org/10.1016/j.ecolind.2018.08.053
http://dx.doi.org/10.1016/j.ecolind.2018.08.053
http://dx.doi.org/10.1016/j.ecolind.2018.08.053
http://dx.doi.org/10.3389/fmars.2022.968470
http://dx.doi.org/10.1016/j.jmarsys.2006.10.001
http://dx.doi.org/10.1029/2019JC015799
http://dx.doi.org/10.1007/BF00233135
http://dx.doi.org/10.1007/BF00233135
http://dx.doi.org/10.1007/BF00233135
http://dx.doi.org/10.3390/rs14174413
http://dx.doi.org/10.3389/fmars.2022.821646
http://dx.doi.org/10.1016/j.seares.2023.102366
http://dx.doi.org/10.1016/j.seares.2023.102366
http://dx.doi.org/10.1016/j.seares.2023.102366
http://dx.doi.org/10.4319/lo.2001.46.7.1774
http://dx.doi.org/10.4319/lo.2001.46.7.1774
http://dx.doi.org/10.4319/lo.2001.46.7.1774
http://dx.doi.org/10.1038/s41467-020-15485-5
http://dx.doi.org/10.1016/j.rse.2022.113020
http://dx.doi.org/10.1029/2007JC004578
http://dx.doi.org/10.1029/2007JC004578
http://dx.doi.org/10.1029/2007JC004578
http://dx.doi.org/10.1038/374255a0
http://dx.doi.org/10.1002/2016JC012471
http://dx.doi.org/10.1016/j.pocean.2014.12.005
http://dx.doi.org/10.5194/bg-8-515-2011
http://dx.doi.org/10.5194/bg-8-515-2011
http://dx.doi.org/10.5194/bg-8-515-2011
http://dx.doi.org/10.1016/S0924-7963(02)00169-0
http://dx.doi.org/10.1016/j.pocean.2011.02.005
http://dx.doi.org/10.1016/j.pocean.2011.02.005
http://dx.doi.org/10.1016/j.pocean.2011.02.005
http://dx.doi.org/10.1016/S0924-7963(02)00167-7
http://dx.doi.org/10.1016/S0924-7963(02)00167-7
http://dx.doi.org/10.1016/S0924-7963(02)00167-7
http://dx.doi.org/10.1029/2018GL078995
http://dx.doi.org/10.1111/j.1751-8369.1991.tb00638.x
http://dx.doi.org/10.1111/j.1751-8369.1991.tb00638.x
http://dx.doi.org/10.1111/j.1751-8369.1991.tb00638.x


Progress in Oceanography 219 (2023) 103160L. Castro de la Guardia et al.
Rey, F., 2012. Declining silicate concentrations in the Norwegian and Barents Seas.
ICES J. Mar. Sci. 69, 208–212. http://dx.doi.org/10.1093/icesjms/fss007.

Rudels, B., Meyer, R., Fahrbach, E., Ivanov, V.V., Østerhus, S., Quadfasel, D.,
Schauer, U., Tverberg, V., Woodgate, R.A., 2000. Water mass distribution in Fram
Strait and over the Yermak Plateau in summer 1997. Ann. Geophys. 18, 687–705.
http://dx.doi.org/10.1007/s00585-000-0687-5.

Sakov, P., Counillon, F., Bertino, L., Lisæter, K.A., Oke, P.R., Korablev, A., 2012.
TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and
Arctic. Ocean Sci. 8, 633–656. http://dx.doi.org/10.5194/os-8-633-2012.

Sandven, H., Hamre, B., Petit, T., Röttgers, R., Liu, H., Granskog, M.A., 2023. Seasonal-
ity and drivers of water column optical properties on the northwestern Barents Sea
shelf. Prog. Oceanogr. 103076. http://dx.doi.org/10.1016/j.pocean.2023.103076.

Schrum, C., Alekseeva, I., St. John, M., 2006. Development of a coupled physical–
biological ecosystem model ECOSMO: Part I: Model description and validation for
the North Sea. J. Mar. Syst. 61, 79–99. http://dx.doi.org/10.1016/j.jmarsys.2006.
01.005.

Silva, E., Counillon, F., Brajard, J., Korosov, A., Pettersson, L.H., Samuelsen, A.,
Keenlyside, N., 2021. Twenty-one years of phytoplankton bloom phenology in the
Barents, Norwegian, and North Seas. Front. Mar. Sci. 8, http://dx.doi.org/10.3389/
fmars.2021.746327.

Slagstad, D., Ellingsen, I., Wassmann, P., 2011. Evaluating primary and secondary
production in an Arctic Ocean void of summer sea ice: An experimental simulation
approach. Prog. Oceanogr. 90, 117–131. http://dx.doi.org/10.1016/j.pocean.2011.
02.009, arctic Marine Ecosystems in an Era of Rapid Climate Change.

Slagstad, D., Wassmann, P.F.J., Ellingsen, I., 2015. Physical constrains and productivity
in the future Arctic Ocean. Front. Mar. Sci. 2, http://dx.doi.org/10.3389/fmars.
2015.00085.

Søgaard, D.H., Sorrell, B.K., Sejr, M.K., Andersen, P., Rysgaard, S., Hansen, P.J.,
Skyttä, A., Lemcke, S., Lund-Hansen, L.C., 2021. An under-ice bloom of mixotrophic
haptophytes in low nutrient and freshwater-influenced Arctic waters. Sci. Rep. 11,
2915. http://dx.doi.org/10.1038/s41598-021-82413-y.

Søreide, J.E., Hop, H., Falk-Petersen, S., Gulliksen, B., Hansen, E., 2003. Macrozoo-
plankton communities and environmental variables in the Barents Sea marginal
ice zone in late winter and spring. Mar. Ecol. Prog. Ser. 263, 43–64. http://dx.doi.
org/10.3354/meps263043.

Stoer, A.C., Fennel, K., 2023. Estimating ocean net primary productivity from daily
cycles of carbon biomass measured by profiling floats. Limnol. Oceanogr. Lett. 8,
368–375. http://dx.doi.org/10.1002/lol2.10295.
18
The Nansen Legacy, 2022. Sampling Protocols: Version 10, Vol. 32. Tech. Rep., UiT -
Arctic University of Tromsø, Norway, http://dx.doi.org/10.7557/nlrs.6684, Nansen
Legacy Report Series.

Uitz, J., Claustre, H., Morel, A., Hooker, S.B., 2006. Vertical distribution of phyto-
plankton communities in open ocean: An assessment based on surface chlorophyll.
J. Geophys. Res.: Oceans 111, http://dx.doi.org/10.1029/2005JC003207.

Vader, A., 2022. Chlorophyll A and phaeopigments Nansen Legacy. data retrieved from
http://dx.doi.org/10.21335/NMDC-1371694848.

Vernet, M., Ellingsen, I., Marchese, C., Bélanger, S., Cape, M., Slagstad, D., Matrai, P.A.,
2021. Spatial variability in rates of net primary production (NPP) and onset
of the spring bloom in Greenland shelf waters. Prog. Oceanogr. 198, 102655.
http://dx.doi.org/10.1016/j.pocean.2021.102655.

Vernet, M., Ellingsen, I.H., Seuthe, L., Slagstad, D., Cape, M.R., Matrai, P.A., 2019.
Influence of phytoplankton advection on the productivity along the atlantic water
inflow to the Arctic Ocean. Front. Mar. Sci. 6, http://dx.doi.org/10.3389/fmars.
2019.00583.

Vernet, M., Matrai, P.A., Andreassen, I., 1998. Synthesis of particulate and extracellular
carbon by phytoplankton at the marginal ice zone in the Barents Sea. J. Geophys.
Res.: Oceans 103, 1023–1037. http://dx.doi.org/10.1029/97JC02288.

Wassmann, P., 2011. Arctic marine ecosystems in an era of rapid climate change.
Prog. Oceanogr. 90, 1–17. http://dx.doi.org/10.1016/j.pocean.2011.02.002, arctic
Marine Ecosystems in an Era of Rapid Climate Change.

Wassmann, P., Reigstad, M., Haug, T., Rudels, B., Carroll, M.L., Hop, H.,
Gabrielsen, G.W., Falk-Petersen, S., Denisenko, S.G., Arashkevich, E., et al., 2006a.
Food webs and carbon flux in the Barents Sea. Prog. Oceanogr. 71, 232–287.
http://dx.doi.org/10.1016/j.pocean.2006.10.003.

Wassmann, P., Slagstad, D., Ellingsen, I., 2010. Primary production and climatic
variability in the European sector of the Arctic Ocean prior to : preliminary results.
Polar Biol. 33, 1641–1650. http://dx.doi.org/10.1007/s00300-010-0839-3.

Wassmann, P., Slagstad, D., Riser, C.W., Reigstad, M., 2006b. Modelling the ecosystem
dynamics of the Barents Sea including the marginal ice zone II. Carbon flux and
interannual variability. J. Mar. Syst. 59, 1–24. http://dx.doi.org/10.1016/j.jmarsys.
2005.05.006.

Wold, A., H, H., Svensen, C., K, A., Søreide, E., Ormacyk, M., Kwasniewski, S., 2023.
Atlantification influences zooplankton communities seasonally in the northern
Barents Sea and Arctic Ocean. Prog. Oceanogr. In revision.

Yumruktepe, V.Ç., Samuelsen, A., Daewel, U., 2022. ECOSMO II(CHL): a marine
biogeochemical model for the North Atlantic and the Arctic. Geosci. Model Dev.
15, 3901–3921. http://dx.doi.org/10.5194/gmd-15-3901-2022.

http://dx.doi.org/10.1093/icesjms/fss007
http://dx.doi.org/10.1007/s00585-000-0687-5
http://dx.doi.org/10.5194/os-8-633-2012
http://dx.doi.org/10.1016/j.pocean.2023.103076
http://dx.doi.org/10.1016/j.jmarsys.2006.01.005
http://dx.doi.org/10.1016/j.jmarsys.2006.01.005
http://dx.doi.org/10.1016/j.jmarsys.2006.01.005
http://dx.doi.org/10.3389/fmars.2021.746327
http://dx.doi.org/10.3389/fmars.2021.746327
http://dx.doi.org/10.3389/fmars.2021.746327
http://dx.doi.org/10.1016/j.pocean.2011.02.009
http://dx.doi.org/10.1016/j.pocean.2011.02.009
http://dx.doi.org/10.1016/j.pocean.2011.02.009
http://dx.doi.org/10.3389/fmars.2015.00085
http://dx.doi.org/10.3389/fmars.2015.00085
http://dx.doi.org/10.3389/fmars.2015.00085
http://dx.doi.org/10.1038/s41598-021-82413-y
http://dx.doi.org/10.3354/meps263043
http://dx.doi.org/10.3354/meps263043
http://dx.doi.org/10.3354/meps263043
http://dx.doi.org/10.1002/lol2.10295
http://dx.doi.org/10.7557/nlrs.6684
http://dx.doi.org/10.1029/2005JC003207
http://dx.doi.org/10.21335/NMDC-1371694848
http://dx.doi.org/10.1016/j.pocean.2021.102655
http://dx.doi.org/10.3389/fmars.2019.00583
http://dx.doi.org/10.3389/fmars.2019.00583
http://dx.doi.org/10.3389/fmars.2019.00583
http://dx.doi.org/10.1029/97JC02288
http://dx.doi.org/10.1016/j.pocean.2011.02.002
http://dx.doi.org/10.1016/j.pocean.2006.10.003
http://dx.doi.org/10.1007/s00300-010-0839-3
http://dx.doi.org/10.1016/j.jmarsys.2005.05.006
http://dx.doi.org/10.1016/j.jmarsys.2005.05.006
http://dx.doi.org/10.1016/j.jmarsys.2005.05.006
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb99
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb99
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb99
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb99
http://refhub.elsevier.com/S0079-6611(23)00203-3/sb99
http://dx.doi.org/10.5194/gmd-15-3901-2022

	Assessing net primary production in the northwestern Barents Sea using in situ, remote sensing and modelling approaches
	Introduction
	Methods
	In situ data
	Remote sensing data
	Coupled physical–biogeochemical model output
	Bioregionalization: K-mean clustering analysis
	Data analysis

	Results
	Cross-evaluation of output and data
	NW-BS subregion NPP estimates and trends
	Physical drivers of NPP

	Discussion
	Limitations of the datasets
	The need for more frequent sampling
	Significant gaps in the remote sensing coverage
	Structural differences: Chl-a/biomass ratios, sea ice, and biomass advection
	Advection of biomass and NPP north of Svalbard
	NPP estimates do not include ice algae NPP

	Bioregions confirmed the strong link with the physical environment
	Step change increase in autochthonous NPP
	Physical drivers of simulated NPP
	Contribution of NW-BS to Norwegian fisheries
	Conclusion

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References


