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Abstract: Non-Newtonian fluids play a crucial role in applications involving heat transfer and
mass transfer. The inclusion of nanoparticles in these fluids improves the efficiency of heat and
mass transfer processes. This study employs a numerical solution approach to examine the flow
of non-Newtonian hybrid nanofluids over a plumb cone/plate surface, considering the effects of
magnetohydrodynamics (MHD) and thermal radiation. Additionally, we investigate how heat
and mass transfer are affected by a fluid containing microorganisms. The governing nonlinear
partial differential equations are transformed into nonlinear ordinary differential equations using a
similarity transformation to simplify this complex system. We then use the Keller-box finite-difference
method to solve these equations. Along with a table presenting the results for skin friction, Nusselt
number, Sherwood number, and microbe density number, we present graphical representations of
velocity, temperature, concentration, and microorganism diffusion behavior. Our results indicate
that the addition of MHD and thermal radiation improves the diffusion of microorganisms, thereby
enhancing the rates of heat and mass transfer. Through a comparative analysis with prior research,
we demonstrate the reliability of our conclusions.

Keywords: bio-convection; chemical reaction; Eyring–Powell nanofluid; MHD; thermal radiation

MSC: 35Q30; 76W05; 76D10; 76D55; 65N08; 80A20

1. Introduction

Various industries commonly employ vertical cones and plate-shaped tools, such as
chemical processing, food production, brewing, beverage manufacturing, metalworking,
foundries, plastics, and textiles. These tools often require rapid cooling following use to
sustain industrial operations. For example, vertical cone/plate mixers play a crucial role in
producing high-quality, safe products for people worldwide, including food, medicines,
household cleaners, and personal hygiene products. Each vertical cone/plate mixer model
is designed with specific industrial objectives in mind. When vertical cone/plate mixers are
used, there is a noticeable increase in grinding efficiency, resulting in the mixer’s surface
warming up on the cone and plate. This heating occurs because the mixture is rapidly and
thoroughly mixed, which transports heat along the surface of the cone and plate. This
paper describes the heat transfer events and their parametric properties in these situations.
The temperature of the heated cone and plate is then convective to its surroundings. In [1,2],
the authors discovered that non-Newtonian fluids outperformed conventional fluids in
effectively cooling these vertical cone and plate structures. Furthermore, they observed
that the introduction of nanofluids containing copper (Cu) and titanium dioxide (TiO2)
enhanced heat transfer efficiency [3,4]. In this context, we focus on the well-known Eyring–
Powell, non-Newtonian fluid. Additionally, we investigate how microorganisms influence
heat and mass transport processes in the presence of magnetohydrodynamics (MHD) and
thermal radiation effects.
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Hering and Grosh [5] and Lin [6] used an analytical method to analyze the free convec-
tion heat transfer across a cone. Pop and Watanabe [7], Tripathi et al. [8], Hossain et al. [9],
Pullepu et al. [10], and Sambath et al. [11] studied free convection flow over cones, focusing
on constant heat flux boundary conditions. Bapuji Pullepu et al. [12] integrated uniform
surface heat flux into previous works, utilizing the Thomas method for the numerical
solutions. Hasan and Mujumdar [13] conducted an analytical analysis of free convection
across a vertical cone with heat and mass flux conditions. Sambath et al. [14] explored
heat and mass flux conditions and extended the heat and mass transfer models to account
for porosity effects. The unsteady nanofluid flow around a cone with uniform heat flux
conditions was established by Hajar Hanafi et al. [3] and Ragulkumar et al. [4], and the
model was solved using the Crank–Nicolson technique. Their findings demonstrated an
increase in heat transfer due to nanofluids. Their study also included non-Newtonian
fluid flow and examined the effects of these fluids on free convection in various geome-
tries, a topic also studied by William and Graham [1] and Manisha Patel and Timol [2].
The heat and mass transfer of laminar nanofluid flow over various geometries influenced
by MHD and thermal radiation have been studied by some researchers and solved us-
ing various methods, including simulations [15], the finite-difference method [16], the
finite-element method [17], and the shooting method [18]. The heat and mass transfer of
non-Newtonian fluid flow over a porous cone were explored numerically in the works
of Kairi and Murthy [19] and Macharla Jayachandra Babu et al. [20]. Numerous studies
have examined the non-Newtonian Eyring–Powell fluid flow over a stretching sheet with
various important factors to improve heat and mass transfer. The governing equations
have been solved using numerical methods such as successive over-relaxation (SOR) [21],
Runge–Kutta fourth-order method in combination with the shooting technique [22–25],
the finite-element method [26], the Runge–Kutta–Fehlberg numerical scheme [27], the
homotopy analysis method [28], and the spectral quasi-linearization method (SQLM) [29].
Currently, the previously discussed numerical methods for fluid flow models yield the
best results. Some researchers have also looked at the fluid flow problem’s stability and
convergence [30,31]. The application of the predictor-corrector method [32] demonstrates
excellent accuracy and numerical stability, making it suitable for nonlinear fluid dynamics
problems. Another efficient approach for handling the singularity of nonlinear partial
differential equations is the Sinc-collocation method [33] together with single exponential
(SE) transformation. Finally, several researchers have investigated non-Newtonian nanoflu-
ids containing microorganisms. The effects of MHD and thermal radiation models on
bio-convective non-Newtonian fluid flow over a stretching surface were studied by Dulal
Pal et al. [34], Anas et al. [35], Sreenivasulu et al. [36], and Mahdy [37]. Bio-convective fluid
flow over a disc subjected to constant heat, mass, and microorganism boundary conditions
was studied by Rahila Naza et al. [38].

The heat and mass transfer of non-Newtonian fluids with various geometrical prop-
erties have been studied by many researchers [20,21,27–29]. Additionally, several re-
searchers [3,4] have studied nanofluid flow with various geometrical configurations. In this
study, non-Newtonian fluid and nanofluids (Table 1) were combined, and the heat and
mass transfer of non-Newtonian nanofluid flow over a vertical cone/plate surface were
analyzed. Our literature analysis revealed that bio-convection processes increase heat and
mass transfer [34,35]. To improve heat and mass transfer, we also included the profiles
of microorganisms in this model. The impacts of MHD, thermal radiation, and chemical
processes were also considered to enhance heat and mass transfer. Numerous researchers
have solved their models utilizing analytical and semi-analytical techniques, finite-element
techniques, Crank–Nicolson techniques, and analytical methods. However, the Eyring–
Powell fluid flow model is ineffective with these methods because the solution contains an
error if these methods are utilized. To reduce the inaccuracy in this numerical analysis, we
used the Keller-box finite-difference scheme for this nonlinear fluid dynamics system.
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Table 1. Thermo-physical properties [4] of water and nanoparticles.

Fluid ρ
(

Kg
m3

)
Cp

(
J

kgK

)
k
(

W
mK

)
β̄× 10−5 (K−1)

H2O 997.1 4179 0.613 21
Cu 8933 385 401 1.67

TiO2 4250 686.2 8.9538 0.9

The remainder of the paper has been divided into the following sections to pro-
vide a clear framework for our research. The governing equations, boundary conditions,
and mathematical and physical models that constitute the basis of our study problem are
examined in detail in Section 2. Section 3 describes our method for solving the governing
equations while accounting for the appropriate boundary conditions. Section 4 describes
our findings using visually appealing figures to better interpret the problem. Finally, we
provide our conclusions on the subject of this research in Section 5. We also emphasize
the importance of our findings and suggest potential directions for additional study in
this area.

2. Mathematical Model

Consider a steady, two-dimensional, incompressible Eyring–Powell nanofluid flow
over a vertical cone/plate in the presence of MHD, thermal radiation, and chemical re-
actions. The cone has a radius r and half-angle ω. The y-axis is normal to the surface of
the cone/plate, and the x-axis varies along the surface of the cone/plate. u and v are the
velocity components along the x-axis and y-axis, respectively. Figure 1 illustrates the math-
ematical model of the system. Consider that the fluid’s properties are constant except for
the density variation. Following the Boussinesq approximation, the continuity, momentum,
energy, and microorganism equations are provided below ([20,21,27–29]).

Figure 1. Physical model.

Equation of continuity

∂(rau)
∂x

+
∂(rav)

∂y
= 0 (1)
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Equation of momentum

(
ρhn f

)(
u

∂u
∂x

+ v
∂u
∂y

)
=

(
− 1

2βd3

(
∂u
∂y

)2
)(

∂2u
∂y2

)
+

(
µhn f +

1
βd

)(
∂2u
∂y2

)
+
(
(ρβT)hn f (T − T∞) + (ρβC)hn f (C− C∞)

)
gcosω

+
(

γ(ρβN)hn f ∆ρ(N − N∞)
)

gcosω− σ1(B0)
2u

(2)

Equation of energy

u
∂T
∂x

+ v
∂T
∂y

= αhn f
∂2T
∂y2 −

1(
ρcp
)

hn f

(
∂qr

∂y

)
(3)

Equation of concentration

u
∂C
∂x

+ v
∂C
∂y

= D
∂2C
∂y2 − kc(C− C∞) (4)

Equation of microorganisms

u
∂N
∂x

+ v
∂N
∂y

+
bWc

(Cw − C∞)

∂

∂y

(
N

∂C
∂y

)
= Dn

∂2N
∂y2 (5)

The boundary conditions are

u = 0, v = 0, T = Tw, C = Cw, N = Nw at y = 0

u→ 0, T → T∞, C → C∞, N → N∞ as y→ ∞
(6)

The radiative heat flux qr is employed according to the Rosseland approximation [21]
so that

qr = −
4σ∗

3k∗
∂T4

∂y

where σ∗ is the Stefan–Boltzmann constant and k∗ is the mean absorption coefficient.
Following Ragulkumar et al. [16], we assume that the temperature difference within the
flow is small, so T4 can be expressed as a linear function of the temperature. Expanding T4

into a Taylor series about T∞ and neglecting higher-order terms, we have T4 ' 4T3
∞T −

3T4
∞. When a = 0, it means that it is a vertical plate, and when a 6= 0, it means that

it is a vertical cone. By using the following similarity transformations, the governing
nonlinear differential Equations (1)–(6) can be transformed into a set of nonlinear ordinary
differential equations: Ψ = ν f r(Gr)1/4. f (ξ), ξ = y

x (Gr)1/4, u =
ν f
x (Gr)1/4. f ′(ξ), v =

ν f
4x (Gr)1/2[ξ. f ′(Ψ)− 7 f (ξ)], Gr = gβT(Tw−T∞).x3

ν2
f

, θ(ξ) = T−T∞
Tw−T∞

, ϕ(ξ) = C−C∞
Cw−C∞

, χ(ξ) =

N−N∞
Nw−N∞

, r = xsinω.
By using the similarity transformations, the dimensionless forms of the momentum,

energy, concentration, and diffusion of microorganisms are as follows:(
1

A2

)(
A1 + K− KN1( f ′′)2

)
f ′′′ −

((
1
2

)
f ′2 −

(
7
4

)
f f ′′
)

+A3(θ + Nr ϕ + Rb χ)cosω− M
A2

f ′ = 0
(7)

(
1
Pr

)
A4

(
khn f

k f
+

(
4
3

)
Rd

)
θ
′′
+

(
7
4

)
f θ′ = 0 (8)
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(
1
Sc

)
ϕ′′ +

(
7
4

)
f ϕ′ − Kr ϕ = 0 (9)

χ′′ +

(
7
4

)
Lb f χ′ − Pe

(
χ′.ϕ′ + (χ + σ)ϕ′′

)
= 0 (10)

The corresponding boundary conditions are as follows:

f (0) = 0, f ′(0) = 0, θ(0) = 1, ϕ(0) = 1, χ(0) = 1 at ξ = 0

f ′(ξ)→ 0, θ(ξ)→ 0, ϕ(ξ)→ 0, χ(ξ)→ 0 as ξ → ∞
(11)

where K =
(

1
µ f dβ

)
, N1 =

ν2
f (Gr)

3
2

2d2x4 , Nr = βC(Cw−C∞)
βT(Tw−T∞)

, Rb = βN(Nw−N∞)∆ργ
βT(Tw−T∞)

, Rd = 4σ∗ .T3

k∗ .k f
,

Kr =
kcx2

ν f (Gr)1/2 , Sc =
ν f
D , Pr =

ν f
α f

, Lb =
ν f
Dn

, Pe =
bWc
Dn

, σ = N∞
Nw−N∞

, M =
σ1.B2

0(Gr)−1/2x2

µ f
,

A1 =

[
1

(1−φ1)
2.5(1−φ2)

2.5

]
, A4 = φ2

(ρcp)s2
(ρcp) f

+ (1 − φ2)[(1− φ1)+ φ1
(ρcp)s1
(ρcp) f

]
, A2 = φ2

ρs2
ρ f

+

[
(1− φ2)

(
(1− φ1) + φ1

ρs1
ρ f

)]
, A3 =

φ2
βρs2
βρ f

+

[
(1−φ2)

(
(1−φ1)+φ1

βρs1
βρ f

)]
φ2

ρs2
ρ f

+

[
(1−φ2)

(
(1−φ1)+φ1

ρs1
ρ f

)] .

In dimensionless forms, the local skin friction coefficient C f , the local Nusselt number
Nu, the local Sherwood number Sh, and the density of the microorganisms Nn are as
follows:

(Gr)1/4C f = (A1 + K) f ′′(0)− KN1

3
( f ′′(0))3), (Gr)−1/4Sh = −ϕ′(0),

(Gr)−1/4Nu = −
(

khn f

k f
+

4
3

Rd

)
θ′(0), (Gr)−1/4Nn = −χ′(0).

3. Numerical Investigation

The Keller-box technique is an efficient finite-difference method used for solving
parabolic problems, especially those involving systems of nonlinear coupled ordinary
differential equations (ODEs). We can solve the higher-order nonlinear problem through
following the steps:

• Initially, the nonlinear coupled ODE system is transformed into a system of first-order
coupled ODEs.

• Then, an appropriate finite-difference scheme is applied to discretize these equations.
• To linearize the equations, Newton’s method is employed during the discretization

process.
• Finally, the resulting linear equation system is solved using the block elimination

method.

Choosing suitable initial guesses is crucial for achieving convergence and minimizing
errors. In this context, the following initial guesses are utilized:

f ′0(ξ) = 1− e−ξ , θ0(ξ) = e−ξ , ϕ0(ξ) = e−ξ , χ0(ξ) = e−ξ .

In this method, an error tolerance of 10−6 is maintained for accurate solutions, and a
step size of hj = 0.005 is utilized that yields satisfactory convergence. The results for
the numerous parameter changes shown in Tables 2 and 3 indicate excellent agreement,
confirming the method’s validity. These results provide strong evidence for the efficiency
of our finite-difference Keller-box methodology.
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Table 2. Comparison of existing results while keeping φ1 = 0, φ2 = 0, K = 0, N1 = 0, M = 0, Rd = 0,
Kr = 0, Rb = 0, Lb = 0, Pe = 0, Pr = 0.

Hasan et al. [13] Present

Sc Nr C f −θ(0) −ϕ(0) C f −θ(0) −ϕ(0)

0.22 0.5 1.37711 0.80133 0.50138 1.38831 0.82104 0.50148
0.22 1 1.76577 0.88024 0.4839 1.76891 0.89099 0.49861
0.22 2 2.40849 0.98391 0.47367 2.44961 0.99801 0.49763

Table 3. Comparison of existing results while keeping φ1 = 0, φ2 = 0, K = 0, N1 = 0, M = 0, Rd = 0,
Sc = 0, Kr = 0, Rb = 0, Lb = 0, Nr = 0, Pe = 0.

Lin [6] Present

Pr C f −θ(0) C f −θ(0)

0.72 0.889301 1.52278 0.937134 1.570613
1 0.784465 1.391746 0.832299 1.439581
2 0.652528 1.162097 0.700363 1.209932
4 0.463073 0.980958 0.510909 1.028794
6 0.396883 0.891957 0.444721 0.939794
8 0.355639 0.834979 0.403477 0.882817
10 0.326555 0.793885 0.374394 0.841724

100 0.133715 0.483722 0.181555 0.531562

4. Results and Discussion

The heat and mass transfer of bio-convective fluid flow are depicted graphically in this
model. All of the parameter values in this model were set as follows: φ1 = 0.01, φ2 = 0.02,
K = 0.3, N1 = 2, Rd = 0.5, Kr = 0.3, Sc = 1, Nr = 0.5, Lb = 0.7, Pe = 0.4, σ = 0.3, Rb = 0.3,
Pr = 6.2, and M = 1. Unless stated otherwise, all the values were fixed [18]. Across all the
depicted figures, the three initial curves represent the vertical plate (ω = 0), whereas the
three subsequent curves represent the vertical cone (ω 6= 0).

4.1. Velocity Profile

Figure 2 shows a significant inverse correlation between the velocity profile and the
Eyring–Powell fluid parameter (K). Compared to the cone, this phenomenon is most
evident in the context of the vertical plate, primarily due to the frictional drag force. It is
important to note that the cone has a more significant effect on the velocity of the fluid
flow compared to the vertical plate. The velocity profile is simplified in Figure 3, where
the magnetohydrodynamics (MHD) parameter (M) varies for both the cone and plate
geometries. The Lorentz force, which acts perpendicular to the direction of fluid flow, is
responsible for this change in the velocity profile. As a result, it causes the momentum
boundary layer thickness for the cone and plate to increase. Finally, as the bio-convection
Rayleigh number (Rb) and the buoyancy ratio parameter (Nr) increase, an enhanced velocity
profile can be observed on the cone and plate surfaces in Figures 4 and 5. An increase in
the latter parameters improves momentum transfer within the fluid, resulting in a higher
velocity profile. The buoyancy ratio parameter represents the ratio of buoyancy to viscous
forces in the fluid flow.

In Table 4, we can see that increasing the volume fraction (both φ1 and φ2) leads to a
decrease in local skin friction on both the cone and plate surfaces. Similarly, increasing the
Eyring–Powell fluid parameter (K) and MHD parameter (M) yields higher skin friction
numbers on both the cone and plate. Furthermore, increasing the buoyancy ratio parameter
(Nr) and bio-convection Rayleigh number (Rb) leads to an increase in local skin friction.
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Figure 2. Effect of K on velocity.

Figure 3. Effect of M on velocity.

Figure 4. Effect of Nr on momentum.
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Figure 5. Effect of Rb on velocity.

Table 4. Local skin friction and local Nusselt number.

C f −θ′(0)

φ1 φ2 K M Nr Rb Rd Pr Plate Cone Plate Cone

0.01 0.02 0.3 1 0.5 0.6 0.5 1 1.131153 0.88863 0.690365 0.618286
0.02 1.1364 0.889511 0.682759 0.611744
0.03 1.141152 0.890263 0.675301 0.605313

0.01 1.123452 0.886061 0.689833 0.617696
0.02 1.131153 0.88863 0.690365 0.618286
0.03 1.138383 0.891065 0.690956 0.618927

0 1.150313 0.859845 0.710972 0.637339
0.4 1.139797 0.903332 0.684057 0.612581
0.8 1.209694 0.970576 0.661418 0.592399

1 1.131153 0.88863 0.690365 0.618286
2 1.02103 0.780998 0.623575 0.551223
3 0.935983 0.704455 0.572327 0.501712

0.5 1.131153 0.88863 0.690365 0.618286
1 1.265612 1.021415 0.726624 0.650527

1.5 1.357137 1.137834 0.759688 0.679905
0.5 1.098349 0.858541 0.681443 0.610087
1 1.245755 1.001416 0.723507 0.648682

1.5 1.347483 1.12517 0.760398 0.682358
0 1.098573 0.860133 0.522744 0.468647

0.5 1.131153 0.88863 0.690365 0.618286
1 1.151615 0.906624 0.828881 0.742202

0.5 1.172796 0.92529 0.508209 0.455492
1 1.131153 0.88863 0.690365 0.618286

1.5 1.104223 0.865059 0.822411 0.737154

4.2. Temperature Profile

Figures 6 and 7 show that the temperature of the system increases as the amount of
hybrid nanofluid increases, as indicated by the volume fractions φ1 and φ2. This means
that heat transfer enhancement occurs at more significant volumes of this fluid mixture.
In addition, the cone shape works better in heat transfer compared to the flat plate because
the cone’s surface has better fluid flow characteristics. The Eyring–Powell fluid parameter
(K), which is an important parameter, is highlighted in Figure 8. Improved heat transport
is associated with an increase in this parameter. Additionally, compared to a flat plate,
the cone shape reveals a thinner layer of warm fluid on its surface, making it more effec-
tive at transferring heat. Figure 9 illustrates how increasing the magnetohydrodynamics
(MHD) parameter (M) improves heat transfer. This improvement is due to the interaction
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of the magnetic field with tiny charged particles within the electrically conducting fluid.
The electric current produced by these particles leads to the formation of an electric field,
which affects the velocity of the liquid and enhances heat transfer. Figure 10 graphically
depicts the effect of thermal radiation (Rd) on temperature. Furthermore, an increase in this
parameter causes more significant heat transfer because as a fluid’s temperature increases
over that of its surroundings, it generates electromagnetic waves as heat radiation. Accord-
ing to the Stefan–Boltzmann law, the rate of radiation emission is inversely proportional to
the fluid’s temperature. Other substances in the fluid or its surroundings can absorb these
waves, thereby increasing their temperature and enhancing heat transfer. Finally, Figure 11
shows various Prandtl number (Pr) values, which provide information about the behavior
of heat and the momentum in the fluid flow. Heat transfer is affected by the thickness of
the heated fluid layer near the surface, which increases as the Prandtl number rises.

Figure 6. Effect of φ1 on temperature.

Figure 7. Effect of φ2 on temperature.

Figure 8. Effect of K on temperature.



Mathematics 2023, 11, 4331 10 of 19

Figure 9. Effect of M on temperature.

Figure 10. Effect of Rd on temperature.

Figure 11. Effect of Pr on temperature.

The cone’s superior heat transfer capacity over the flat plate is a consequence of how
fluids behave. The fluid slows down over a flat plate, forming a thick boundary layer
restricting heat transfer. A curved surface, such as a cone, forces the fluid to accelerate and
follow its curvature, resulting in a thinner boundary layer and more significant heat transfer.
Further improving heat transfer rates is the cone’s higher area of coverage. Referring to
Table 4, it is evident that increasing the volume fractions (φ1 and φ2) results in an improved
heat transfer rate on both the cone and plate surfaces. The plate exhibits a higher Nusselt
number when comparing the cone and plate, indicating better heat transfer performance.
Furthermore, increasing the Eyring–Powell fluid parameter (K) and MHD parameter (M)
decreases the local Nusselt number for both the cone and plate surfaces. Additionally,
an increase in the Prandtl number (Pr) and thermal radiation (Rd) are associated with a
higher local Nusselt number.
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4.3. Concentration Profile

Figures 12 and 13 show that a fluid substance expands more quickly when the quantity
of nanoparticles (represented by volume fractions φ1 and φ2) increases. This occurs due to
the resistance these particles introduce, impeding the motion of molecules and influencing
the material’s dispersion within the fluid. Even a slight increase in the Eyring–Powell fluid
parameter (K), as shown in Figure 14, leads to a more efficient concentration process. This
is because this parameter elevates the fluid’s internal stress, thereby improving mixing
and diffusion. Figure 15 shows the results of applying the magnetohydrodynamics (MHD)
effect, which causes the concentration boundary layer thickness to decrease and the mass
transfer to increase. The MHD increases fluid mixing, which increases the effectiveness of
concentration diffusion. In Figure 16, it can be seen that increasing a parameter associated
with chemical reactions (Kr) in fluid flow causes more concentration diffusion. In Figure 17,
we can see the Schmidt number (Sc) and its explicit representation of the ratio between
mass diffusivity and momentum diffusivity in the fluid flow. The concentration boundary
layer thickness reaches its maximum value as the Schmidt number (Sc) increases.

Figure 12. Effect of φ1 on concentration.

Figure 13. Effect of φ2 on concentration.
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Figure 14. Effect of K on concentration.

Figure 15. Effect of M on concentration.

Figure 16. Effect of Kr on concentration.
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Figure 17. Effect of Sc on concentration.

The flat plate remains constant while the cone varies in size as you move along.
The concentration diffusion compared to a flat plate and the rate at which the fluid flows
over the cone are both impacted by this size difference. Because the fluid spreads as far
to cover the same area as the flat plate, a higher concentration diffusion is close to the
cone’s surface. It accelerates the movement of the fluid and alters the concentration of the
substance relative to the surface of the cone. In Table 5, it is evident that increasing the
volume fractions (φ1 and φ2) leads to a decrease in the local Sherwood number on both the
cone and plate surfaces. The plate exhibits a higher Sherwood number when comparing
the cone and plate, indicating more efficient mass transfer. Furthermore, an increase in the
Eyring–Powell fluid parameter (K) and magnetohydrodynamics (MHD) parameter (M)
results in a decrease in the local Sherwood number for both the cone and plate surfaces.
However, an increase in the chemical reaction parameter (Kr) and Schmidt number (Sc)
leads to an increase in the local Sherwood number. These parameters have a positive impact
on mass transfer, enhancing the efficiency of the process.

Table 5. Local Sherwood number and local density of microorganisms.

−ϕ′(0) −χ′(0)

φ1 φ2 K M Kr Sc Lb Pe Plate Cone Plate Cone

0.01 0.02 0.3 1 0.5 1 0.7 0.5 0.738834 0.702393 0.675461 0.622874
0.02 0.735543 0.699755 0.670701 0.618936
0.03 0.732311 0.697156 0.666022 0.615053

0.01 0.741197 0.704326 0.678756 0.625622
0.02 0.738834 0.702393 0.675461 0.622874
0.03 0.73648 0.700463 0.672178 0.620129

0 0.752952 0.714813 0.694793 0.640129
0.4 0.734631 0.69879 0.669685 0.617839
0.8 0.719995 0.686462 0.649478 0.600492

1 0.738834 0.702393 0.675461 0.622874
2 0.709718 0.675568 0.632289 0.581244
3 0.688489 0.656867 0.599717 0.550899

0 0.53856 0.484494 0.556124 0.497874
0.5 0.852076 0.822183 0.752014 0.701389
1 1.092013 1.071379 0.941386 0.892903

0.5 0.533732 0.506574 0.5859 0.536361
1 0.738834 0.702393 0.675461 0.622874

1.5 0.888363 0.846174 0.760501 0.703905
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Table 5. Cont.

−ϕ′(0) −χ′(0)

φ1 φ2 K M Kr Sc Lb Pe Plate Cone Plate Cone

0.5 0.742074 0.705006 0.62595 0.578825
1 0.735416 0.699588 0.737577 0.678324

1.5 0.731674 0.696475 0.821288 0.753207
0.3 0.741308 0.704506 0.58893 0.538636
0.6 0.737661 0.701392 0.717649 0.663927
0.9 0.734372 0.69859 0.840359 0.783281

4.4. Microorganism Profile

In Figure 18, it can be seen that an increase in the Eyring–Powell fluid parameter
(K) accelerates the diffusion of microorganisms. This implies that the unique behavior of
the fluid, which deviates from the behavior of typical fluids (non-Newtonian behavior),
influences the movement and dispersion of microorganisms. Figure 19 demonstrates that
applying magnetohydrodynamics (MHD) to a fluid containing microorganisms enhances
their diffusion rate and reduces the thickness of the microorganisms’ diffusion boundary
layer. MHD occurs due to the interaction between a magnetic field and the moving fluid,
generating electric currents that facilitate the mixing and dispersion of microorganisms.
In Figure 20, it can be seen that an increase in the parameter associated with chemical
reactions (K0) leads to a thinner microorganism boundary layer, primarily due to the
increased occurrence of chemical reactions. Figure 21 highlights the impact of thermal
radiation on the surrounding fluid’s temperature and density near microorganisms. This
temperature-induced density variation can induce fluid motion, as warm, lighter fluid rises
while more relaxed, denser fluid sinks. These flows affect the distribution of substances
around microorganisms. In Figure 22, it can be seen that when microorganisms diffuse
within the fluid, an increase in the bio-convection Peclet number (Pe) results in more
effective fluid mixing. Lastly, Figure 23 shows that an increase in the Lewis number (Lb)
affects bio-convection stability and pattern formation. With a higher Lewis number (Lb),
thermal diffusion becomes more dominant than mass diffusion. This alteration in the
balance of diffusion mechanisms affects the buoyancy forces that drive bio-convection,
reducing stability in the bio-convection patterns.

Figure 18. Effect of K on microorganisms.
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Figure 19. Effect of M on microorganisms.

Figure 20. Effect of Kr on microorganisms.

Figure 21. Effect of Rd on microorganisms.
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Figure 22. Effect of Pe on microorganisms.

Figure 23. Effect of Lb on microorganisms.

Overall, Figures 18–23 indicate that the diffusion rate of microorganisms is typically
higher on a cone surface than on a vertical plate. The larger surface area of the cone is
responsible for providing more opportunities for microorganisms to interact with the fluid
and promoting enhanced diffusion. In Table 5, we can see that increasing the Eyring–
Powell fluid parameter (K) and magnetohydrodynamics parameter (M) for both the cone
and plate surfaces results in a decrease in the local microorganisms’ density number.
Conversely, increases in the chemical reaction parameter (Kr), bio-convection Peclet number
(Pe), and bio-convection Lewis number (Lb) lead to an increase in the local microorganisms’
density number.

5. Conclusions

In this study, we analyzed the flow of a bio-convective hybrid nanofluid with non-
Newtonian behavior (specifically, the Eyring–Powell fluid model) over a vertical cone
and plate. This study also considered the effects of magnetohydrodynamics (MHD),
thermal radiation, and chemical reactions to gain insights into the heat and mass transfer
processes involved. The governing equations were solved using the Keller-box finite-
difference scheme, transforming them into ordinary differential equations. We examined
various physical aspect application numbers to comprehensively understand the model,
and the results were compared to previous research findings, showing good agreement.
The observations from this study revealed the following key findings:

1. When increasing the MHD (M) and Eyring–Powell fluid (K) parameters:

• The heat transfer increased by 24.3% and 6.2%.
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• The mass transfer increased by 17.4% and 4.5%.
• The microorganism diffusion increased by 18.2% and 4.1%.

2. When increasing the volume fraction (φ1 and φ2):

• The heat transfer increased by 5.8%.
• The mass transfer increased by 4.6%.

3. When increasing the thermal radiation (Rd) parameter:

• Heat transfer increased by 16.4%.
• The microorganism diffusion increased by 4.6%.

4. When decreasing the chemical reaction (Kr) parameter:

• The mass transfer increased by 18.4%.
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Abbreviations

Nomenclature Greek Symbols
b Chemotaxis constant αhn f Thermal diffusivity of hybrid nanofluid

B2
0 Magnetic parameter β

Characteristics parameter of the
Eyring–Powell fluid

C Concentration βT , βC Volumetric expansion of thermal, concentration
Cphn f , Cp f Specific heat γ The average volume of microorganisms
d Physical Eyring–Powell fluid parameter θ Dimensionless function of temperature
D Mass diffusivity µhn f , µ f , µs Dynamic viscosity
Dn Diffusivity of microorganisms νhn f , ν f Kinematic viscosity
K Dimensionless Eyring–Powell parameter ξ Dimensionless boundary layer coordinate
Kr Dimensionless chemical reaction parameter ψ Stream function
kc Dimensional chemical reaction parameter ρhn f , ρ f , ρs Density
Lb Bio-convection Lewis number σ Bio-convection constant
M Dimensionless magnetic parameter φ1, φ2 Volume fraction of nanofluid
N Density of microorganisms ϕ Dimensionless function of concentration

N1 Non-Newtonian fluid parameter χ
Dimensionless function of
microorganism density

Nr Buoyancy ratio parameter
Pr Prandtl number Subscripts
Pe Bio-convection Peclet number
qr Dimensional thermal radiation f Condition of base fluid
Rb Bio-convection Rayleigh number hn f Condition of hybrid nanofluid
Rd Dimensionless thermal radiation parameter n f Condition of nanofluid
Sc Schmidt number s Condition of nanoparticle
T Temperature w Condition of wall
u, v Velocity component ∞ Condition of ambient
Wc The maximum cell swimming speed
x, y Coordinate



Mathematics 2023, 11, 4331 18 of 19

References
1. Barth, W.L.; Carey, G.F. On a natural-convection benchmark problem in non-Newtonian fluids. Numer. Heat Transf. Part B Fundam.

2006, 50, 193–216. [CrossRef]
2. Patel, M.; Timol, M. Numerical treatment of Powell–Eyring fluid flow using method of satisfaction of asymptotic boundary

conditions (MSABC). Appl. Numer. Math. 2009, 59, 2584–2592. [CrossRef]
3. Hanafi, H.; Shafie, S.; Ullah, I. Unsteady Free Convection Flow of Nanofluid with Dissipation Effect over a Non-Isothermal

Vertical Cone. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 75, 1–11. [CrossRef]
4. Ragulkumar, E.; Sambath, P.; Chamkha, A.J. Free convection nanofluid flow past a vertical isothermal cone surface in the presence

of viscous dissipation and MHD with heat flux. Eur. Phys. J. Plus 2022, 137, 894. [CrossRef]
5. Hering, R.; Grosh, R. Laminar free convection from a non-isothermal cone. Int. J. Heat Mass Transf. 1962, 5, 1059–1068. [CrossRef]
6. Lin, F. Laminar free convection from a vertical cone with uniform surface heat flux. Lett. Heat Mass Transf. 1976, 3, 49–58.

[CrossRef]
7. Pop, I.; Watanabe, T. Free convection with uniform suction or injection from a vertical cone for constant wall heat flux. Int.

Commun. Heat Mass Transf. 1992, 19, 275–283. [CrossRef]
8. Tripathi, R.; Sau, A.; Nath, G. Laminar free convection flow over a cone embedded in a stratified medium. Mech. Res. Commun.

1994, 21, 289–296. [CrossRef]
9. Hossain, M.; Paul, S. Free convection from a vertical permeable circular cone with non-uniform surface temperature. Acta Mech.

2001, 151, 103–114. [CrossRef]
10. Pullepu, B.; Ekambavanan, E.; Chamkha, A. Unsteady laminar natural convection from a non-isothermal vertical cone. Nonlinear

Anal. Model. Control 2007, 12, 525–540. [CrossRef]
11. Sambath, P.; Kannan, R.; Pullepu, B. Free Convection Flow Past from Horizontally Inclined Plate in Thermally Stratified Medium.

Int. J. Pure Appl. Math. 2017, 114, 313–322.
12. Pullepu, B.; Ekambavanan, K.; Chamkha, A. Unsteady laminar free convection from a vertical cone with uniform surface heat

flux. Nonlinear Anal. Model. Control 2008, 13, 47–60. [CrossRef]
13. Hasan, M.; Mujumdar, A. Coupled heat and mass transfer in natural convection under flux condition along a vertical cone. Int.

Commun. Heat Mass Transf. 1984, 11, 157–172. [CrossRef]
14. Sambath, P.; Sankar, D.; Viswanathan, K. A numerical study of dissipative chemically reactive radiative MHD flow past a vertical

cone with nonuniform mass flux. Int. J. Appl. Mech. Eng. 2020, 25, 159–176. [CrossRef]
15. Atashafrooz, M.; Sajjadi, H.; Amiri Delouei, A. Simulation of combined convective-radiative heat transfer of hybrid nanofluid

flow inside an open trapezoidal enclosure considering the magnetic force impacts. J. Magn. Magn. Mater. 2023, 567, 170354.
[CrossRef]

16. Ragulkumar, E.; Palani, G.; Sambath, P.; Chamkha, A.J. Dissipative MHD free convective nanofluid flow past a vertical cone
under radiative chemical reaction with mass flux. Sci. Rep. 2023, 13, 2878. [CrossRef] [PubMed]

17. Prabhavathi, B.; Sudarsanareddy, P.; Bhuvanavijaya, R. Three-Dimensional Heat and Mass Transfer Flow over a Stretching Sheet
Filled with Al2O3-Water Based Nanofluid with Heat Generation/Absorption. J. Nanofluids 2019, 8, 1355–1361. [CrossRef]

18. Raju, C.; Jayachandrababu, M.; Sandeep, N.; Mohankrishna, P. Influence of non-uniform heat source/sink on MHD nanofluid
flow over a moving vertical plate in porous medium. Int. J. Sci. Eng. Res 2015, 6, 31–42.

19. Kairi, R.; Murthy, P. Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-
Newtonian fluid saturated non-Darcy porous medium. Appl. Math. Comput. 2011, 217, 8100–8114. [CrossRef]

20. Jayachandra Babu, M.; Sandeep, N.; Raju, C.S. Heat and mass transfer in MHD Eyring-Powell nanofluid flow due to cone in
porous medium. Int. J. Eng. Res. Afr. 2015, 19, 57–74. [CrossRef]

21. Rauf, A.; Abbas, Z.; Shehzad, S.; Alsaedi, A.; Hayat, T. Numerical simulation of chemically reactive Powell-Eyring liquid flow
with double diffusive Cattaneo-Christov heat and mass flux theories. Appl. Math. Mech. 2018, 39, 467–476. [CrossRef]

22. Khan, M.; Irfan, M.; Khan, W.; Ahmad, L. Modeling and simulation for 3D magneto Eyring–Powell nanomaterial subject to
nonlinear thermal radiation and convective heating. Results Phys. 2017, 7, 1899–1906. [CrossRef]

23. Kumar, B.; Srinivas, S. Unsteady hydromagnetic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet
with joule heating and thermal radiation. J. Appl. Comput. Mech. 2020, 6, 259–270. [CrossRef]

24. Reddy, S.; Reddy, P.B.A.; Bhattacharyya, K. Effect of nonlinear thermal radiation on 3D magneto slip flow of Eyring-Powell
nanofluid flow over a slendering sheet with binary chemical reaction and Arrhenius activation energy. Adv. Powder Technol. 2019,
30, 3203–3213. [CrossRef]

25. Manvi, B.; Tawade, J.; Biradar, M.; Noeiaghdam, S.; Fernandez-Gamiz, U.; Govindan, V. The effects of MHD radiating and
non-uniform heat source/sink with heating on the momentum and heat transfer of Eyring-Powell fluid over a stretching. Results
Eng. 2022, 14, 100435. [CrossRef]

26. Khan, Z.; Usman, M.; Zubair, T.; Hamid, M.; Haq, R. Brownian motion and thermophoresis effects on unsteady stagnation point
flow of Eyring–Powell nanofluid: A Galerkin approach. Commun. Theor. Phys. 2020, 72, 125005. [CrossRef]

27. Thumma, T.; PV, S.N. Innovations in Eyring–Powell radiative nanofluid flow due to nonlinear stretching sheet with convective
heat and mass conditions: Numerical study. Aust. J. Mech. Eng. 2020, 21, 221–233. [CrossRef]

28. Imran, M.; Abbas, Z.; Naveed, M. Flow of Eyring-Powell liquid due to oscillatory stretchable curved sheet with modified Fourier
and Fick’s model. Appl. Math. Mech. 2021, 42, 1461–1478. [CrossRef]

http://doi.org/10.1080/10407790500509009
http://dx.doi.org/10.1016/j.apnum.2009.04.010
http://dx.doi.org/10.37934/arfmts.75.1.111
http://dx.doi.org/10.1140/epjp/s13360-022-03115-6
http://dx.doi.org/10.1016/0017-9310(62)90059-5
http://dx.doi.org/10.1016/0094-4548(76)90041-2
http://dx.doi.org/10.1016/0735-1933(92)90038-J
http://dx.doi.org/10.1016/0093-6413(94)90080-9
http://dx.doi.org/10.1007/BF01272528
http://dx.doi.org/10.15388/NA.2007.12.4.14684
http://dx.doi.org/10.15388/NA.2008.13.1.14588
http://dx.doi.org/10.1016/0735-1933(84)90019-8
http://dx.doi.org/10.2478/ijame-2020-0011
http://dx.doi.org/10.1016/j.jmmm.2023.170354
http://dx.doi.org/10.1038/s41598-023-28702-0
http://www.ncbi.nlm.nih.gov/pubmed/36808145
http://dx.doi.org/10.1166/jon.2019.1686
http://dx.doi.org/10.1016/j.amc.2011.03.013
http://dx.doi.org/10.4028/www.scientific.net/JERA.19.57
http://dx.doi.org/10.1007/s10483-018-2314-8
http://dx.doi.org/10.1016/j.rinp.2017.06.002
http://dx.doi.org/10.22055/JACM.2019.29520.1608
http://dx.doi.org/10.1016/j.apt.2019.09.029
http://dx.doi.org/10.1016/j.rineng.2022.100435
http://dx.doi.org/10.1088/1572-9494/abb7d5
http://dx.doi.org/10.1080/14484846.2020.1842158
http://dx.doi.org/10.1007/s10483-021-2779-9


Mathematics 2023, 11, 4331 19 of 19

29. Lawal, M.O.; Kasali, K.B.; Ogunseye, H.A.; Oni, M.O.; Tijani, Y.O.; Lawal, Y.T. On the mathematical model of Eyring–Powell
nanofluid flow with non-linear radiation, variable thermal conductivity and viscosity. Partial Differ. Equ. Appl. Math. 2022,
5, 100318. [CrossRef]

30. Tian, Q.; Yang, X.; Zhang, H.; Xu, D. An implicit robust numerical scheme with graded meshes for the modified Burgers model
with nonlocal dynamic properties. Comput. Appl. Math. 2023, 42, 246. [CrossRef]

31. Chen, H.; Stynes, M. Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 2021,
41, 974–997. [CrossRef]

32. Jiang, X.; Wang, J.; Wang, W.; Zhang, H. A Predictor–Corrector Compact Difference Scheme for a Nonlinear Fractional Differential
Equation. Fractal Fract. 2023, 7, 521. [CrossRef]

33. Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising
in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [CrossRef]

34. Pal, D.; Mondal, S.K. Unsteady magneto-bioconvection flow of chemically reactive powell eyring nanofluid having gyrotactic
microorganisms over an inclined stretching sheet with non-uniform heat source/sink and thermal radiation. J. Nanofluids 2019,
8, 703–713. [CrossRef]

35. Alwatban, A.M.; Khan, S.U.; Waqas, H.; Tlili, I. Interaction of Wu’s slip features in bioconvection of Eyring Powell nanoparticles
with activation energy. Processes 2019, 7, 859. [CrossRef]

36. Sreenivasulu, P.; Poornima, T.; Malleswari, B.; Reddy, N.B.; Souayeh, B. Internal energy activation stimulus on magneto-
bioconvective Powell-Eyring nanofluid containing gyrotactic microorganisms under active/passive nanoparticles flux. Phys. Scr.
2021, 96, 055221. [CrossRef]

37. Mahdy, A. Unsteady Mixed Bioconvection Flow of Eyring–Powell Nanofluid with Motile Gyrotactic Microorganisms Past
Stretching Surface. BioNanoScience 2021, 11, 295–305. [CrossRef]

38. Naz, R.; Mabood, F.; Sohail, M.; Tlili, I. Thermal and species transportation of Eyring-Powell material over a rotating disk with
swimming microorganisms: Applications to metallurgy. J. Mater. Res. Technol. 2020, 9, 5577–5590. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.padiff.2022.100318
http://dx.doi.org/10.1007/s40314-023-02373-z
http://dx.doi.org/10.1093/imanum/draa015
http://dx.doi.org/10.3390/fractalfract7070521
http://dx.doi.org/10.1016/j.amc.2023.128192
http://dx.doi.org/10.1166/jon.2019.1624
http://dx.doi.org/10.3390/pr7110859
http://dx.doi.org/10.1088/1402-4896/abeb33
http://dx.doi.org/10.1007/s12668-021-00857-y
http://dx.doi.org/10.1016/j.jmrt.2020.03.082

	Introduction
	Mathematical Model
	Numerical Investigation
	Results and Discussion
	Velocity Profile
	Temperature Profile
	Concentration Profile
	Microorganism Profile

	Conclusions
	References

