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ABSTRACT
BACKGROUND: Schizophrenia (SCZ) has a known neurodevelopmental etiology, but limited access to human
prenatal brain tissue hampers the investigation of basic disease mechanisms in early brain development. Here, we
elucidate the molecular mechanisms contributing to SCZ risk in a disease-relevant model of the prenatal human brain.
METHODS:We generated induced pluripotent stem cell–derived organoids, termed human cortical spheroids (hCSs),
from a large, genetically stratified sample of 14 SCZ cases and 14 age- and sex-matched controls. The hCSs were
differentiated for 150 days, and comprehensive molecular characterization across 4 time points was carried out.
RESULTS: The transcriptional and cellular architecture of hCSs closely resembled that of fetal brain tissue at 10 to 24
postconception weeks, showing strongest spatial overlap with frontal regions of the cerebral cortex. A total of 3520
genes were differentially modulated between SCZ and control hCSs across organoid maturation, displaying a sig-
nificant contribution of genetic loading, an overrepresentation of risk genes for autism spectrum disorder and SCZ,
and the strongest enrichment for axonal processes in all hCS stages. The two axon guidance genes SEMA7A and
SEMA5A, the first a promoter of synaptic functions and the second a repressor, were downregulated and upregu-
lated, respectively, in SCZ hCSs. This expression pattern was confirmed at the protein level and replicated in a large
postmortem sample.
CONCLUSIONS: Applying a disease-relevant model of the developing fetal brain, we identified consistent
dysregulation of axonal genes as an early risk factor for SCZ, providing novel insights into the effects of genetic
predisposition on the neurodevelopmental origins of the disorder.

https://doi.org/10.1016/j.biopsych.2023.08.017
Schizophrenia (SCZ) is a severe and highly debilitating
neuropsychiatric disorder characterized by hallucinations, de-
lusions, and cognitive impairments. The underlying patho-
physiology is incompletely understood but is known to involve
a complex interplay of both genetic and environmental factors
that contribute to structural and functional deficits of the
central nervous system (1). Although clinical symptoms typi-
cally manifest in late adolescence to early adulthood, the
causes of the disorder are thought to involve adverse neuro-
pathological events beginning in early brain development (2–5).
The fetal period is a particularly sensitive time, when distur-
bances in neural stem cell proliferation, neural differentiation,
and synapse formation may lead to neurodevelopmental dis-
orders (6–9), underscoring the need to advance mechanistic
understanding of SCZ etiology as it pertains to this critical
period.

SCZ is highly polygenic in nature, meaning that hundreds of
common genetic variants contribute with small individual ef-
fects (10), making it challenging to study basic disease
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mechanisms in animal models. A given risk variant, even if rare
and with high penetrance, acts not in isolation, but rather
against a background of multiple genetic influences, and this
background is not easily reproduced in nonhuman models.
Furthermore, despite shared neurodevelopmental processes
among mammals, important species-defining differences
exist, especially in the cerebral cortex (11). For these reasons,
patient-derived induced pluripotent stem cell (iPSC) ap-
proaches are considered more suitable for polygenic disease
modeling, as they preserve the disease-specific genetic
context. The recent introduction of three-dimensional brain
organoids is especially promising (12). These models provide
several advantages over classic two-dimensional cultures,
including more complex cellular composition, advanced
maturation, and improved tissue architecture, allowing for a
more realistic recapitulation of human brain development (6).

Previous iPSC studies investigating neurodevelopmental
disease processes in SCZ using three-dimensional in vitro
strategies (13,14) have either focused on a single time point of
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organoid maturation (15–17) or generated brain organoids from
healthy control individuals only (18,19). Moreover, between-
donor variability is a major source of gene expression varia-
tion in iPSC models, potentially masking case-control differ-
ences (20,21), but this critical issue is seldom adequately
addressed. Here, we generated iPSC-derived organoids of the
cerebral cortex, termed human cortical spheroids (hCSs), from
a large, genetically stratified case-control sample (N = 28;
control n = 14, SCZ n = 14) and carried out comprehensive
transcriptional profiling across 4 time points of hCS matura-
tion. We demonstrate substantial correspondence in patterns
of gene expression and cell type composition between the
derived hCSs and developing fetal tissue of the cerebral cor-
tex, and reveal a persistent dysregulation of axonal genes in
SCZ.
METHODS AND MATERIALS

Sample Characteristics

Skin biopsy donors were recruited through the Norwegian TOP
(Thematically Organized Psychosis) study. Recruitment pro-
cedures, inclusion and exclusion criteria, and clinical assess-
ments for the TOP study as a whole have been described
elsewhere (22,23). Fibroblasts were isolated from 14 control
donors and 14 donors with SCZ selected based on clinical
information and polygenic load. Cases and controls were
Table 1. Clinical and Demographic Characteristics of Study Sam

Characteristic CTRL, n = 14

Subdiagnosis, n (%)

Schizophrenia –

Schizoaffective –

Schizophreniform –

Age, Years

Mean (SD) 33.1 (10.3)

Median (range) 30.5 (18 to 56)

Sex, n (%)

Female 7 (50%)

Male 7 (50%)

Ethnicity, n (%)

African –

European 14 (100%)

Mixed –

Polygenic Risk Score SCZ

Mean (SD) 20.83 (1.52)

Median (range) 21.04 (23.1 to 1.5)

Medication, n (%)

Antipsychotics –

Antidepressants –

PANSS, Mean (SD)

Positive symptoms –

Negative symptoms –

General psychopathology –

Total score –

CTRL, control; PANSS, Positive and Negative Syndrome Scale, SCZ, schizophrenia
ap , .05, two-sided Student t test.
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matched on age and sex, and all except for 3 donors were
Europeans. Skin biopsy specimens from all 28 donors were
obtained under sterile conditions. Table 1 summarizes the
clinical characteristics of the study participants.

Polygenic Risk Score Calculation

Genotyping and polygenic risk score (PRS) calculation were
carried out as previously described (24). Briefly, DNA was
extracted from blood samples collected at inclusion in the TOP
study, and genotyping was performed on Human Omni
Express-24 v.1.1 (Illumina). Standard preimputation quality
control was performed using PLINK 1.9 (25). PRSice-2 (26) was
then used for PRS calculation based on the latest genome-
wide association study (GWAS) meta-analysis (27). PRS was
calculated by aggregating the number of risk alleles carried at
each GWAS-defined risk variant weighted by its effect size
(28). A GWAS p-value threshold of .5 was used for risk variant
selection.

IPSC Derivation and Characterization

Skin fibroblasts from the 28 donors were grown and reprog-
rammed as previously described (29). Each iPSC line was
subjected to rigorous quality control by phenotyping, regular
monitoring of morphology, and pluripotency marker expres-
sions at the Norwegian Core Facility for Human Pluripotent
Stem Cell Research Centre. KaryoStat GeneChip array
ple

SCZ, n = 14 Test Statistic p Value

10 (71.4%)

3 (21.4%)

1 (7.2%)

t26 = 1.45 .15

30.2 (11.1)

26.5 (19 to 51)

c2 = 0.03 .87

6 (42.9%)

8 (57.1%)

c2 = 3.15 .21

1 (7.1%)

11 (78.6%)

2 (14.3%)

t26 = 22.50 .026a

0.33 (0.5)

0.28 (20.4 to 1.4)

11 (78.6%)

2 (14.3%)

13 (4.2)

15 (5.6)

32 (9.1)

59 (13.9)

.
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(Thermo Fisher Scientific) was used for karyotyping of iPSCs at
passages 15 to 20 for digital visualization of chromosome
aberrations.

Cortical Spheroids Generation

The iPSCs were differentiated into hCSs following a previously
published protocol with proven high reproducibility (30,31).
Briefly, iPSCs were dissociated into single cells with Accutase
(A6964; Sigma-Aldrich) and added to a 6-well Aggrewell 800
(34815; STEMCELL Technologies), centrifuged for 3 minutes at
100g, and incubated at 37 �C with 5% CO2 for 24 hours.
Afterward, hCSs were collected and transferred into ultra-low-
attachment plastic dishes (15297905; Thermo Fisher Scientific)
in Essential 6 Medium (A1516401; Thermo Fisher Scientific)
supplemented with dual SMAD inhibition (SB-431542 10 mM,
1614; Tocris Bioscience, and dorsomorphin 2.5mM, P5499;
Sigma-Aldrich) and Wnt inhibitor XAV-939 (2.5 mM, 3748;
Tocris Bioscience). Suspended hCSs were subsequently shif-
ted to neural medium Neurobasal-A (10888; Thermo Fisher
Scientific), GlutaMax (1:100, 35050; Thermo Fisher Scientific),
and B-27 Supplement Minus Vitamin A (12587; Thermo Fisher
Scientific) and supplemented with 20 ng/mL BDNF (brain-
derived neurotrophic factor) (450-02; PeproTech) and 20 ng/
mL NT-3 (neurotrophin-3) (450-03; PeproTech) to promote
neural differentiation. The hCSs were differentiated until day
150 (D150), and 4 stages across differentiation (iPSC, D30,
D90, and D150) were selected for gene expression trajectory
analysis.

RNA Extraction and Sequencing

Total RNA was extracted from hCSs using the RNeasy Plus
Mini Kit (Qiagen). RNA yield was quantified with a NanoDrop
8000 Spectrophotometer (Thermo Fisher Scientific), and RNA
integrity was assessed with Bioanalyzer 2100 RNA 6000 Nano
Kit (Agilent Technologies). Library preparation and paired-end
RNA sequencing were carried out at the Norwegian High-
Throughput Sequencing Centre (https://www.sequencing.uio.
no/). Libraries were prepared with the TruSeq Stranded
mRNA kit (Illumina), which involves poly(A) purification to
capture coding as well as several noncoding RNAs. The pre-
pared samples were then sequenced in 2 batches on a
NovaSeq S4 platform (Illumina) at an average depth of 50
million reads per sample, using a read length of 150 bp and an
insert size of 350 bp.

Data Processing

Quality of raw sequencing reads was assessed with FastQC
(Babraham Institute). To pass the initial quality control check,
the average Phred score of each base position across all reads
had to be at least 30. Reads were further processed by cutting
individual low-quality bases and removing adapter and other
Illumina-specific sequences with Trimmomatic V0.32 (32) using
default parameters. HISAT2 (33) was then used to first build a
transcriptome index based on Ensembl annotations and next
to map the trimmed reads to the human GRCh38 reference
genome. To quantify gene expression levels, mapped reads
were summarized at the gene level using featureCounts (34)
guided by Ensembl annotations.
B

Cell Type Deconvolution for In Vivo Spatiotemporal
Brain Expression Comparison

Computational estimation of cell type abundances (deconvo-
lution) for spatiotemporal comparisons was performed with
CIBERSORTx (35) using the web interface (https://cibersortx.
stanford.edu/) with default parameters, selecting 500 permu-
tations for statistical testing. Expression signatures for 6 rele-
vant brain cell types (36) were used as reference: iPSCs, neural
progenitor cells (NPCs), oligodendrocytes, microglia, astro-
cytes, and neurons. To assess the extent to which in vitro hCS
transcriptional profiles match the gene expression profiles of
human primary in vivo brain tissue, gene-level spatiotemporal
RNA sequencing datasets were downloaded from the Brain-
Span resource (https://www.brainspan.org/static/download.
html) (37,38), comprising 524 samples from 40 donors (span-
ning 10 developmental stages) across 26 brain regions.
Concordance analyses were carried out using Spearman’s
correlation after converting gene counts to RPKM (reads per
kilobase of exon per million reads mapped) values and filtering
out nonexpressed and low-abundance transcripts.

Weighted Gene Coexpression Network Analysis

Gene coexpression networks were constructed using the
WGCNA package (39). Expression data were transformed using
the variance stabilizing transformation method in the DESeq2
package (40). Signed coexpression networks were constructed
by first calculating the pairwise correlations between gene
expression profiles using the Pearson method. Gene modules
were identified by hierarchical clustering, considering only
modules with at least 25 genes. To relate the identified modules
to external variables (stage of hCS differentiation, estimated cell
type proportions, and diagnostic status), Pearson’s correlation
and the corPvalueStudent function were used to test for sig-
nificant associations between these variables and each mod-
ule’s module eigengene. To identify the major module-specific
driver genes, we made use of the concepts of gene signifi-
cance and module membership, denoting the extent to which a
gene’s expression profile correlates with an external trait of in-
terest and the module eigengene of a given module, respec-
tively. Module-specific driver genes were defined as the genes
with the largest gene significance plus module membership
values. To functionally annotate the identified gene expression
modules, Gene Ontology (GO) overrepresentation tests were
carried as described next, using onlymodule geneswithmodule
membership . 0.7 as input.

Differential Expression Analysis and GO
Enrichment Tests

Before conducting differential expression (DE) analyses, lowly
expressed and nonexpressed genes were filtered out by
requiringmore than 1 count permillion in at least 14 samples (the
smallest group sample size). As KaryoStat analysis revealed
chromosomal aberrations in some of the iPSC lines, all genes
located within affected regions were excluded before analysis
(580 genes in total) (Table S1). After applying these filtering
steps, a total of 16,225 genes were retained. Time-course DE
analyseswere conducted using the limma-voom framework (41)
adjusting for baseline differences between cases and controls at
the iPSC stage, such that only genes displaying variable
iological Psychiatry - -, 2023; -:-–- www.sobp.org/journal 3
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differences between control and SCZ samples across timewere
considered. As principal component analysis and hierarchical
clustering revealed 3 outlier samples at the iPSC stage
(Figure S1), the voomWithQualityWeights function was applied
to down-weight the contributions from these samples, thereby
reducing noise while preserving statistical power (42). De-
mographic characteristics such as age, sex, and ethnicity were
not significantly different between cases and controls (Table 1);
therefore, only sequencing batch was included as a covariate in
the linear models. A differentially expressed gene (DEG) was
considered significant if the false discovery rate (FDR) was, .1.
GO enrichment tests of significant gene sets were conducted
with clusterProfiler (43). “Biological processes”was selected as
the ontology of interest, and a GO term was considered signif-
icantly enriched if the FDR was , .1.

Concordance Analysis of Axonal Genes

The CommonMind Consortium (CMC) dataset (44) was used
to test whether the identified axonal genes with consistent
expression trajectory showed concordant direction of effect in
postmortem dorsolateral prefrontal cortex samples from cases
and controls. Only samples of European origin provided by the
CMC were included (n = 429), comprising 215 control and 214
SCZ donors. Prefiltering and DE analysis were carried out as
described earlier, adjusting for age, reported gender, brain
bank, and postmortem interval.

RESULTS

Derivation and Molecular Characterization of hCSs

We derived hCSs from well-characterized SCZ and control
donors using an established protocol designed to generate
reproducible three-dimensional neural structures patterned af-
ter the cerebral cortex (30,31). The hCSs were cultured for 150
days, and 4 stages across differentiation (iPSC, D30, D90, and
D150) representing key neurodevelopmental transitions were
selected for transcriptional profiling (112 samples in total)
(Figure 1A, B). The donors were matched on age and sex, and
the majority (25 of 28, 89%) were Europeans (Table 1). Impor-
tantly, SCZ donors were selected based on PRS for SCZ, and
mean PRS was significantly higher in the SCZ group (mean
[SD] = 0.33 [0.5] vs. 20.83 [1.52]; p = .026) (Figure 1C), which
exhibited less variability than the control group, indicating a
homogeneous and disease-relevant genetic background of the
SCZ donors. The hCS size increased steadily and reached a
mean volume of 7.85 mm3 (2.7 mm in diameter) at D150
(Figure 1D). Expression trajectories of broadmarkers for cortical
maturation followed expected patterns (45), with pluripotency
markers peaking first, followed by neuronal markers and then
astrocyte markers, which peaked at D150, reflecting the tran-
sition from neurogenesis to gliogenesis (Figure 1E). Four
markers (SOX2, SOX1, PAX6, and POU3F2) displayed DE be-
tween cases and controls (Figure 1E).

Correspondence Between hCSs and Human
Primary Brain Tissue

To determine whether the selected stages of hCS differ-
entiation exhibited distinct transcriptional profiles, we
4 Biological Psychiatry - -, 2023; -:-–- www.sobp.org/journal
performed principal component analysis. The first two
principal components (explaining 64% of the variance)
showed clear separation between stages, indicating that
hCS differentiation is the major contributor to gene
expression variability (Figure 2A). The less pronounced
separation seen between D90 and D150 suggests that
hCSs already reach transcriptional maturity at D90. Strati-
fying samples by diagnostic status revealed a progressive
separation between control and SCZ samples (Figure S1A).
Disease-specific differences thus appear to manifest more
strongly as hCSs mature. The principal component analysis
also revealed 3 outlier samples within the iPSC group
(Figure 2A), and this was confirmed by hierarchical clus-
tering (Figure S1B, C). These samples were either removed
or otherwise accounted for in subsequent analyses (see
Methods and Materials).

To assess the extent to which the derived organoids tran-
scriptionally match primary human brain tissue, spatiotemporal
comparisons were conducted using BrainSpan, an anatomi-
cally comprehensive atlas of human brain development
(37,38). Consistent with previous reports (18,19,46), hCS pro-
files overlapped with fetal brain tissue at 10- to 24 post-
conception weeks, beginning at in vitro stage D30 and
becoming more prominent by D150 (Figure 2B). The iPSC
stage did not map to any temporal period in vivo, likely
reflecting the fact that the BrainSpan reference does not
include the embryonic phase of prenatal development (before
postconception week 8) when brain cells may still retain plu-
ripotency (11) (Figure 2B). Spatial comparisons showed that
hCSs gradually assumed region-specific cortical identity, dis-
playing strongest overlap with frontal regions of the cerebral
cortex (medial frontal cortex, dorsolateral prefrontal cortex,
and orbitofrontal cortex) and weakest overlap with the cere-
bellar cortex at D150 (Figure 2C). Assessing differences be-
tween control and SCZ hCSs, we observed an unexpected
temporal pattern in which SCZ hCSs initially matured faster
than control organoids, but this trend was reversed by D150
(Figure 2D). Interestingly, this phenomenon of accelerated
differentiation has also been observed in NPCs derived from
patients with bipolar disorder transitioning toward neuronal
identity (47).

To characterize the cellular composition of hCSs
compared to primary tissue, computational estimation of cell
type proportions (deconvolution) was conducted using hu-
man reference signatures for 6 broad and hCS-relevant cell
populations (see Methods and Materials). At D30, most
iPSCs had differentiated into NPCs and mature neurons,
marking an already advanced neurogenesis phase in vitro
(Figure 2E, left). The neuronal fraction reached a plateau at
D90, accompanied by a corresponding decrease in NPCs
and a steady increase in astrocyte abundance, which
peaked at D150 (Figure 2E, left). We observed a remarkable
degree of correspondence between in vitro and in vivo cell
type trajectories within the relevant time periods (Figure 2E,
shaded areas), with neurons, astrocytes, and NPCs consti-
tuting the main cell types at hCS stage D150 as well as
postconception weeks 19 to 24 in vivo, with oligodendro-
cytes appearing later (Figure 2E). Overall, these findings
demonstrate that our organoids preserve key cell type

http://www.sobp.org/journal
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Figure 1. Derivation and characterization of hCSs. (A) Experimental design of the study. (B) Main growth factors and media used for neural induction and
differentiation. DM and SB are SMAD inhibitors; XAV is a WNT inhibitor. (C) PRSs in CTRL (n = 12) and SCZ (n = 10) donors. The 3 non-European donors were
excluded as PRS estimates from current genome-wide association studies are more accurate in European populations. PRS data were not available for 2 CTRL
donors and 1 SCZ donor. *p , .05, two-sided Welch test. (D) Mean volume of all hCSs (n = 28) at each stage of maturation. Error bars indicate SD. (E)
Transcriptional trajectories of cell type–specific marker genes showing expected gene expression patterns. *p , .05, **p , .01, two-sided Mann-Whitney test.
BDNF, brain-derived neurotrophic factor; CTRL, control; EGF, epidermal growth factor; FGF-2, fibroblast growth factor 2; hCS, human cortical spheroid; iPSC,
induced pluripotent stem cell; NT3, neurotrophin-3; PRS, polygenic risk score; SCZ, schizophrenia.
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Figure 2. Transcriptional overlap between hCSs and human in vivo brain tissue from BrainSpan. (A) PC analysis plot showing good sample clustering by
hCS differentiation stage. Note the 3 outlier samples within the iPSC group. (B) Gene expression overlap between hCS profiles and in vivo temporal profiles
showing strongest overlap with in vivo periods PCW 10–24 (shaded area). (C)Gene expression overlap between hCS profiles and in vivo spatial profiles. Strongest
overlap was seen with the in vivo cortical regions MFC, DFC, and OFC. Weakest overlap was seen with CBC. (D) Gene expression overlap between hCS profiles
and in vivo temporal profiles stratified by diagnostic status. Significant differences, and in the opposite direction, seen for hCS stages D30 and D150. *p , .05,
two-sided Welch test. (E) Computational deconvolution showing strong concordance in estimated cell type fractions across in vitro and in vivo stages with
strongest overlap (shaded area). Note the decreasing pattern of the neuronal fraction in vivo after PCW 16–18, which is not due to a decrease in absolute cell
numbers, but rather a relative decrease in the neuronal proportion as the astrocyte and oligodendrocyte fractions increase. A1C, primary auditory cortex; AMY,
amygdala; CBC, cerebellar cortex; CTRL, control; DFC, dorsolateral prefrontal cortex; hCS, human cortical spheroid; HIP, hippocampus; IPC, inferior parietal
cortex; iPSC, induced pluripotent stem cell; ITC, inferolateral temporal cortex; M1C, primary motor cortex; MD, mediodorsal nucleus of thalamus; MFC, medial
frontal cortex; NPC, neural progenitor cell; OFC, orbitofrontal cortex; PC, principal component; PCW, postconception week; S1C, primary somatosensory cortex;
SCZ, schizophrenia; STC, superior temporal cortex; STR, striatum; V1C, primary visual cortex; VFC, ventrolateral prefrontal cortex.
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transitions and recapitulate the cellular architecture of
cortical fetal brain tissue.

Gene Coexpression Networks in Maturing hCSs

To further elucidate the transcriptional landscape of maturing
hCSs, we performed weighted gene coexpression network
analysis (39). We identified 11 gene expression modules, 5 of
which correlated significantly with hCS differentiation (p , 2 3

1029) (Figure 3A; Figure S2; Table S2). Modules 2 (93 genes)
and 3 (3072 genes) followed a downward trajectory and were
primarily enriched for biological processes (GO terms) related
to protein translation and cell proliferation, respectively
(Figure 3A, B; Table S3). On the other hand, modules 4 (675
genes) and 10 (3009 genes) exhibited an upward trajectory
comprising genes mostly related to macroautophagy and
synaptic processes, respectively (Figure 3A, B; Table S3). This
gradual loss of cell proliferation capacity combined with the
reciprocal increase in synaptic signaling ability reflects the
progressive differentiation of iPSCs into neurons (Figures 2E
and 3A). Module 8 (315 genes) also displayed an upward tra-
jectory similar to modules 4 and 10, but it was not significantly
enriched for any biological process. Module 4 was significantly
downregulated in SCZ hCSs at D150, with the antiapoptotic
gene BCL2L1 (BCLX) showing the strongest association
(Figure 3C; Figure S3; Table S4). This gene is known to pro-
mote neuronal cell survival (48) and prevent axonal degrada-
tion (49). A separate gene coexpression analysis was carried
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out on the data at D150 alone to investigate the association
between gene expression modules and genetic loading. We
found that the PRS was associated with a large module
enriched for genes involved in neuronal processes and Wnt
signaling, suggesting that predisposing genetic factors play an
important role in disease-related cellular processes (Figure S4).

Persistent Dysregulation of Axonal Genes in SCZ
hCSs

As SCZ might also be strongly influenced by individual genes
not fitting neatly into a specific coexpression module, we
performed transcriptome-wide time-course DE analysis
adjusting for baseline differences at the iPSC stage. We
identified 654, 1980, and 2142 DEGs in SCZ hCSs (FDR , .1)
at D30, D90, and D150, respectively, with partial overlap be-
tween the gene sets (Figure 4A, B; Table S5) and a consider-
able contribution of PRS loading, particularly during early
stages of differentiation (Figure S5). Mapping these DEG sets
onto risk genes for 5 major neuropsychiatric, neuro-
developmental, and neurodegenerative disorders, we found
the strongest associations for autism spectrum disorder (ASD)
(FDR = 3.7 3 1029) and SCZ (FDR = 1.8 3 1024) at D150
(Figure 4C; Table S6; Supplemental Methods). The DEG sets
were further annotated based on enrichment for biological
processes. The GO terms axonogenesis and/or axon devel-
opment were the processes with strongest enrichment in all
DEG sets (Figure 4D; Table S7), suggesting a consistent axonal
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Figure 4. Consistent dysregulation of axonal genes in SCZ hCSs and postmortem brain tissue. (A) Bar plot showing upregulated and downregulated DEGs
in SCZ across hCS maturation. (B) Overlap between DEG sets for each hCS stage. (C) Enrichment of identified SCZ DEGs in risk genes for 5 neuropsychiatric,
neurodevelopmental, and neurodegenerative disorders, showing strongest correlation for ASD and SCZ. Numbers in each box indicate strength of enrichment.
The disease gene sets were obtained from either the latest and largest GWAS for each disorder or from comprehensive databases as indicated in parentheses.
(D) Gene Ontology enrichment analysis (biological processes) of identified DEGs for each hCS stage. Bubble size corresponds to 2log10 (p value) of enriched
Gene Ontology terms. (E) Concordance of consistent axonal genes in hCSs and postmortem brain tissue (dorsolateral prefrontal cortex) using the CMC
dataset (SCZ n = 214, CTRL n = 215). Purple bars indicate genes with concordant direction of effect. AD, Alzheimer’s disease; ASD, autism spectrum disorder;
BD, bipolar disorder; CMC, CommonMind Consortium; CTRL, control; DEG, differentially expressed gene; FDR, false discovery rate; GWAS, genome-wide
association study; hCS, human cortical spheroid; iPSC, induced pluripotent stem cell; PD, Parkinson’s disease; SCZ, schizophrenia.
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deficit in SCZ throughout hCS maturation. Of the 178 axonal
DEGs underlying this enrichment, 21 were consistently upre-
gulated or downregulated in SCZ hCSs from D30 to D150
(Figure S6). To investigate whether the dysregulation of these
axonal genes is also present after disease onset, DE analysis
was conducted using human primary brain tissue (dorsolateral
prefrontal cortex) from 214 control and 215 SCZ donors of
European ancestry from the CMC dataset (44). Of the 21
axonal genes with consistent case-control differences
throughout hCS maturation, we found that 11 were also
significantly dysregulated in CMC (FDR , .1), and 10 of these
showed concordance with respect to direction of effect
(Figure 4E).

Aberrant Semaphorin Modulation in SCZ hCSs

The genes showing concordant effects in hCSs and post-
mortem brain tissue included SEMA7A and SEMA5A, both of
which encode members of the semaphorin family of proteins
known for their pivotal role in axon guidance (50). Importantly,
SEMA7A was downregulated in SCZ, while SEMA5A was
upregulated (Figure 5A), and this pattern was confirmed in
hCSs both by quantitative polymerase chain reaction and at
8 Biological Psychiatry - -, 2023; -:-–- www.sobp.org/journal
the protein level by immunostaining (Figure 5B–D;
Supplemental Methods). As semophorin genes show prefer-
ential expression in some cell types (https://www.
proteinatlas.org), we investigated whether or not the SCZ-
related changes in SEMA7A and SEMA5A expression were
driven by differences in cell type composition. We first
generated a high-confidence gene expression signature by
performing single-cell RNA sequencing on 3 of the control
hCS lines differentiated for 180 days (Supplemental
Methods). Data integration and annotation resulted in the
identification of 11 cell type clusters displaying two primary
trajectories, one for neuronal development and one for glial
development, both originating from NPCs (Figure 5E). Using
this single-cell RNA sequencing signature as prior informa-
tion, we employed a Bayesian method (51) to reconstruct cell
type composition in hCSs and found significant differences
between SCZ and control hCSs in the estimated fractions of
mature neurons, oligodendrocyte precursor cells and radial
glial cells at D150 (Figure S7). Importantly, a strong positive
correlation was found between SEMA5A and oligodendro-
cyte precursor cell fraction, suggesting that the increased
expression of SEMA5A in SCZ hCSs is partly due to an

https://www.proteinatlas.org
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Figure 5. Aberrant semaphorin modulation in SCZ hCSs. (A) RNA expression of SEMA7A and SEMA5A showing concordant dysregulation in hCSs and
postmortem brain tissue measured by RNA sequencing. (B) Confirmation by quantitative polymerase chain reaction of dysregulated SEMA7A and SEMA5A
expression in SCZ hCSs. (C, D) Immunohistochemistry of SEMA7A and SEMA5A in representative D150 hCSs (C) and quantification of protein expression
levels (D). (E) UMAP plot showing the 11 cell type clusters identified by single-cell RNA sequencing of 3 CTRL hCSs. Numbers correspond to the numbered
labels in panel (F). The left arm represents the neuronal trajectory, while the right arm represents the glial trajectory. (F) Single cell–based estimation of cell type
fractions and correlation with SEMA7A and SEMA5A expression at D150. *p , .05, **p , .01, two-sided Mann-Whitney test. a.u., arbitrary unit; CMC,
CommonMind Consortium; CTRL, control; hCS, human cortical spheroid; iPSC, induced pluripotent stem cell; mRNA, messenger RNA; NPC, neural progenitor
cell; OPC, oligodendrocyte precursor cell; RG, radial glial (cell); SCZ, schizophrenia.
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increased oligodendrocyte precursor cell proportion
(Figure 5F; Figure S7).

In addition to their axonal functions, semaphorins have been
shown to be involved in immunological processes (52,53).
Using enzyme-linked immunosorbent assay, we quantified the
extracellular levels of 5 cytokines (interleukin [IL]-1b, IL-10, IL-
8, IL-18, and tumor necrosis factor a) known to be modulated
by SEMA7A and SEMA5A (54–56), and found no significant
differences between SCZ and control hCSs at any stage of
maturation (Figure S8), suggesting that the association of
these two genes with SCZ is primarily related to their axonal
functions.
DISCUSSION

We comprehensively assessed maturing hCSs derived from a
large and genetically stratified sample of control and SCZ
donors and found that the hCSs recapitulated the transcrip-
tional architecture of human fetal tissue of the frontal cortex
and preserved key cellular transitions. We further identified
transcriptional deficits in axonal genes as an early neuro-
pathological mechanism in SCZ.

According to the neurodevelopmental paradigm of SCZ,
disturbances in early brain development may later contribute to
clinical manifestations, when maturing neural systems and
circumstantial pressures pose increasing demands on brain
functioning that expose the preexisting abnormalities (57,58).
The fetal phase is particularly vulnerable. During this period,
the repertoire of neurons found in the adult brain is formed, and
most anatomical structures are established (11). It is also the
molecularly most dynamic period of human brain development
(59), making it sensitive to pathological genetic influences, as
underscored by the observation that multiple genes within
SCZ-associated risk loci are preferentially expressed in the
prenatal brain (60–64). The importance of the prenatal period is
further attested to by the high degree of genetic overlap be-
tween SCZ and ASD, especially for rare coding (65,66) and
copy number variants (67,68), supporting the idea that SCZ lies
on a neurodevelopmental continuum with ASD and other dis-
orders of the developing brain (2). Consistent with this, we
found that the DEGs associated with SCZ across hCS matu-
ration were enriched for ASD and SCZ risk genes. The stronger
association with ASD likely reflects the fact that the gene
reference used for ASD included all types of genetic variation,
while the SCZ gene reference included genetic evidence only
from common variants.

Our results point to several axonal genes as potential early
contributors to SCZ risk, including SEMA7A and SEMA5A,
which encode two members of the semaphorin family of pro-
teins originally discovered as guidance cues for developing
axons (69,70). SEMA5A is a known ASD susceptibility gene
(71,72), and SEMA3A, another member of the family, has been
implicated in SCZ (73,74). Importantly, SEMA7A has been
found to promote axon growth and neurogenesis (75,76), while
SEMA5A has been identified as a negative regulator of syn-
apse formation (77). In both our hCSs and the postmortem
CMC sample, SEMA7A was downregulated in SCZ, while
SEMA5A was upregulated, suggesting that dysregulation of
these two genes may suppress axonal processes in SCZ
through distinct but mutually reinforcing mechanisms.
10 Biological Psychiatry - -, 2023; -:-–- www.sobp.org/journal
Burgeoning evidence has demonstrated that semaphorins also
exert immunomodulatory effects in the nervous system (54),
but we found no differences between control and SCZ hCSs in
secreted levels of key cytokines. While this suggests that our
SEMA findings are related to their axonal roles, an immuno-
logical contribution cannot be ruled out due to the absence of
peripheral immune cells in our hCS cultures. Overall, our re-
sults are in line with a similar study showing downregulation of
pathways related to neurodevelopment and synaptic biology in
SCZ (15) and with the identification of genes implicated in
synaptic biology in the most recent SCZ GWAS (10).

A well-known challenge with iPSC models is that a high
degree of gene expression variability between individuals may
obscure disease-specific variation and confound reproducible
disease modeling (21,78). A strength of our study was the use
of a large number of donors (N = 28) with genetically homo-
geneous SCZ cases as measured by a high group-level PRS,
which captures an individual’s overall genetic loading for SCZ
(79). This strategy is an effective way to reduce the negative
influence of donor heterogeneity and increase statistical power
(20,80), suggesting that our findings reveal genuine disease-
relevant mechanisms and not spurious genetic effects. How-
ever, it should be noted that although the derived hCSs mimic
the tissue architecture and transcriptional trajectories of
developing fetal cortex, they lack important features that are
expected to affect disease progression, including vasculari-
zation and physiological and environmental inputs (6,12). Thus,
our hCS model primarily captures abnormal disease processes
stemming from predisposing genetic factors.

Conclusions

Using reproducible organoids of the frontal cortex, we
modeled the neurodevelopmental mechanisms of SCZ in the
critical period of prenatal brain development and identified
persistent transcriptional aberrations in axonal genes. Our re-
sults point to novel disease mechanisms and further advance
understanding of the neurodevelopmental origins of SCZ.
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