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Abstract 

Seasonal rhythms in humans are fascinating but studying them is inherently challenging due 

to the need for data that covers multiple years. Due to the experimental obstacles, it remains 

debated whether humans exhibit seasonal fluctuations in aspects such as activity levels and 

libido. To approach these topics through indirect digital measures, this thesis used multi-year 

data from Google Trends to investigate seasonal variations in daily search activity patterns 

and pornography interest. We demonstrate a new method for modelling aggregate search data 

and calculating daily search activity durations. Our analyses detected seasonal differences in 

daily search activity duration in areas in the Northern and Southern Hemispheres (Norway, 

Sweden, Finland, New Zealand, and Victoria (Australia)). There was an approximately 20-

minute average difference in search activity duration between spring and winter in the 

Northern Hemisphere and between summer and winter in the Southern Hemisphere. We also 

detected a clear inverse relationship between the Northern and Southern Hemispheres’ 

seasonal fluctuations in search activity length. Similarly, we detected seasonal differences in 

search interest for pornography. Both the Northern and Southern Hemispheres showed a 

larger pornography search interest during the summer. However, significant surges in 

searches during the Christmas season and smaller spikes around Easter indicate that leisure 

time during holidays plays a crucial role in driving search interest for pornography. In brief, 

this study indicates seasonality in two important aspects of human lives: activity levels and 

libido but does not attempt to identify the underlying cause of the observed patterns.  
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1 Preface 
Our solar system was created 4.6 billion years ago when an immense cloud of gas and dust 

collapsed under its own gravity. A swirling motion was initiated by the collapse and 

maintained by the forming planets. The movement never stopped because of a lack of 

substantial resistance in the universe. We see the remainder of these immense forces today as 

planet Earth rotates daily on its axis and revolves yearly around the Sun (2).  

When Earth was still young, it was hit by another planet, Theia, in a massive collision that 

ended up both tilting our world and producing the moon (3). The resulting tilt of 23.4° 

positions the two hemispheres closer or further away from the sun, depending on the Earth’s 

location in its orbit. This produces seasons at all latitudes except the equator (4).  

Some million years after this cataclysmic event, the first microbes appeared. Since then, life 

on Earth has evolved into the myriad of creatures that exist today. Many of these lineages 

have been exposed to yearly changes in temperature and light conditions and have evolved to 

optimise their life history traits in accordance with the seasons. The results are a range of 

circannual (approximately yearly) adaptations in physiology and behaviour exhibited in both 

prokaryotic and eukaryotic species (5). For animals, these adaptations include moulting of fur 

and feathers, yearly migrations, fluctuations in sex drive, and annual changes in activity levels 

(6).  

Humans are increasingly disconnected from the harshness of the outer world. We stay warm 

during winter, illuminate our houses when it gets dark, turn on the air conditioner during the 

hot days of summer, and have constant access to foods from all over the world regardless of 

the season. In recent years, we have also become increasingly more logged on to social 

stimuli, even in times of solitude.  

Have we disconnected entirely from the seasonal laws that govern other animals' behaviour? 

Or is it possible that nature has a larger impact on us than we realise, despite our attempts to 

distance ourselves from it? These are questions I have been investigating in this Master's 

Thesis, and I will share my findings on the following pages.   
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2 Glossary 

Biological Clock An organism’s innate, physiological mechanism of timekeeping.  

Circadian rhythm An endogenous, approximately 24-hour cycle that can be 
entrained by a zeitgeber with a period in the circadian range of 
approximately 19 to 28 hours. 

Circannual An endogenous, approximately one-year cycle that can be 
entrained by a zeitgeber with a period in the circannual range of 
approximately 8 to 16 months. 

Diel Corresponding to the duration of the 24-hour day.  

Entrainment The synchronisation of a self-sustaining rhythm (i.e., a circadian 
or circannual rhythm) by a zeitgeber. Under steady entrainment, 
there is a stable phase relationship between the self-sustaining 
rhythm and the rhythm of the zeitgeber. 

Free-run The state of a self-sustaining rhythm in the absence of effective 
zeitgebers. 

Photoperiod The hours of daylight during the 24-hour day. 

Photoperiodism The response of organisms to changes in photoperiod, which 

allows them to adapt to the environmental challenges of 

forthcoming seasonal change.  

Seasonal A seasonal organism responds to the yearly fluctuations in 
environmental conditions but does not necessarily have intrinsic 
timekeeping mechanisms.  

Social Clock The local clock time which allows us to be in sync with societal 
expectations and institutions such as school, work, and public 
transport. 

Social jet lag The chronic discrepancy between an individual’s intrinsic 
Biological Clock and the Social Clock. 

Zeitgeber Any external or environmental cue that entrains or synchronises 
an organism’s biological rhythms.  
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3 Introduction  

3.1 Photoperiod, Photoperiodism and Circannual Rhythms 

Photoperiod – the hours of daylight exposure during the 24-hour day – fluctuates seasonally 

in most of the world (4, 5). As the Earth orbits the Sun, it exhibits an axial tilt of 23.4°, as 

illustrated in Figure 1. This tilt causes the Northern Hemisphere to be closer to the Sun during 

the summer solstice and further away from the Sun during the winter solstice. The opposite is 

true for the Southern Hemisphere (1). Thus, the hemispheres experience “opposite” seasons at 

any given time.  

Figure 1: The tilt, orbit and rotation of the Earth. A: The Earth spins around itself to produce the 
24-hour day/night cycle. This occurs with an axial tilt of 23.4° relative to the Sun. B: The Earth orbits 
the Sun in an ellipse, but this is not the leading cause of the seasons. The axial tilt causes different 
hemispheres of the Earth to point toward or away from the Sun at different times of the year. The 
hemisphere closest to the Sun experiences summer, and the hemisphere furthest away from the Sun 
experiences winter. Only the equator has near-constant yearly light conditions. Figure (slightly 
modified) from timeanddate.com (1). 
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During the equinoxes, days and nights are roughly equal in duration across all latitudes. In 

comparison, nights are shorter, and days are longer during summers in both the Northern and 

Southern Hemispheres. During winter, nights are longer, and days are shorter. Only at the 

Equator, located at 0° latitude where the impact of Earth's axial tilt is minimal, there are no 

noteworthy seasonal changes in day length (6, 7). The further you move away from the 

Equator, the larger the seasonal photoperiodic changes become. Tropical regions located 

between the Tropics of Cancer and Capricorn at 23° 27ʹ north and south, respectively, 

experience only minor photoperiodic changes, although they can have pronounced dry and 

wet seasons (8-10). Between the tropical belt and the Arctic Circles are temperate regions 

characterised by warm summers, cold winters, and intermediate springs and autumns (10, 11). 

Beyond the Arctic Circles at 66° 33' south and north, photoperiods are the most extreme. 

These regions experience polar nights during winter and midnight sun during summer: 

periods when the sun is below and above the horizon throughout the 24-hour day (12). Solar 

radiation intensity also varies throughout the year and is strongest in summer and weakest in 

winter (13). The yearly fluctuations in solar energy input produce seasonal climate patterns 

such as changes in temperature, humidity, winds, and ocean currents (14). Unlike temperature 

and weather conditions, however, photoperiod is a mathematically reliable signal of the time 

of year (7). 

For animals in temperate and arctic regions, executing certain life history events at the right 

time of year is essential. In an evolutionary context, it is easy to see why. An animal that 

produces offspring during winter, when food is scarce, will probably not create a long lineage 

of descendants. Similarly, an animal that enters hibernation when food is plentiful or during 

the mating season will also suffer reduced fitness.  

Many organisms have evolved timing mechanisms that allow them to anticipate the future 

seasonal environment and perform activities such as reproduction, growth, moult, migration, 

and hibernation at the appropriate time of year (6). Timekeeping comprises three elements, as 

illustrated in Figure 2. Firstly, sensory systems receive cues from the environment, 

particularly light cues, which serve as synchronizing signals or zeitgebers. Secondly, an 

innate clock maintains an intrinsic, self-sustaining rhythm in the absence of zeitgebers but can 

also be entrained to match its rhythm to the environment. Thirdly, output pathways link the 

internal clock to physiological processes and behavioural responses.  
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Figure 2: Eskinogram of the three basic components for timekeeping. A clock pathway has three components: a 
perceived input, an innate clock, and an output. The sensory system perceives the input and relays it to the oscillator (the 
innate clock), which produces physiological and behavioural responses.  

  

In the context of seasonal timing, the innate clock is called the circannual (circa – 

approximately, annual – yearly) clock. Photoperiod is used as a seasonal zeitgeber that 

entrains the circannual clock, which in turn drives a range of physiological changes. Animals 

use the absolute day length and the directions of daylight changes to track the time of year 

and anticipate coming seasons (15). Photoperiodic animals use photoperiod to initiate 

seasonal programmes of physiological change that can also be stimulated in a lab setting with 

artificial changes in photoperiod. This is called photoperiodism (16). Zeitgebers such as 

temperature, social stimuli and seasonal food availability appear less important than 

photoperiod for the entrainment of circannual rhythms (6, Ch. 4).  

It is worth emphasising that the term circannual should only be used to describe an organism 

that maintains a self-sustained, approximately yearly rhythm under constant conditions. If no 

such self-sustained rhythm has been proven, it cannot be known if the organism is indeed 

circannual or if it is simply seasonal. A seasonal organism responds to the yearly fluctuations 

in environmental conditions but does not necessarily exhibit intrinsic timekeeping.  

Similarly, the term circadian should only be used to describe an organism that maintains a 

self-sustained, approximately 24-hour rhythm under constant conditions. When 

approximately 24-hour rhythms are seen in variable conditions, these rhythms should be 
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described as diel. Circadian rhythms will not be explained thoroughly here, but the interested 

reader is encouraged to read Chapter 3, Fundamental Properties of Circadian Rhythms, in the 

book Chronobiology by Dunlap et al. (2004). In short, circadian rhythms are endogenous 

rhythms with a period of approximately 24 hours (7, Ch. G-7). Although circadian rhythms 

are self-sustained under constant laboratory conditions, they are entrained by the rhythmic 

changes in light intensity between night and day. Without an external zeitgeber, circadian 

periods are usually not precisely 24 hours long. However, the Sun (and for humans, electric 

light sources) entrains the endogenous daily rhythm to the exact 24-hour day (6, Ch. 1). The 

circadian clock has been implicated in photoperiodism, as discussed further in section 3.2. 

In terms of innate timing, there are two classifications of biological circannual rhythms: Type 

I and Type II. Type I species have an internal circannual clock that requires external cues to 

persist for more than one cycle. The cues must be appropriate to their respective season and 

occur during both short and long days. As an example, many wild rodents use long 

photoperiods as a signal to reproduce. However, if the long photoperiod continues – instead 

of progressing into autumn and winter photoperiods – the reproductive state also continues (6, 

Ch. 4). Also, many Type I animals will eventually become refractory to long-term housing on 

short photoperiods, and spontaneously exhibit their summer reproductive phenotype. To 

break this state of refractoriness, the animal needs to be re-exposed to a long photoperiod 

(15). Type II species have self-sustaining rhythms that persist under constant environmental 

conditions. They are driven by an internal circannual clock and entrained by changing 

photoperiod so that the endogenous timekeeping is synchronised with the seasonal cues of the 

outer world. Type II species have free-running periods of approximately 10-12 months that 

have been documented to persist as much as seven cycles in mammals. Examples of animals 

with Type II circannual rhythms include longer-lived species such as squirrels, sheep, deer, 

and starlings (6, Ch. 4). 

 

3.2 Encoding of Photoperiod by the SCN, the Melatonin Signal and 

Photoperiodism 

The anatomical structures behind the circannual clock have not been conclusively identified 

in any species (15, 17). However, as mentioned above, there exists some evidence connecting 

photoperiodic time measurement to the circadian clock, and in recent years, promising 

suggestions have been forwarded about the anatomical location of the circannual clock. 
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In mammals, light stimuli are relayed from the eyes via the retinohypothalamic tract to the 

SCN in the ventral periventricular zone of the anterior hypothalamus (18). The SCN is a 

paired structure, where each half consists of approximately 10,000 neurons that give rise to 

circadian rhythms through specific, rhythmic gene expression and by the rate at which they 

fire action potentials (19).  

Electrical activity in the SCN is high during the day and low at night for both diurnal and 

nocturnal mammals. The light intensities that occur during dawn and dusk, at approximately 

50% of the maximum level, trigger, respectively, behavioural onset and offset for diurnal 

species and the opposite for nocturnal species. Consequently, as dawn and dusk times change 

with the seasons, so do behavioural activity lengths, as discussed in section 3.3 (20).  

The electrical activity patterns of the SCN have been shown to differ between different 

photoperiods (18). VanderLeest et al. (2007) demonstrated this by keeping freely moving 

mice at long (LD 16:8) and short (LD: 8:16) photoperiods and recording the multiunit 

electrical activity of the SCN. They found that the multiunit electrical pattern differed 

between the different photoperiods because single neurons exhibited alterations in their 

activity phases relative to each other (see Figure 3) (21). The SCN can thus encode short 

winter days and long summer days by manipulating the phase relationship among its 

constituent neurons (18). Notably, there have not been reported any differences in single-

neuron activity between long and short days. The seasonal waveform patterns of SCN 

electrical activity, that result from alterations in the phase relationship between the individual 

units, is sometimes referred to as plasticity of the SCN (5)  
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Figure 3: SCN multiunit electrical patterns relative to previous photoperiod exposure. A: Smoothed waveforms of the 
multiunit electrical activity (MUA) in the SCN of freely moving mice after exposure to a short photoperiod (above) and a 
long photoperiod (below). Time (x-axis) is in hours. The recordings were performed in constant darkness to assess the 
properties of the neuronal activity in the absence of light. The top bars indicate the light-dark cycle the animals were exposed 
to before the experimental recording. The data are normalised from 0 to 1. Black lines are the averaged waveforms, and grey 
lines are individual recordings. B: Normalised cumulative electrical activity for the SCN of mice housed under LD 8:16 
(above) and LD 16:8 (below). The bars on the top of each graph represent the light-dark cycle to which the mice were 
entrained. The spike frequency of action potentials is normalised from 0 to 1. The population size is near single-neuron at the 
top and increasingly large towards the bottom. The graphs demonstrate that the electrical activity pattern of the SCN is 
composed of out-of-phase activity exhibited by individual neurons. The phase distribution was larger on long days than on 
short days. Figures (slightly modified) from VanderLeest et al. (2007) (21). 

 

Several neurotransmitters, such as VIP (Vasoactive Intestinal Peptide), GRP (Gastrin-

Releasing Peptide), AVP (Arginine Vasopressin) and GABA (Gamma-Aminobutyric Acid), 

are involved in the synchronisation between SCN neurons. Therefore, each of these 

transmitters may play a role in the photoperiodic functions of the SCN (18). For example, 

VIP-expressing cells in the ventral SCN receive photic information from the retina and 

project to the dorsal SCN (18). Lucassen et al. (2012) investigated the circadian and 

photoperiodic functions of VIP-knockout mice by recording the multiunit neural activity of 

the SCN in vivo. Circadian rhythms were largely unaltered, but photoperiodic adaptations of 

the SCN were abolished. They concluded that VIP must be indispensable for photoperiodic 

encoding (22).  

In mammals, nightly melatonin secretion from the pineal gland is regulated by the SCN. 

Melatonin levels in blood and saliva, or the metabolite 6-sulfatoxymelatoninin in urine, are 
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frequently used as a marker for the phase of the circadian clock (23). Interestingly, levels are 

high during the dark phase for both diurnal and nocturnal mammals (17, 18).  

In the context of photoperiodism, the duration of melatonin production reflects the length of 

the night for many species of mammals (24). For these animals, photoperiodic information is 

encoded in the daily melatonin signal (see schematic illustration in Figure 4), and 

pinealectomy abolishes seasonal physiological responses to photoperiod (18, 25). Melatonin 

has also been implicated in the entrainment of circannual rhythms. Woodfill et al. (1994) gave 

melatonin infusions to pinealectomised sheep and found that 90 consecutive days were 

sufficient to entrain their circannual reproductive cycle (26). Therefore, identifying the site of 

action of melatonin may indicate where seasonal physiological responses are controlled and 

coordinated.  

 

Figure 4: The pathway of seasonal melatonin secretion in a mammalian brain. Photic information is received by the 
retina and conveyed to the SCN via the retinohypothalamic tract (RHT). The SCN displays a seasonal pattern of electrical 
activity depending on the duration of light stimuli, which varies with the seasons. This photoperiodic information is 
transmitted from the SCN to the pineal gland through a polysynaptic pathway that goes through the paraventricular nucleus 
(PVN), the intermediolateral cell column of the thoracic spinal cord, the superior cervical ganglion and the postganglionic 
adrenergic fibres that innervate the pineal gland. During summer nights, the nocturnal melatonin signal is temporally 
compressed, and during winter nights, it is prolonged. Figure (slightly modified) from Coomans et al. (2014) (18). 
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The pars tuberalis of the pituitary gland has the highest melatonin receptor density of all 

tissues; specifically, MT1, one of two subtypes of melatonin receptors, is strongly expressed 

in the pars tuberalis (17, 18). There is a well-established photoperiodic circuit from the retina 

through the SCN to the pineal gland (see Figure 4), where melatonin production occurs, and 

to the pars tuberalis. The pars tuberalis uses the melatonin signal from the pineal gland to 

measure photoperiod duration. Since the extent of melatonin secretion depends on the 

duration of the night, photoperiod indirectly serves as a seasonal cue for the pars tuberalis. 

Consequently, the thyroid hormone (TH) metabolism in the hypothalamus is altered in a day-

length-dependent manner. This is achieved by altering the TSH (thyroid stimulating hormone) 

secretion from the pars tuberalis. Specifically, long photoperiods activate TSH through a 

pathway involving EYA3, an enzyme that stimulates TSH production by regulating the 

expression of the TSHb subunit. EYA3 is itself regulated by circadian clock genes (activated 

by BMAL2 and suppressed by DEC1) (27, 28). TSH is a glycoprotein hormone that consists 

of the two subunits αGSU (glycoprotein subunit α) and TSHβ (29). Under long photoperiods, 

TSHβ is strongly co-expressed with αGSU-expressing cells in the pars tuberalis but not under 

short photoperiods. Thus, on long photoperiods, TSHβ and αGSU are combined to produce 

TSH, which is secreted in a retrograde manner back up into the hypothalamus (30). 

Specialised hypothalamic glial cells lining the 3rd ventricle, called tanycytes, have TSH 

receptors whose binding stimulates the expression of deiodinase enzyme 2 (DIO2). DIO2 

converts locally available thyroxine (T4) to the active form of thyroid hormone, 

triiodothyronine (T3), and this change in thyroid hormone levels drives the seasonal 

metabolic and reproductive changes in physiology (17). The pars tuberalis has also been 

suggested to be the site of the circannual clock on the basis that it integrates the photoperiod 

signal and spontaneously reverts in expression profile when held on constant photoperiods 

(30). Also, when experiments to disconnect the pars tuberalis from the hypothalamus were 

conducted under constant light conditions, the seasonal cycles of prolactin, secreted from the 

downstream anterior pituitary, continued (31).  

 

3.3 Seasonal Changes in Diel Activity of Temperate and Arctic 

Animals  

Seasonality refers to a seasonally fluctuating pattern that may not depend on an innate timer. 

Here I will discuss seasonal changes in diel activity which may be related to the SCN (see 
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section 3.2). Since the main zeitgeber, day length, varies with season and latitude, so do the 

activity patterns of many animals. Daan et al. (1974) investigated seasonality in diel activity 

levels in three species of mammals and five species of birds kept either at the Arctic Circle or 

in Germany. The article does not state whether all the animals were captured at the same 

latitude; however, two of the mammalian species, Golden Hamster (Mesocricetus auratus) 

and Southern Flying Squirrel (Glaucomys volans), are not native to Europe and presumably 

had one geographical origin. All the species demonstrated clear seasonal patterns of daily 

activity levels, with less activity in winter than in summer, although birds had the most 

marked seasonal shifts (see Figure 5). For the flying squirrel, which is nocturnal, activity 

bouts were longer during winter (Figure 5B). Also, daily activity onset and offset times 

appeared to vary with latitude, presumably because photoperiod varies with latitude (Figure 

5C). This indicated that seasonal and latitudinal differences in sunrise and sunset influenced 

the activity length in a roughly mirror-image manner for these animals (32).  

 

 

Figure 5: Seasonal and latitudinal differences in activity patterns of birds and mammals. A: Seasonal fluctuations in 
activity for four species of birds (Chaffinch, Brambling, Greenfinch and Siskin) and B: Southern Flying Squirrel. The birds 
were kept in Miessaure, Sweden, and the flying squirrel was held at Erling-Andechs, Germany. C: Daily onsets and offsets of 
activity in a greenfinch (left) and a flying squirrel (right) in Germany (top) and at the Arctic Circle (bottom). The solid lines 
represent sunrise and sunset, and the horizontal lines represent activity start and cease with two standard deviations on each 
side of the mean. Figure (slightly modified) from Daan et al. (1974) (33). 
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Midnight sun and polar night constitute strange deviations from the normal, daily light-dark 

cycle that governs most of the world most of the time. Animals that live in arctic regions must 

deal with the relatively continuous signals of light or darkness. However, even during the 

summer and winter solstices in arctic regions, variations in solar elevation relative to the 

horizon produce daily cycles of light intensity that might be used by some animals to keep 

track of time (16). Diel behavioural patterns can also become essentially continuous during 

polar summer and winter. For example, the diurnal feeding patterns of Svalbard ptarmigan 

(Lagopus muta hyperborea) are intermittently continuous throughout the 24-hour day around 

the solstices in their natural arctic habitat (34). It has been proposed that the Svalbard 

ptarmigan possesses a dampened circadian clock that enables non-diel rhythms to take 

precedence around the solstices (16). Svalbard reindeer also have a breakdown of diel 

rhythms around the solstices (35). For reindeer, however, the molecular circadian clock 

appears to be weakened or completely absent, although these animals have strong circannual 

rhythms (36, 37). 

 

3.4 Photoperiodism, Circannual Clocks and Seasonality in Humans  

Bronson (2004) speculated that photoperiodism (specifically, seasonal regulation of 

reproduction) probably evolved in a common ancestor of all modern mammals (38). Dunlap 

(2004) hypothesised that photoperiodic time measurement is an ancient property of all 

vertebrates (6, Ch. 4). Moreover, seasonal breeding is common in non-human primates living 

at the higher latitudes of the tropics or in the lower temperate zone. Thus, it seems likely that 

modern humans would possess the genetic potential for photoperiodism and a circannual 

clock (38).  

If humans are photoperiodic, there could potentially also be genetic differences in the trait. 

Photoperiodism is strongly responsive to selection, as demonstrated by Heideman et al. 

(1999) on white-footed mice (Peromyscus leucopus) (see Figure 6). In an artificial selection 

experiment, they produced one line of highly photoresponsive mice and another line of 

remarkably unresponsive mice in only three generations of breeding. At the end of the 

experiment, 80% of the mice in the photoresponsive-selected group responded strongly to 

photoperiod, and only 16% in the unresponsive-selected group did the same (39). Based on 

this, Bronson (2004) forwarded the hypothesis that some humans may be more 
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photoresponsive than others and that such individual variation may explain the 

inconsistencies in seasonal research on humans (38). It has been suggested that Out-of-Africa 

migration exposed humans to higher latitudes that might have acted as a selection pressure on 

genes involved in photoperiodism. Forni et al. (2014) investigated the correlation between 

yearly changes in photoperiod (Dphotoperiod) and a range of circadian genes from 52 human 

populations worldwide. There was a significant correlation between Dphotoperiod and single 

nucleotide polymorphisms (SNPs) in the investigated genes of people living at the respective 

latitudes, and thus signatures of latitude-driven selection on circadian genes (40). Several 

species exhibit varying degrees of seasonal responses depending on the latitude at which they 

live. For some species, such differences between populations may be the result of genetic 

adaptation to distinct environments. For example, Lynch et al. (1981) studied white-footed 

mice (Peromyscus leucopus) from three latitudinally distinct populations in the United States 

under identical laboratory conditions. They found that only mice from the southernmost 

population were unresponsive to a short-day photoperiod (41).  

 

 

Figure 6: Selection experiment on photoperiodism. The percentage of white-footed mice strongly responsive to 
photoperiod in each generation (P, F1, F2, F3), measured as having regressed gonads during a short photoperiod. Squares 
represent the responsive-selected line, solid circles represent the unresponsive-selected line, and open circles are the control 
line. Figure redrawn from Heideman et al. (1999).  
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However, it is difficult to say whether we will ever know if humans are photoperiodic or have 

a circannual clock, primarily due to the inherent challenges in conducting long-term, 

controlled studies on human subjects (section 3.4.3). Therefore, we are left with evaluating 

the evidence for seasonality in humans, which remains a subject of debate. Some researchers 

attribute human seasonality to fluctuations in temperature rather than photoperiod, while other 

studies do not detect any seasonality at all (42, 43). Modern humans are largely protected 

from seasonal fluctuations in both temperature and photoperiod, making the topic even more 

difficult to investigate. Despite somewhat inconsistent evidence, seasons appear to have a 

notable influence on human behaviour and physiology. However, the mechanisms behind 

human seasonality are not certain – we could have an endogenous timer or simply respond to 

seasonal changes (44).  

Although the cause remains uncertain, seasonality has been demonstrated in various aspects 

of human behaviour and physiology, such as disease susceptibility and immunological 

responses, mental health, various hormone levels, and body weight (42, 44-47). For example, 

seasonal affective disorder (SAD) is a well-documented phenomenon, with recurrent episodes 

of depression or bipolar disorder that only occur during a specific time of year – normally 

during winter (48). Another example is the seasonal susceptibility to infectious diseases, such 

as influenza in the winter or chickenpox in the spring (49). The mechanisms behind this 

phenomenon are not fully understood; however, suggestive explanations include seasonal 

variations in environmental conditions that impact the host's immune response and seasonal 

fluctuations in contact rates (e.g., school terms). Another suggestion is that endogenous 

circannual restructurings of immunity, metabolism or body condition could play a role, but 

this remains highly speculative due to a lack of evidence (49). The following sections will 

focus on two of the most studied seasonally fluctuating aspects of human biology: 

reproduction and the sleep-wake cycle. 

 

3.4.1 Evidence for Seasonal Changes in Diel Activity, Sleep and Melatonin 

Secretion in Humans 

The studies that found seasonal differences in sleep duration typically had two distinguishing 

features:  



 

Page 15 of 121 

1. The studies were conducted at extreme latitudes with large annual fluctuations in 

daylight. 

2. Or the study removed voluntary control over the modern light environment. For 

example, in a lab or camping.  

 

However, even under extreme photoperiods, seasonal fluctuations in the sleep-wake cycle are 

not always detected. Antarctic studies often occur at large research stations with set working 

hours and mealtimes. Only rarely are the workers at antarctic research stations encouraged to 

sleep and wake up according to their preferences, but this was the case in a study by 

Kennaway et al. (1991), where four workers at a small antarctic research station showed free-

running rhythms of sleep, melatonin production, cortisol levels and electrolyte excretion 

during winter (see Figure 7) (50). Similarly, Usui et al. (2000) found that eight men on an 

antarctic research expedition struggled to entrain to the 24-hour period during winter (51). 

Contrary to this, Yoneyama et al. (1999) saw no changes in the sleep-wake cycle but did 

detect phase shifts in melatonin and temperature rhythms, with a clear delay occurring during 

winter (52). Arendt et al. (2017) also found no change in the duration of melatonin release but 

a marked phase delay in winter compared to summer (53).  

 

Figure 7: Free-running sleep-wake rhythms of humans in Antarctica. The four multi-plotted graphs represent the sleep-
wake rhythms of four human subjects on an Antarctic research station in 1987. Sleep times, registered by sleep diaries, are 
plotted as black lines. The participants were free to sleep, wake up and work at their preferred times. During the Antarctic 
winter, the sleep-wake rhythms of all participants free-ran. The gaps in the records occurred during field trips when the 
participants did not keep a sleep diary. Figure (slightly modified) from Kennaway et al. (1991) (50). 
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There have been limited long-lasting investigations into the human sleep-wake cycle in 

experimental settings, with a few interesting exceptions. Wehr et al. (1991) exposed eight 

healthy people to a summer photoperiod of LD 16:8 for one week and a winter photoperiod of 

LD 10:14 for 4 weeks under laboratory conditions. The subjects slept longer (“winter”: 11.0 ± 

0.8, “summer”: 7.7 ± 0.2) and showed longer nocturnal melatonin secretion (“winter”: 12.5 ± 

1.8, “summer”: 10.3 ± 0.8 h) under the short photoperiod (54). Stothard et al. (2016) 

demonstrated that total sleep duration was longer during winter camping (9.9 ± 0.4 hours) 

compared to summer camping (8.0 ± 1.1) in Colorado (USA). They also showed that the 

average sleep duration was ~2.3 hours longer during winter camping than in participants' 

everyday lives and that melatonin onset occurred ~2.6 hours earlier, although there were no 

differences in the midpoint and offset of the melatonin rhythm (55, incl. S3). However, 

although the results of these two studies might be suggestive of seasonal changes in the sleep-

wake patterns of humans, multi-year monitoring would be necessary to conclusively 

demonstrate such patterns.  

There is no consensus on whether human melatonin secretion varies between the seasons, as 

the experimental evidence is mixed (24, 54). Many studies on humans appear to encounter a 

phase delay in the melatonin rhythm during winter, even in countries that do not use daylight 

saving time, such as Japan (13). 

Other studies have compared natural light exposure to the everyday electrical environments of 

their subjects. During a German reality TV program with participants living under Stone Age 

conditions for two months during summer, sleep-wake rhythms were recorded before, after 

and during filming. The participants slept approximately 1.5 hours longer when living under 

Stone Age conditions than at home (56). Studies that compare natural light exposure to 

modern electrical lighting are interesting in the context of seasonal rhythms because our 

modern homes, in many aspects, function as a “constant” summer photoperiod. The duration 

of the biological night is similar between natural summer photoperiods and modern indoor 

environments, but there is a phase delay in the latter (55). 

 

3.4.1.1 Chronotypes  

People’s phase of entrainment to the same light-dark cycle varies – a characteristic called 

chronotype. Colloquially, some extreme chronotype variants may be termed larks and owls, 
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but there are many intermediates between these two (57). Importantly, chronotypes appear to 

be approximately normally distributed in the population (58).  

Genetic differences in the protein components of the circadian clock might be the reason for 

this inter-individual variation. Such genetic differences could lead to variations in how 

people´s clocks respond to light and darkness and in how long their subjective days are. If a 

circadian clock generates daily rhythms that are somewhat shorter than 24 hours, the internal 

day needs to be either delayed or extended to match the environmental day. Similarly, if a 

circadian clock produces internal days slightly longer than 24 hours, then it must be advanced 

or shortened to remain entrained to the external day.  

Chronotype assessment (for example, with the Munich Chronotype Questionnaire, MCTQ) is 

usually done during work-free days to minimise the disagreement between the biological and 

the social clock (i.e. local time) (57). A person's chronotype is more of a state than a stable 

trait because it reflects the phase of entrainment, which can change with varying zeitgebers 

(57). Thus, in the Stone Age reality show, the participants changed their chronotypes between 

home and Stone Age conditions. Chronotypes also change with age – teenagers have the latest 

chronotypes – and vary with sex – men are generally later chronotypes than women before the 

age of 40 and earlier after (58).  

Longitude has also been demonstrated to influence chronotype. Randler (2008) showed that 

pupils in Western Germany are later chronotypes than pupils in Eastern Germany. This can be 

explained by equal social clocks but different sun clocks: School start times are similar all 

throughout Germany, but sunrise is earlier in Eastern Germany. Thus, East German pupils 

had earlier rise and bedtimes, and Western German pupils were at a higher risk of sleep 

deprivation and poor learning outcomes (59).  

Roenneberg and colleagues investigated people’s sleep logs and saw that many sleep-wake 

cycles shifted during the weekends as if the subjects flew several time zones to the West. This 

shift was not caused by travel, however, but by a mismatch between the social clock and the 

biological clock. The phenomenon was named social jet lag. The researchers proposed that 

electric lighting has weakened the natural photoperiodic zeitgeber and that humans now live 

under roughly constant light conditions except during sleep. This has led to delayed 

chronotypes for almost all people, and a chronic discrepancy has arisen between the 

biological and social clock, which is compensated for during weekends (57). Different 
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chronotypes and social jet lag should be considered when investigating activity patterns in 

humans since they could potentially obscure their detection.  

 

3.4.2 Seasonality in Human Reproduction  

Seasonal reproduction is seen in almost all animals that do not live in tropical areas, and the 

reproduction time is usually set to deliver offspring between spring and early summer (60). 

Humans also have clear seasonal patterns in birth rates, although they vary between countries, 

continents, and latitudes (44, 61). In Europe, conceptions most often occur in spring or 

summer, depending on the latitude (38, 62). In Sweden, August has historically been the 

month with the most conceptions, resulting in more births occurring in April (see Figure 8) 

(62, 63). Although the amplitude of this pattern has declined in recent decades, there is still a 

peak of births in spring and a trough in the final quarter of the year (63). The declining trend 

of seasonal births has been observed in many countries, for example, Spain, as illustrated in 

Figure 9. Interestingly, after a Spanish industrialisation campaign in the 1960s, the rhythm of 

annual births exhibited a phase shift, and the peak moved from spring to autumn/winter (64).

 

Figure 8: Seasonality in conceptions and births in Sweden. A: The number of conceptions in Sweden between 1977 and 
1988, stated as the percentage of the annual total. B: Observed vs. expected number of births in Sweden for each month. 
Solid line: 1940-1959, small-dotted line: 1960-1979, dotted line: 1980-1999, grey line: 2000-2012. Error bars indicate the 
95% confidence interval. Figure A is from Moos et al. (1994), B is from Dahlberg et al. (2018). Both graphs have been 
slightly modified. 
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Figure 9: Monthly birth rates in Spain from 1900 to 1978. Before 1940, the rhythm was highly regular, with peak 
conception levels occurring in spring and annual differences of about 30% between the peaks and troughs. During and after 
World War 2, the amplitude of the rhythm decreased. After the 1960s, when a massive industrialisation campaign was 
launched by Francisco Franco, the phase of conception peaks shifted to autumn/winter. Figure from Roenneberg (2004) (64). 

 

Although there is a seasonal pattern in birth rates, there is no doubt that humans are born all 

year round in all parts of the world. Foster and Roenneberg (2008) suggested this is due to the 

long-lasting nurturing of human foetuses and babies. Both pregnancy and lactation are highly 

energy-demanding processes, and in humans, they are spread over such a lengthy period that 

there may not be any one optimal season to give birth (44). Bronson (2004), on the other 

hand, stated that the most energetically demanding stages of reproduction are late pregnancy, 

birth, and lactation. Thus, most births have historically occurred in spring and summer to 

align this energy-depleting phase with the highest food availability (38). 

Some researchers have investigated whether seasonality in birth rates is a consequence of 

seasonality in libido, but the results are mixed, and the studies are few. Demir et al. (2016) 

evaluated testosterone, luteinising hormone (LH), follicle-stimulating hormone (FSH) and 

prolactin levels during winter and summer for 80 Turkish men. They also provided the men 

with a questionnaire to determine the frequency of sexual thoughts and ejaculations during the 

two seasons. They found a significant difference in FSH and testosterone levels between 

seasons but no significant changes in LH and prolactin. Also, the men had more sexual 

thoughts and ejaculations during summer (65). 
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Contrary to this, Caniklioğlu et al. (2021) investigated hormone levels and morning erections 

of 221 Turkish men and found no differences between summer and winter. However, the 

definitions of the seasons were very liberal, with everything between September 24th and 

March 21st counting as winter and all the remaining year as summer (43). Svartberg et al. 

(2003) investigated total and free testosterone levels in 1548 men living in Northern Norway, 

an area with large seasonal variations in temperature and photoperiod. Total testosterone had 

a prominent peak in October and November, while free testosterone peaked in December (see 

Figure 10). The variations in free testosterone were large, with a 31% difference between the 

lowest and highest mean monthly levels (66). I have not succeeded in finding any studies on 

seasonality in female libido, perhaps because the female ovulatory cycle makes seasonal 

patterns harder to detect.  

 

Figure 10: Seasonal variations in total and free testosterone in men from Northern Norway. Mean serum concentration 
of total testosterone (Total-T) (nmol/litre) and free testosterone (Free-T), including 95% confidence intervals. Arrows 
indicate peak values, and stars indicate significant differences from the peak (* is P< 0.05, ** is P < 0.01, *** is P < 0.001). 
Figure redrawn from Svartberg et al. (2003) (66).  
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3.4.3 Difficulties and Limitations of Studying Seasonality in Human Activity 

Levels 

Studies on seasonality in humans would ideally be carried out over several years in constant 

laboratory conditions, but for obvious ethical and practical reasons, this is not really an 

option. Thus, researchers opt for alternative approaches, such as the ones described in section 

3.4.1, but the downside to these methods is that they are temporary and can only provide 

suggestive evidence for seasonal rhythms. Multi-year observational studies can be executed, 

but there are several potential caveats, such as self-reporting, which is unreliable. The 

experimental participants can forget to monitor their behaviour, and they can remember 

wrong when filling out questionnaires.  

Several other potentially confounding factors have already been mentioned, such as our 

modern lifestyles with little exposure to natural light or any other seasonally fluctuating 

factors, such as temperature and food availability. Human lifestyles are also highly variable, 

with, for example, different mealtimes and levels of screen exposure. Add to this the 

commonly found social jet lag and the variations in chronotype, and it is easy to see why 

observational studies can come short in investigating such complex systems.  

 

3.5 Exploring Human Behaviour through Phone or Internet Usage 

Indirect measures of human activity through modern technological tools might be the most 

reliable measure of human activity in their natural environments. Such methods avoid the 

risks associated with self-reporting. 

 

3.5.1 Tappigraphy  

Many studies have used actigraphy (monitoring of data generated by movement) to estimate 

the activity levels of various animals. However, such analyses typically overestimate rest 

periods in humans since we can remain cognitively active while performing few body 

movements. Borger et al. (2019) found that tappigraphy from smartphone interactions was 

better able to capture the total range of human activity levels, also during wakeful rest, than 

traditional actigraphy. Touchscreen interactions were suggested as a new approach to measure 
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sleep since most participants used their phones around sleep onset and offset (67). Similarly, a 

study by Massar et al. (2021) found a strong agreement in the estimated bed and wake times 

between tappigraphy and a sleep tracker (Oura Ring) (68).  

 

3.5.2 Google Trends 

Research of online queries can provide valuable insight into human behaviour. Google Trends 

is an online tool for investigating Google searches around the world. It allows you to select a 

location, a search term (or several), and a timeline and provides a graph showing interest over 

time for your specific query. The data used to make the graph is based on a representative 

selection of Google searches matching your requirements. There has been a surge of studies 

using tools such as Google Trends in the last two decades. A search for Google Trends on 

Web of Science renders over 8,000 articles, demonstrating the popularity of the resource. The 

research topics of the published papers include computer science, ecology, engineering, and 

public health, among others.  

A review article on Google Trends health-related research by Mavragani et al. (2018) 

revealed that most studies used time series analyses and that seasonality was examined in 

23.1% (69). One such study was conducted by Ayers et al. (2013), who elegantly 

demonstrated that mental health-related queries (ADHD, anxiety, bipolar, depression, 

anorexia, bulimia, OCD, schizophrenia, and suicide) oscillated annually with regular winter 

peaks and summer troughs between 2006 and 2010 (see Figure 11). This study also used data 

from locations on opposite hemispheres to reveal an antiphase pattern in the seasonal search 

activity (46). Such an inversion of the yearly rhythm between hemispheres is commonly 

interpreted as a sign of seasonality since the seasons are opposite at any time above and below 

the Equator. Similarly, Bakker et al. (2016) demonstrated that seasonal peaks in Google 

searches for “chicken pox” varied with latitude and occurred at opposite times of year in the 

Northern and Southern Hemispheres (70).  
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Figure 11: Seasonal trends in mental health searches on Google. Mental health searches (ADHD, anxiety, bipolar, 
depression, anorexia, bulimia, OCD, schizophrenia, and suicide) oscillated annually with winter peaks and summer troughs 
between 2006 and 2010. Figure from Ayers et al. (2013).  

 

Google Trends has also been used to investigate libido. For instance, Zattoni et al. (2020) 

looked at pornography habits during the Covid lockdown (71).  

Weekly and annual sleep patterns were investigated by Leypunskiy et al. (2018), who used 

Twitter activity records to investigate social jet lag. Although this study did not use Google 

Trends, the Twitter data had many similarities with the former. Among other findings, they 

reported more social jetlag during February-March and September-October than in July-

August (see Figure 12). According to their analyses, the timing of Twitter use was more 

affected by social cues than by day length, although there were some tendencies of dawn-

tracking in winter and dusk-tracking in the summer (72).  
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Figure 12: Social jet lag investigated through Twitter use. Seasonal changes in Twitter social jet lag in 2012–2013 in four 
US counties. Figure from Leypunskiy et al. (2018). 

 

3.6 The Weibull Distribution 

As seen in Figure 11 (top part), data based on many people’s searches can be somewhat 

noisy, which can make it challenging to uncover the underlying patterns. Curve-fitting can be 

useful to smoothen out noisy curves, but it is not necessarily obvious which model to utilise.  

User behaviour on websites tends to exhibit negative ageing, where the chance of the user 

leaving the website increases with time. When people browse the web, they rarely dive deeply 

into every webpage. Instead, they quickly look at a page to decide if it is worth their time. 

This initial look is like a quick “screening” process, and if they find something interesting, 

they will examine the page in more detail. This behavioural pattern is called “screen-and-

glean,” and Liu et al. (2010) recommended the Weibull Distribution for modelling this 

behaviour (73).  

The Weibull Distribution is named after the Swedish mathematician Ernst Hjalmar Waloddi 

Weibull (1887-1979) and is often used for modelling survival and error analyses, such as the 

duration of marriage and product lifespans. The probability density function f(x) of the 

Weibull function is:  
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Where k > 0 is a shape parameter and 𝜆 is a scale parameter. x is the time before an error 

occurs, and the error rate decreases with time for k < 1 (see Figure 13) (74).  

 

 

Figure 13: Illustration of the Weibull distribution. The probability density function for the Weibull Distribution with scale 
parameter 𝜆 = 1 and shape parameter (k) from 0.5 to 3. Figure from the Department of Biosciences (UiO) (74).  
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3.7 Objectives 

The aim was to use Google Trends data to analyse human seasonal rhythms in activity levels 

and libido. For this purpose, Google searches for news would function as a proxy for activity 

levels, and pornography searches would be a proxy for sexual drive.  

We wanted to address the following study questions regarding the potential seasonality in 

human activity-rest patterns and libido: 

1. Do activity-rest periods vary between seasons?  

2. Does libido vary between seasons? 

3. Are there hemispherical differences in activity and/or libido patterns? A seasonal anti-

phase in the search patterns of the Northern and Southern Hemispheres (as seen in 

Figure 11) was expected if a seasonal effect was present. 
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4 Methods 

This Methods section should really be named the “Process” section in the case of this 

Master’s Thesis. There were no established methods for the analyses we wished to perform, 

so there was a lot of trial and error involved in producing the results. The following 

paragraphs will explain the process, including planning, programming, obstacles, and the 

production of the final method. For a gross overview of the methods only, skip to section 4.6 - 

Summarised Methods.  

 

4.1 Planning  

Between 2018 and 2019, Shona Wood downloaded datasets from Google Trends with the 

intention of investigating seasonal rhythms in human search patterns. The datasets she 

downloaded had an hourly resolution, contained the keywords porn, Facebook or the name of 

a local news outlet (e.g., Diario Rio Negro, nrk or svt) and were from approximately 120 

places around the world (e.g., Buenos Aires, Telemark and Uppsala). Her final data set 

consisted of 386 files. Each file was specific to one location and contained hourly data for 

approximately one year for one of the three keywords, as illustrated in Table 1.  

Table 1: The original dataset. Illustrative schematisation of a small part of Shona Woods's original dataset of 
386 files. Each file contained a unique combination of a keyword and location, as shown below. All the files had 
an hourly resolution and contained data for approximately one year. 

Keyword Location Resolution Time frame 
porn Buenos Aires  

 
 
 

Hourly 

 
 
 
 

~ April 2018 – April 2019 

Telemark 
Uppsala 
… 

Facebook Buenos Aires 
Telemark 
Uppsala 
… 

Diario Rio Negro Buenos Aires 
nrk Telemark 
svt 
… 

Uppsala 
… 

 

Despite the effort behind downloading all these files, it was decided not to use them in this 

thesis. This decision was, first and foremost, based on the noisiness of the data. The files were 

based on single-keyword queries; however, another method for downloading Google Trends 
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data is to use categories. Categories are mainly used to specify the nature of your query. For 

instance, if you query Google Trends for the keyword jaguar, all Google searches that include 

this word will be used to produce a graph – it does not matter if people have searched for the 

animal or the car. However, if you filter your search by a category, for example, cars and 

vehicles, then all searches for Panthera onca will be excluded (75). In Computer Science, an 

asterisk (*) is often used as a wildcard character representing any other string or character 

(76). When an asterisk was combined with a category query on the Google Trends webpage, 

all searches within the category were used to produce the resulting graph, as illustrated in 

Figure 14. This resulted in a smoother and less noisy graph. It is worth noting that conducting 

a search in all categories with an asterisk (*) yielded no results. However, this approach 

would have been even better if it were possible.  

 

Figure 14: Example of a Google Trends keyword and category search. An unfiltered search for nrk (top) vs an *-search 
in the News category (bottom). Both queries are for the same period (20.09.23, 04:00 – 21.09.23, 04:00) and location 
(Norway). The bottom graph has a smoother curve with a clearer daily pattern because it is based on more search data. The 
red circle shows where to click to download the CSV file. The orange circles show the site of the keyword, and the green 
circles show the site of the category specification.  
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There is no Google Trends category for pornography, but it is possible to combine up to five 

keywords. Zattoni et al. (2020) had already used Google Trends to determine the five most 

popular search words for pornography: Porn, XNXX, PornHub, xVideos and xHamster. Thus, 

we could use these five words, separated by plus signs (+), to create a more extensive query, 

as illustrated in Figure 15.  

 

Figure 15: Google Trends pornography queries with one or five keywords. A query for Porn (top) renders a slightly noisier 
graph than for Porn + XNXX + PornHub + xVideos + xHamster (bottom). Otherwise, both queries are equal in the time frame 
(20.09.23, 15:00 – 21.09.23, 15:00) and location (Norway) and have no specified category. 

 

Similarly, there is no “social media” category on Google Trends. Observations of the graphs 

made me suspect that most social media users do not use Google to enter these platforms but 

rather an app on their phones, which would not be observable through Google Trends (see 
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Figure 16). Thus, a decision was made to focus the analyses on data from the News category 

(and potentially other categories) and the combined pornography keywords.  

 

Figure 16: Google Trends social media queries with one or five keywords. A query for Facebook (top) renders a noisier 
graph than a query for Facebook + Instagram + Twitter + TikTok + YouTube (bottom). However, both graphs are inferior to 
the News category *-query because they are noisier and have less defined slopes in the early morning and late evening. These 
queries were thus discarded from the analyses. Both queries are equal in time frame (20.09.23, 15:00 – 21.09.23, 15:00) and 
location (Norway) and have no specified category. 

 

The data files behind Google Trends graphs can be downloaded manually by clicking the 

downward-pointing arrow in the upper right corner, as shown in Figure 14. However, this 

method is tedious if the intent is to obtain several hundred or thousands of data files, and an 

unofficial API (Application Programming Interface) called Pytrends could be used to 

automatise the process (77). Implementing Pytrends would make it possible to download a 

large number of files from regions worldwide and obtain a new data set with the preferred 
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keyword and/or category combinations. The attempted implementation of Pytrends will be 

explained in section 4.2. 

Another step in the planning phase was determining how to analyse the data. Two methods 

were made: one for analysing seasonality in daily search activity levels and another for 

investigating seasonality in pornography interest. These approaches are explained in the 

following paragraphs (sections 4.1.1 and 4.1.2).  

 

4.1.1 Method for Analysing Seasonality in Activity Patterns 

The method developed to analyse seasonality in daily search activity levels was based on the 

slopes that could be seen in the early morning and late evening for the News-category *-

queries, as shown in Figure 17.  

 

Figure 17: Morning and evening slopes on a daily Google Trends graph. The regions of interest for the planned analyses 
were the morning and evening slopes. These regions were interpreted as potentially representing when most people wake up 
and go to sleep on a given day, based on the assumption that many people use their phones right after waking up and right 
before going to sleep. The graph is a *-query in the News category, period 20.09.2023, 04:00 – 21.09.2023, 04:00, location 
Norway.  

 

Two critical assumptions were made in this regard:  

1. Many people use their phones right after waking up and before sleep. 

2. Based on the previous statement, the first and last daily slopes roughly represent when 

people wake up and fall asleep.  

 

A prerequisite for detecting any possible seasonal trends in the data would be to reduce the 

noise of the data as much as possible. If the data behind several daily graphs could be 



 

Page 32 of 121 

averaged to create smooth graphs, this would be a good starting point for further analyses. 

The planned process is illustrated in Figure 18 and consisted of the following steps:  

1. Average several daily datasets from Google Trends (across weeks, regions, or both) to 

obtain smooth curves. 

2. Find the points with the steepest slopes in the morning and evening based on the first 

derivative.  

3. Calculate the distance between the maximum slopes in the morning and evening to 

estimate activity length.  

4. Compare the activity lengths for different seasons with an ANOVA and an appropriate 

post-hoc test if required. 

 

Figure 18: Work-flow diagram as imagined during the planning stage. Daily datasets for a particular time of year would 
be averaged to provide one smooth graph. Such averaged graphs would be used to find the points of the steepest slope in the 
morning and evening, based on the maximum 1st derivative. The distance between the times of the steepest morning and 
evening slopes would represent the activity length and would be the unit of interest in further analyses. The activity lengths 
would be grouped by seasons, and an ANOVA (and a Tukey post hoc test) would be used to look for any seasonal 
differences in activity length.  

 

4.1.2 Method for Analysing Seasonality in Libido 

The method that was developed to analyse seasonality in libido was based on yearly datasets 

from Google Trends (as illustrated in Figure 19). Yearly datasets have a weekly resolution, 
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which means that each data point represents the average search interest for a particular week 

(e.g., February 6th – 12th, July 17th – 23rd).  

The plan consisted of the following steps:  

1. Download yearly datasets based on the keywords Porn + XNXX + PornHub + xVideos 

+ xHamster. The query would be performed without any specified category. Since the 

intention was to compare pornography use relative to light intensity, the seasons were 

centred around the solstices and equinoxes. Thus, Winter was November – January, 

Spring was February – April, Summer was May – June, and Autumn was August – 

October.  

2. Compare weekly normalised search volumes grouped into four seasons with an 

ANOVA and potentially an appropriate post-hoc test. 

 

 

Figure 19: Yearly pornography query grouped by seasons. Seasonality in pornography searches would be analysed by 
downloading yearly datasets (as above) and splitting them into seasons. Next, the corresponding seasons from different years 
would be grouped and used in an ANOVA to look for seasonal differences in pornography search activity. The query in this 
illustration was for Porn + XNXX + PornHub + xVideos + xHamster for the period 01.11.2021 – 31-10.2022 within “All 
categories”, location Norway.  

 

4.2 Pytrends  

To closely match seasonal changes in search activity and pornography interest with day 

length changes, it was deemed a good idea to download regional data to obtain high 

latitudinal detail. One goal was to create a gradient plot showing any latitudinal differences 

within Norway, Europe, or the World. The dataset would need to be huge to obtain this goal, 

but this could be solved (or so I thought) with Pytrends.  

As mentioned, Pytrends is an unofficial API for the automatic download of data files from 

Google Trends (77), and it seemed like the perfect tool for this thesis. With the aid of 
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Pytrends, it would be possible to obtain a much larger dataset than could ever be downloaded 

manually through the Google Trends webpage.  

The Pytrends webpage (https://pypi.org/project/pytrends/) was used as a reference as the code 

was developed. The aim was to build a pipeline to download historical search data from any 

region worldwide for the desired categories and/or keywords. Next, this data would be sorted 

and aggregated by latitude (Geopandas was implemented for this purpose (78)) and used in 

further analyses. A challenge was that all Google Trends data used UTC (Coordinated 

Universal Time), and this needed to be converted to the local time for each site to correctly 

identify the morning and evening slopes in an automated process. In this regard, knowing 

which countries used daylight saving time (DST), and when DST was implemented in each 

country was yet another obstacle that was worked on. However, this process was never 

completed because of issues that arose with Pytrends. 

While working on the pipeline, it became clear that Google detected Pytrends queries as 

different from website visits since the message USER_TYPE_SCRAPER was often returned. 

When this happened, the returned data was either faulty or completely lacking. Faulty data 

contained chunks of missing data (0’s) that were not seen in the graphs or datasets on the 

Google Trends website. Thus, Google Trends detected Pytrends as a robot downloader and 

appeared to sabotage such requests.  

The subsequent step involved deploying a more advanced web scraping solution through a 

proxy service (OxyLabs) to conceal the IP address and obtain clean data while using Pytrends 

and browser automation tools. For a short time, this seemed to work, and some regional data 

from the Nordic countries (Norway, Sweden, Finland) was downloaded and tentatively 

analysed (see Appendix A1). However, later it was discovered that also this dataset contained 

occasional chunks of missing data and the data was later deleted by mistake.  

The plan was to have the entire script in order prior to downloading the final datasets since we 

were paying per GB for using the proxy. For this reason, finishing the script and all 

methodological plans was prioritised over downloading data. However, in the early summer 

of 2023, Google Trends went through an update that changed both the website and the 

protocols behind it. For anyone using Pytrends, the result was a complete failure in retrieving 

data (see Figure 20). The previous messages of USER_TYPE_SCRAPER were gone, but all 

returned datasets were faulty or missing after the update. In a last effort, a computer scientist 

https://pypi.org/project/pytrends/
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investigated the problem to see if it was feasible to retrieve the necessary data to proceed with 

the analyses. However, Google’s recognition of scrapers had become very advanced using 

anti-bot protection features, and it was unrealistic to omit this problem within the given time. 

Thus, downloading data with Pytrends could not be done. To this day (07.11.23), the issue 

has still not been solved, as seen on the Pytrends GitHub page (79).  

 

Figure 20: Desperate Pytrends users. A subset of the comments that appeared on the Pytrends GitHub Issues page after 
Google Trends updated their systems and Pytrends stopped working. The comment threads can be read in their full length at 
https://github.com/GeneralMills/pytrends/issues.  

 

4.3 Manual Download 

Around August 10th, 2023, it had become clear that Pytrends would not be able to provide the 

necessary data to complete the analyses. It seemed a daunting task at first, but a solution was 

to download sufficient data manually using the Google Trends webpage and the download 

CSV button in the upper right corner of the page (as shown in Figure 14). Downloading data 

manually would be time-consuming, and it would not be possible to obtain a dataset of the 

previously imagined size. The regions and time frames had to be narrowed down to make it 

possible to download them while also leaving enough time to complete the analyses. Thus, 

five regions were chosen: Norway, Sweden, Finland, New Zealand, and Victoria (the 

southernmost state of Australia). These areas were selected because they are located at 

relatively extreme latitudes above and below the equator and they were assumed to be similar 

regarding smartphone and/or screen access (i.e., they are all wealthy, industrialised countries). 

The chosen time frame was Saturdays between January 2016 and August 2023. The cut-off in 
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2016 was based on the observation that data from 2015 had drastically worse quality, as 

shown in Figure 21. Saturdays were chosen because downloading every day of the week 

would be too time-consuming and because it might be the day of the week that is the least 

influenced by work schedules (people who do not work during the weekend can sleep as long 

as they want on Saturdays and do not have to wake up early on Sundays).  

 

 

 

Figure 21: Deterioration of *-queries in the News category over time. A: Any dataset from the previous two weeks has a 
very high quality. This graph represents 22.09.23 – 24.09.23 and was produced 25.09.23. B: After two weeks, the datasets 
lose some of their original smoothness, but it is still possible to see patterns in the data. This graph represents 01.01.16 – 
03.01.16. C: Prior to 2016, data is very sparse, which makes it impossible to detect daily oscillations. This graph represents 
25.12.15 – 27.12.15.  

 

The downloading process consisted of cross-checking a calendar (http://www.uke-

kalender.com/) and changing the dates in the search field in the web browser at the sites 

indicated in Figure 22. This was done to download every Saturday between January 2016 to 

August 2023 for all five regions. 

By visual evaluation, it was decided that UTC time 20:00 (Friday) to 06:00 (Sunday) included 

the morning and evening slopes of the desired Saturdays with generous margins in Norway. 

This time interval was at the boundaries of 8-minute resolution datasets and extending it any 

further would yield results on an hourly basis. This time span corresponded to the local times  

B 

A 

C 
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Figure 22: Sites of manipulation in the link to download daily data manually from Google Trends. Category 16 
(cat=16) represents the News category. Data was downloaded between Friday–Sunday in the Nordic countries and between 
Friday-Saturday in the Oceanic regions – this difference was due to discrepancies between UTC and local time. The regional 
codes also vary between different sites, geo=NO represents Norway. The link was manually changes for each query. 

 

Friday 21:00 to Sunday 07:00 under standard time and Friday 22:00 to Sunday 08:00 under 

DST. The UTC times in the links were adjusted to get the same local times in the other 

regions (see Figures 22 and 23). However, a calculation error led to a shift of one hour for the 

downloaded data from New Zealand and Victoria. These regions were downloaded with local 

times from Friday 22:00 to Sunday 08:00 under standard time and Friday 23:00 to Sunday 

09:00 under DST. Also, the data from Finland was downloaded with a one-hour advance 

relative to the data from Norway and Sweden. These shifts were, however, unimportant to the 

analyses since they were within the generous margins around the Saturday of interest.  

In the Northern countries, each data file spanned three days in UTC: from Friday to Sunday. 

In the Southern Hemisphere, each data file spanned two days in UTC: from Friday to 

Saturday. This was an artefact caused by the different time zones, and as shown in Figure 23, 

the selected time frames resulted in similar graphs for the two hemispheres. Importantly, all 

graphs/datasets included the Saturday morning and evening slopes. The UTC corrections that 

were performed to obtain the desired local times in the downloaded Google Trends datasets 

are summarised in Table 2.  
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Figure 23: Different time frames, similar graphs. *-queries in the News category spanning three days in Sweden (09.08.23 
– 11.08.23) and two days in New Zealand (09.08.23-10.08.23) rendered similar graphs centred around Saturday.  

 
Table 2: Region-specific time conversions for data download. These conversions were done to obtain an 
appropriate local time frame that would encompass all of Saturday in addition to a slight overlap with Friday 
evening and Sunday morning. Example of how to read the table: from the top left, Norway, with an example 
link, uses UTC + 1 as standard time and UTC+2 as daylight saving time (DST). To obtain a local standard time 
from 21:00 (Friday) to 07:00 (Sunday), the UTC time needed to be 20 (Friday) to 06 (Sunday) in the Google 
Trends link. This UTC time corresponds to 22:00 (Friday) to 08:00 (Sunday) during DST. All data was 
downloaded with 8-minute intervals between each data point. Note that the UTCs of Finland, New Zealand and 
Victoria all were subjected to calculation errors which rendered a ± 1-hour shift in these datasets relative to 
Norway and Sweden (see the text for further explanations). 

Region Example link UTC ® local UTC time Local time Resolution 
Norway https://trends.google.com/tre

nds/explore?cat=16&date=20
23-07-28T20%202023-07-
30T06&geo=NO&hl=no 

UTC + 1 
UTC + 2 (DST) 

From: 20 (Fri) 
To:      06 (Sun) 

Fri: 21 (22 DST) 
Sun: 07 (08 DST) 

8 min 

Sweden https://trends.google.com/tre
nds/explore?cat=16&date=20
23-08-18T20%202023-08-
20T06&geo=SE&hl=no 

    

Finland https://trends.google.com/tre
nds/explore?cat=16&date=20
23-08-11T19%202023-08-
13T05&geo=FI&hl=no 

UTC + 2 
UTC + 3 (DST) 

From: 19 (Fri) 
To:      05 (Sun)  

  

New 
Zealand 

https://trends.google.com/tre
nds/explore?cat=16&date=20
23-09-15T10%202023-09-
16T20&geo=NZ&hl=no 

UTC + 12 
UTC + 13 (DST) 

From: 10 (Fri) 
To:      20 (Sat) 

Fri: 22 (23 DST) 
Sun: 08 (09 DST) 

 

Victoria https://trends.google.com/tre
nds/explore?cat=16&date=20
23-08-04T12%202023-08-
05T22&geo=AU-
VIC&hl=no 

UTC + 10 
UTC + 11 (DST) 

From: 12 (Fri) 
To:      22 (Sat) 

  

 



 

Page 39 of 121 

Pornography datasets were downloaded for the same five regions using the five previously 

selected keywords (Porn + XNXX + PornHub + xVideos + xHamster). These datasets, 

however, were yearly, starting in early November one year and ending in late October of the 

subsequent year. It was not possible to make the datasets start exactly on November 1st and 

end on October 31st because queries greater than nine months provide weekly resolution of 

the data, which clusters days. It was important to have all the seasons (centred around 

solstices and equinoxes) included in one dataset because of Google’s normalisation 

procedure. It would, for example, not be possible to join January of 2017 to an already 

existing file for 2016, because the values of January 2017 would be scaled by the dataset to 

which they originally belonged and would thus not be independent.  

Pornography data was downloaded from 2016 – 2021 in the following intervals: 

• ~1 Nov. 2016 – ~31 Oct. 2017 

• ~1 Nov. 2017 – ~31 Oct. 2018 

• ~1 Nov. 2018 – ~31 Oct. 2019 

• ~1 Nov. 2019 – ~31 Oct. 2020 

• ~1 Nov. 2020 – ~31 Oct. 2021 

 

Pornography data from ~1 November 2021 to ~31 October 2022 was not downloaded because 

of a change is Google’s data collection system that occurred around January 1st, 2022, which 

distorted the normalised data for this year (see Figure 24). Data for ~1 November 2022 – ~31 

October 2023 was not included because October 31st, 2023, had not yet occurred when the 

analyses were executed.  

Lastly, a *-query in the Arts and Entertainment category was done for Norway, collecting 

data from every Saturday between 2016-2023, similar to what was done for the News 

category. This was done to verify that any potential findings in the News category were not 

only artefacts of that particular category. The Arts and Entertainment category was written as 

cat=3 in the link shown in Figure 22.  
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Figure 24: Updates in Google’s data collection systems can distort datasets. Pornography data from November 2021 – 
October 2022 was not downloaded because of a change is Google’s data collection system that occurred around January 1st, 
2022, which distorted the normalised data for this time frame.  

When all data had been downloaded, there were a total of 1980 datasets for the *-query in the 

News category, 25 datasets for the combined pornography keywords, and 399 datasets for the 

*-query in the Arts and Entertainment category. The total number of datasets was 2404. Each 

dataset consisted of a certain number of data points: 256 datapoints per dataset for the News 

or Arts and Entertainment category queries, and 52 datapoints per dataset for pornography 

keyword queries. The total number of data points was ~506,880 for News category queries, 

~1300 for pornography keyword queries, and ~101,745 for Arts and Entertainment category 

queries. These numbers are summarised in Table 3.  

Table 3: Total number of datasets (files) and data points (data) for each region and query. 

Query Region Start  End  Files/region Tot. files Data/file Total data points 
News Norway 2016 2023 396 1980 256 ~ 506 880 

 
 

 Sweden      
 Finland      
 NZ      
 Victoria      
Pornography Norway  2021 5 25 52 ~1300 

 
 

 Sweden      
 Finland      
 NZ      
 Victoria      
Arts and 
Entertainment 

Norway  2023 399 399 256 ~101745 
 

Total      2404  609 925 
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4.4 Curve Fitting  
 

During the initial tests with Pytrends, I had downloaded regional data from every county in 

Norway, Sweden, and Finland across ten years. After averaging such an abundance of data 

across the corresponding weeks of different years and between regions, the results were very 

smooth curves compared to the raw graphs. However, the morning and evening slopes still 

contained some irregularities, and this would make it impossible to produce a script that used 

the averaged data directly to find the steepest morning and evening gradients. Initial tests 

showed that this could be solved by interpolating each averaged dataset. 

After Pytrends was discarded and data had been downloaded manually, the data was no 

longer regional, but national. Also, the data was primarily downloaded from one Google 

Trends category (News), not several as was intended with Pytrends. The result was that there 

was now much less data to average, and this made the graphs/datasets much noisier than 

previously. Thus, interpolation no longer provided a reliable way to systematically avoid 

spurious minima and maxima, making it difficult to find the point of maximum derivative by 

programming. The solution was to fit a curve of some sort to the data. A fitted curve would 

entail sleek morning and evening slopes that could be used to find a reliable estimate of the 

maximum derivatives for any graph in an automated script.  

First, a polynomial curve was fitted to the Nordic data, and by looking at the trending number 

of peaks it was decided that a 5th order polynomial made the most sense (see Appendix A2). 

Yet, despite the fitted curve's resemblance to the dataset's shape, the fit was poor at the 

extremes, with the model frequently intersecting the dataset midway down the slope. 

Also, the polynomial curve overshot the peaks in the original data from the Northern 

Hemisphere. On the Southern Hemisphere graphs, the fit became even worse, because they 

did not have only two distinct peaks as did the graphs from the North. Rather, these datasets 

had two distinct curves (morning and evening) and a varying number of smaller peaks in the 

middle of the day. Thus, the 5th-order polynomial could not be used as a general solution, and 

other options had to be explored.  

The similarities between the northern and southern datasets were the morning and evening 

slopes and the morning and evening peaks. The difference was that in the South, there was 

often not the same mid-day trough as in the North. Based on this difference, it seemed like the 
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graphs were mixtures of different distributions where three or more bell-shaped curves were 

combined into one daily curve with a varying number of clear peaks. From this emerged the 

idea of trying to sum different distributions to produce one well-fitted curve.  

First, the Gaussian distribution was tested for this purpose. However, the sum of Gaussian 

distributions was not a good fit because the peaks of the original data were too sharp for the 

Gaussian curve, and this shifted the important morning and evening slopes. Then Liu et al. 

(2010) was discovered, which stated that user browsing behaviour can follow a Weibull 

distribution (73). Summing different Weibull distributions produced a good fit for the 

morning and evening slopes, which were the important parts of the planned analyses. 

The consistent observation of morning and evening slopes and peaks made it natural to fit one 

Weibull at each of these sites. Although the mid-day distribution was often not evident in the 

Northern datasets, and often underfitted several scattered and smaller distributions in the 

midpart of the Southern datasets, one Weibull served to summarise (and somewhat ignore) 

what was happening in the middle sections for the purposes of this thesis. Also, as more 

curves were attempted to be fitted in this middle section, the optimisation process (non-linear 

least squares) became increasingly unstable. The more peaks were fitted the higher the risk 

became of convergence issues like parameters reaching bounds, Weibull curves disappearing, 

unbalanced overlapping of distributions, unbalanced bias and curves taking the places of other 

curves. Also, these issues were not systematic and happened randomly, highly depending on 

the dataset and its noise. In the end, three Weibull distributions were combined for each 

dataset since this served to place the morning and evening distributions in suitable positions 

on the x-axis. 

The mixture of three Weibull distributions was used for both the North and the South. The 

three Weibull distributions were forced to share the k (shape) and 𝜆 (scale) parameters to 

facilitate convergence. I called this mixture of Weibull distributions TRIWEI. Visual 

verification ensured that all TRIWEI plots had obtained a good fit with the data and that the 

bound limits of the parameters were not met (the best values were found within the provided 

bounding limits, see further explanations below). 

Specifically, the translated Weibull distribution was used: 

𝑊𝐸𝐼(𝑥; 𝑘, λ, µ) = !
&
)%"(

&
*
!"#
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							𝑓𝑜𝑟							𝑥 ≥ 𝜇    Eq. 2 
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Where 𝑘 > 0, λ > 0, and µ is the location parameter.  

The three translated Weibull distributions were combined in the following manner:  

𝑇𝑅𝐼𝑊𝐸𝐼(𝑥; 𝑘, λ, 𝜇&, 𝑃&, 𝜇', 𝑃', 𝜇(, 𝑃(, 𝐵) = 𝑃&	𝑊𝐸𝐼(𝑥; 𝑘, λ, 𝜇&) + 𝑃'	𝑊𝐸𝐼(𝑥; 𝑘, λ, 𝜇') + 𝑃(	𝑊𝐸𝐼(𝑥; 𝑘, λ, 𝜇() + 𝐵 

Eq. 3 

Where P1, P2, P3 are multiplicative factors to scale the individual Weibull distributions and B 

is a bias that slightly translates all curves vertically to optimise the fit.  

Each of the three translated Weibull distributions had to be scaled and translated vertically 

and horizontally. This was done by changing 𝜇, P and B with the 

scipy.optimize.curve_fit function from the SciPy library in Python. This function 

used the TRIWEI equation (Eq. 3), the Google Trends data points and initial guesses of the 

bounds of 𝑘, λ, 𝜇#, 𝑃#, 𝜇), 𝑃), 𝜇*, 𝑃* and B. To make these guesses, the x-axis consisting of time 

stamps was converted to integer units with the np.linspace function.  

 

A trial-and-error process was initiated that roughly adhered to the following approach. The 

process began with initial “guess” and “bounds” as null values. While the model fit was 

deemed as bad (for example, if bounds were reached) through visual inspection, an iterative 

process was performed. In this process, models were fitted to the Google Trends graphs with 

the scipy.optimize.curve_fit function. These models had parameter values that 

were subsequently averaged to produce a new guess value. If a bound value was met, the 

following bound guess was expanded, and if the bound value was not met, the next bound 

guess was shrunk. This cycle was repeated until all plots were visually deemed as satisfactory 

within the provided bounds.  

 

After some trial and error of fitting the curves, the following parameter guesses were chosen: 

𝑘 = 2.7,				λ = 81.33,				𝜇# = 21.84, 		𝑃# = 55.54, 		𝜇) = 85.70, 		𝑃) = 54.06,					 

𝜇* = 181.26, 𝑃* = 56.02, 𝐵 = 0.05	 

Based on these estimates, the following bounds were selected after several rounds of testing:  

2.6 ≤ 𝑘 ≤ 6	,				80 ≤ λ ≤ 120,				 − 10 ≤ 𝜇# ≤ 30,				30 ≤ 𝑃# ≤ 100,	 



 

Page 44 of 121 

	80 ≤ 𝜇) = 130,				0 ≤ 𝑃) ≤ 100,				160 ≤ 𝜇* ≤ 210,				30 ≤ 𝑃* ≤ 100,				0 ≤ 𝐵 ≤ 0.2 

These bounds were consistent with the hypothesis that the data followed a mixture of Weibull 

distributions since they provided well-fitting curves for the datasets. Within the bounds, the 

fitting algorithm found optimal parameters for all the datasets. 

TRIWEI functions were used to fit curves to data of four different types (as summarised in 

Table 4): 

1: Raw Google Trends data. 

2: Data averaged within hemispheres. For each Saturday between 2016 to 2023, Google 

Trends datasets were averaged for the Northern countries (Norway, Sweden, Finland) and for 

the Southern Hemisphere regions (New Zealand and Victoria) separately. This provided one 

averaged dataset for each hemisphere for each Saturday from 2016 to 2023.  

3: Data averaged across years. All datasets from week number X of different year were 

averaged for each region separately to provide 52 averaged datasets for each site.  

4: Data averaged across years and within hemispheres. First, the same week numbers of 

the different years were averaged for each site. Then, the corresponding weeks within each 

hemisphere were averaged to produce 52 datasets for each hemisphere. 

Some years have 53 weeks, although most years have 52. For this reason, there are 53 

TRIWEIs per region for Data averaged across years and per hemisphere for Data averaged 

across years and within hemispheres. However, the 53rd weeks were excluded from all 

analyses because their presence in the datasets was inconsistent. 
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Table 4: Four data types fitted with TRIWEI functions. Fitting of TRIWEI functions was done to four different types of 
News data, as explained above. This resulted in a varying number (#) of TRIWEIs in total and per hemisphere (North, South) 
or region (Norway, Sweden, Finland, New Zealand, Victoria).  

Data types # files before average # TRIWEI # TRIWEI per region 

Raw data  

 

1980 

1980 North: 1188           
South: 792 

Data averaged within 
hemispheres 

792 North: 396            
South: 396 

Data averaged across years 265 53 per region  

Data averaged across years and 
within hemispheres 

106 North: 53                   
South: 53 

 

Since data had been downloaded from Friday to Sunday and the region of interest was 

Saturday, the datasets were transformed to local time and cut between Saturday 03:00 AM 

and Sunday 03:00 AM. This cutting disrupted the ratios of the datasets since they had been 

normalised by Google within the requested time frame. Before fitting the TRIWEI curves, 

data was normalised between zero and one. This was done to re-establish similar Y-axis 

values to make the guessed TRIWEI bounds narrower. A narrower bound range was desired 

since it provided smaller chances of errors.  

 

4.5 Activity Lengths, Statistical Analyses, and Plotting  

4.5.1 Activity Length Calculation 

For each fitted TRIWEI, morning and evening slope derivatives were used to calculate the 

activity length, as explained in section 4.1.1. Activity lengths were found by subtracting the 

time of the morning derivative from the time of the evening derivative:  

Activity Length = Derivative time 2 – Derivative time 1   Eq. 4 

This procedure was also carried out using the morning and evening peaks to investigate if this 

measure could function as an alternative to the derivatives (see Appendices A3 and A4):  

Alternative Activity Length = Peak time 2 – Peak time 1   Eq. 5 
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Activity lengths were grouped by seasons that were centred around the solstices and 

equinoxes. The weeks corresponding to the Northern and Southern hemisphere seasons are 

schematised in Table 5.  

Table 5: Seasonal grouping of weeks. The weeks of the year belonging to winter, spring, summer, and autumn 
in the Northern and Southern Hemispheres when seasons are centred around solstices and equinoxes.  

Northern season Southern season Weeks 

Winter Summer 46–52 and 1–6 

Spring Autumn 7 – 19 

Summer Winter 20 – 32 

Autumn Spring 33 – 45 

 

4.5.2 News Category ANOVAs and Post Hoc Tests 

The seasonal groups (see Table 5) were used directly to perform ANOVAs and post hoc tests 

for the activity lengths of each data type. Two-way ANOVAs and Tukey post hoc tests were 

done using the bioinfokit.analys library and its anova_stat and tukey_hsd 

functions. These statistical tests were decided on early in the planning process and were a 

fundamental part of the study design. The ANOVA was chosen because it detects whether the 

means of different groups are equal or not (80). The Tukey post hoc test was used since it was 

recommended in the course STA-3300 for when you want to do all pair-wise comparisons.  

For the activity length analyses, the response (dependent) variable was activity length, and the 

predictor (independent) variables were seasons, hemispheres and the interaction between 

season and hemisphere.  

The model can be expressed as follows: 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑙𝑒𝑛𝑔𝑡ℎ = 	𝜇 + 𝑆𝑒𝑎𝑠𝑜𝑛 + 𝐻𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒 + 𝑆𝑒𝑎𝑠𝑜𝑛 ∙ 𝐻𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒 + 	𝜀 

Where: 

• Activity Length is the dependent variable representing the duration of daily search 
activity. 

• µ is the overall population mean. 
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• Season is a categorical, independent variable with four levels (Winter, Spring, 
Summer, and Autumn). 

• Hemisphere is another categorical, independent variable with two levels (North, 
South). 

• The interaction term Season · Hemisphere represents how the combination of Season 
and Hemisphere affects Activity length. 

• e represents the error term, which accounts for random variability and factors not 
considered in the model. 

 

The hypotheses related to the effects of Season, Hemisphere, and the interaction Season · 

Hemisphere can be expressed as follows: 

• Null	hypothesis:	The	group	means	are	equal:	H0:	μ1=μ2=…=μ8	

• Alternative	hypothesis:	H1:	Not	all	μ	are	equal.		

	

Statistical tests for seasonal differences were not performed within each separate 

country/region. All statistical tests used the standard significance level of a= 0.05.  

To find the seasonal average times of the morning and evening gradients, 

pandas.Series.dt.tz_convert was used to convert the downloaded data to the local 

times of the different regions.  

The ANOVA model assumes the data are independent, stem from normally distributed 

populations and have equal variance (81). The last two of these assumptions were tested as 

shown in Appendix A5.  

Since the Raw data violated the assumption of homoscedasticity, Welch’s ANOVA and 

Games-Howell post hoc test were carried out as an alternative. StatisticsHowTo.com and 

several other academic websites recommend Welch’s ANOVA for normal, balanced data with 

heteroscedasticity (82, 83). However, Welch’s ANOVA is an alternative to the one-way 

ANOVA and only takes one predictor variable. Thus, season was the only predictor variable 

in these analyses and activity length remained the response variable. Since Welch’s ANOVA 

is sensitive to unequal sample sizes, all activity lengths from 2023 (January-August) were 

removed from these analyses.  
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4.5.3 News Category Polar Plots 

Polar plots were made with the bar_polar function from the plotly.express library. 

The polar plots had 52 weeks on the polar axis. The activity lengths from the data types Data 

averaged across years and Data averaged across years and within hemispheres could be 

plotted directly. The activity lengths from the data types Raw data and Data averaged within 

hemispheres had to be averaged across the corresponding weeks of the different years before 

the polar plots could be made. Data averaged across years was also used to make 

hemispherical polar plots; in these, the activity lengths for each region within a particular 

hemisphere were averaged.  

 

4.5.4  Arts and Entertainment ANOVA, Post Hoc and Polar Plots 
ANOVAs and Tukey post hoc tests were also performed for the data from the Arts and 

Entertainment category, but since this data was only downloaded for Norway, these analyses 

only had one predictor variable, Season, and the test was thus a one-way ANOVA. The 

response variable was activity length, as in the analyses of the News category. The analyses 

were done with data of two types, Raw data and Data averaged across years (as described in 

section 4.4). 

The model can be expressed as follows: 

Activity length= μ+ Season + ε 

Where: 

• Activity	Length	is	the	dependent	variable	representing	the	duration	of	
daily	search	activity.	

• μ	is	the	overall	population	mean.	
• Season	is	a	categorical,	independent	variable	with	four	levels	(Winter,	

Spring,	Summer,	and	Autumn).	
• ε	represents	the	error	term,	which	accounts	for	random	variability	and	

factors	not	considered	in	the	model.	
 

The hypotheses related to the effects of Season was: 

• Null	hypothesis:	The	group	means	are	equal:	H0:	μ1=μ2=	μ3=μ4	

• Alternative	hypothesis:	H1:	Not	all	μ	are	equal.		
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The ANOVA assumptions (see section 4.5.2) were tested as shown in Appendix A6. Since the 

Raw data did not meet the assumption of homoscedasticity, Welch’s ANOVA and Games-

Howell post hoc test were carried out as an alternative. Since Welch’s ANOVA is sensitive to 

unequal sample sizes, all activity lengths from 2023 (January-August) were removed from 

these analyses. 

Polar plots for the Arts and Entertainment category were made as described in section 4.5.3. 

The activity lengths from the data type Data averaged across could be plotted directly. The 

activity lengths from the data type Raw data had to be averaged across the corresponding 

weeks of the different years before the polar plots could be made. 

 

4.5.5 Pornography ANOVA, Post Hoc and Polar Plots 
Since the pornography data were heteroscedastic (see model assumption tests in Appendix 

A7), Welch’s ANOVA and Games-Howell post hoc tests were used on these data. The data 

were split between the two hemispheres and separate analyses were carried out for the North 

and the South. The predictor variable was Season, and the response variable was Normalised 

search interest.  

The pornography data was also plotted as polar plots (as explained in section 4.5.3). First, the 

corresponding weeks of different years were averaged. For each week of a particular year, 

there was only one number/data point, since Google Trends only provided weekly resolution 

on datasets > 9 months. To produce pornography polar plots for the Northern and Southern 

Hemispheres, the corresponding, averaged weekly data for the different regions within the 

Northern and Southern Hemispheres were also averaged.  

 

4.5.6 Seasonal Wave Plots 
For the data types that were not averaged across years (Raw data and Data averaged within 

hemispheres), seasonal wave plots were made with the activity lengths of all Saturdays 

between 2016-2023. This was done for data from the News and Arts and Entertainment 

categories as well as for the pornography data.  
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4.5.7 Photoperiod Graphs 
Some of the data types (see bullet points below) were also plotted against the photoperiod of a 

northern and southern point of the respective geographical region. These graphs were made in 

Excel. The photoperiods were gotten from https://www.timeanddate.no/astronomi/sol, where 

you can search for sunrise, sunset and daylength for any place in the world. The daylengths 

were from Saturdays of 2020, and the activity length datasets that were used for this purpose 

were:  

• Data averaged across years for Norway and the Northern and Southern Hemispheres.  

• Weekly data averaged across years for the pornography queries in Norway, the 

Northern Hemisphere, and the Southern Hemisphere.  

 

The places used for day lengths in the photoperiod graphs are summarised in Table 6: 

 

Table 6: The northern and southern locations that were used to represent the most extreme photoperiods 
within a particular region. Nordkapp and Lindesnes are the northernmost and southernmost parts of Norway, 
respectively. Smygehuk is the southernmost point of Sweden and of the joint area of Norway, Sweden, and 
Finland. Lindsay point is the northernmost point of Victoria (Australia), and Stewart Island is an island in the 
south of New Zealand. The southernmost point of New Zealand was not used because it is a remote island with 
few inhabitants which is located very far south compared to the rest of the country.  

 

Region Northern photoperiod Southern photoperiod 

Norway Nordkapp (Finnmark, Norway) Lindesnes (Agder, Norway) 

Northern hemisphere Nordkapp (Finnmark, Norway) Smygehuk (Skåne, Sweden) 

Southern hemisphere Lindsay point (Victoria, Australia) Stewart Island (Raikura, New Zealand)  

 

4.5.8 Code and Data Access 

The code and data that were used to perform the analyses described above are available 

through https://github.com/gtthesis/code_thesis.  

https://www.timeanddate.no/astronomi/sol
https://github.com/gtthesis/code_thesis
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4.6 Summarised Methods  
This section does not provide complete explanations about the methodology but serves to 

summarise the final approach.  

Activity analyses:  

1. Data from the News category in Google Trends was downloaded for each Saturday 

between January 2016 and August 2023 for the following regions: Norway, Sweden, 

Finland, New Zealand, and Victoria. Later it was transformed to local time, cut to a 

specific time frame, and normalised. 

2. A TRIWEI (mix of three Weibull functions) was fitted to Google Trends datasets that 

were 1) raw datasets, 2) averaged within hemispheres, 3) averaged across years, 4) 

averaged across years and within hemispheres. See section 4.4 for further details.  

3. The first derivative was used to find the steepest point on the morning and evening 

slopes on the TRIWEI graphs.  

4. The distance between the points of maximum morning and minimum evening slopes 

was used as a measure of the activity length of search activity on Saturdays. As an 

alternative metric the distance between the first and last peak was also considered. 

5. Activity lengths were grouped by seasons centred around the solstices and equinoxes. 

Plots were made, and statistical tests (ANOVA + Tukey post hoc and Welch’s ANOVA 

+ Games-Howell post hoc) were performed.  

6. Data from the Arts and Entertainment category was also downloaded and analysed as 

described in the steps above. However, this was only done for Norway.  

 

Libido analyses:  

1. The keywords Porn + XNXX + PornHub + xVideos + xHamster were used to perform 

yearly Google Trends queries between 2016 and 2021 for the following regions: 

Norway, Sweden, Finland, New Zealand, and Victoria. All datasets were downloaded 

from approximately November 1st of one year to October 31st of the consecutive year.  

2. The weeks of the year were grouped by seasons centred around the solstices and 

equinoxes. Statistical tests (Welch’s ANOVA + Games-Howell post hoc) were 

performed to investigate seasonal differences in search interest. 
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3. The corresponding weeks of different years were averaged to produce polar plots for 

each region. The weeks were also averaged for the regions within each hemisphere to 

produce plots for the Northern and Southern hemispheres.  

 

Figure 25: Final workflow diagram, activity length analyses. 1: Google trends daily datasets were 2: averaged. 3: 
Averaged datasets were fitted with TRIWEIs. 4: the activity lengths were measured as the length between the steepest 
morning and evening slopes. 5: Activity lengths were grouped by seasons and 6: statistical tests were performed.  

 

Figure 26: Final workflow diagram, pornography interest analyses. 1: Google trends yearly pornography queries were 2: 
grouped by season (weekly resolution). 3: Statistical tests were performed to investigate seasonal differences in weekly 
search interest.  
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5 Results 

5.1 TRIWEI Curve Fitting Performed Well with Daily Google Trends 

Datasets 

Some examples of fitted TRIWEIs for the different data types are shown in Figures 27, 28, 29 

and 30. The top text of the graphs contains the parameters of each Weibull, where G is k/	𝜆, L 

is 𝜆, M is 𝜇. Based on an evaluation of the TRIWEI fits, the number of datasets for each data 

type (as listed in Table 4), the number of relevant predictor variables and the model 

assumption tests (see Appendices A5 and A6), it was decided to only present the statistical 

analyses of the Data averaged across years data in this Results section. The analyses of the 

other data types can be found in Appendices A8 - A11.  

 

 

Figure 27: Example graph of TRIWEIs fitted to Raw News data from Finland, week 1, 2020. Top text: G is k/ λ, L is λ, 
M is μ. 
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Figure 28: Example graph of TRIWEI fitted to News Data averaged within hemispheres, North, week 1, 2020. Top 
text: G is k/ λ, L is λ, M is μ. 

 

Figure 29: Example graph of TRIWEI fitted to News Data averaged across years and within hemispheres, North, 
weeks 1. Top text: G is k/ λ, L is λ, M is μ. 
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Figure 30: Example graph of TRIWEI fitted to News Data averaged across years, Finland, weeks 1 averaged. Top 
text: G is k/ λ, L is λ, M is μ. 

 

5.2 Significant Seasonal Differences in Activity Lengths Derived from 

the News Category.  

The two-way ANOVA of the 265 TRIWEI gradient-based activity lengths derived from Data 

averaged across years showed a significant effect of season, hemisphere and the interaction 

between season and hemisphere, as shown in Table 7.  

The following Tukey post hoc test for the Northern Hemisphere revealed statistically 

significant differences between winter and spring (mean difference: 18.2 min, 95% CI: 8.1– 

28.2, p = 0.001), winter and summer (mean difference: 14.8 min, 95% CI: 4.7– 28.8, p = 

0.001) and spring and autumn (mean difference: 11.1 min, 95% CI: 0.8– 21.3, p = 0.028). All 

other pairwise comparisons in the Northern Hemisphere were nonsignificant (p > 0.2) (see 

Table 8). The Tukey post hoc test for the Southern Hemisphere revealed statistically 

significant differences between summer and autumn (mean difference: 11.2 min, 95% CI: 

1.5– 21.0, p = 0.017), summer and winter (mean difference: 18.0 min, 95% CI: 8.2 – 27.8, p = 

0.001), and winter and spring (mean difference: 12.2 min, 95% CI: 2.2– 22.1, p = 0.010). All 

other pairwise comparisons in the Southern Hemisphere were nonsignificant (p > 0.2) (see 

Table 9). 
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Table 7: Two-way ANOVA based on TRIWEIs from News/ Data averaged across years. 

ANOVA df F Pr (>F) 

Season 3 15.6 2.3 × 10-9 

Hemisphere 1 709.5 7.0 × 10-76 

Season : Hemis 3 0.9 4.4 × 10-1 

 

Table 8: Tukey post hoc, Northern Hemisphere, based on TRIWEIs from News/ Data averaged across years. 

Season 1 Season 2 Difference Lower CI Upper CI p-value 

Winter Spring 18.2 8.1 28.2 0.001 

Winter Summer 14.8 4.7 24.8 0.001 

Winter Autumn 7.1 -3.0 17.1 0.262 

Spring Summer 3.4 -6.8 13.6 0.803 

Spring Autumn 11.1 0.8 21.3 0.028 

Summer Autumn 7.7 -2.5 17.9 0.210 

 

Table 9: Tukey post hoc, Southern Hemisphere, based on TRIWEIs from News/ Data averaged across years. 

Season 1 Season 2 Difference Lower CI Upper CI p-value 

Summer Autumn 11.2 1.5 21.0 0.017 

Summer Winter 18.0 8.2 27.8 0.001 

Summer Spring 5.8 -3.9 15.6 0.406 

Autumn Winter 6.8 -3.2 16.7 0.291 

Autumn Spring 5.4 -4.6 15.3 0.494 

Winter Spring 12.2 2.2 22.1 0.010 
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The polar plots based on activity lengths from TRIWEI-fitted Data averaged across years are 

presented in Figures 31, 32 and 33. Figure 31 shows that the northern countries appear to 

have larger activity lengths in spring and summer than in winter. In particular, Norway and 

Sweden appear to have the longest activity lengths in spring and Finland in summer. Figure 

32 shows that in the southern hemisphere regions, summers and springs have the longest 

activity lengths. In Victoria, early autumn has similar activity lengths as late spring. Winter is 

the season with the shortest activity lengths in both southern regions. Figure 33, which 

represents the Northern and Southern Hemispheres, shows the longest activity lengths 

occurring in spring in the Northern Hemisphere and in summer in the Southern Hemisphere. 

Both hemispheres appear to have the shortest activity lengths during winter. Note that the x-

axis (activity length in minutes) is scaled differently between the different plots.  
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Figure 31: News polar plots, 
Norway, Sweden, Finland. 
Seasonal activity lengths in 
Norway, Sweden, and 
Finland based on TRIWEIs 
from Data averaged across 
years derived from Google 
Trends News category *-
queries. The polar axis 
represents the weeks of the 
year, and the x-axis is activity 
length in minutes. Note that 
the x-axis (activity length in 
minutes) is scaled differently 
between the different plots. 
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Figure 32: News polar 
plots, Victoria, New 
Zealand. Seasonal activity 
lengths in New Zealand, 
and Victoria based on 
TRIWEIs from Data 
averaged across years 
derived from Google 
Trends News category *-
queries. The polar axis 
represents the weeks of the 
year, and the x-axis is 
activity length in minutes. 
Note that the x-axis 
(activity length in minutes) 
is scaled differently 
between the different plots. 
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Figure 33: News polar 
plots, North, South. 
Seasonal activity lengths in 
the Northern and Southern 
Hemispheres based on 
TRIWEIs from Data 
averaged across years 
derived from Google 
Trends News category *-
queries. The polar axis 
represents the weeks of the 
year and x-axis is the 
activity length in minutes. 
Note that the x-axis 
(activity length in minutes) 
is scaled differently 
between the different plots. 
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The average activity length and the average times of the steepest morning and evening slopes 

are summarised for the Northern Hemisphere in Table 10 and for the Southern Hemisphere in 

Table 11. Based on Data averaged across years in the Northern Hemisphere, the average 

activity length was longest in spring (17 h 5 min) and shortest in winter (16 h 46 min). 

Summer and autumn had intermediate activity lengths of 17 h 2 min and 16 h 54 min, 

respectively. The time of the maximum morning derivative was earliest in spring (07:02 AM) 

and latest in Winter (07:28 AM), and intermediate in summer (07:15 AM) and autumn (07:08 

AM). The time of the minimum evening derivative was earliest in autumn (00:02 AM), latest 

in summer (00:16 AM), and intermediate in winter (00:14 AM) and spring (00:07 AM) (see 

Table 10).  

In the Southern Hemisphere, the average activity length was longest in summer (16 h 14 min) 

and shortest in winter (15 h 54 min). Spring and autumn had intermediate activity lengths of 

16 h 6 min and 16 h 1 min, respectively. The time of the maximum morning derivative was 

earliest in spring (07:00 AM) and latest in winter (07:14 AM), and intermediate in summer 

(07:04 AM) and autumn (07:09 AM). The time of the minimum evening derivative was 

earliest in spring (23:07 PM), latest in summer (23:19 PM), and intermediate in winter (23:08 

PM) and spring (23:07 PM) (see Table 11). 

 

Table 10: Northern Hemisphere activity lengths and the times of the steepest morning and evening derivatives. 
Northern hemisphere activity lengths in hours (based on Data averaged across years), time of morning gradient (maximum 
derivative) and time of evening gradient (minimum derivative).  

 Spring Summer Autumn Winter 

Activity length 17:05 17:02 16:54 16:46 

Morning gradient 07:02 07:15 07:08 07:28 

Evening gradient  00:07 00:16 00:02 00:14 
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Table 11: Southern Hemisphere activity lengths and the times of the steepest morning and evening derivatives. 
Southern hemisphere activity lengths in hours (based on Data averaged across years), time of morning gradient (maximum 
derivative) and time of evening gradient (minimum derivative). 

 Spring Summer Autumn Winter 

Activity length 16:06 16:14 16:01 15:54 

Morning gradient 07:00 07:04 07:09 07:14 

Evening gradient  23:07 23:19 23:10 23:08 

 

 

5.3 Significant Seasonal Differences in Activity Lengths Derived from 

the Arts and Entrainment Category.  

Data averaged across years from *-queries in the Arts and Entertainment category of Google 

Trends (location Norway) were fitted with TRIWEIs to find the activity lengths based on 

gradients, as explained in section 4.5. One dataset, from the Saturday of week 11, 2020, was 

excluded from the analyses because of a faulty Google Trends graph (see Appendix A12). 

The remaining activity lengths were used to produce the polar plot shown in Figure 34 and to 

perform a one-way ANOVA (see Table 12) that had a significant effect of season (the only 

predictor in this analysis). The following Tukey post hoc test revealed significant differences 

between winter and spring (mean difference: 12.9 min. 95% CI: 2.6– 23.1. p = 0.009) and 

between spring and autumn (mean difference: 13.2 min. 95% CI: 2.8– 23.7. p = 0.008) (see 

Table 13). All other pairwise comparisons were insignificant (p > 0.1).  

 

Table 12: One-way ANOVA based on TRIWEIs from Arts and Entertainment/ Data averaged across years.  

ANOVA df F Pr (>F) 

Season 3 4.8 0.005 
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Table 13: Tukey post hoc, Norway, based on TRIWEIs from Arts and Entertainment/ Data averaged across 
years. 

 

Season 1 Season 2 Difference Lower CI Upper CI p-value 

Winter Spring 12.9 2.6 23.1 0.009 

Winter Summer 7.9 -2.3 18.2 0.182 

Winter Autumn 0.4 -9.9 10.6 0.900 

Spring Summer 4.9 -5.5 15.4 0.586 

Spring Autumn 13.2 2.8 23.7 0.008 

Summer Autumn 8.3 -2.1 18.8 0.163 

 

 

Figure 34: Arts and Entertainment polar plot, Norway. Polar plot based on Data averaged across years TRIWEI activity 
lengths.  
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5.4 Inverse Relationship between Hemispheres for Activity Lengths 
from Raw Data.  

Seasonal wave plots are presented for Data averaged within hemispheres from the News 

category (see Figure 35), for the Raw data from the Arts and Entertainment category from 

Norway (see Figure 36), and for the raw weekly data for the pornography keywords (Figure 

37).  

 

Figure 35: Wave plot, News. Seasonal wave plot of activity lengths derived from Data averaged within hemispheres from 
the News category. Activity lengths are plotted from January 2016 to August 2023. 
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Figure 36: Wave plot, Arts and Entertainment. Seasonal wave plot of activity lengths derived from the Arts and 
Entertainment category. Activity lengths are plotted from January 2016 to August 2023.  

 

Figure 37: Wave plot, pornography keywords. Seasonal wave plot of normalised search interest for the pornography 

keywords Porn, XNXX, PornHub, xVideos and xHamster, plotted from January 2016 to August 2023. 
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5.5 Seasonal and Hemisphere Differences in Pornography Searches 

The Welch’s ANOVA of the Pornography data from the Northern Hemisphere showed a 

significant effect of season, as shown in Table 14. The following Games-Howell post hoc test 

for the Northern Hemisphere revealed statistically significant differences between autumn and 

spring (mean difference: 1.6, p = 0.002), autumn and summer (mean difference: 4.0, p < 

0.000), spring and summer (mean difference: 5.6, p < 0.000) and between summer and winter 

(mean difference: 4.3, p < 0.000) (see Table 15). The other pairwise comparisons in the 

Northern Hemisphere were non-significant (p>0.05).  

 

Table 14: Welch’s ANOVA based on seasonal groups of raw, yearly pornography datasets from the Northern 
Hemisphere.  

 

Welch’s ANOVA df F Pr (>F) 

Season 3 64.5 1.9 × 10-34 

 

Table 15: Games-Howell post hoc of seasonal groups from raw, yearly pornography data from the Northern 
Hemisphere.  

Season 1 Season 2 Mean S1 Mean S2 Diff p-value 

Autumn Spring 89.3 87.7 1.6 0.002 

Autumn Summer 89.3 93.3 4.0 < 0.000 

Autumn Winter 89.3 88.9 0.3 0.885 

Spring Summer 87.7 93.3 5.6 < 0.000 

Spring Winter 87.7 88.9 1.3 0.058 

Summer Winter 93.3 88.9 4.3 < 0.000 

 

The Welch’s ANOVA of the Pornography data from the Southern Hemisphere showed a 

significant effect of season, as shown in Table 16. The following Games-Howell post hoc test 

for the Southern Hemisphere revealed statistically significant differences between autumn and 
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summer (mean difference: 7.0, p < 0.000), spring and summer (mean difference: 5.8, p < 

0.000), spring and winter (mean difference: 2.1, p < 0.000) and between summer and winter 

(mean difference: 8.0, p < 0.000) (see Table 17). The other pairwise comparisons in the 

Southern Hemisphere were non-significant (p>0.07).  

 

Table 16: Welch’s ANOVA based on seasonal groups of raw, yearly pornography datasets from the Southern 
Hemisphere.  

Welch’s ANOVA df F Pr (>F) 

Season 3 82.6 1.4 × 10-38 

 

Table 17: Games-Howell post hoc of seasonal groups from raw, yearly pornography data from the Southern 
Hemisphere.  

Season 1 Season 2 Mean S1 Mean S2 Diff p-value 

Autumn Spring 84.6 85.8 1.2 0.074 

Autumn Summer 84.6 91.6 7.0 < 0.000 

Autumn Winter 84.6 83.6 0.9 0.217 

Spring Summer 85.8 91.6 5.8 < 0.000 

Spring Winter 85.8 83.6 2.1 < 0.000 

Summer Winter 91.6 83.6 8.0 < 0.000 

 

The polar plots based on pornography data are presented in Figures 38, 39 and 40. Figure 38 

shows that the northern countries appear to have a higher interest in pornography during 

summer and around the Christmas holiday. Figure 39 shows that in the southern hemisphere 

regions, summers have the highest interest in pornography. Figure 40, which represents the 

Northern and Southern Hemispheres, shows the same trends as described above. The northern 

hemisphere countries appear to be the least interested in pornography during spring. In the 

Southern Hemisphere, the season with the least interest is winter. Note that the x-axis 

(normalised interest) is scaled differently between the different plots. 
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Figure 38: Pornography 
polar plots, Norway, 
Sweden, Finland. 
Averaged normalised 
search interest for 
pornography keywords 
between 2016-2021 in 
Nordic countries. Note that 
the x-axis (normalised 
search interest) is scaled 
differently between the 
different plots. 

 



 

Page 70 of 121 

 

 

 

 

 

 

 

 

 

 

Figure 39: Pornography 
polar plots, Victoria, New 
Zealand. Averaged 
normalised search interest 
for pornography keywords 
between 2016-2021 in 
Southern regions. Note that 
the x-axis (normalised 
search interest) is scaled 
differently between the 
different plots. 
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Figure 40: Pornography 
polar plots, North, South. 
Averaged normalised search 
interest for pornography 
keywords between 2016-
2021 in the Northern and 
Southern Hemisphere. Note 
that the x-axis (normalised 
search interest) is scaled 
differently between the 
different plots. 
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5.6 No Clear Relationship between Activity Lengths and Photoperiod 

or between Pornography Interest and Photoperiod in Norway and 

Regionally Averaged Data  

Figures 41, 42 and 43 show activity lengths based on News category queries plotted against 

some extreme photoperiods in the region of interest, as described in section 4.5.7. Figure 41 

shows Data averaged across years for Norway plotted against the photoperiod of each 

Saturday in Nordkapp (beige) and Lindesnes (yellow) in 2020. Figure 42 shows the averaged 

Data averaged across years for the Northern hemisphere plotted against the photoperiod of 

each Saturday in Nordkapp (beige) and Smygehuk (yellow) in 2020. Figure 43 shows the 

averaged Data averaged across years for the Southern hemisphere plotted against the 

photoperiod of each Saturday in Lindsay point (beige) and Stewart Island (yellow) in 2020.  

 

 

Figure 41: Activity lengths and photoperiod, Norway. Activity length (in minutes) in Norway averaged across years (blue 
bars) plotted against photoperiod in Nordkapp (beige) and Lindesnes (yellow).  
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Figure 42: Activity lengths and photoperiod, North. Activity lengths (in minutes) in the Northern hemisphere (Norway. 
Sweden. Finland) averaged across years (blue bars) plotted against photoperiod in Nordkapp (beige) and Smygehuk (yellow). 

 

Figure 43: Activity lengths and photoperiod, South. Activity lengths (in minutes) in the Southern hemisphere (New 
Zealand. Victoria) averaged across years (blue bars) plotted against photoperiod in Lindsay point (beige) and Stewart Island 
(yellow). 

 

Figures 44, 45 and 46 show normalised pornography interest, averaged over weeks between 

2016 and 2021 and plotted against some extreme photoperiods in the region of interest. Figure 

44 shows pornography interest in Norway, plotted against the photoperiod of each Saturday in 

Nordkapp (beige) and Lindesnes (yellow) in 2020. Figure 45 shows pornography interest 

from 2016-2021 for the Northern Hemisphere plotted against the photoperiod of each 

Saturday in Nordkapp (beige) and Smygehuk (yellow) in 2020. Figure 46 shows pornography 

interest from 2016-2021 for the Southern Hemisphere plotted against the photoperiod of each 



 

Page 74 of 121 

Saturday in Lindsay point (beige) and Stewart Island (yellow) in 2020. The graphs for the 

Northern and Southern Hemispheres contain data on normalised pornography interest that has 

been firstly averaged between weeks for each region and secondly averaged between regions.  

 

Figure 44: Pornography interest and photoperiod, Norway. Normalised pornography interest in Norway averaged across 
2016-2021 (blue bars) plotted against photoperiod in Nordkapp (beige) and Lindesnes (yellow). 

 

 

Figure 45: Pornography interest and photoperiod, North. Normalised pornography interest in the Northern hemisphere 
(Norway. Sweden. Finland) averaged across 2016-2021(blue bars) plotted against photoperiod in Nordkapp (beige) and 
Smygehuk (yellow). 
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Figure 46: Pornography interest and photoperiod, South. Normalised pornography interest in the Southern hemisphere 
(New Zealand. Victoria) averaged across 2016-2021(blue bars) plotted against photoperiod in Lindsay point (beige) and 
Stewart Island (yellow). 
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6 Discussion 
The objectives of this thesis, as stated in section 3.7, were to investigate seasonal differences 

in activity-rest periods and libido as well as any potential hemisphere differences. The results 

indicated that daily search activity and pornography search interest vary between seasons. In 

addition, the results indicated that there were seasonally inverse patterns in daily search 

activity and pornography search interest between the Northern and Southern Hemispheres. 

Since activity lengths from daily Google Trends datasets were used as a proxy for activity-rest 

periods, and since pornography search interest was used as a proxy for libido, the findings 

might be indicative of seasonal fluctuations in daily activity-rest behaviour and libido. 

  

6.1 Activity Analyses  

The activity analyses for the News category (Data averaged across years) were similar for the 

Northern and Southern Hemispheres. They both revealed a longer daily activity span in 

summer compared to winter and in spring compared to winter (p≤ 0.01). The statistically 

significant average differences in activity length were ~18 minutes at the most (between 

winter and spring in the Northern Hemisphere and between summer and winter in the 

Southern Hemisphere) and ~11 minutes at the least (between spring and autumn in the 

Northern Hemisphere and between summer and autumn in the Southern Hemisphere). The 

shorter seasonal differences of ~11 minutes are similar to that found between summer and 

winter in a study by Suzuki et al. (2019), who investigated seasonal changes in sleep duration 

in 1,388 Japanese citizens (84). Similarly, Johnsen et al. (2013) found that subjects in Tromsø 

slept ~12 minutes longer on free days during winter compared to summer (90). 

An important question that arises is whether these are meaningful differences. If we first 

assume that the measurements did indeed represent daily activity lengths (this assumption is 

further discussed in section 6.1.1), then my answer would be yes. A seasonal fluctuation in 

daily activity length of 11-18 minutes (not considering confidence intervals that went below 

and above this range) is not extreme compared to other seasonal animals. For example, Daan 

et al. (1974) showed that the daily activity lengths of various bird species (Eurasian chaffinch, 

European greenfinch, and great spotted woodpecker) were ~6 hours in winter and ~18 hours 

in summer, which comprises a staggering 12-hour seasonal difference (32). Although 

mammals have smaller seasonal variations in daily activity lengths than birds, they can still be 
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pronounced. Erkert et al. (2004) demonstrated that the primate species Verreaux's sifaka had 

motor activities centred around a 15-hour interval during long days and a nine-hour interval 

during short days in Madagascar (85).  

However, humans live very different lives from all other animals (except pets and 

domesticated animals), and so the observed activity lengths of humans cannot necessarily be 

directly compared to those of other species. As discussed in section 3.4.1, the artificial 

lighting environments of humans significantly reduce total sleep time. Since artificial light 

exposure might imitate a constant summer photoperiod (55), yearly changes in light exposure 

should be smaller for humans than for animals that are only exposed to natural light. Thus, if 

seasonal fluctuations in daily activity levels are caused by yearly changes in light exposure, 

activity fluctuations should be smaller in humans than in other animals. In addition, the search 

data from Google Trends was likely based principally on people whose lives are largely 

removed from natural cycles of temperature, food access or other commonly acknowledged 

zeitgebers. Add to this that all search activity (the unit of measure in our analyses) is done on 

electronic screens, which are linked to shorter sleep durations, later sleep onset and increased 

sleep deficiency (86). Therefore, it was remarkable that this study was still able to detect 

significant seasonal patterns.  

It seems unlikely that the seasonal differences in activity length were only artefacts of the 

News category since the ANOVA and Tukey post hoc analyses of Data averaged across 

years from the Arts and Entertainment category in Norway detected similar results (see 

Tables 12 and 13). It is worth noting that the Arts and Entertainment-based Data averaged 

across years analyses were based on fewer data than the corresponding News activity lengths. 

The Raw data analyses were based on more data and detected more seasonal differences (as 

shown in Appendices A8 and A11). The considerations regarding which analyses to present 

are discussed in section 6.1.6. 

Although the results from the different categories were relatively concordant, differences in 

search patterns between different Google Trends categories cannot be completely ruled out. 

Indeed, the News category was chosen as the main category for our analyses since news 

searches were assumed to be more stable throughout the year than searches within other 

categories. Entertainment might, for example, be more popular during certain times of the 

year due to weather conditions or holidays. The potential differences in the reliability of 

categories are difficult to estimate since Google Trends provides no information about what 
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searches constitute each category (this issue is discussed further in section 6.2). One way to 

mitigate any categorical differences would have been to average several categories (as 

planned while using Pytrends), but some categories have very low-quality data where any 

daily patterns are essentially impossible to spot. The best solution would have been if Google 

Trends offered an “All searches” category that was based on all search activity regardless of 

keyword. This option was, unfortunately, not available as of October 2023.  

 

6.1.1 Assumption of Activity Measurement 

A critical assumption in the analyses of News and Arts and Entertainment datasets was that 

the distance between the steepest morning and evening slopes of each fitted TRIWEI was 

representative of the general daily activity of Google users. The assumption entailed that each 

activity length roughly stretched between the average wake and bedtimes in the population. 

Between seasons, activity lengths were approximately 17 hours in the Northern Hemisphere 

and 16 hours in the Southern Hemisphere (this hemisphere discrepancy is discussed further in 

section 6.1.2). These activity lengths would correspond to daily inactivity lengths of 

approximately 7 and 8 hours, respectively. Without taking into consideration any sleep debt 

from the weekdays and the consequent social jet lag, 7-8 hours is within the commonly 

recommended sleep durations for adults (7-9 hours) (87). Therefore, it seems our assumption 

may be valid.  

Whether people follow the sleep duration recommendations is arguable. A study on 16-19-

year-old Norwegians showed that self-reported sleep duration on weekends was ~8 hours and 

32 minutes between February and May 2012 (88). However, average sleep duration might 

have declined after 2013, potentially in relation to screen use, and the percentage of 

Americans who owned a smartphone surged from 35% in 2011 to 77% in 2016 and had 

reached 97% by 2021 (89, 90). Although the estimated inactivity lengths seem to agree with 

observed and recommended sleep durations, without corresponding individual sleep duration 

data we cannot be certain. Nevertheless, this similarity is an interesting observation and might 

allude to a correlation between Google searches and the general activity onsets and offsets in 

the population.  
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6.1.2 Hemisphere Differences in Activity Length  

Perhaps the largest conundrum about the presented results is the general difference in activity 

lengths, as shown in Figure 35. Regardless of the season, the measured activity lengths were 

~1 hour shorter in the Southern Hemisphere compared to the Northern Hemisphere (Tables 10 

and 11). I can only speculate as to what caused this difference.  

The northernmost point in the Oceanic regions used in the analyses was Lindsay point, which 

is located at about 34ºS. This latitude approximately corresponds to Rabat (Morocco) or Los 

Angeles (USA) in the Northern Hemisphere. On the other hand, the southernmost point in the 

Nordic region was Smygehuk, located at about 55° N. On the day of their respective summer 

solstices, Smygehuk has a photoperiod of 17 h 27 min, whereas Lindsay Point has a 

photoperiod of 14 h 26 min. On their respective winter solstices, the photoperiods are 7 h 5 

min in Smygehuk and 9 h 52 min in Lindsay Point. The difference in the experienced 

photoperiods is, in other words, noteworthy and could perhaps be a part of the explanation for 

the observed hemispherical differences in general activity lengths.  

We could, for example, imagine that the Nordic countries rely more on electrical lighting than 

the Oceanic regions during winters and that this could make the general activity length in 

winter longer in the Nordic regions. Similarly, we could imagine that the longer natural 

photoperiod in summer makes the summer activity lengths longer in the Nordic regions. Long 

winter and summer photoperiods (natural or electrical) and their consequent influence on 

human activity could then be thought to influence the spring and autumn behavioural patterns 

in the Northern Hemisphere due to, for example, the establishment of culturally accepted 

activity lengths. Another suggestion could be that some other cultural factor caused the 

difference between the Nordic countries and the Oceanic regions. This could, for example, be 

a higher expectation to be productive and efficient in the Nordic regions, leading to longer-

lasting daily activity. There could also be a generally higher use of screens around bedtime in 

the Northern Hemisphere. Again, all suggestions remain highly speculative, and I have no 

clear opinion of what caused this hemispherical difference in activity lengths.  

 

6.1.3 Assumptions about Activity Data Representativity  

Given that Google has indeed provided a representative sample of searches (see section 6.3 

for further discussion), another question that arises is whether the representative search 
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sample represents the general population. Unfortunately, this question is difficult to answer 

since there is no metadata associated with the Google Trends datasets, such as the age or sex 

distribution.  

We can, however, speculate about potential issues regarding representativity. The 

fundamental question in this respect is: who uses the internet in a way that creates the 

observed morning and evening slopes on the daily Google Trends graphs? We could, for 

example, imagine that older people are more likely to start their days googling for news and 

that younger people would be more likely to get their news from other sources, such as social 

media apps. We could also imagine a difference between chronotypes. For example, maybe 

earlier chronotypes are less likely to spend time on their phones in the morning because they 

are eager to get their day started. Or, on the contrary, maybe later chronotypes feel more 

pressure to get the day started since they wake up later and choose not to spend time on the 

internet for that reason. These suggestions illustrate an important shortage of this study: we do 

not know on whose searches the data are based. 

The data also represent a limited time frame in the searcher’s lives, since all data were from 

Saturdays. Saturdays were chosen based on Roenneberg and colleagues’ assertion that human 

behaviour on free days better reflects their overall circadian phase (57). This is supported by 

Johnsen et al. (2013) who detected seasonal differences in sleep duration for employed 

participants on free days, but not on workdays (91). Our data were presumably derived from a 

highly variable population, with an unspecified portion working during weekends. Thus, the 

use of Saturdays to approximate “free days” may be flawed in the current study. 

 

6.1.4 Causation behind Seasonal Activity Lengths  

Although the antiphase pattern between the Northern and Southern Hemispheres (best seen in 

the wave plot in Figure 35) suggests that some seasonal factor was contributory to the 

observed trends, there is no way of identifying which factor drives these patterns. It could be 

photoperiod, temperature, humidity, or any other environmental or societal factor that 

fluctuates seasonally.  

Plots were generated to display the relationship between photoperiod lengths and activity 

duration (Figures 41-43). There was potentially a very weak relationship but as the activity 
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data were from a wide range of photoperiods, this was a flawed approach. Latitudinally split 

Google Trends data combined with latitudinally specific photoperiod data could be combined 

for improved figures and a cross-correlation analysis in future research. It is worth mentioning 

that the first experiments with latitudinally split Pytrends data did not indicate any clear 

latitudinal differences in activity length patterns (see graph in Appendix A1).  

There are a few potential obstacles to analyses of natural photoperiod correlations with 

activity. The larger cities, where most people live, are often heavily light-polluted reducing 

natural light exposure (92). Thus, Google Trends-derived activity lengths from the larger 

cities could potentially poorly reflect the impact of natural photoperiod changes. Additionally, 

people who live in large cities could be more affected by social entrainment simply because 

there are more people around them. On the other hand, activity lengths based on search 

activity in more rural places with less light pollution could be unreliable and noisy simply 

because they are based on fewer searches. Thus, it is not certain that such an analysis could be 

performed at all with the methods used in this thesis because the TRIWEI distribution could 

not be fitted properly. In fact, a test query revealed that local daily datasets from Troms and 

Oslo were both highly noisy compared to a national daily dataset from all of Norway (see 

Appendix A13 for example figures). The higher noisiness of local data might have been an 

obstacle in detecting any latitudinal differences in search activity, as shown in Appendix A1.  

It is possible that Google does, in fact, possess local data of sufficient quality to perform local 

TRIWEI-based activity length analyses, but that these data are not available through the 

Google Trends website. Perhaps future studies would benefit from contacting Google and 

suggesting a collaboration to obtain higher-quality data. 

Cultural events might have influenced the activity lengths of some Saturdays. For example, 

there is a large spike in the News-based polar plot from the Northern Hemisphere in week 19. 

The weekend of week 19 sometimes, but not always, coincides with a series of holidays in the 

Nordic countries (i.e. Ascension Day, Pentecost, and the Norwegian national day). When 

some or all of these holidays fall closely together, it is customary to take an extended break 

from work and school. My suspicion is that this “unexpected” free time is thoroughly 

exploited, perhaps resulting in later bedtimes. Another small spike occurs in week 11, which 

in some years coincides with Easter (e.g. 2016). Interestingly, Saturday of week 11 can also 

coincide with (and is always close to) the spring equinox (e.g. 2021). Perhaps the longer 

photoperiod has really started to affect people in the Nordic regions by week 11, and from this 
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point, the daily activity lengths continue to increase throughout the summer. I am not as 

familiar with the holidays in the Southern Hemisphere. However, Figure 33 demonstrates that 

the longest activity length occurred on the Saturdays closest to Christmas. Another spike in 

the polar plots from the Southern occurred in week 37, which is only a few days away from 

the spring equinox in the Southern Hemisphere.  

The spiking activity lengths around the spring equinoxes in both the Northern and Southern 

Hemisphere are complemented by the observation of generally longer activity lengths in 

spring than in autumn. This observation was only statistically significant for the Northern 

Hemisphere in the Tukey post hoc test (and also in the alternative Raw data-based analyses 

using Welch’s ANOVA and Games-Howell post hoc, as seen in Appendices A8 and A11), 

although the polar plot from the Southern Hemisphere seems suggestive of a potential 

difference. In this context, it is interesting to note that birds often have longer diel activity 

spans before the summer solstice than after, even though the photoperiods are equal (32). 

Although the potential link to activity length is unknown to me, it is interesting to note that 

some brain areas have seasonal fluctuations in size. The paraventricular nucleus (PVN), 

which has been associated with relaying photoperiodic information from the brain to the rest 

of the body, was shown to be larger in spring than during any other time of the year in 

humans (18, 93). Perhaps activity lengths in humans, birds, and other vertebrates could have 

evolved to be longer in spring. During late spring and summer, animals in their natural 

environments typically experience higher food abundance. Animals could benefit from being 

more active at this time of year to gain large fat reserves that can be depleted during late 

autumn and winter. In autumn, on the other hand, the body might prepare for the season with 

the lowest food availability and start decreasing its energy expenditure by shortening the diel 

activity period.  

A link between season, activity levels and metabolism could have large implications for 

human health. If some innate, biological mechanism leads to lower energy expenditure in late 

autumn and winter compared to spring and summer, this could have ramifications for the 

obesity epidemic in the Western World. Modern humans in industrialised countries have 

constant access to food all year round, but that is likely not how we evolved. In our 

evolutionary past, humans could have benefitted from having lower energy expenditure in 

winter to survive on what little food they had. However, such a reduction in energy 

expenditure would be maladaptive in most modern lives. A possible benefit from seasonal 

variations in food access is intriguing, especially considering the fasting trends that have 



 

Page 83 of 121 

gained attention in recent years, such as intermittent fasting and the 5:2 diet. Perhaps the most 

beneficial fasting pattern is seasonal? This thesis has not addressed these potential 

associations. However, the observed seasonal differences in activity lengths in spring/summer 

compared to autumn/winter are suggestive of seasonal changes in energy requirements. The 

potential link between season, activity levels and metabolic expenditure should be 

investigated in future studies. 

 

6.1.5 Data Handling  

6.1.5.1 The TRIWEI Model 

Visual inspection indicated that the TRIWEIs fit well to the daily Google Trends datasets. 

Although the TRIWEIs were based on a least squares method, it is possible that the fit could 

have been improved with other methods that were not explored in this thesis, especially in the 

middle part of the graphs. Any model fit might entail small deviations from the underlying 

structure of the data. However, from visual evaluation, I would say that the TRIWEIs did a 

good job of representing the morning and evening slopes of the daily datasets. This method, 

created for the purpose of this thesis, could be used in future analyses to model daily search 

patterns.  

As seen from the results in Appendices A3 and A4, using the morning and evening peaks 

rendered similar statistical results as the derivatives. The only exception was that with the 

peak analyses, there was an additional statistically significant difference in the Southern 

Hemisphere between summer and spring. Presumably, search intensity increases in the 

morning (and decreases in the evening) because people start (and stop) using Google for the 

day. The steepest point on the slope should then be when most people start (or cease) their 

daily search activity. If we assume that the onset and offset of search activity occur near the 

onset and offset of daily activity, then we have an approximate, indirect measure of the latter. 

The morning peak, by this logic, should represent the midpoint between when most people 

have started and ended their first daily search bout. This is supported by the activity length 

measurements between peaks, which were approximately 12 hours in the Northern 

Hemisphere and 11 hours in the Southern Hemisphere (see Appendix A3). These time 

intervals are too short to represent daily activity, whereas the 16–17-hour activity lengths 

between gradients seem like a reasonable estimate (as discussed in section 6.1.1). Using the 
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peaks instead of the gradients might be beneficial in some contexts, but for this thesis, the 

interpretation of the slopes was more intuitive.  

 

6.1.5.2 Re-normalisation of Normalised Data 

As explained in section 4.4 the downloaded datasets were cut between Saturday 03:00 AM 

and Sunday 03:00 AM, and re-normalised. The re-normalisation process ensured that all the 

datasets, that were to be fitted with TRIWEIs, were similarly scaled. The second 

normalisation did not change the relative ordering or relationships between the data. In other 

words, larger values in the normalised dataset were still larger after re-normalisation, and 

smaller values remained smaller. However, re-normalisation could exaggerate the relative 

differences between data points. This would depend on the range of values in the cut dataset, 

which could be closer to 0 or 1, depending on the relative ratios in that part of the original, 

normalised dataset. The alteration in ratios among data points had no impact on the inherent 

relationships between the data, and consequently, the steepest slopes on the curve should 

maintain the same position on the x-axis for both the normalised and re-normalised data. 

Since these were the only points of interest for our analyses, I see no concerns regarding the 

re-normalisation procedure. 

However, future studies of a similar kind could avoid this step by directly downloading 

Google Trends data within the desired time frame. This was not done here due to some 

methodological uncertainty at the time of the download. Also, one would have to be very 

thorough regarding the time and date calculations to get the same time frame regardless of the 

time zone for the individual regions. If the data has no margins, it is not possible to correct the 

time frame after the download.  

 

6.1.5.3 Data Types, Averaging Procedures and Lack of Variation Measures 

Data of four different types were tentatively investigated as explained in section 4.4 and Table 

4. The “Raw data” data type was the only one that was directly fitted with TRIWEIs. In the 

following statistical tests, the activity lengths of the Raw data TRIWEIs were grouped by 

season and hemisphere and analysed directly. However, the ANOVA assumptions were not 

met for this data type since the Bartlett’s test (see Appendices A5 and A6) revealed 
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heterogeneity of variance. When the variance is heterogenous, there is a greater chance of 

falsely rejecting the null hypothesis. I am not sufficiently versed in this topic to evaluate 

whether the Raw data analyses with regular ANOVAS had any value when this assumption 

was violated. However, since several websites suggested that Welch’s ANOVA can be used 

when the assumption of homoscedasticity is violated, this approach was used for the Raw 

data (as presented in Appendices A8 and A11).  

All the other data types met the ANOVA assumptions. However, these data types were 

averaged in one way or another, and there are issues associated with this approach. 

Specifically, in the averaging process of Google Trends datasets, I did not account for the 

associated variation/standard deviations, and this information was thus lost in the consequent 

analyses.  

The loss of information in the averaging procedures seems especially worrisome regarding the 

ANOVAs and less so for the polar plots (although they were sometimes averaged more 

extensively) because the latter mostly served to illustrate what had already been detected in 

the statistical tests.  

One issue in terms of averaging the Google Trends datasets (before fitting a TRIWEI) is that 

averaged Saturdays with higher variability will have the same weight as those with lower 

variability in the following tests. This could perhaps have been mitigated with some sort of 

weighted averages, where Saturdays with smaller standard deviations could have a higher 

weight than those with larger standard deviations. This was not tested.  

Before performing the analyses, the Raw data were thought of as “clean” data that could 

support the validity of the results from the averaged data types. It was assumed that the Raw 

data-based activity lengths would be more variable than the activity lengths of the other data 

types. This was simply because individual daily Google Trends datasets were expected to be 

more variable than datasets averaged over eight years. However, this plan partly failed when 

the Raw data activity lengths were too variable to pass the Bartlett’s test. Thus, the Raw data 

could not be used to verify the findings from the other data types with the same use of 

statistical tests. This issue was omitted by using Welch’s ANOVA and Games-Howell post 

hoc tests, but since these tests required equal sample sizes, the data from 2023 were not 

included. Although the alternative tests supported the findings from the regular ANOVAs and 

Tukey post hoc tests (and in fact detected more seasonal differences than the latter, as shown 
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in Appendices A8 and A11), the tests are not directly comparable due to the 

inclusion/exclusion of 2023. 

It is likely that the high variability of the Raw data was caused by the spikes that can be seen 

in the seasonal wave plot in Figure 35. These spikes were often caused by extended activity 

lengths in weeks 19, 20 and 52 (which coincide with holidays as discussed in section 6.1.4). 

Also, a large drop in search activity length occurred on January 1st 2021, which happened to 

be a Saturday. Celebrations on New Year’s Eve likely made people wake up later than usual 

on this day in both hemispheres. It is possible that these data points (activity lengths) could be 

considered outliers, and that by removing them, the Bartletts test would have been 

insignificant so that the null hypothesis of homoscedasticity would not have been rejected. If 

so, the ANOVA approach could have been used for the Raw data to support the findings of 

the averaged data types. However, information can also become lost by removing “outliers” 

that do in fact constitute important trends in the data. Unfortunately, there was no time to 

investigate this further within the given time.  

In summary, averaging without considering variability could lead to misleading results. 

However, we should only expect this to occur if seasonal patterns differed significantly 

between years and between regions. This does not seem to be the case, as indicated by the 

Raw data in Figure 35. Also, the Raw data analyses performed with Welch’s ANOVA and 

Games-Howell post hoc tests did support the findings of the averaged data types.  

 

6.1.5.4 Unequal Sample Sizes  

The Google Trends datasets for analysing activity lengths were downloaded from January 1st, 

2016, to August 5th, 2023. The cut-off in August 2023 occurred since this was the time that 

the data was downloaded. All the data (apart from faulty data, see Appendix 12) were used in 

regular ANOVAs and Tukey post hoc tests. For the analyses of Raw data and Data averaged 

across hemispheres, this resulted in a slight unevenness in sample size when using these tests. 

The period between August 6th and December 31st (corresponding to weeks 32-52, mostly 

representing the Autumn seasonal group) only had seven activity lengths per week, whereas 

the rest of the weeks of the year had eight activity lengths. This should not be a big issue 

regarding the ANOVA, since it is fairly robust to slight differences in sample size (94). 
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However, the Tukey post hoc test assumes that the sample sizes are equal (95), further 

supporting the choice of alternative statistical tests for the Raw data.  

For the other two data types, Data averaged across years and Data averaged across years 

and within hemispheres, eight data sets were averaged across years between weeks 1-31 and 

seven data sets were averaged across years for weeks 32 – 52. This can have influenced the 

variability of the averages, but this was not investigated.  

 

6.1.6 Choices Regarding which Results to Present  

There were pros and cons to both kinds of statistical analyses, as discussed in the previous 

sections. Although I chose to present regular ANOVAs for Data averaged across years-based 

activity lengths in the Results section, this does not necessarily mean these analyses were 

better. The choice was mainly made based on the output I could get from the different tests. 

For example, the regular ANOVA provided confidence intervals for the estimated seasonal 

differences, and Welch’s ANOVA did not. Also, the two-way ANOVA allowed several 

predictor variables and their interactions to be included in the model. This way, hemisphere 

could be accounted for in the model, whereas season was the only predictor variable in 

Welch’s ANOVA. I wanted to compare the results of the two activity length analyses (based 

on News and Arts and Entertainment), and therefore needed the methodology for these 

investigations to be as similar as possible. Thus, it did not seem like a good option to present, 

for example, the regular ANOVA analyses for News and Welch’s ANOVA analyses for Arts 

and Entertainment.  

An argument could be made for presenting only Raw data analyses with Welch’s ANOVA 

and Games-Howell post hoc tests. These tests were based on larger sample sizes and detected 

even more seasonal differences than the regular ANOVAs. For example, the Games-Howell 

post hoc test (based on Raw data from the News category) detected additional seasonal 

differences between summer and autumn (mean difference 8.4 minutes, p = 0.001) and 

between fall and winter (mean difference 6.5 minutes, p = 0.02) in the Northern Hemisphere. 

For the Southern Hemisphere, the Games-Howell post hoc test (based on Raw data from the 

News category) detected additional seasonal differences between autumn and winter (mean 

difference 6.2 minutes, p = 0.04) and between spring and summer (mean difference 7.5 

minutes, p = 0.03). Perhaps due to the larger sample sizes for these analyses, the Raw data 
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Games-Howell post hoc tests generally had lower p-values for the statistically significant 

comparisons than did the Tukey post hoc tests.  

Zimmerman (2004) recommended against using preliminary tests (such as Bartlett’s test), and 

to rather aim for separate-variances analyses (such as Welch’s ANOVA) unconditionally, 

especially in the presence of unequal sample sizes (96). With more time, this topic could have 

been investigated further to decide on the optimal approach. A solution could have been to 

use Welch’s ANOVA, irrespective of the validity of the normal ANOVAs, although this 

would require separate analyses for each hemisphere.  

 

6.2 Pornography Analyses 

The analyses of search interest in pornography keywords revealed several seasonal 

differences for both hemispheres. The tests revealed that all seasonal comparisons were 

statistically significant in the Northern Hemisphere, except for autumn-winter and spring-

winter. In the Southern Hemisphere, only spring-autumn and autumn-winter had insignificant 

seasonal comparisons. There was a relatively high search interest for pornography in summer 

in both the Northern and Southern Hemispheres (as shown in Figure 40). However, there was 

a pronounced difference between the Northern and Southern seasonal trends during winter. In 

particular, the Northern Hemisphere had a massive spike in pornography search interest 

during the last two weeks of the year, whereas the Southern Hemisphere had relatively low 

search interest during the Southern Hemisphere winter. The last two weeks of the year were 

nevertheless the weeks with the highest search interest in the Southern Hemisphere, but they 

coincided with Southern Hemisphere summer. The regional polar plots showed the same 

trends as the hemispherical ones.  

The large Christmas spike in the Northern Hemisphere and the highest measured interest 

around Christmas in the Southern Hemisphere makes it obvious that free time and holidays 

must play an influential role in general pornography interest. Interestingly, Ayers et al. seem 

to have demonstrated an opposite Christmas effect in mental health queries, although they did 

not comment on this (46). Search activity for mental health-related queries was low around 

Christmas in both the Northern and Southern Hemispheres, as shown in Figure 11. 
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The occurrence of Easter peaks around weeks 12-15 in both hemispheres further support the 

significance of holidays in relation to pornography interest. These peaks were smaller, 

probably because Easter falls on different weeks depending on the year. This makes the 

interpretation of the summer interest difficult. Summer holidays are common in both Oceania 

and the Nordic countries, and this prolonged break could thus be responsible for the higher 

pornography interest at this time of year. Unfortunately, there is no way to detect the 

underlying cause for fluctuations in pornography interest through the analyses that were 

performed in this thesis.  

Nevertheless, the potential link to photoperiod should be considered. The summer period of 

prolonged and heightened pornography interest coincides with the longest photoperiod, as 

shown in Figures 44 - 46. In fact, one of the three weeks with the highest pornography search 

interest in the Northern Hemisphere coincides with the week of the summer solstice. This can 

be said also for the Southern Hemisphere, although the longest day of the year coincides with 

the Christmas holiday. Additionally, there seems to be a steady increase in pornography 

interest as the photoperiod approaches its maximum length, and this is seen in both 

hemispheres.  

The generally higher pornography interest in summer is also interesting in relation to birth 

rates, as discussed in section 3.4.2. If we assume that pornography interest represents general 

libido, then that could lead to higher conception rates in summer and, consequently, more 

births in spring. This fits nicely with previous observations in birth rates, as reported by Moos 

et al. (1994) and Dahlberg et al. (2018), among others (62, 63). It also corresponds with the 

study by Demir et al. (2016) who detected more sexual thoughts and ejaculations in summer, 

accompanied by higher testosterone and FSH levels, compared to winter (65). 

 

6.2.1 Validity of Test Results  

As shown by the Bartletts test in Appendix A7, the assumption of homogeneity of variance 

was violated for the pornography search interest data. This can easily be understood by 

looking at the polar plots in Figure 40: the variance in data points during winter must have 

been a lot larger than in any other season due to the large Christmas spike.  
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Whether the violation of the homoscedasticity assumption invalidates the findings of the 

ANOVA and Tukey post hoc tests has not been easy to understand. Several websites and 

articles state that heteroscedasticity can alter the rates of Type 1 errors (false positives, i.e. 

rejecting H0 when it is true), but that this is especially likely when sample sizes are unequal. 

When a large variance is combined with a large sample size, the probability of Type 1 errors 

can fall below the significance level (usually a=0.05). On the contrary, when a smaller 

sample size is linked to a larger variance, the likelihood of Type 1 errors increases, 

occasionally exceeding the significance level by a significant margin (96, 97). In the 

pornography analyses, sample sizes were equal and consisted of 13 data points for each 

season and year, making a total of 78 data points per season across the six years that were 

included in the analysis (2016-2021). Whether this sample size is large enough to dodge the 

issues caused by heteroscedasticity remains unknown to me, but to err on the side of caution, 

Welch’s ANOVA and Games-Howell post hoc tests were presented for these data. 

Another question arises beyond the selection of analyses: how to interpret any observed 

differences? The Google Trends datasets were normalised by Google in an untransparent 

process (discussed further in section 6.3). The downloaded datasets contained normalised 

search interest values that generally varied between 80-100 on a scale from 0-100. It is not 

clear what other data affected the scale of the datasets in this manner. In contrast, the daily 

graphs that were used for the activity analyses were always scaled from 0 – 100. Although the 

prior processing of the Google Trends data is unclear, I suppose the relatively high numbers 

in the pornography datasets are reflective of generally high search interest. Thus, even if the 

statistical tests picked up on true seasonal differences, these should be expected to be modest 

in size. In fact, the generally high values for normalised pornography interest are most likely 

indicative of high year-round interest with rather small, though detectable, seasonal 

fluctuations.  

 

6.2.2 Assumption of Libido Measurement 

Another important consideration is whether pornography search interest can reasonably be 

used as a proxy for libido. It seems obvious that people who search for pornography, in most 

cases, seek sexual stimulation, but I have not found any research papers that evaluate this 

connection.  
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Two questions arise: 

1. How many people use Google to search for pornography instead of other sources?  
2. Who uses pornography at all?	

	
I have not found any research papers that discussed the first question. However, PornHub 

reported that Google’s Chrome web browser made up 48% of mobile traffic and 53% of 

desktop traffic in 2022. Chrome searches might be relevant to this thesis, as discussed further 

in section 6.3. Thus, Google Trends could potentially contain information about ~50% of all 

global PornHub visits that are made through Chrome (98). That estimate might vary between 

countries, but I do not possess specific information about the countries used in this thesis. 

Semrush.com reports that ~ 21% of xVideos and xHamster users, ~23% of PornHub users, 

and ~28% of XNXX users visit the sites through Google (99). These numbers, however, do 

not include “direct” traffic through the Google Chrome web browser. Thus, as much as ~70% 

of all PornHub visits might be included in the Google Trends database. This is a substantial 

amount of data, since PornHub is the 4th most visited website globally, with over 12.5 billion 

visits in September 2023 (100).  

The second question – who uses pornography at all? – is also challenging to answer. I have 

not found any single study that breaks down pornography use by a range of factors, such as 

sex, age, religion, education level, etc. However, several narrower studies together make it 

obvious that pornography consumers do not represent the general population. First and 

foremost, women use pornography significantly less than men – 16% of women compared to 

46% of men between 18 to 39 years of age viewed pornography in a given week of 2014 

(101). In accordance with this estimate, PornHub reported that only 36% of users were female 

in 2022 (98). We can thus expect our “libido” estimate to be highly male-skewed. Also, a 

study conducted by Ballester-Arnal et al. (2023) found that individuals in the 41-60 age group 

consumed slightly less pornography content than adults below 40 (102). This finding might 

support our use of pornography consumption as a proxy for libido since human libido 

typically decreases with age, particularly after the age of 50 (103) 

 

6.3 Challenges of Using Google Trends  

Google has had approximately 90% of the global search engine market share since 2010, with 

over 5.5 billion daily searches. However, many non-western countries, such as China, Japan, 
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South Korea, and Russia, mostly use other search engines than Google for political or 

linguistic reasons (104). Since our analyses only included Western countries, Google should 

be expected to give a good estimation of total internet search volume.  

The validity of the Google Trends data is essential to all conclusions that were drawn in this 

thesis. Unfortunately, Google Trends, although an interesting and versatile tool, is highly 

untransparent in various ways. Google seems very protective of its data, as demonstrated by 

the blocking of Pytrends. My suspicion is that there are economic reasons for keeping the 

information vague since data and metadata about people’s search behaviour can be valuable 

to advertisers, business owners, competing search engines and others. 

One of the most important questions is whether Chrome searches are included in the Google 

Trends datasets. Should Chrome not be included in the Google Trends datasets, then all direct 

pathways to any website are also not included. Since any previously visited website is 

normally autocompleted in the address bar, this would exclude a lot of relevant searches for 

both news and pornography. Unfortunately, it remains unknown whether Chrome searches are 

included in the Google Trends statistics.  

Similarly, we lack the knowledge about which search keywords are included in any given 

category. If we knew how many and which keywords constituted certain categories, it would 

be easier to evaluate whether the graphs were indeed valid representations of general interest 

and whether noisiness in the data stems from relatively few keywords being included in each 

category.  

Another question related to the quality of the data is why datasets lose quality over time (as 

shown in Figure 21) and how this degradation works. Also, how might Google’s occasional 

updates of data processing methods (see Figure 24) impact our analyses?  

Finally, a key characteristic of Google Trends data is their normalisation, which has its pros 

and cons. For the activity length analyses, normalisation aided the investigations. For the 

pornography interest analyses, on the other hand, non-normalised data could have made it 

easier to say something about the true magnitude of the seasonal fluctuations in search 

patterns.  
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6.3.1 Critiques of Google Trends  
Although several interesting research questions have been investigated using Google Trends, 

not all researchers are equally enthusiastic. Franzén (2023) went as far as to advise against 

using Google Trends in research due to an observed low replicability of results (105). 

Franzén’s issues regarded a single-keyword query within a narrow field of interest (an ex-

chief of the Danish security service). I suspect her findings might be more of a problem in 

individual keyword searches than in category searches or even in combined keyword searches 

(especially for popular keywords). However, the reproducibility of Google Trends research 

should be investigated further for all types of studies. To ensure reproducibility, Nuti et al. 

(2014) provided a guideline to researchers who use Google Trends. They encouraged 

scientists to provide clear documentation of all modifiable search characteristics, such as 

location, time period, query category, and search terms, as well as a rationale for the search 

input (106). 

 

6.4 Improvements and Suggestions for Future Studies 

If this study were to be redone, I would have tried to find a statistical analysis that was not 

sensitive to heteroscedasticity and that could include several predictor variables. In the 

planning process, I did not expect the variance to differ between groups. However, now we 

know that certain days of the year, such as holidays, can cause too much variance for the 

regular ANOVAs (one-way and two-way) to provide trustworthy results. Thus, I would fit 

TRIWEI curves to Raw data to avoid losing information about the variation/standard 

deviations of the datasets in any averaging processes.  

Given that an appropriate statistical approach was found, it would have been interesting to 

include more predictors in the analysis. An example of a variable that could have been 

included with the existing data is “holidays”. Other factors that would have been interesting to 

include, if one could get hold of the information, are the sex and age of the searchers.  

Also, the developed approach could have included a third site/region near the Equator. If 

photoperiod plays a role in the observed seasonal fluctuations, we should expect regions 

closer to the Equator to have less pronounced rhythms. An obstacle in this regard might be to 

find a region in this part of the world that is comparable to the Nordic countries and Oceania 

in terms of access to the internet and necessary electronic devices. However, also regions that 
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are not located exactly at the Equator, but closer to it, could be used to look for dampened 

seasonal rhythms.  

An early goal in the planning stage was to look for latitudinal differences in activity lengths 

and pornography interest. This was not achieved due to the described issues with data 

download. However, if future studies were able to access such data, a latitudinal gradient 

could be very effective in connecting seasonal rhythms to photoperiod.  

An important question is whether the developed method is a good way to investigate seasonal 

rhythms in activity levels and libido of humans. To this, my answer is yes. There are many 

different approaches to studying seasonal rhythms in humans. Many might say lab 

experiments would be more informative, and as discussed, they would be necessary to 

determine any potential circannual rhythms in humans. However, the Google Trends data also 

has its advantages. Firstly, it is based on a much larger sample than could ever be investigated 

in a lab. Secondly, it is anonymous, which can make investigations of certain topics, such as 

sexuality, easier. Thirdly, it is free, whereas other human studies could be costly. Lastly, this 

method might be more representative of people’s actual lives than controlled lab experiments. 

The people who generated the Google Trends data were not aware of their role in this study. 

They were simply living their lives as normal, demonstrating to us how modern humans 

behave on the internet.  

Finally, despite our modern lifestyles featuring electric lights, heating, screens, and various 

technological devices that distance us from the natural world, and despite our persistent states 

of comfort, humans seem to display seasonal fluctuations in behaviour. This finding is 

relevant, not just theoretically but also practically, to all of us.  
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7 Conclusion  

The results suggest that there are indeed seasonal differences in search activity patterns on 

Google. These seasonal differences have been found in the News and Arts and Entertainment 

categories as well as for combined pornography keyword queries. The hypothesis that seasons 

contribute to the observed patterns is supported by inverse yearly oscillations in searches 

between the Northern and Southern Hemispheres. Based on these analyses, it is not possible 

to estimate to which degree the observed seasonal changes in search patterns represent real-

life fluctuations in human activity levels and libido. The analyses used an indirect measure to 

approximate a field of study which is difficult to investigate directly. Since the study is 

observational, it cannot be used to make any conclusions about causation. Also, there is little 

transparency surrounding the units of investigation in this study since we do not know how 

Google Trends processes its data. Nevertheless, the observed seasonal changes in search 

patterns are by no means trivial and are suggestive of seasonal rhythms in two important 

aspects of human life: activity levels and libido.  
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Appendix 

A1: Tentative Analyses of Pytrends Data  
Daily data was downloaded from the News and Arts and Entertainment categories of Google 

Trends through Pytrends. The downloads were made separately for a range of regions within 

the Nordic countries (Norway, Sweden, and Finland), as shown on the map below. Daily 

datasets for ten years were averaged first across years for each region. The averaged datasets 

were then interpolated before the maximum and minimum derivatives were used to find the 

activity lengths. Activity lengths were averaged between regions (colour-coded in the map) 

and these averaged activity lengths were used to produce the plot below. The plot was never 

finished because errors in the data (chunks of zeros) were detected, and the data was later lost. 

Thus, the polar axis is in degrees, although it should have been weeks. The x-axis is ‘hours’. 

Although it is not certain if this would be true with ‘clean’ data, this initial analysis was not 

able to detect latitudinal differences between the selected regions. 
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A2: Polynomial Fit of Google Trends Graphs  
Example figures of A) google trends data from the Northern Hemisphere, B) 5th order 

polynomial fit to this data and C) the derivative of B.  
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A3: Analyses Using Peaks instead of Gradients, News. 
The following analyses are based on Data averaged across years, but instead of using the 

distance between the derivatives, this method was based on the global maxima of the morning 

and evening TRIWEI curves. The only difference in the interpretation of the results is that 

there is an additional significant difference between summer and spring in the Southern 

Hemisphere when using the peaks instead of the gradients (given a significance level of 0.05).  

 

 

 

The distances between the peaks are consistently shorter than the distances between the 

derivatives. Naturally, morning peaks occur later than morning derivatives, and evening peaks 

occur earlier than evening derivatives. Although it seems like peaks can be used to detect the 

same trends as presented in the main part of the thesis, the interpretation of what the peaks 

might represent is perhaps not as obvious.  
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Polar plots using peaks instead of gradients:  
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A4: Wave Plot using Peaks instead of Gradients. 
This seasonal wave plot is made with activity lengths (the distance between the global 

maxima of the first and last peaks on the TRIWEI graphs) based on News, Raw data.  
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A5: Model Assumptions Tests for News Activity Lengths  

Normality of data: ANOVAs (one-way and two-way) are fairly robust against violations of 

the normality assumption. The data are supposed to stem from a population that is normally 

distributed. One way to approach this assumption is to ask if there is any reason why the data 

should not come from a normally distributed population (81). However, the seasonal groups 

were plotted as histograms. The example histograms that are included here are from the 

Northern Hemisphere for Data averaged across years-based activity lengths. The samples 

look as if they could stem from a normally distributed population.  
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Data averaged across years:  

The following analyses and the code to generate them were based on instructions from 

https://www.reneshbedre.com/blog/anova.html (107).  

Q-Q plot and histogram were used to test whether the News Data averaged across years-

based activity length residuals were normally distributed. 

 

 

After normality seemed OK (although with some potential outliers), the next step was to test 

the homogeneity of variances with Bartlett’s test. The null hypothesis in this test is that the 

samples from the different seasons have equal variances. Since the p-value is large (0.64), the 

null hypothesis cannot be rejected.  
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Data averaged within hemispheres: 

The Q-Q plot and histogram suggest that the residuals are fairly normally distributed.  

 

 

Bartlett’s test could not reject the assumption of homogeneity of variances.  
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Raw data:  

The Q-Q plot and histogram suggest that the residuals are fairly normally distributed.  

 

Bartlett’s test rejected the assumption of homogeneity of variances.  
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Data averaged across years and within hemispheres:  

The Q-Q plot and histogram suggest that the residuals are fairly normally distributed.  

 

 

Bartlett’s test could not reject the assumption of homogeneity of variances.  
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A6: Model Assumptions Tests for Arts and Entertainment 
Activity Lengths  
Data averaged across years:  

Q-Q plot and histogram were used to test whether the Arts and Entertainment Data averaged 

across years activity length residuals were normally distributed.  

 

 

Since the normality assumption seemed OK, the next step was to test the homogeneity of 

variances with Bartlett’s test. The null hypothesis in this test is that the samples from the 

different seasons have equal variances. Since the p-value is large 0.78), the null hypothesis 

cannot be rejected.  
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Raw data:  

The Q-Q plot and histogram to test whether the Arts and Entertainment Raw data activity 

length residuals were normally distributed are shown below.  

 

 

Since the normality assumption seemed OK, the next step was to test the homogeneity of 

variances with Bartlett’s test. The null hypothesis in this test is that the samples from the 

different seasons have equal variances. Since the p-value is small 0.005), the null hypothesis 

is rejected.  
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A7: Model Assumptions Tests for Pornography Search 
Interest  
The Q-Q plot and histogram to test whether the pornography residuals were normally 

distributed are shown below. This assumption seemed OK.  

 

 

Next, homogeneity of variances was tested with the Bartlett’s test. The null hypothesis in this 

test is that the samples from the different seasons have equal variances. Since the p-value is 

small 0.0006), the null hypothesis is rejected. 
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A8: Raw Data Analyses. (News Category). 
Two-way ANOVA and Tukey post hoc tests (not used due to heteroscedasticity):  
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Welch’s ANOVAs and Games-Howell post hoc tests:  
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A9: Analyses of Data Averaged within Hemispheres (News 
Category) 
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A10: Analyses of Data Averaged Across Years and Within 
Hemispheres (News Category) 

 

 

 

A11: Raw Data Analyses. (Arts and Entertainment Category) 
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A12: Faulty Google Trends Plot that was Excluded from the 
Analyses  
The blue line shows the faulty Google Trends graph from the Arts and Entertainment 

category (week 11, 2020) that was excluded from the analyses. The TRIWEI fit was 

performed and produced a very long activity length measurement that showed up as an outlier 

in the Arts and Entertainment wave plot.  

 

A13: *-Query in the News Category, Troms, Oslo, and 
Norway 
The first graph represents search activity in the News category in Troms. The time span is 

from 27.07.23 to 29.07.23. The second and third graphs are equal to the first except that the 

regions are Oslo (second graph) and Norway (third graph). The daily pattern is hard to detect 

in the first two graphs. 
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