A CFD Study of Preventing Snow Accumulations on Roofs using Airflows

A Sjøveian, Z Andleeb, H Khawaja, M Moatamedi, A Ahmad

- 1. UiT-The Arctic University of Norway, Tromsø, Norway
- 2. Abyss Solutions, Pakistan
- 3. New York University, London, United Kingdom

Risky snow removals from roofs

Figure 1: Snow load cases on characteristic roofs [1]

Research Methodology

CFD model with airflow trajectories

 The air flows towards the center of the flat surface from both sides with an inclination to create a "wall of air" to prevent the snow from depositing and to keep the particles airborne.

Airflow from circular cross-section

Diffusion of airflows

- Illustration of Zawadzki et al. (2010, p. 39) schematic view of turbulent free airflow from a circular crosssection.
- $V_x = V_{xm} [1 (\frac{y}{b})^{\frac{3}{2}}]^2$
- $V_{xm} = \frac{const}{x}$
- $const = 0.96 V_0 \frac{r_0}{a}$
- $V = \pi r_0^2 V_0$
- the value for *a* is 0.068
- $r_0 = 6 \, mm$

Drag Force (Moeslund, Madsen, Aagaard & Lerche)

$$F_D = \frac{U_{fluid}^2 \cdot m_{snow} \cdot g}{U_{max}^2}$$

$$U_{fluid}^2 = (U_{wind} - U_{snowflake})^2$$

 U_{fluid} – velocity of the air moving the snowflake in the same direction as F_D U_{wind} – velocity of the wind interacting on the particle $U_{snowflake}$ – velocity of the snowflake U_{max} – maximum vertical velocity taking wind resistance into consideration (terminal velocity) m_{snow} – mass of the snowflake g – gravity constant

Equation(15) Example: Uwind [m/s]	3					$F_D = \frac{(Uwind - Usnowflake)^2 \cdot Msnow \cdot g}{Umax^2} [N]$					
Usnowflake [m/s]	0,5				dry snow	wet snow	dry snow	wet snow	dry snow	wet snow	
	1.5			Fall velocity	Fd(3 m/s)	Fd(3 m/s)	Fd(27 m/s)	Fd(27 m/s)	Uwind ≥	Uwind ≥	
Umax [m/s]	1,5	Snow type	Mass [kg]	[m/s]	[mN]	[mN]	[mN]	[mN]	[m/s]	[m/s]	Fg [mN]
Msnow [kg]	6,00E-08	Powder snow	6,00E-08	0,5	1,64E-03	9,20E-04	1,84E-01	1,03E-01	1,58	2,06	5,89E-
g [m/s^2]	9,81	Needles	4,00E-09	0,5	1,09E-04	6,13E-05	1,22E-02	6,89E-03	1,58	2,06	3,92E-
Fd [N] =	<u>1,64E-06</u>	Spatial dendrites	1,50E-07	0,6	3,77E-03	2,12E-03	4,56E-01	2,56E-01	1,62	2,09	1,47E-
··		Rimed crystals	1,80E-07	1	3,14E-03	1,77E-03	5,31E-01	2,98E-01	1,80	2,24	1,77E-
		Graupels	8,00E-07	1,8	5,02E-03	2,83E-03	2,22E+00	1,25E+00	2,34	2,69	7,85E-

$$F_D = -\frac{\pi}{8} \cdot d^2 \cdot \rho_f \cdot C_D \cdot v^2$$

(Huang, Sang & Han, 2011, p. 2)

d – particle diameter ρ_f – air density C_d – drag coefficient v – velocity of a particle

Equation (16) $F_D = -\frac{\pi}{8} \cdot d^2 \cdot \rho_f \cdot C_D \cdot V^2 \text{ [N]}$									
Example:				Cd = 0,07	Cd = 0,5	Cd = 0,07	Cd = 0,5	Cd = 0,07	Cd = 0,5
Diameter [m]	0,002								
			Diameter	Fd(27 m/s)	Fd(27 m/s)	Fd(3 m/s)	Fd(3 m/s)	Uwind ≥	Uwind ≥
ρf [kg/m^3]	1,342	Snow type	[m]	[mN]	[mN]	[mN]	[mN]	[m/s]	[m/s]
Cd									
[dimensionless]	0,07	Powder snow	2,00E-03	1,08E-01	7,68E-01	1,33E-03	9,49E-03	2,00	0,75
V [m/s]	3	Needles	1,50E-03	6,05E-02	4,32E-01	7,47E-04	5,34E-03	0,69	0,26
		Spatial							
Fd [N] =	<u>1,32805E-06</u>	dendrites	4,00E-03	4,30E-01	3,07E+00	5,31E-03	3,79E-02	1,58	0,59
		Dimensional annuation	2 505 02	4 605 04	4.205.00	2,005,02	4 405 00	2 77	1.04
		Rimed crystals	2,50E-03	1,68E-01	1,20E+00	2,08E-03	1,48E-02	2,77	1,04
		Graupels	2,00E-03	1,08E-01	7,68E-01	1,33E-03	9,49E-03	7,29	2,73

Drag Force from wind velocities 3 m/s compared to gravity force (Fg) - sorted by type of crystals

CFD Analysis

- 0.5 m x 2.0 m
- 10 outlets at each side
- 6 mm outlets for air flow
- 7.7 cm distance between holes
- Element type: Quadratic
- Mesh sensitivity analysis performed

CFD model with airflow trajectories

MULTIPHYSICS[®] www.multiphysics.org

11

Modified Experimental Setup

Case Review

Cases	Details	Illustration					
Ļ							
Α	 4 outlets 8 mm hoses Perpendicular flow 40 cm between boards 						
B1	 2 outlets 8 mm hoses Perpendicular flow 40 cm between boards 						
B2	 2 Outlets 8 mm hoses Parallel flow 40 cm between boards 						

Case Review

Experimental Results

Airflow from circular cross-section

Cases	Distance to control cross-section X _d (cm)	V ₀ (m/s)	V _{xm} (m/s)	y (cm)	b (cm)	Percent of the airflow ≥ 3 m/s at the control cross- section (green contour in Figure 45)
А	28	57.8	8.4	3.7	6.8	~30%
B1		115.5	16.7	4.7	6.8	~45%
B2	58	115.5	8.2	7.4	13.8	~29%
С	35	115.5	13.5	5.5	8.4	~43%
D	28	65	12.4	4.4	6.9	~39%

MULTIPHYSICS www.multiphysics.org

CFD Analysis Results

• Velocity profile at 0.1m offset

CFD Analysis Results

• Velocity profile at 0.5m offset

CFD Analysis Results

• Velocity profile at 1.0 m offset

Thank you