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Abstract
The island of Husøy, in Northern Senja, Norway, faces numerous voltage qual-
ity difficulties, which arise from the consequent surge in electricity demand
by the local growing fishing industry. Collaborating with the local distribution
system operator (DSO), Arva, the current study explores the implementation
of Battery Energy Storage Systems (BESS) using a peak-shaving strategy to
alleviate high-demand periods, aiming to make the grid more robust. Using
the open-source tool SimSES as the modeling software, the research examines
the strategy’s efficiency, focusing on load reduction during peak demand. Four
main scenario cases were examined, each with a distinct peak-shaving thresh-
old, to explore the system’s performance. Furthermore, this study pioneers a
comprehensive degradation analysis of the BESS in Husøy, based on the four
scenario cases, shedding light on its long-term lifetime patterns. Furthermore,
additional simulation cases were designed to explore the impact of different
State of Charge (SOC) levels, temperatures, and Li-ion battery technologies on
the system’s longevity.
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1
Introduction
In today’s evolving energy landscape, the importance of efficient energy storage
systems cannot be left out. As we move towards a more sustainable and reliable
energy future, the need for robust and adaptable energy storage solutions has
become increasingly evident. In this context, remote places, like small islands
being at the far end of the electrical grid present a unique set of challenges
and opportunities in energy storage [1]. With a limited connection to the main-
land’s grid, usually exposed to bad weather conditions and possessing limited
resources, these places suffer from capacity problems, grid breakdowns, and
poor voltage [2].

Constructing new transmission lines to support those places requires substan-
tial time and financial expenses. These islands are often in remote or environ-
mentally sensitive locations, making it costly to lay transmission infrastructure,
especially when it involves long distances or challenging terrains. Given these
challenges and the need to address capacity issues on remote islands, exploring
cost-effective alternatives like energy storage becomes a practical and sustain-
able approach to providing energy stability in those regions.

Energy storage systems have emerged as an essential component in modern
electricity grids [3], playing an important role in enhancing grid stability, in-
tegrating renewable energy sources, and meeting peak demand. They offer a
diverse range of benefits, including load leveling, frequency regulation, and
backup power supply, all of which can contribute to the overall grid stability.
Moreover, energy storage technologies reduce the reliance on fossil fuels by

1



2 chapter 1 introduction

allowing excess energy from intermittent renewable sources, such as solar and
wind, to be stored for later use.

While the general importance of storage systems in the modern grid is well
recognized, their limited lifetime cannot be left out. Battery storage, one of
the most common ways to store energy in the last few years [4], suffers from
degradation [5]. Generally, the more the battery is being used the quicker it will
degrade. More specifically, the various strategic operations of the battery, affect
its lifetime. Given the importance of understanding battery degradation and
maximizing investments in battery energy storage systems, it is important to use
models for simulating battery operations as they provide valuable insights into
how batteries degrade and operate, thus allowing for potential optimization of
those investments effectively [6].

1.1 Scope of the Study

This study is centered on the island of Husøy in Northern Senja, Norway, in
cooperation with the local distribution system operator (DSO), Arva, owner of
the Smart Senja project [7], where in recent years a significant expansion of the
fishing industry has been witnessed [8]. With this developing sector bringing
about an increase in electricity consumption, the main challenge in the distri-
bution network at Senja is large voltage variations both in the short and long
term. Particularly challenging is low voltage in heavy load periods (winter time
and/or high production in the industry) [9]. Husøy is located at the far end of a
radial network. This causes a loss of income and costs for local operators linked
to the increasing number of interruptions and voltage disturbances. Notably,
the equipment used within the fishing industry is greatly sensitive to fluctua-
tions in voltage. Those fluctuations have also negatively impacted the many
households on the island. As a result, it has become increasingly important
to seek solutions that can effectively mitigate this issue and enhance voltage
quality and grid reliability throughout the island.

The industry at Northern Senja is expected to grow in the coming years, and
this growth will contribute to further intensifying the problems with voltage
quality in the area. Currently, the distribution network is operated by a 22
kV line, very close to its capacity limit, which is connected to a 66 kV line in
Silsand. Network upgrades are being planned, for example a new 132 kV line
from Finnfjordbotn to Silsand is planned to replace the current 66 kV line,
which is thought to improve the distribution’s network capabilities. However,
for the time being, temporary solutions are being examined until the line is in
place.
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A battery of 2 MWh has already been installed on the island to help mitigate the
problems. The way the battery will operate is still under discussion. However,
the decision on how to operate will affect its degradation-dependent lifetime
range. This is an important aspect, that requires further investigation, consider-
ing that Battery Energy Storage Systems (BESS) are an expensive investment,
requiring maintenance, and at the end of its life a potential replacement.

The main objective of this thesis is to gain information on the degradation of
the BESS in Husøy. This is done by means of simulating a common battery
storage operation strategy, named peak-shaving, a strategy aimed at mitigating
the challenges posed by high-demand periods by reducing high loads, making
the grid more robust, less prone to voltage drops [10]. This is done with the use
of the open-source software SimSES (Simulation Tool for Stationary Energy
Storage Systems) [11]. Since this aspect has not been previously explored in
Husøy, this thesis attempts a pioneering effort to understand, not only how this
operation strategy helps reduce the load in Husøy, but also how it will affect
the BESS’s lifetime in the long term.

1.2 Literature Review

The primary challenge addressed in this thesis is the poor voltage quality within
the distribution network of Northern Senja. This issue arises from the rise of
the fishing industry in the region, which strains the network’s capacity beyond
its designed limits. To improve voltage quality, various strategies utilizing BESS
have been proposed [12]. One such technique involves reactive power compen-
sation [13]. However, heavy load is one of the main issues for common power
quality issues in distribution networks [14]. This insight suggests that an alter-
native approach to enhancing voltage quality is the reduction of heavy loads
in the network.

Previous research carried out under the Smart Senja project and the Renewable
Energy research group has explored various ways to enhance the stability of
the electrical network. These studies have delved into both the challenges ex-
isting within the current distribution network and potential solutions. Master’s
theses within the project have investigated methods for improvement, such as
shunt capacitor reactive compensation and the integration of distributed power
production in specific regions [15, 16]. In a previous study [15], a peak-shaving
operation strategy was suggested in Husøy and it was analyzed how it can
significantly reduce peak load. However, in this same study, the BESS operation
was not studied in detail, and it neither included an analysis of different Li-ion
chemistries nor a BESS degradation analysis under this operation.
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Furthermore, the research has involved evaluations of the pumped hydro energy
storage capacity within the network [17]. Published papers from the project
have also focused on forecasting electricity demand in the area and predicting
electrical faults within the distribution network [18, 2, 19]. Modeling results
show that implementing basic distributed power generation alongside electrical
energy storage significantly enhances both network capacity and opportunities
for industrial expansion [20].

Regarding peak-shaving operation, a review on peak-shaving has been con-
ducted [10], discussing the main strategies for peak-shaving and how they can
significantly reduce peak load, as well as challenges and future research in each
of those. There are also publications focusing on optimal sizing and optimal
peak-shaving operation of a BESS [21, 22, 23].

The open-source software SimSES which was used for the operation and degra-
dation simulations of this thesis has been used in similar cases [24, 25, 26]. In
those, a techno-economic study was carried out, on a PV-BESS system installed
at a Norwegian stadium, with the aim to analyze the installation’s performance
by studying a variety of cases involving operation strategies for peak-shaving,
self-consumption maximization, energy arbitrage, and feed-in limitation. Also,
it was used to simulate the degradation of the BESS, on which the overall
financial cost is heavily dependent.

1.3 Thesis Contribution

After evaluating the existing efforts made to enhance the stability of the electri-
cal network in Husøy and identifying the research gaps essential for expanding
the theoretical understanding of this real-world case study, as well as guiding
industry professionals in the right direction, this thesis was developed.

In this context, this thesis attempts to simulate the BESS in Husøy as realistically
as possible. With the use of the open-source tool SimSES, which has been
previously used in real-world case studies, the aim is to conduct an in-depth
analysis of the peak-shaving operation, which could contribute to reducing
stress on the grid andmake it more robust and less prone to voltage drops. More
significantly, this study attempts to pioneer a detailed degradation analysis
of the BESS, a topic that has not been previously explored in Husøy. Apart
from contributing valuable insights into enhancing the stability of Husoy’s
electrical network, this thesis also aims to provide information for potential
future investment planning research. It aims to offer industry professionals
data to make informed decisions, for stable energy solutions in Husøy. It also
aims to recognize the abilities and potential of the open-source tool SimSES
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for future research.

Summarising this, the key aims of this thesis are:

• An Operational Analysis, which investigates the impact of the peak-
shaving strategy on load reduction in Husøy, providing practical insights
into its effectiveness in reducing heavy loads, answering the question,how
does the peak-shaving strategy influence load reduction in Husøy, specifically
in mitigating high-demand periods?

• A BESS Degradation Analysis, which explores the effects of the peak-
shaving strategy on the BESS, offering valuable information on BESS
degradation patterns, answering the question, what are the degradation
patterns of the BESS in response to the peak-shaving strategy, and how do
these patterns influence its long-term lifetime?

Furthermore, it’s crucial to emphasize that the insights gathered from this thesis
are relevant to other places other than just Husøy. Although the main focus re-
mains on enhancing Husøy’s electrical stability, the methods and findings in this
study are relevant for other places dealing with similar challenges. Communi-
ties globally, especially the ones at the far ends of the electrical grids, struggling
with high-demand periods and searching for sustainable energy solutions, can
learn from the operational strategy analysis performed in this research. Under-
standing how the peak-shaving strategy impacts load reduction in Husøy, can
work as a starting point for other regions facing comparable issues.

Additionally, the BESS degradation analysis conducted here isn’t limited to
Husøy; it offers a valuable method for evaluating energy storage systems in
diverse settings. Understanding BESS degradation patterns is important for
the long-term viability of energy storage solutions universally.

1.4 Outline of the Thesis

The thesis will be structured into the following sections:

• In Chapter 2, the theoretical background related to the study will be
given. Information about the power system, energy storage; specifically
battery storage, and the mechanism of battery degradation will be dis-
cussed. The modeling software that was used will also be presented in
this chapter.

• In Chapter 3, the data and themethodology of the studywill be presented.
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It will contain information regarding the location in the study, like the
local power grid, and consumption data but also the formulation of the
simulation cases regarding the BESS operation.

• In Chapter 4, the results of the simulations regarding BESS operation
and its degradation will be presented.

• In Chapter 5, a discussion of the findings in relation to the research
objectives and questions will be carried out.

• Chapter 6, will contain a summary of the key findings and their signifi-
cance and suggestions for future work.



2
Theoretical Background
2.1 Power Grid System

2.1.1 Transmission, Regional and Distribution Networks

In Norway, the electricity system operates on three levels: the transmission
grid, managed by Statnett, the regional grid, and the distribution grid [27].
Responsible for the high-voltage transmission network are the transmission
system operators (TSOs), while for the distribution network, responsible are
the distribution system operators (DSOs).

• The transmission grid links producers and consumers across the country.
Statnett is Norway’s designated transmission system operator, managing
high voltage lines of 300 to 420 kV, with some parts at 132 kV.

• The regional grid connects the distribution grid to the transmission grid,
connecting production and consumption radials with voltages ranging
from 33 to 132 kV.

• The distribution grid contains local electricity networks supplying power
to smaller users. It operates at voltages up to 22 kV, divided into high-
voltage and low-voltage segments.

Different types of electricity producers and consumers are connected to these
grids based on their scale, with large producers linked to transmission or re-

7
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gional grids, major consumers to transmission or regional grids, and smaller
consumers, like households and small-scale industries, connected to the distri-
bution grid.

The connection between the above networks is being done with the help of
transformers. Transformers are used to step up the voltage from generation
to transmission and step down the voltage from transmission to distribution
[28].

2.2 Energy Storage

Nowadays, where everything from households to industries relies on a con-
stant supply of energy, the issue of storing this energy efficiently has become
a hot topic [3]. There are various types of energy storage methods designed
for different applications, but in recent years, electrochemical energy storage
has gained significant attention, thanks to a substantial decrease in its prices
[29]. This reduction in costs has led to its widespread adoption in various sec-
tors. In this section, the diverse array of energy storage options available will
be presented, with a particular emphasis on electrochemical energy storage,
specifically focusing on the widely used Lithium-ion (Li-ion) technology, which
is also used in this study.

2.2.1 Energy Storage Technologies

Currently, various energy storage technologies are available, and the choice
of which one to use depends on the specific application. Some of the most
common energy storage technologies are [30]:

• Pumped hydro energy storage (PHES): PHES is the most common form
of mechanical energy storage with big capacity, long storage period and
high efficiency. A typical PHES system consists of two large reservoirs
at different elevations, a unit to pump water from one reservoir to the
other, and a turbine to generate electricity from the higher reservoir to
the lower, taking advantage of the potential energy of the water on the
highest reservoir.

• Flywheel energy storage (FES): FES is also a mechanical energy system
device that saves the rotational kinetic energy of a massive cylinder. Their
response is very rapid making them them useful for frequency regulation.

• Compressed air energy storage (CAES): CAES, also part of mechanical
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energy storage, is a method of storing energy by compressing air and
storing it in a container. The stored energy is determined by the con-
tainer’s volume, as well as the pressure and temperature at which the air
is stored.

• Battery energy storage system (BESS): BESS are systems that use bat-
teries, which are electrochemical devices, to convert chemical energy to
electrical energy, using different chemical compositions. Battery energy
storage will be discussed further in Subsection 2.2.2 since it’s the main
subject of this thesis.

2.2.2 Battery Energy Storage

To dive into the upcoming chapters about battery degradation, it’s essential to
present the basics of electrochemical cells. Batteries are essentially a chain of
interconnected cells [31]. These cells can be linked together in series or parallel
to achieve a specific voltage and energy capacity for the whole battery. There
are two main types: primary cells, which can’t be recharged, and secondary
cells, which are rechargeable. To grasp how batteries function, it’s crucial to
understand the workings of a single cell.

Electrochemical cells operate by converting electrical energy into chemical
energy through a process called oxidation-reduction [31]. In this method, elec-
trons move from one substance to another. During oxidation, electrons are lost,
while during reduction, electrons are gained. The three main components of an
electrochemical cell are the negative electrode (anode), the positive electrode
(cathode), and the electrolyte, which acts as a medium for electron transfer
between the electrodes.

When a battery is being charged or used (discharged) with the help of con-
nected devices, ions, both positive and negative, travel between its inner com-
ponents, creating a complete electric flow. This ion movement is vital for the
battery’s operation, allowing it to convert chemical energy into electrical energy
when required.

During discharge, when the battery powers a device, electrons travel from the
negative end to the positive end through the external device. Simultaneously,
inside the battery, negatively charged particles move toward the negative end,
while positively charged particles move toward the positive end, completing
the energy circuit. Conversely, during charging, this process reverses. Nega-
tively charged particles move toward the positive end inside the battery, and
positively charged particles move toward the negative end, replenishing the bat-
tery’s energy stores. Figure 2.1 visually illustrates this charging and discharging
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Figure 2.1: Charge and discharge of an electrochemical cell [32]

cycle.

A battery, often on a large scale, is essentially a cluster of numerous electro-
chemical cells working together to supply the necessary energy. These cells,
as described earlier, undergo various electrochemical processes to store and
release energy, and when combined into a battery, they can power a wide range
of devices and systems.

Some key parameters regarding the battery’s state, that are gonna be used
further during this thesis are [33]:

• State of Charge (SOC) (%): SOC represents the current battery capacity
as a percentage of its maximum capacity.

• Depth of Discharge (DOD) (%): DOD refers to the percentage of bat-
tery capacity that has been discharged, expressed as a percentage of its
maximum capacity. For example, a discharge down to at least 80% DOD
is considered a deep discharge.
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• Nominal Energy capacity(Wh): Refers to the total amount of energy it
can provide, measured in Watt-hours (Wh) when discharged at a specific
current level.

• State of Health (SOH) (%): Refers to the overall condition or health
of a battery relative to its original capacity. It indicates how much of
the battery’s original energy storage capacity remains after a certain
amount of usage and aging. SOH is expressed as a percentage, with 100%
indicating a battery in perfect condition and lower percentages indicating
degradation or wear over time.

• Cycle Life: The number of charge-discharge cycles the battery can expe-
rience before it fails to meet performance criteria.

• Specific Energy (Wh/kg): The nominal battery energy per unit mass.

• Energy Density (Wh/L): The nominal battery energy per unit volume.

• Open-curcuit voltage (V): The voltage between the battery terminals
with no load applied. Depends on the state of charge, increasing with the
state of charge.

• Internal Resistance: The resistance within the battery. As internal resis-
tance in a battery rises, efficiency drops and thermal stability decreases,
converting more charging energy into heat.

• C-rate: The rate at which a battery is discharged relative to its maximum
capacity.

2.2.3 Li-ion Battery Energy Storage

In this thesis, the BESS system that will be studied is based on Li-ion battery
technology. In the last few years, Li-ion batteries have been on the rise because
they offer several benefits for energy storage [34]. These include a long lifespan,
minimal self-discharge, compact and lightweight design, fast charging, and suit-
ability for a wide range of temperatures, as supported by [35][36][37].

The energy storage mechanism of lithium-ion batteries follows the same logic
as any electrochemical cell, as explained in Section 2.2.2. Li-ion batteries store
electrical energy in electrodes made of lithium-intercalation compounds with
oxidation and reduction occurring at the two electrodes [38]. Generally, they
consist of a graphite negative electrode (anode), a nonaqueous liquid elec-
trolyte, and a layered 𝐿𝑖𝐶𝑂𝑂2 positive electrode (cathode). During charg-
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ing, Li+ ions leave the 𝐿𝑖𝐶𝑂𝑂2 cathode and through the electrolyte move
towards the graphite layers in the anode. During discharging the opposite
happens.

Li-ion battery chemistries

Li-ion batteries come in various types based on the structures of their anodes
and cathodes, as well as the materials used in them [34]. Specifically, the cath-
ode can have three different structures: layered, spinel, and olivine. These
differences in cathode materials impact the battery’s energy density and cost-
effectiveness.

In general, and also within the context of this thesis, several main chemistries
are utilized, each with distinct material compositions. These include Lithium
Iron Phosphate (LFP), Lithium Nickel Manganese Cobalt Oxide (NMC), and
Lithium Nickel Cobalt Aluminum Oxide (NCA). Each of these chemistries has
its unique properties, making them suitable for specific applications and in-
fluencing factors like capacity, stability, cycle life and operation temperature
range.

• LFP: Among the phosphate cathode materials, it has the highest capacity
and stability, though a much lower open circuit voltage.

• NMC: The cathode of NMC consists of Lithium Nickel, Manganese and
Cobalt Oxide. It offers improved cycle life, thermal stability and energy
density [39]

• NCA: NCA batteries are similar to NMC (both have a layered cathode
structure), but in this case, the Manganese is replaced by Aluminum,
improving specific energy and lifespan when compared to NMC

2.3 Battery Storage for the Grid

For the electricity system to work reliably, a balance between the energy that
is used and that’s available is needed. This balance is becoming destabilized
as more renewable sources like wind and solar power are incorporated into
our grid [40] or as more load is added, for example, due to sudden industry
expansion. This is especially true in remote places like the area discussed in
this thesis, where the energy options are limited, and there’s no easy backup
plan [41].
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Battery storage systems have the ability to balance out fluctuations in power
supply and demand. They can manage situations where power generation and
consumption don’t align by storing excess energy and supplying it when needed.
It acts as a smart system that ensures there’s a steady supply of power, even
when the production and usage of energy don’t perfectly match up.

In this part, we’ll explore the most common applications used for aiding the
power grid. We’ll also focus on the specific topic of peak-shaving, which is the
primary area of study in this thesis.

2.3.1 Application Categories

Many functions can be performed by a BESS to support the grid. It’s important
to categorize these applications based on their specific uses to better understand
their significance. The authors in [42] have classified Li-ion battery storage
applications into four categories; Ancillary Service, Behind-the-Meter, Energy
Trade and Investment Deferral and Local Grid Support applications.

Ancillary Service

BESS excels in responding rapidly to grid fluctuations, which is increasingly
important due to the intermittent nature of renewable energy sources and
evolving power grid dynamics. In various regions, the demand for frequency
control reserve is managed through auction systems overseen by Independent
System Operators (ISOs) [43]. BESS, particularly for addressing short-term
fluctuations (milliseconds to a few seconds), addressed as Primary Control
Reserve (PCR), have shown technical maturity and potential economic advan-
tages over traditional power plants [44]. However, successful BESS operation in
this context depends on complying with regulatory constraints, profit schemes,
and strategic operation planning. Also, black-start capability is another option
for the grid with the use of BESS. In case of a supply or grid failure, a BESS
can supply the needed energy due to the batteries’ high nominal power and
capacity.

Behind-the-meter

It refers to the combination of a local generation and a battery system, usually
for residential customers but also for industrial customers. One of the most
common behind-the-meter applications is PV-BESS [45], the use of a photo-
voltaic system connected with a BESS to increase self-consumption and reduce
monthly bill costs. On the other hand, when it comes to industrial customers,
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they often have to pay for their energy usage and peak demand separately. For
them, one of the most common behind-the-meter applications is using BESS for
Peak-Shaving, through which they can effectively cut down their peak electric-
ity demand. As a result, this can lead to substantial savings on their electricity
bills. Peak-shaving is the operation strategy used in this thesis, so it will be
discussed further in the next section.

Energy Trade

Due to the variation in energy production and energy demand, electricity prices
vary as well. Storage arbitrage, is a BESS application aiming to take advantage
of these fluctuations in prices, charging up the battery when prices are low and
discharging it when prices are high, to avoid buying energy when it’s expensive
to buy.

Investment Deferral and Local Grid Support

BESS can act as an alternative or delay the need for traditional grid upgrades.
Power grids have to be adaptable to handle changes in electricity flow from
both consumers and suppliers, which happen constantly. Typically, the power
grid’s infrastructure, like transformers, is designed to manage peak power loads.
When demand rises or renewable energy sources vary, the cables carrying power
can experience resistance, causing voltage fluctuations. BESS, with the right
control, can actively manage these fluctuations by supplying power as needed,
both locally and for entire communities [46]. This can prevent overloads and
enhance the stability of the grid without the immediate need for extensive
upgrades.

2.3.2 Peak-Shaving

Peak-shaving is a strategic operation used in the energy sector to manage the
highest points of electricity demand effectively [10]. During specific periods,
typically when the demand for electricity is at its peak, the power grid expe-
riences extensive stress. This increase in demand often exceeds the regular
capacity of the grid, leading to challenges such as increased costs, potential
blackouts, poor voltage quality and stress on the existing infrastructure [47].
The main logic behind peak-shaving is illustrated in Figure 2.2

Peak-shaving operation addresses this issue by using BESS, but also other types
of energy storage, to smooth out these demand peaks. The primary goal is to
reduce the stress on the grid during these high-demand periods. By storing
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Figure 2.2: Peak-shaving using a BESS. Red areas indicate the charging of the BESS
from the grid or a generator and blue areas indicate the discharging of
the BESS by supplying energy to the grid [10].

excess energy during periods of low demand and releasing it during peak times,
this technique helps balance supply and demand [48].

In this context, the implementation of peak-shaving operation could help estab-
lish a more reliable, resilient, and sustainable energy grid [10]. This approach
not only benefits utility providers by enhancing grid stability but also brings
important advantages to consumers by potentially lowering costs and ensuring
uninterrupted access to electricity, even during periods of high demand. The
benefits of peak-shaving could be grouped into three categories [10]:

• Benefits for the Grid Operator

• Benefits for the End-User

• Carbon Emission Reduction

Benefits for the Grid Operator

Some of the most important benefits for the grid operator are:

• Power quality: When the generation system fails to match the electric-
ity demand, problems such as instability, voltage fluctuation, and total
blackout can possibly occur [47]. Studies have shown that peak-shaving
can help mitigate those problems [49].



16 chapter 2 theoretical background

• Efficient energy utilization: Peak-shaving can help reduce the peak elec-
trical load and as a result can improve the load factor, Equation 2.1 which
determines how efficient the energy is being used [50].

𝐿𝐹 (%) = 𝑃𝐴𝑉𝐺

𝑃𝑃𝑒𝑎𝑘
(2.1)

LF is the load factor, 𝑃𝐴𝑉𝐺 is the average power demand, and 𝑃𝑃𝑒𝑎𝑘 is
the peak power demand.

• System efficiency: During periods of peak load, the supplying current
needs to increase. This will increase the power losses which can be calcu-
lated through Equation 2.2, where I is the current through a transmission
line and R is the ohmic resistance in the transmission line.

𝑃𝐿𝑂𝑆𝑆 = 𝐼2 ∗ 𝑅 (2.2)

Since power loss is proportional to the square of the current, by reducing
the peak load, the power losses can be reduced significantly [51].

• Cost reduction: Peak-shaving can help reduce certain costs in some cases.
For example, it can helpminimize the waste of excess electricity produced
saving it for later periods. It can help expand the lifetime of the transmis-
sion and distribution system, further reducing costs of maintenance and
upgrades [52][53].

• Renewable energy integration can be achievedmore easily with the help
of peak-shaving. The intermittence of most renewable energy sources can
be mitigated by storing this energy in low-demand periods and releasing
it in high-demand periods.

Benefits for the End-User

Peak-shaving is important for end-users like residential and industrial cus-
tomers as well. They can cut down on their electricity expenses by using less
power during peak hours when electricity costs more and shifting their usage
to off-peak hours when energy prices are lower [54][55]. Apart from the eco-
nomic benefits, end-users can also benefit from the improved power quality
and reliability that peak-shaving offers, as it was discussed earlier.

Carbon Emission Reduction

Peak-shaving can contribute to avoiding using any kind of fossil fuel-generated
electricity, leading to overall carbon emission reduction of a system.
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2.4 Battery Degradation

A significant challenge that battery storage faces is battery degradation. As
batteries operate, they undergo physical and chemical changes that affect how
they perform and how long they last. It’s essential to understand these degra-
dation processes in detail. Doing so is key to improving battery technologies,
making them last longer, and ensuring they are economically viable for energy
storage applications. In the upcoming sections, battery degradation will be
explored and the key factors that influence Li-ion battery degradation will be
highlighted.

In essence, when referring to battery lifetime, it could be broken down into
two main aspects: calendar life and cycle life [56]. Calendar life describes the
degradation a battery experiences while stored without undergoing charge
and discharge cycles. In contrast, cycle life revolves around the wear and tear
a battery undergoes from repeated charging and discharging.

In real scenarios, for example, electric vehicles, batteries are active during driv-
ing or at charging stations, involving continuous charge and discharge cycles,
leading to cyclic degradation. However, when the vehicle is parked and not in
use, the battery remains idle and this leads to calendric degradation. So, it’s
crucial to consider both calendar and cycle life, recognizing that the battery
can be affected both by usage and by periods of being inactive.

2.4.1 Mechanisms of Battery Degradation

Although it is not the work of this thesis to delve deep into the mechanisms of
battery degradation, it is considered necessary to present some of the most im-
portant degradation mechanisms. The direct observable effects of degradation
are capacity and power fade [57]. Between degradation mechanisms and ob-
servable effects, lie the degradation modes, a method of grouping degradation
mechanisms based on the overall impact on the cell’s behavior. The authors in
[57] highlight four of those modes:

• Loss of active material (LAM) in both anode and cathode. This mode
groups mechanisms that lead to a reduction in the material available for
electrochemical activity.

• Loss of lithium inventory (LLI). This mode groups mechanisms that
result in a reduction of the amount of cyclable lithium available for trans-
port between the electrodes.

• Stoichiometric drift, where electrodes become imbalanced to each other.
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• Impedance change or internal resistance increase where the cell’s
kinetic behavior is affected. Some of the causes of impedance change are
related to SEI (solid electrolyte interface) formation, high voltages, high
temperatures, etc [57].

2.4.2 Factors Influencing Battery Degradation

In this thesis, the focus is on the operational side aspects of BESS and examine
the resulting degradation. To do this, understanding the key factors affecting
battery degradation is vital. The factors that significantly impact the lifespan
of batteries are [56]:

• High temperature [58][59]

• Low temperature [60]

• High SOC or overcharge [61]

• Low SOC or over-discharge [62]

• High charge and discharge rate [63]

Influence of temperature

Temperature is one of the main factors affecting battery life [56]. Both high
and low temperatures can contribute to accelerated degradation [64]. Many
reactions happening inside the battery are temperature-related. If the temper-
ature is too high then the side reaction rate is also higher. Low temperature
may lead to polarization increase due to internal resistance increase, leading to
more side reactions. The temperature in the battery is affected by factors like
environment temperature, battery heat capacity, battery thermal conductivity,
battery heat generation, heating and cooling system.

Influence of SOC

Higher SOC means higher terminal voltage which further means lower anode
potential and higher cathode potential. In this case, SEI thickening will be
higher resulting in a higher degradation rate [65]. When SOC is low, the anode
potential is higher, and the cathode potential is lower, which is generally good
for the battery’s longevity. However, if the SOC becomes too low, it can lead to
problems like corrosion of the anode copper current collector and disordering
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of the cathode’s active material structure, significantly impacting the battery’s
overall lifespan [62].

Influence of current

Current flow has also an obvious impact on battery life. One of the main results
of current flowing is Joule heat, and especially large charge and discharge rates
can increase the battery temperature a lot, which leads to a higher degradation
rate as was already stated. Current flow also affects the battery terminal voltage
and internal potential resulting in side reactions that reduce battery life.

2.4.3 Battery Degradation Modelling

Modeling the battery’s operation with the scope of modeling its degradation
is proven to be a valuable tool that can help optimize the use of batteries
and prolong their lifetime [66][67]. Generally, there are two types of model-
ing: empirical and physics-based [57]. The first method applies equations and
parameters to match real-world data, while the second method models degra-
dation behavior based on equations that represent physical and electrochemical
phenomena, which are hard to measure. In empirical models, the equations
might not reflect reality but are used to mimic the battery’s behavior. The simu-
lation tool used for this thesis uses an empirical model, the equivalent-circuit
model (ECM), which describes the electrical behavior of the battery using a
set of circuit elements, such as resistors and capacitors. Those elements might
not have a direct relevance to the device but simulate its overall behavior. It
cannot provide details about the electrochemical interactions happening inside
the battery.

2.5 Modelling Software

As power grids face new challenges and the costs of BESS continue to drop,
there’s an ongoing discussion about whether these technologies are a good fit
for various stationary applications. However, designing storage systems involves
many technical choices, like the type of energy storage to use, the size, and
the operation strategy, among other factors. There are several software tools,
many of them open-source, that have been developed to study the energy flows
in a system containing a BESS. Some of them are StorageVET [68], SimSES
[69], Blast [70], HOMER [71]. In this thesis, the open-source tool SimSES was
used for its holistic approach and its degradation model with a special focus
on Li-ion batteries, which suits this study.
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In the upcoming paragraphs, SimSES’s simulation framework will be presented.
The main goal is to grasp how SimSES models BESS, the specific battery cells
that are available for use and the degradation models. Overall, the aim is to
showcase its capabilities as an open-source tool, showing how it effectively
simulates BESS functionalities. All the information regarding the software is
based on [11].

2.5.1 Simulation Framework of SimSES

SimSES is an open-source tool that allows both technical and economic simula-
tion framework, allowing multiple technologies comparison, allowing to model
their thermal behavior, the corresponding power electronics and the impact of
different operational strategies. Its main task is to determine the effect of the
target power given by the Energy Management System (EMS), with regard to
efficiency, temperature and degradation when applied to the energy storage
system (ESS). It is divided into two parts; a simulation part, for modeling the
physical representation of the ESS, and the analysis part which gives technical
and economic results.

Its basic working principle is a time-series-based simulation that allocates the
AC power target given by the EMS to the storage system. After each step the
models are updated, regarding variables such as SOC, temperature, SOH and
the available power, and a new target power is calculated for the next time
step. Also, it takes into account various important components in order to
simulate the storage system as a whole. To be more specific, apart from the
power electronics, like AC and DC converters, it also includes a housing that
covers the ESS, allowing for thermal-controlled simulation.

2.5.2 Storage Technology Modelling

Models of various technologies are available through SimSES, each of them
with specific applications regarding their physical behavior. Namely, some of
them are lithium-ion (Li-ion), redox flow (RFB), and hydrogen energy. The
subject of this thesis is lithium-ion battery technology, so this is where the
focus will be.

Lithium-ion battery

The modeling of Li-ion in SimSES is done with four components [11]. Firstly, the
electrical behavior of each cell type is described by an Equivalent Circuit Model
(ECM) (see Subsection 2.4.3 on degradation modeling), giving terminal voltage



2.5 modelling software 21

based on operational input data. Secondly, the Battery Management System
(BMS) monitors the cell operation and updates current values. Thirdly, the
different degradation models, depending on the different cell chemistries that
come with predefined manufacturer-specific datasets. Lastly, the cycle detector
(half-cycle detector) allows the aging calculation of the system.

Lithium-ion cell types

SimSES incorporates advanced technologies utilizing a Carbon-Graphite (CG)
anode and different cathode materials. Specifically, it features two cells with
Nickel-Manganese-Cobalt-Oxide (NMC) cathodes and one cell eachwith Lithium-
Iron-Phosphate (LFP) and Nickel-Cobalt-Aluminum-Oxide (NCA) cathodes.
These variations in cathode materials highlight the diverse capabilities of Sim-
SES in simulating various battery configurations.

Lithium-ion degradation models

In SimSES, degradation is simulated using a semi-empirical approach that com-
bines cyclic and calendar aging, as detailed in Equations 2.3 and 2.4. This
method calculates the loss in capacity and the rise in resistance by considering
both calendar aging (𝐶𝑐𝑎𝑙

𝑙𝑜𝑠𝑠
,𝑅𝑐𝑎𝑙𝑖𝑛𝑐) and cyclic aging factors (𝐶𝑐𝑦𝑐

𝑙𝑜𝑠𝑠
,𝑅𝑐𝑦𝑐

𝑖𝑛𝑐
). SimSES

offers a range of primary Li-ion degradation models, each with specific depen-
dencies on simulation time, SOC, cell terminal voltage, and cell temperature.
Additionally, factors like the delta in the depth of discharge for a cycle, the
number of equivalent full cycles (EFC), charge throughput, and the average
cell terminal voltage over one equivalent cycle are taken into account.

𝐶𝑡𝑜𝑡𝑎𝑙
𝑙𝑜𝑠𝑠

= 𝐶𝑐𝑎𝑙
𝑙𝑜𝑠𝑠

+𝐶𝑐𝑦𝑐

𝑙𝑜𝑠𝑠
(2.3)

𝑅𝑡𝑜𝑡𝑎𝑙𝑖𝑛𝑐 = 𝑅𝑐𝑎𝑙𝑖𝑛𝑐 + 𝑅
𝑐𝑦𝑐

𝑖𝑛𝑐
(2.4)

Calendar aging is computed at every simulation step, while the routine to
calculate cyclic aging increase is activated after detecting half an equivalent
cycle of charge throughput. This approach optimizes calculation time, allowing
for the determination of DOD for that specific half-equivalent cycle. In Figure
2.3, the process of degradation modelling on SimSES is shown.

2.5.3 Thermal Modelling

In Subsection 2.4.2, it was discussed how temperature affects battery lifetime.
Both high and low temperatures can contribute to the acceleration of the mech-
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Figure 2.3: Representation of the SimSES degradation model [72]

anisms contributing to battery degradation. For this reason, across all appli-
cations, the regulation of temperature within the BESS is vital. SimSES has
thermal modeling as an option across four stages.

• An ambient thermal model, which accounts for the temperature of the
environment in which the BESS is installed. The two options available for
this stage are; a constant ambient temperature model, that the user
decides and a location-specific model based on temperature data from
the location where the application takes place.

• A housing model, which models the housing that hosts the battery. It is
being simulated as a 20-foot shipping container with three material layer
walls.

• A heating, ventilation and air conditioning model that is used to main-
tain the temperature inside the housing.

• A system thermal model, that mimics the heat transfer across the dif-
ferent components and the environment.

2.5.4 Operation Strategies

Depending on the applications and the needs of the BESS user, there are differ-
ent operation strategies that one can follow. SimSES provides a limited amount
of operation strategies, that can be adjusted to the user’s needs since its code
is open source. Some of those are:

• Power follower. A basic strategy that aims to replicate a given power
profile with the storage system.

• SOC follower. A strategy that given a SOC profile attempts to make the
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storage system fulfill the calculated demand.

• Residential PV greedy / Residential PV feed in. Strategies to include
Photovoltaic (PV) units in the operation.

• Simple Peak Shaving. Under this strategy, when the demand is above a
specified threshold, the extra required power is supplied by the BESS. The
BESS is recharging itself when the demand value is below the specified
threshold.

• Peak Shaving perfect foresight. Under this operation, the load profile is
assumed to be perfectly known and the BESS will charge itself up right
before the next load peak. This is a strategy to reduce calendar aging.

• Frequency Containment Reserve (FCR). The BESS charging and dis-
charging are dependent on the frequency deviation.

• Intraday ContinuousMarket (IDM). A strategy to trade energy by charg-
ing and discharging the BESS when it is economically beneficial, taking
advantage of the hourly electricity prices.





3
Data and Methodology
3.1 Existing Network

Until today, the grid in Senja is supplied via a 132 kV connection from Bardufoss
to Finnfjordbotn, where the voltage is transformed down to 66 kV connection
from Finnfjordbotn to Silsand [8]. On Senja there are four regional grid sta-
tions, Silsand, Svanelvmoen, Straumsnes, and Stonglandseidet at which the
voltage is stepped down for distribution at 22kV. The northern part of Senja,
which includes the island of Husøy, is supplied from the three stations Silsand,
Svanelvomoen and Straumsnes.

The distribution network is operated with a 66 kV line and approximately 666
km of 22 kV network distributed over 15 areas. Some parts of this network have
a limited capacity and are exposed to frequent power supply failures. Based
on the current and future scenario demand, the 66 kV connection from Finn-
fjordbotn to Silsand is not sufficiently strong to handle the growth in demand
in the next few years and there are plans for it to be replaced by a 132 kV
connection.

3.1.1 The SVAN22LY1 Power Grid

The SVAN22LY1 grid is a 60-kilometer line from the south in Svanelvmoen
to the northernmost point of northern Senja with several branches to many
communities towards the north.

25
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Figure 3.1: The SVAN22LY1 power grid. [NVE, 2023]

The largest customers connected to the SVAN22LY1 line, are located at the end
of the northernmost point. This is also where Husøy, the island that is being
studied in this thesis, is located.

It has a capacity of 22 kV and it is operating very close to its maximum due to
the increase of electricity demand in the last few years. The total demand in the
area is a combination of both household and industry load profiles, although
the industry accounts for more than 50% (see Subsection 3.2.1).

3.1.2 Power Grid Failures

The local industry is expanding, with ambitions beyond grid capacity. The in-
stalled equipment is very sensitive to changes in voltage and therefore depends
on a stable power supply. When the industry is operating at a heavy load, there
is a high risk of voltage drops and therefore a high risk of power interruption.
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All the communities connected to the SVAN22LY1 have no alternative that can
provide backup when the voltage decreases or when there is an interruption
in power.

On top of that, the location of this grid is characterized by typical Arctic condi-
tions exposed to strong winds for a big part of the year making the risk of power
grid failures higher. There have been some previous studies that studied the
connection between power grid failures and harsh weather conditions [2] [73].
This thesis’ objective is to approach the problem from the high-demand point
of view and study a way to handle this with the use of energy storage.

3.2 Husøy Load

As discussed in Section 3.1, Husøy is situated at the end of the SVAN22LY1 grid,
making the area vulnerable to voltage drops caused by an upsurge in electricity
demand witnessed in recent years. To comprehensively assess how a BESS
could effectively address this issue, it is essential to analyze this demand.

The dataset employed for this thesis consists of hourly load data collected from
a single node on the island, including both residential and industrial activities.
The simulations in SimSES were based on the year 2021, starting on January
1st and concluding on December 31st. This dataset includes 8760 data points,
corresponding to the 8760 hours within a year. Additionally, data from the
previous year, 2020, was utilized for comparative purposes. This comparison
aimed to show any shifts or fluctuations in industrial and residential activities
between the two years.

Figure 3.2 presents the hourly load for Husøy in 2021, revealing a clear seasonal
pattern. The load peaks during the winter months, particularly at the start and
end of the year. This surge in demand is attributed to increased industrial
activity and lower temperatures, which drive up electricity usage for heating
purposes. Conversely, there is a substantial decline in load during the summer
months. This drop is associated with reduced industrial operations, warmer
weather, and many locals being on vacation. In Table 3.1, the maximum and the
minimum load of every month are shown. It can be seen that the highest load
of the year was in December, specifically on 08/12/2021 at 15:00 UTC, with a
value of 1534.85 kW.

Upon analyzing the 2021 data, an additional load variation was discerned based
on the type of day, distinguishing between weekdays and weekends. To visu-
alize this variation, a new load curve was generated by averaging the hourly
load for each month separately for weekdays and weekends, resulting in 12*24
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Figure 3.2: Hourly load on the node in Husøy in 2021 [Arva].

Table 3.1: Maximum and minimum load of every month, based on 2021 dataset.

Month Maximum Load (kW) Minimum Load (kW)

Jan 1439.32 661.57
Feb 1476.09 660.23
Mar 1465.05 660.41
Apr 1383.83 687.47
May 1265.62 515.04
Jun 1123.95 506.59
Jul 857.32 329.86
Aug 1059.84 24.08
Sep 1099.38 540.01
Oct 1274.39 510.84
Nov 1404.83 25.06
Dec 1534.85 746.21
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Figure 3.3: Yearly load profile for Husøy in 2021. This graph shows how an average
weekday and weekend day changes throughout the different months of
the year

data points for each category (weekday/weekend day) throughout the year.
This was done by using the software LEAP [74]. This is depicted in Figure
3.3. The key insight from Figure 3.3 is that it retains the same annual load
fluctuation observed in Figure 3.2, with higher loads during winter and lower
loads in summer. However, the primary purpose of this curve is to illustrate the
difference between an average weekday and an average weekend day in each
specific month. This load profile in Figure 3.3 reveals that every month exhibits
two distinctive spikes: the first and taller spike represents the average load
on a weekday for that month, while the second, and shorter spike represents
the average load on a weekend day in that same month. This indicates that
the highest loads are achieved mostly during weekdays. The highest values
from every month in Figure 3.3 will later be used for setting the monthly peak
shaving limit in one of the simulation cases.

A supplementary analysis was conducted using an hourly load dataset from
2020. The primary objective was to discover variations between the two years
(2020 and 2021), with a focus on potential changes in yearly patterns. In Figure
3.4, the load data for 2020 together with that for 2021 are presented. The initial
observation reveals a similarity in the seasonal patterns of both years. Both
exhibit a pronounced peak in consumption during the winter months and a
decline during the summer, with the values of the two datasets being very
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Table 3.2: Average maximum and minimum load for every month, based on Figure
3.3.

Month Average Maximum Load (kW) Average Minimum Load (kW)

Jan 1256.13 877.33
Feb 1341.72 922.52
Mar 1305.60 892.11
Apr 1205.50 802.75
May 1047.97 641.10
Jun 958.29 391.59
Jul 510.30 391.59
Aug 894.57 519.07
Sep 982.01 608.50
Oct 1118.77 719.99
Nov 1208.75 779.08
Dec 1253.50 839.74
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Figure 3.4: 2020-2021 hourly load comparison for Husøy [Arva].
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Figure 3.5: 2020-2021 profiles comparison [LEAP].

close. However, there is a noticeable increase in demand during 2021, primarily
occurring between 0 and 2000 hours, during the summer period, and between
6000 and 8760 hours. During these periods, the load for 2021 surpasses that
of 2020 significantly, indicating a trend of escalating electricity demand in
Husøy. This is something that the local DSO confirms and it is expected that
the demand is set to increase even faster than initially expected. Figure 3.5,
which was designed with the same logic as Figure 3.3, shows the two load
profiles for the two years, 2020 and 2021, in which is clear that the demand
has increased from one year to the other in certain periods, especially from
August to December.

3.2.1 Difference in Load between Households and Industry

In the previous section, the load analysis primarily addressed seasonal fluctu-
ations and day-type variations. Now, the next step is to investigate how dif-
ferent activities, mainly residential and industrial, contribute to the load in
Husøy.

As previously mentioned, the load in Husøy arises from a combination of both
residential and industrial activity. To gain a comprehensive understanding of
how a BESS might operate effectively, it becomes essential to show the relation
of these two contributing factors to the overall load. Figure 3.6 displays the
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Figure 3.6: Households, industry, and the total sum of consumption in MW for the
2021 dataset. Industry accounts for more than 50% of each month’s con-
sumption.

monthly consumption patterns for households, industry, and overall consump-
tion based on the 2021 load dataset. It’s evident that industry consumption
consistently surpasses 50% of the total consumption every month in Husøy.
Following the logic introduced in Figure 3.3, load profiles were created for
households and industry, as demonstrated in Figure 3.7. Interestingly, there are
occasionalweekends where household activity exceeds that of the industry. Gen-
erally, however, industry consumption dominates. The household profile reveals
minimal differences between weekdays and weekends, except for certain week-
ends with notably higher consumption than weekdays. Conversely, the industry
profile indicates significantly higher consumption on weekdays compared to
weekends, shedding light on the source of the high load in Husøy.

Figures 3.8 and 3.9 provide a comparison of household and industry load pro-
files between the years 2020 and 2021. In Figure 3.8, the household load profile
exhibits a slight rise in consumption during 2021, particularly in the latter part
of the year, spanning from June to December. Figure 3.9, which illustrates the
industry load profile, similarly reflects a modest increase in 2021. This increase
is noticeable during weekends and also on weekdays, especially in the latter
months of the year, ranging from August to December.
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Figure 3.7: Household and industry load profile for 2021 [LEAP].
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Figure 3.8: Household load profile for 2020 and 2021 [LEAP].
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Figure 3.9: Industry load profile for 2020 and 2021 [LEAP].

3.3 BESS Simulation with SimSES

In Section 2.5, SimSES was introduced, an open-source tool that will be em-
ployed in this study to outline this thesis methodology. SimSES serves as a
holistic simulation framework designed for modeling and analyzing stationary
energy storage systems. In this section, the methodology employed will be
presented, focusing on SimSES’s capabilities. Among the multiple operational
strategies within SimSES for the BESS, the primary emphasis is on the Simple-
PeakShaving strategy that provides peak-shaving (see Section 2.5).

Based upon the 2021 load dataset, SimSES will be used to conduct simulations
that will show how peak-shaving can contribute to reducing energy demand
in Husøy under various system configurations. Moreover, SimSES will help
study the degradation of the BESS under diverse operational configurations to
understand how these impact the BESS’s lifespan.

3.3.1 Basic Simulation Information

Time Resolution

SimSES provides significant flexibility in building simulations to meet specific
requirements and accuracy standards. One of the fundamental choices in con-
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Figure 3.10: Influence of the sample time between 60 to 7200 s on the capacity loss:
Deviation of the capacity loss due to calendar aging (blue curve), cycle
aging (red curve) and the total aging (yellow curve) in relation to the
simulation with a sample time of 60 s. Figure from [75].

figuring a simulation is selecting the temporal resolution, which has a direct
impact on how the simulation unfolds. In this thesis, hourly data from the
2021 dataset was utilized (as detailed in Section 3.2), and consequently, the
simulation’s temporal resolution aligns with this data (3600 seconds or 1 hour),
resulting in 8760 discrete steps throughout the year. It’s worth noting that Sim-
SES offers the option to use resolutions as fine as 60 seconds (1 minute), but
it comes at the cost of increased computational time. This decision regarding
resolution has notable implications for simulation outcomes, particularly in
terms of the BESS’s degradation, as illustrated in Figure 3.10. For example, the
choice of 3600 seconds as temporal resolution will lead to about 6% relative
total aging higher than the 60-second temporal resolution.

Maximum/Minimum SOC

Before running the simulations, it is needed to set the maximum and minimum
SOC parameters for the BESS. This choice holds significant importance as it
directly influences the amount of available energy that the battery can provide
to meet the load requirements.

In all the simulation cases conducted, it was assumed that the battery could
charge and discharge to its full capacity, meaning the SOC ranged from 0% to
100%. However, it’s important to note that this strategy does not optimize degra-
dation minimization, since higher DOD leads to higher degradation.
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Battery size and technology

SimSES offers the flexibility to input precise details about the battery size and
its specific cell-type technology. In Section 2.2 of this thesis, a list of various
cell-type technologies was presented, including those compatible with SimSES.
Based on the information provided by the local electricity supplier, the battery
installed in Husøy employs Li-ion NMC (Nickel,Manganese, Cobalt) technology,
sourced from Samsung SDI.

SimSES encompasses a range of NMC models from different manufacturers,
and for the simulations, the SanyoNMCmodel was selected. The reason for this
is that, firstly it is an NMC cell (matching the technology used in Husøy), and
secondly after various testing simulations with different cells, the SanyoNMC
seemed to be the one having a more detailed description of cyclic degradation
compared to other NMC cells. The current nominal energy capacity of the
installed BESS in Husøy is 2.6 MWh. However, only 2 MWh of that capacity
will be used for operations according to the DSO. So for the simulation, the
BESS’s nominal energy capacity was set to 2MWh. The system’s nominal power
capacity was set to 1 MW. This selection ensures that the simulations closely
describe the real-world conditions and parameters of the Husøy energy system.
The end-of-life SOH%, after which the battery needs replacement was assumed
to be 70%. This is a valid assumption, considering that most grid-connected
Li-ion batteries reach the end of their life when reaching SOH values between
70-80% [76].

Temperature and thermal simulation

Temperature plays an important role in influencing the battery’s performance
and its rate of degradation. In this regard, SimSES allows for the account
of temperature factors during simulations. This capability extends to both
the ambient temperature, representing the local climate, and the temperature
inside the housing where the battery resides. The latter is subject to regulation
through an HVAC (Heating, Ventilation, and Air Conditioning) system.

During battery operation, the internal temperature of the housing can fluctuate
due to the energy exchange, and it falls upon the HVAC system to maintain
a stable environment. In Husøy, in 2021, based on information from Morten-
halsskolten observation station [77], the temperature varied from -18.7° to
23.8° Celcius. For simplicity in the simulations, the constant ambient tempera-
ture model was used and it is held constant at 5° Celsius throughout the entire
simulation period. The HVAC system was employed to ensure this temperature
stability within the housing. Even though the thermal simulation will lack the
yearly variation of ambient temperature, the choice of constant 5° temperature
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Table 3.3: Technical parameters for the simulations in Case 1-4.

Component Property Value

Model Temporal resolution 3600 sec
Thermal Simulation TRUE
Ambient Temperature 5° C

HVAC 5° C

BESS Nominal Energy Capacity 2 MWh
Nominal Power Capacity 1 MW

Minimum SOC 0%
Maximum SOC 100%

Type Li-ion SanyoNMC
End-of-life SOH 70%

Load Dataset 2021 Husøy Hourly Load

is still within the yearly range.

It’s worth emphasizing that temperature is a critical factor affecting battery
degradation. Consequently, in the forthcoming discussion section, a comprehen-
sive analysis of how temperature variations impact the overall system dynamics
will be carried out.

In Table 3.3 the technical parameters of the simulations in the following simu-
lation cases are shown.

3.3.2 Simulation Cases

BESS offers a wide array of operational possibilities, each designed to meet
specific objectives. The primary emphasis is on implementing the peak-shaving
strategy, studying its potential to alleviate capacity-related issues in Husøy by
reducing peak load, and studying the degradation of the BESS related to this
operation.

Even within the scope of a single operational strategy, there exist multiple
approaches to operating the BESS effectively. To be able to see and compare
how a BESS is working under different system parameters and what results
this has in the degradation of the battery, it’s important to run a sensitivity
analysis. In this thesis, a sensitivity analysis has been conducted using various
case scenarios. These cases are introduced below:
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a. Case 1 (Base Case)

The BESS remains idle for the whole simulation

Case 1 serves as the starting point for the following simulations. In this scenario,
the battery remains idle, maintaining its SOC throughout the entire year. The
purpose behind this case is to observe how the battery degrades when it isn’t
actively used, which is a phenomenon known as calendric degradation (see
Section 2.4). Consequently, this case will be used as a baseline for comparison
with three other cases where the BESS is actively utilized.

b. Case 2

The BESS is used when the load is higher than 1300 kW

In Case 2, the battery operates to maintain the load consistently below 1300
kW throughout the entire year. This strategy ensures 100% reliability, as it
prevents any instances where the load exceeds this limit. The decision to set
this threshold was informed by the analysis conducted in Section 3.2. While
Figure 3.3 indicated a slightly higher average load of just over 1300 kW, Figure
3.2 revealed occasional peaks reaching up to 1500 kW. Therefore, this strategy
aims to keep the load below 1300 kW.

c. Case 3

The BESS is used when the load is higher than 1250 kW

In Case 3, a similar approach as in Case 2 is applied, but with a lower peak-
shaving limit set at 1250 kW. This case serves a dual purpose: first, it aimed
to assess how the additional stress placed on the BESS impacts the system’s
reliability. This is because the BESS might face challenges meeting the de-
mand consistently, especially during periods of continuous high load. Second,
it demonstrates the impact of setting a lower threshold for the peak-shaving
strategy on battery degradation.

d. Case 4
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The BESS is used when the load is higher than the average
maximum of each month

In Cases 2 and 3, the peak-shaving limit remained constant throughout the
entire year. This meant that the BESS wasn’t utilized during periods of lower
demand, such as spring and summer when electricity demand decreased. How-
ever, even in these months, electricity production might drop, leading to poor
voltage quality. Taking this into account, Case 4 was developed. In this sce-
nario, the peak-shaving limit was set at the highest average value for each
month, as shown in Figure 3.3 and Table 3.2. For the summer period, between
mid-June and the end of July where the demand is very low, the BESS was not
utilized.

3.3.3 Extra Simulation Cases

The impact of temperature and depth of discharge on battery degradation was
previously discussed in Subsection 2.4. To enable a fair comparison between
Cases 1 to 4, these cases were tested under identical stable temperature condi-
tions and depth of discharge (0-100%), and same technology (SanyoNMC). In
order to observe how varying temperatures, different charge/discharge ranges,
and different technologies affect battery degradation in SimSES, three separate
simulations were conducted.

1. Various Resting SOC

In this section, the initial focus is on conducting a simulation similar to Case 1,
where the battery is not utilized. The objective is to observe how different SOC
levels, at which the battery is resting, impact its degradation in SimSES. The
simulations were carried out with the battery resting at a SOC of 10%, 20%,
30%, 40%, 50%, 60%, 70%, 90%, and 100%.

2. Various Resting Temperature

The next step involves analyzing the impact of different temperatures on bat-
tery degradation. Similar to Case 1, the battery remains idle, but this time, it’s
exposed to various temperatures. The simulations were conducted with the
battery resting at 0°, 5°, 10°, 15°, and 20° Celsius.
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3. Different technologies

Battery degradation appears to exhibit variations across different battery cell
types. To investigate this further, Case 4 was re-simulated, but this time, three
additional battery technologies were included, in addition to the original Sany-
oNMC technology. Those are,MolicelNMC, PanasonicNCA and SonyLFP.



4
Results
In this section, the results derived from the simulations discussed in the preced-
ing section will be presented. Firstly, the operational aspects of the BESS will be
showcased, highlighting the specific time periods during which it is active and
the operational patterns throughout reference periods. As a second part of the
analysis, the system’s degradation results for each case will be presented.

4.1 Simulation Cases

4.1.1 Case 1 (Base Case)

In Subsection 3.3.2, Case 1 serves as a reference point in this study. It offers
insights into the system’s behavior during periods of complete inactivity, with
the SOC maintained at 100%. Since the BESS did not supply any power to the
system, the highest load under this case was 1534.84 kW. The accompanying
Figure 4.1 displays the SOH of the battery in this idle state, showcasing the
gradual degradation due to calendric factors. Even in a state of rest, the battery
exhibits a 0.82% decline in SOH over time. In this scenario, the BESS remains
inactive, eliminating the need for a detailed analytical demonstration of its
operations during the simulation period. However, such analysis becomes vital
in the next cases, where the system’s functionality under different conditions
is analyzed.

41
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Figure 4.1: Degradation of the BESS in Case 1.

4.1.2 Case 2: 1300 kW Threshold

Case 2 marks the initial active utilization of the BESS. As detailed in Section
3.3.2, the load in Husøy is managed to stay below 1300 kW in this scenario.
The BESS supplies energy whenever the load surpasses this threshold. The
outcomes of this simulation, spanning an entire year, are depicted in Figure
4.2. It illustrates the load levels both before and after the implementation of
peak-shaving.

Evidently, the simulation results confirm that the load consistently remains
below 1300 kW throughout the entire simulation period. To provide a detailed
real-time analysis of the BESS operation, Figures 4.3 and 4.4 were generated,
depicting a reference week from 07/12/2021 to 15/12/2021 and the highest
load day in the year (08/12/2021), respectively, in Case 2. This visualization
not only illustrates the load levels before and after peak-shaving but also in-
cludes the SOC of the battery. These additional figures reveal the charging and
discharging patterns, showcasing how the battery efficiently manages the elec-
tricity demand spikes even during the day with the highest load of the year. In
this specific week, the BESS effectively transforms sharp increases in electricity
demand into a stable, flat period.

Moving forward in the analysis of this case, the next aspect under investigation
is the degradation of the BESS following a year of this specific operational use.
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Figure 4.2: Yearly load before and after peak-shaving (PS) in Case 2.
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Figure 4.3: BESS operation in reference week (07/12/2021 - 15/12/2021) in Case 2.
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Figure 4.4: BESS operation in the day with the highest load in 2021 (08/12/2021) in
Case 2.

Figure 4.5 couples the SOH of the battery with its SOC, effectively highlight-
ing periods of utilization. This visualization illustrates that during the periods
when the battery is actively charging and discharging, the SOH experiences a
more rapid decline. This accelerated degradation can be attributed to cyclic
factors. In contrast, during periods of lower demand when the BESS remains
idle, the SOH decreases at a significantly slower rate, primarily due to calendric
degradation.

One important finding of this simulation is that after one year of use under
this specific operation, the SOH percentage loss is 3.53%. Also, in this whole
year, the battery never discharged under 24,22%. This indicates that there was
available energy for an even lower peak-shaving limit.

4.1.3 Case 3: 1250 kW Threshold

In Case 3, the peak-shaving limit was lowered to 1250 kW, reducing it by 50
kW compared to Case 2. The primary purpose of this simulation was twofold.
Firstly, it aimed to assess how the additional stress placed on the battery im-
pacts the system’s reliability, specifically regarding the adequacy of the BESS
size to consistently keep the load below this new limit. Secondly, it sought to
understand the result that this extra stress caused to the SOH of the battery.
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Figure 4.5: Degradation of the BESS in Case 2.

Based on the results, in Figure 4.6 it appears that the operation strategy is
generally reliable in terms of keeping the load below 1250 kW. However, there
were a few periods where the BESS could not keep the load below the desired
level, with the highest load being 1408.29 kW. In Figures 4.7 and 4.8, the
reference week 07/12/2021 - 15/12/2021 and the day with the highest load of
the year are depicted. In Figure 4.8, it can be seen how in the 18th hour, the
SOC of the BESS is down to 0%, and as a result, a spike of 1394.07 kW in
the load is allowed. However, it is important to mention that the new spike is
significantly lower (140.77 kW lower) than the original spike during that day
if the BESS is not utilized. Looking at the battery’s health decline due to this
operation, Figure 4.9 illustrates a similar decrease in SOH for Case 3 as in Case
2. However, in Case 3, the loss of SOH of the battery is 4.89%, 1.45% higher
than that in Case 2. This means that by lowering the peak-shaving limit by 50
kW, the battery experienced 1.45% more degradation.

4.1.4 Case 4: Monthly Adapted Threshold

In Case 4, the limit for peak-shaving in each month is determined from Figure
3.3 and Table 3.2. The monthly peak values from this graph serve as the upper
threshold. The BESS supplies power to the gridwhenever the demand surpasses
this limit. From Table 3.2, the highest peak-shaving limit is 1341.72 kW. In this
operation, the BESS is active for most part of the year, with the exemption of
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Figure 4.6: Yearly load before and after peak-shaving (PS) in Case 3.
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Figure 4.7: BESS operation in reference week (07/12/2021 - 15/12/2021) in Case 3.
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Figure 4.8: BESS operation in the day with the highest load in 2021 (08/12/2021) in
Case 3.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

94.8%

95.8%

96.8%

97.8%

98.8%

99.8%

0 2000 4000 6000 8000

SO
C

 %

SO
H

 %

Time [Hours]

SOH SOC

Figure 4.9: Degradation of the BESS in Case 3.
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Figure 4.10: Yearly load before and after peak-shaving (PS) in Case 4.

the period between mid-June and the end of July. Figure 4.10 provides a visual
representation of the yearly load both before and after implementing peak-
shaving with the BESS. It shows that the BESS reduces the load every month
according to the peak-shaving limits with few exemptions, and except during
the summer months when demand is low shen the battery is deliberately being
kept inactive.

Just like in the previous cases, the same reference week and the day with the
highest load of the year are illustrated in Figures 4.11 and 4.12. Specifically, in
Figure 4.12, it can be seen how during that day, the BESS is not holding the
peak-shaving limit, for which in this month was 1253.5 kW, after discharging
down to 0% allowing for a spike in the load of 1394.07 kW (the highest during
this case). Figure 4.13 outlines the projected degradation of the BESS in Case
4. By the end of the simulation, the loss in SOH of the battery is 4.89%.

4.2 Summary and Comparison

The idea behind every simulation case was explained in Subsection 3.3.2. In
this Section, a summary and a comparison of the four cases is presented. Figure
4.14, shows how the BESS’s SOH declined over the one year of simulation in
each case. In Table 4.1 the exact SOH loss for every case can be seen, as well as
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Figure 4.11: BESS operation in reference week (07/12/2021 - 15/12/2021) in Case 4.
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Figure 4.12: BESS operation in the day with the highest load in 2021 (08/12/2021) in
Case 4.
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Figure 4.13: Degradation of the BESS in Case 4.

Table 4.1: SOH % loss, equivalent full cycles, maximum load, number of events above
peak limit and SOC range for Cases 1-4.

Case SOH loss Equivalent Full Cycles Max Load (kW) SOC range (%)

Case 1 0.82% 0.5 1534.84 50-100
Case 2 3.53% 16 1300 24.22-100
Case 3 4.98% 30.26 1408 0-100
Case 4 4.89% 32.88 1394.07 0-100

some other values like the equivalent full cycles that the battery spent across
its operation, the maximum load that was allowed during each operation, as
well as the SOC range that the battery charged and discharged to during the
year in each case. The highest SOH loss was achieved in Case 3 (4.98%), the
most equivalent full cycles were achieved in Case 4 (32.88 cycles), the lowest
maximum load was during Case 2 (1300 kW) and the highest maximum load
during Case 1 (1534 kW). The widest range of SOC was during Case 3 and 4
(0-100%).
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Figure 4.14: Degradation of the BESS in all four cases.

Table 4.2: Lifetime expectancy for Cases 2,3 and 4.

Case Case 2 Case 3 Case 4

Lifetime 8.49 years 6.02 years 6.13 years

4.3 BESS Lifetime Estimation

The simulations conducted in four distinct scenarios revealed varying SOH
losses in the BESS. As discussed in Subsection 3.3.1, a SOH percentage between
70-80% is commonly regarded as the end of life for a BESS. In this analysis,
the threshold marking the end of life for the system was set to 70% SOH. Using
this criterion, the expected lifespan for each relevant case was calculated. The
outcome of this calculation is presented in Table 4.2. Operating the BESS as in
Case 2, the system would need to be replaced after 9.43 years, in Case 3, after
6.81 years, and in Case 4, after 6.89 years.
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Figure 4.15: BESS degradation for resting at different SOC % and constant 5°C over
a month.

4.4 Extra Simulation Cases

4.4.1 Various Resting SOC

In this section, the outcomes of simulations conducted at different SOC levels
are presented, illustrating how this factor influences battery degradation while
the battery is at rest. Figure 4.15 displays the results of ten separate month-long
simulations, each performed at a distinct SOC level. Interestingly, the findings
indicate that the battery experiences less degradation when it is resting at lower
SOC levels.

4.4.2 Various Resting Temperature

The next focus was on understanding how temperature impacts battery degra-
dation. To investigate this, five separate monthly simulations were conducted,
each at a different resting temperature for the battery. Figure 4.16 presents
these results, showing a clear trend: the higher the resting temperature, start-
ing from 0°, the more degradation the battery undergoes.
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Figure 4.16: BESS degradation for resting at different temperatures and 100% SOC
over a month.

Table 4.3: SOH loss in different battery cells.

Cell SanyoNMC PanasonicNCA MolicelNMC SonyLFP

SOH loss 4.89% 2.97% 4.41% 5.08%

4.4.3 Different Battery Technologies

In Subsection 2.2.3, it was discussed how Li-ion batteries come in various types
based on the structures of their anodes and cathodes, as well as the materi-
als used in them. There, some of the most used chemistries were introduced,
which are also listed in SimSES. Those are NMC, NCA, and LFP. To see how
those different technologies affect the loss in SOH of the BESS, Case 4 was
re-simulated, but every time using a different cell type. The ones that were
used are PanasonicNCA, MolicelNMC and SonyLFP.

In Figure 4.17, the results from those simulations are presented, including the
original Case 4 simulation with the SanyoNMC cell and in Table 4.3 the exact
values of SOH loss of every cell. From the four different cells, the one that
had the least SOH loss, is PanasonicNCA, with a 2.97% loss. SonyLFP had
the highest loss of 5.08%. MolicelNMC was pretty close to SanyoNMC with a
4.41% loss.

Using the specific losses observed in different technologies, the anticipated
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Figure 4.17: BESS degradation in Cases 4 for various technologies.

Table 4.4: Lifetime expectancy of cells SanyoNMC, PanasonicNCA, MolicelNMC and
SonyLFP under Case 4.

Cell SanyoNMC PanasonicNCA MolicelNMC SonyLFP

Lifetime 6.13 years 10.10 years 6.8 years 5.9 years

lifespan of each technology was calculated. This calculation was based on con-
sidering a SOH of 70% as the threshold indicating the end of the system’s
operational life. Using SanyoNMC, the expected replacement would be needed
in 6.89 years, using PanasonicNCA, in 10.48 years, using MolicelNMC, in 7.42
years and using SonyLFP, in 5.96 years.



5
Discussion
The results of this research provide valuable perspectives on how BESS func-
tion and deteriorate within the context of Husøy, in Northern Senja, Norway.
The study primarily addressed the significant problem of voltage quality and
capacity saturation on the island, which has arisen due to the rapid growth of
the fishing industry. This underlines the critical requirement for stable energy
solutions. The research had a particular focus on delving into the details of
BESS operation strategies, notably peak-shaving. This strategy was analyzed
not only for its potential to alleviate high energy demand periods and enhance
overall grid reliability but also to gather essential information on system degra-
dation.

In this section, the simulation outcomes will be discussed from two distinct
angles: firstly, the operational aspects under what was termed "Operational
Analysis", where it will be analyzed how the BESS managed the load in Husøy
across the simulation scenarios. Secondly, the degradation perspective will be
explored in a section labeled "Degradation Analysis" focusing on the results
related to the BESS’s deterioration throughout the simulation cases. Lastly, the
study’s limitations will be discussed, focusing on how the chosen methodol-
ogy influenced the simulation results and exploring potential alternative ap-
proaches for future research.
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5.1 Operational Analysis

5.1.1 Exploring Stress Factors in Load Management (Case 2
and 3)

In all scenarios, except for Case 1 in which the BESS was not utilized, the focus
was on simulating peak-shaving operations. The primary objective was to assess
the system’s capability to reduce peak loads during high-demand periods in
Husøy.

Case 2 marked the initial attempt to set a peak-shaving limit at 1300 kW,
allowing the BESS to maintain the load below this threshold at all times. The
results demonstrated the BESS’s effectiveness in consistently keeping the load
within the desired limits, with a minimum discharge level of 24.22%. This
indicated the system’s potential to manage peak loads even when the limit was
set lower than the original target.

Subsequently, in Case 3, the peak-shaving limit was further reduced to 1250
kW to observe its impact on the BESS’s ability to control the load below this
specified level. The outcomes revealed that, for the most part, the BESS success-
fully maintained the load within this limit. However, there were a few instances
where the system fell short, resulting in a peak load of 1408 kW. This was 108
kW higher than Case 2 and exceeded the designated peak-shaving limit by 158
kW. These breaches occurred during prolonged periods of high load, highlight-
ing the challenges faced by the BESS in managing continuous high-demand
days. Insufficient charging during these periods led to the BESS’s inability to
handle some peak loads effectively. This underscores the need for precise man-
agement of the system and emphasizes the importance of accurate forecasting
to anticipate prolonged periods of high load. Adequate SOC preparation is
essential to ensure the BESS can effectively handle peak loads and maintain
operational efficiency.

Implementing a flexible charging strategy that considers historical load pat-
terns and upcoming weather conditions could significantly enhance the per-
formance of the BESS. For instance, utilizing advanced analytics, such as ma-
chine learning algorithms, to analyze past consumption trends could enable
precise anticipation of when the BESS should undergo more intensive charging.
This adaptable approach ensures that the BESS remains adequately charged
during expected high-demand periods, reducing the chances of exceeding the
designated peak-shaving limits. Additionally, establishing a reliable communi-
cation system between the BESS and the energy management platform enables
seamless adjustments in charging patterns based on evolving load scenarios.
Through the integration of these measures, the BESS could effectively tackle the
challenges associated with continuous high-demand days, thereby optimizing
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peak load management and maintaining operational efficiency.

5.1.2 Adaptive Monthly Peak-Shaving (Case 4)

In the analysis of Husøy’s electricity load presented in Section 3.2, a noticeable
seasonal variation in demand was observed throughout the year. This varia-
tion was attributed to the active industrial operations during winter months
and the prolonged periods of low temperatures, which increased the demand
for electricity-powered heating. Considering this fluctuation, it became evi-
dent that setting a stable peak-shaving limit for the entire year, as done in
Cases 2 and 3, might not be the most efficient approach. Recognizing this, it
was proposed to adjust the peak-shaving limit based on the specific electricity
demand of each month. This adaptive approach could optimize the BESS uti-
lization, ensuring it operates efficiently during periods of both high and low
demand. During months with low electricity demand, employing the BESS for
peak-shaving could potentially reduce costs, enhancing the financial viability
of the investment. However, the feasibility of this strategy also depended on
the system’s degradation, a topic explored in Section 5.2.

The simulation referred to as Case 4, provided insights into the BESS’s year-
round operation and degradation, allowing for a comparison with earlier cases
where a fixed peak-shaving limit was applied throughout the year. The out-
comes of Case 4 illustrated the BESS’s performance for the majority of the
year, excluding two summer months with very low demand. The peak-shaving
limit peaked at 1341.72 kW in February, and the BESS effectively maintained
the load below this threshold. Another interesting period was during the day
with the highest load of the year in which the grid load without BESS, was
1534.85 kW. The designated peak-shaving limit for the month that included
this day was 1253.50 kW, in which the BESS did not manage to keep the load
below this, but still reduced it down to 1394.07 kW. This showed, that even
though the peak-shaving limit might not be kept during a certain period, it still
substantially reduces the load of that period.

Case 4 describes a more realistic and adaptable strategy for the operation of the
BESS in Husøy, as it suggests a flexible approach by adjusting the peak-shaving
limit based on the specific electricity demand of each month. This strategy
recognizes and responds to the observed seasonal variations in demand, taking
into consideration the influence of factors such as active industrial operations
and temperature fluctuations. By adjusting the peak-shaving limit to the unique
characteristics of each month, Case 4 demonstrates an ability to optimize BESS
operation in a way that is reflective of real-world, month-to-month fluctuations
in electricity demand. This adaptability ensures that the BESS is responsive to
varying demands and able to deliver peak load management more effectively
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throughout the year.

5.2 Degradation Analysis

5.2.1 Significance of Minimal Degradation (Case 1)

In the simulations, it was observed that the battery system’s SOH declined most
significantly when the BESS actively supplied power to the grid, a phenomenon
referred to as cyclic degradation. This degradation occurs due to multiple charg-
ing and discharging cycles. However, this isn’t the sole factor contributing to
the battery’s declining SOH, as evidenced in Case 1. In this scenario, where the
BESS remained idle throughout the simulation and was not utilized to support
the grid, thus avoiding cyclic degradation, it still experienced a 0.82% decline
in SOH, primarily due to calendric degradation.

Although this decline might appear minor, it underscores the importance of
monitoring even subtle degradation. These seemingly small changesmight have
implications for the battery’s long-term performance and life expectancy.

5.2.2 Additional Stress Assessment (Case 2 and 3)

Cases 2 and 3 were designed with the specific intention of comparing the out-
comes resulting from a 50 kW reduction in the peak-shaving limit, both oper-
ationally and in terms of degradation. While the operational impacts of this
alteration were previously discussed, this discussion will focus on its effects on
degradation.

In Case 2, with a 1300 kW peak-shaving limit, there was a 3.53% decline in
SOH over one year. Case 3, with a 1250 kW limit, experienced a 4.98% SOH
reduction in the same timeframe. This indicates an additional 1.45% SOH loss
for just a 50 kW reduction in the limit. This increased degradation in Case 3
could be attributed to the battery discharging to lower SOC levels in pursuit
of keeping the load within the desired level, indicating higher DOD, a known
factor leading to higher degradation.

The observed difference in SOH degradation between Cases 2 and 3 under-
scores the important role of peak-shaving limit selection in influencing battery
performance. The 1.45% additional SOH loss in Case 3, resulting from a 50 kW
reduction in the peak-shaving limit, emphasizes the intricate balance required
in setting operational parameters for the BESS. The increased degradation in
Case 3, attributed to the battery discharging to lower SOC levels to meet the
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more strict limit, shows the impact of higher DOD on degradation. This insight
serves as a valuable consideration for BESS users, urging a cautious and well-
informed approach when making adjustments to peak-shaving limits. These
findings highlight the need for a careful assessment of the trade-offs between
load management objectives and the long-term health of the battery.

5.2.3 Longer vs Deeper Use (Case 3 and 4)

The key distinction between Cases 2,3 and 4 lies in their approach to the peak-
shaving limit. Case 2 and 3 maintained a fixed limit throughout the simulation,
while Case 4 adjusted the limit monthly based on maximum average peaks.
Case 4’s strategy allowed the BESS to be utilized over a more extended period,
including months with lower demand, whereas Case 2 and 3 restricted BESS
usage to high-demand months only.

Despite the differences in utilization periods, both strategies generally achieved
their respective peak-shaving goals with few periods as exemptions. Surpris-
ingly, Case 3, which operated only during high-demand months, experienced
a 4.98% SOH loss, slightly higher than Case 4’s 4.89% loss. This outcome was
influenced by the higher DOD during Case 3, as discussed in 5.2.2.

This finding highlights a crucial dilemma: whether to use the BESS for shorter
duration, achieving higher load reduction during high-demand months, or for
longer periods, resulting in reduced load reduction throughout the year. It un-
derscores the trade-off between short bursts of intensive usage and prolonged,
moderate utilization of the BESS. This trade-off could be further investigated
with the use of decision support system tools based on mathematical opti-
mization, in order to achieve an optimal trade-off balance between those two
strategies.

5.2.4 Exploring Environmental Factors and Idle State
Parameters

In addition to the primary simulation scenarios, two additional simulations
were conducted to explore the impact of SOC levels and temperature on the
SOH of the battery during idle states. Throughout the main simulations, varying
rates of SOH decline were observed during charging, discharging, and resting,
known as cyclic and calendric degradation, respectively. In Subsection 2.4.2,
it was highlighted how different SOC levels and temperatures influence the
battery’s SOH. To further investigate these factors, two sets of simulations
were designed: one where the battery remained idle at different SOC levels
and another where it remained idle at different temperatures. This allowed
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to assess the specific effects of SOC levels and temperature on the battery’s
SOH.

Significance of Resting SOC

In the first set of simulations involving different SOC levels, the role of rest-
ing SOC levels in battery degradation was highlighted. It became evident that
maintaining lower SOC levels during idle periods substantially decreased degra-
dation. This finding implies that deliberately keeping the battery at lower SOC
levels during inactive phases could extend its lifespan and improve overall sys-
tem efficiency. This insight holds significant value for industries utilizing BESS,
suggesting a strategy of controlling SOC levels to remain lower during periods
when the BESS is intentionally inactive.

In Cases 2 and 3, a substantial duration exists during which the electricity load
does not surpass 1300 kW and 1250 kW, the peak-shaving limits for the two
cases respectively. During these extended periods, the BESS could potentially
be in a resting state with a lower SOC level, thereby minimizing the resultant
degradation. It’s noteworthy that in the simulations, the BESS was maintained
at 100% SOC, as this was the level at which it was last charged. However,
considering the infrequency of load surpassing the peak-shaving thresholds
during these periods, a more strategic approach involving a lower resting SOC
could be explored to extend the BESS’s operational lifespan.

Significance of Resting Temperature

During the second set of simulations exploring various resting temperatures
for the BESS, a clear trend emerged: higher resting temperatures were directly
associated with accelerated degradation rates. This highlights the crucial ne-
cessity for efficient thermal management strategies, such as active cooling or
insulation, especially in areas prone to temperature fluctuations. Implementing
these measures to counteract heat-induced degradation is essential to ensure
the durability and reliability of BESS, particularly in environments character-
ized by elevated temperatures.

Notably, Husøy experiences cold temperatures for the majority of the year,
which favors the BESS’s performance and longevity. However, during summer,
temperatures can significantly rise, making it vital to carefully regulate the
BESS’s exposure temperature.
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5.2.5 Impact of Different Battery Technologies

Various chemistries of lithium-ion battery storage were explored, as detailed
in Subsection 2.2.3. Using the SimSES simulation tool, the impact of those
technologies on the battery’s SOH was assessed in Case 4. Specifically, the
technologies that were utilized were SanyoNMC, MolicelNMC, SonyLFP, and
PanasonicNCA cells. Among these, PanasonicNCA exhibited the least SOH loss,
standing at 2.97%.

This observation raises important questions about the choice of technology for
Husøy’s current usage of NMC. It prompts consideration of whether NMC is
the optimal choice for the BESS in Husøy, or if alternative technologies like
NCA should be explored further.

5.3 Study Limitations

While this study provides valuable insights into the behavior of BESS under
various conditions, several limitations need to be acknowledged, which may
have affected the accuracy of the findings.

Temporal Resolution

One significant limitation of the simulations is the use of hourly data. The
hourly resolution might not capture the small variations in energy storage and
discharge patterns and most likely has impacted the overall aging of the system.
Future research could benefit from employing higher temporal resolutions, such
as minutes, to obtain more precise and detailed results, thus enhancing the
accuracy of the simulations.

Full capacity utilization

During the simulations, the peak-shaving strategy made full use of the entire
BESS capacity to ensure maximum energy availability for load reduction. How-
ever, in practice, it is uncommon to utilize the entire battery capacity for a
single operation. Thus, in a more realistic scenario, the battery would be used
for coupling different operational strategies at the same time.
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Simplified Thermal Modeling

The thermal modeling assumed a constant ambient temperature of 5° Celsius
and a stable internal temperature maintained by the HVAC system. In reality,
temperature fluctuations occur throughout the year, impacting the BESS per-
formance. Utilizing a temperature profile specific to the location could offer
a more realistic simulation of thermal conditions, leading to a more accurate
representation of the system’s degradation patterns.

Depth of Discharge (DOD) Range

In the simulations, a 100% DOD range was considered, allowing the battery to
charge up to 100% and discharge down to 0%. This scenario, while advanta-
geous for peak-shaving, may not reflect real-world constraints. Tighter DOD
ranges, such as 10% to 90%, are often implemented to prolong battery life.
Implementing a more realistic DOD range would yield different load reduction
outcomes, potentially lowering the efficacy of the system in certain cases.

Degradation Model Variability

The degradation model utilized in this study was based on the SanyoNMC
cell type, which may not precisely match the NMC cells used in the Husøy
system. Differences between these cell types could lead to variations in SOH
degradation rates. Therefore, the results obtained in the simulations might not
perfectly align with the actual degradation patterns of the BESS in Husøy.

Lack of Real-World Constraints

The simulations did not consider real-world constraints and limitations, such
as maintenance activities, system failures, or unexpected events. These factors
can significantly impact the performance and longevity of BESS in practical
applications. Including these constraints in future studies would provide a
more comprehensive understanding of the system’s behavior under diverse
conditions.



6
Conclusion and Further
Work

In conclusion, this work provides important insights into the operational strate-
gies and degradation patterns of BESS in the context of Husøy, Northern Senja,
Norway. Considering the critical issue of voltage fluctuations resulting from
the rapid growth of the fishing industry, this study analyzed peak-shaving as a
possible solution to the existing challenges. Through detailed simulations and
analyses, various operational scenarios, peak-shaving limits, adaptive strate-
gies, and degradation factors were explored, gaining knowledge regarding the
complex dynamics of BESS.

The operational analyses revealed the effectiveness of BESS in managing peak
loads, even during days with the highest load. Notably, different peak-shaving
thresholds impacted the system’s reliability in terms of keeping the load below
those limits. Even small adjustments, such as 50 kW, to this threshold, led to
significant increases in the load that was allowed. Precise management, accu-
rate forecasting, and adequate SOC preparation emerged as important factors
in ensuring BESS’s ability to handle high-demand periods, underlining the im-
portance of these considerations in real-world applications. By dynamically
adjusting the peak-shaving limit according to the specific electricity demand
of each month, the suggested approach extended the usability of the BESS.
This allowed the BESS to respond to seasonal variations in electricity demand,
accounting for factors such as active industrial operations and temperature
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fluctuations.

The degradation analyses demonstrated the complex nature of BESS degrada-
tion, considering cyclic and calendric degradation, and the influence of various
stress and environmental factors. Even minor adjustments to the peak-shaving
limit significantly impacted the BESS degradation. Two almost identical cases
with a 50 kW difference in the peak-shaving limit had a substantial difference
in SOH decline. By comparing stable and adaptive peak-shaving thresholds,
an important trade-off between short bursts of intensive usage and prolonged,
moderate utilization of the BESS, was identified. Additionally, the choice of
technology and careful management of SOC levels and resting temperatures
were identified as important determinants of the BESS’s longevity.

This study has offered valuable insights into BESS degradation and operation.
However, there are several areas that require further research to bridge the gap
between theoretical understanding and practical application. Also, the focus of
this study was more on operational management strategies assuming a given
system, rather than on investment decision-making. With this in mind, future
work could involve:

• A detailed economic analysis to assess the cost-effectiveness of imple-
menting different BESS strategies, considering factors such as initial in-
vestment, operational costs, and potential revenue from peak-shaving.

• Optimal sizing of the BESS for peak-shaving operation.

• Analysing more operational strategies with SimSES, like Frequency Con-
tainment Reserve, Intraday Continuous Market, etc.

• Analysing a more comprehensive model that would use a combination
of different battery services as well as analyzing their effect on voltage
quality.

• Implement the most promising BESS strategies identified in this research
in real-world scenarios on Husøy, monitoring their performance, degrada-
tion patterns, and economic viability over an extended period to validate
the simulation outcomes.



7
Acronyms
BESS Battery Energy Storage System

SOC State of Charge

SOH State of Health

DOD Depth of Discharge

HVAC Heating, Ventilation, Air Conditioning

PS Peak Shaving

Li-ion Lithium Ion

LFP Lithium Iron Phosphate

NMC Lithium Nickel Manganese Cobalt Oxide

NCA Lithium Nickel Cobalt Aluminum Oxide

DSO Distribution System Operator
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