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We investigate strategies to numerically integrate closed lines and surfaces that are 
implicitly defined by level sets (iso-contours) of continuously differentiable toroidally 
symmetric functions. The “grid-transform” approach transforms quantities given in non-
surface-aligned coordinates onto a numerically constructed surface-aligned grid. Here, line 
and surface integrals, as well as so-called flux-surface averages, can be easily evaluated 
using high order integration formulas. We compare this method to ones that base on 
numerical representations of the delta-function.
For the grid-transform method we observe high order convergence of line, surface 
and volume integration. Quantitatively, the errors for line and area integration are 
several orders of magnitude smaller than previously reported errors for delta-function 
methods. Furthermore, a delta-function method based on a Gaussian representation shows 
qualitatively wrong results of surface integrals near O- and X-points. Contrarily, the grid 
transform method suffers no deterioration near O-points. However, close to X-points we 
observe reduced first order convergence in volume integral and derivative tests due to the 
diverging volume element.
Finally, we derive a toroidal integration based on toroidal summation and a smoothing 
kernel that assumes field-alignment of structures between the toroidal planes. The 
smoothing kernel can be interpreted as a partial flux-surface average. The resulting 
smoothed toroidal average eliminates unphysical poloidal oscillations that are otherwise 
present in the simple toroidal average.
Our methods can be applied to toroidal and flux-surface averages in simulations of three-
dimensional plasma dynamics on non-aligned grids. Further applications include closed 
line and surface integrals in level set methods. Efficient implementations can be found in 
the freely available Feltor library.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

It is crucial for three-dimensional fusion plasma simulations to predict reliably the confinement of the plasma. To this 
end, an accurate evaluation of the mass, momentum and energy fluxes through the flux-surfaces in general and the last 
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closed flux-surface in particular is required [1]. Flux-surfaces in this context are surfaces implicitly defined by level sets (iso-
surfaces) of the magnetic flux-function ψp(R, Z), where R, Z , ϕ are cylindrical coordinates [1,2]. We here discuss toroidally 
symmetric (flux-)functions (independent of ϕ) that model so-called tokamaks [3]. The last closed flux-surface is the one 
that includes an X-point (a saddle point of ψp ). Typically, so called flux-surface averages are computed. Even though these 
are defined as differential volume averages their evaluation requires the computation of surface integrals of the form

∫
ψp=const

f (R, Z ,ϕ)dA (1)

where f is a function and the integration domain is the toroidally symmetric surface implicitly defined by a level set 
(iso-surface) of ψp(R, Z) [1,2].

Surface integration of the form in Eq. (1) is numerically straightforward in so-called flux-aligned coordinate systems [2]. 
These are coordinate systems where one coordinate is given by (a function of) ψp itself. Care must only be taken of the 
metric elements in the area integral in curvilinear coordinates [2,4]. In fact, many three-dimensional plasma turbulence sim-
ulations base on flux- or more specifically field-aligned coordinate systems [5–7]. These coordinate systems exploit the fact 
that plasma turbulence is field-aligned that is structures are elongated along the magnetic field and very narrow perpendic-
ular to it. This reflects in a reduction of grid points along the magnetic field line compared to the perpendicular resolution 
and an associated saving in computational cost.

The problem with flux-aligned grids is that they can become inconsistent when the flux-surfaces exhibit one or more 
X-points. In that case, the convergence rate of numerical solutions to elliptic equations is reduced to first order due to the 
singular metric as was recently pointed out by [8]. For this reason, non-aligned coordinates like cylindrical ones must be 
used. Straightforward implementations exist [9] as well as more sophisticated approaches that relieve the flux-alignment 
only in a small region around the X-point [10]. However, these approaches do not exploit the field-aligned character of 
turbulence and can thus only be used for small to medium sized tokamaks due to both high numerical diffusion and extreme 
computational cost [11,12]. These problems are solved by the so-called flux-coordinate independent approach [13,11,14]. 
Here, the grid is not aligned to the flux function ψp and at the same time the toroidal (ϕ) direction can be resolved by only 
16-32 points in practical simulations (compared to several hundred points in non-aligned simulations) [15–18]. The issue 
then remains how to compute the surface integral (1) in these non-aligned grids.

In fact, integrals of the form (1) on non-aligned grids appear similarly outside the field of plasma turbulence in the 
field of level set methods [19]. Here, ψp takes the role of the level-set function that captures an interface implicitly given 
by ψp = 0. Contrary to the magnetic flux function above, the level set function develops in time and is given as the 
solution to the level set equation. Level set methods have triggered active research into the discretization of implicitly 
defined line and surface integrals. Note here that a line integral is obtained by restricting Eq. (1) to two dimensions. In 
particular, discretizations based on delta-function formulations [20,21] as well as others such as a tree-based approach [22]
are discussed.

A second issue in simulations with the flux-coordinate independent (FCI) approach arises in toroidal averages. In general, 
toroidal refers to the ϕ direction. A toroidal average of a function f (R, Z , ϕ) is thus defined as

〈 f 〉ϕ (R, Z) := 1

2π

∮
f (R, Z ,ϕ)dϕ (2)

In the FCI approach the number of toroidal planes (the number of grid points in the ϕ direction) is typically very low as 
explained above. A problem then occurs when trying to compute a toroidal average since it is the parallel (to the magnetic 
field) direction that is resolved by the simulation and not the toroidal one. Simply summing up all toroidal planes yields 
poor results seen in cross-sections as little humps [15].

In this contribution we compare strategies to compute line and surface integrals as well as flux-surface and toroidal av-
erages. First, line and surface integrals as well as flux-surface averages are computed via the numerical construction of and 
interpolation to flux-aligned grids. Such a strategy was first proposed in an appendix [17] but no systematic analysis was 
given and the behavior near X-points remained unclear. Flux-aligned grids can be quickly and accurately constructed includ-
ing the metric tensor with the methods presented in [23,8]. We compare this “grid-transform” method to “delta-function” 
methods that are based on approximations of the Dirac delta-function. For the toroidal average we derive a smoothing op-
eration based on the assumption that structures are field-aligned in-between toroidal planes. This yields superior results 
for the toroidal average in such a situation. The algorithm can be easily applied as a post-processing diagnostics on a pre-
computed simple toroidal average based on summation of toroidal planes. We provide implementations freely in the C++
library Feltor [24,25].

In Section 2 we derive the suggested formulas for the smoothed toroidal average. Furthermore, the delta-function ap-
proach and the flux-aligned grid approach for line and surface integrals as well as the flux-surface average are derived. In 
a second part 3 we numerically test our proposed schemes for convergence and accuracy. We conclude in Section 4. All 
figures and tables in this paper can be reproduced following the data statement in Appendix A.
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2. Derivation of the algorithms

We will start with the derivation of the smoothed toroidal average in Section 2.1. The second part of this Section 2.2
consists of the derivation of line and surface integration formulas. In the last part 2.3 of this Section we discuss and 
summarize our analytical findings.

2.1. Toroidal averages

We first introduce a suitable representation of a toroidal magnetic field in Section 2.1.1 including the introduction of the 
magnetic flux function ψp(R, Z). This can be used to define field-alignment via the flow operator of the magnetic field in 
Section 2.1.2. The final result is presented in Section 2.1.3.

2.1.1. The magnetic field
In cylindrical coordinates (R, Z , ϕ) the general toroidally symmetric magnetic field B obeying an MHD equilibrium 

(μ0 j = ∇ × B , ∇p = j × B with current j, magnetic constant μ0 and pressure p(ψp)) can be written as [2] (in dimension-
less units)

B = R0

R

[
I(ψp)êϕ + ∂ψp

∂ Z
êR − ∂ψp

∂ R
ê Z

]
, (3)

with I the current streamfunction, R0 the major radius, ψp the poloidal magnetic flux and êR , ê Z , êϕ the coordinate unit 
vectors.

We employ cylindrical coordinates with ϕ anti directed to the geometric toroidal angle (clockwise if viewed from above) 
to obtain a right handed system. The parametric representation in Cartesian (x, y, z) coordinates is therefore simply:

x = R sin (ϕ), y = R cos (ϕ), z = Z . (4)

With a typically convex function ψp (the second derivatives matrix, the Hessian, is positive semi-definite), I(ψp) > 0 and 
the previously defined coordinate system the field line winding is a left handed screw in the positive êϕ-direction. Note the 
contra- and co-variant components of the magnetic field

B R = B R = R0

R
ψp,Z , B Z = B Z = − R0

R
ψp,R , Bϕ = 1

R2
Bϕ = R0 I

R2
. (5)

2.1.2. Field-alignment
We integrate the streamlines (integral curves) of the magnetic field (3) via

dR̄

dϕ̄
= B R

Bϕ
(R̄, Z̄ , ϕ̄) (6a)

d Z̄

dϕ̄
= B Z

Bϕ
(R̄, Z̄ , ϕ̄) (6b)

As initial conditions for ϕ̄ = 0 we choose R̄(0) = R, Z̄(0) = Z . Then, we can represent the flow of B/Bϕ as

T±�ϕx ≡ T±�ϕ[R, Z ,ϕ] := (R̄(±�ϕ), Z̄(±�ϕ),ϕ ± �ϕ) (7)

The flow T+�ϕ is a map that defines a pullback (that we also call T+�ϕ )

[T+�ϕ f ](x) ≡ f (T+�ϕx) (8)

We call a function f (x) = f (R, Z , ϕ) field-aligned if T+�ϕ f = f . Note that T±�ϕ is the same operator we introduced in [11]. 
From the group properties of the flow [4] we have that T−�ϕ ◦ T+�ϕ = 1 and

T+k�ϕ = (T+�ϕ)k (9)

Finally, we define the pullback (7) applied to two-dimensional functions via

[T+�ϕ f ](R, Z) ≡ f (R̄(�ϕ), Z̄(�ϕ)) (10)

This preserves the group properties of T+�ϕ because our vector field B is independent of ϕ . Numerically, the integration of 
Eq. (6) can be achieved with any standard ODE integrator [26] while the evaluation of f at the transformed points T±�ϕx
necessitates an interpolation. Any standard algorithm like bilinear or bicubic interpolation is viable or, as is used in Feltor, 
a polynomial interpolation of arbitrary order given by a discontinuous Galerkin discretization in the perpendicular direc-
tion [11]. In passing we note that in flux-aligned coordinates the above discussion works completely analogous replacing R
with the flux-aligned coordinate ζ , and Z with the angle coordinate η. The only difference is that the resulting interpolation 
is then necessary only in the angle coordinate η.
3
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2.1.3. The smoothed toroidal or partial flux-surface average
We can now discretize the toroidal average given in Eq. (2) assuming that the function f is field-aligned. We start with 

a numerical representation of f (R, Z , ϕ) on a toroidally symmetric grid with Nϕ planes in the ϕ direction. We here assume 
equidistant planes for simplicity but the following scheme can be easily generalized to non-equidistant planes (and other 
integration schemes) as well. A simple numerical expression of Eq. (2) is the trapezoidal rule, which since f is periodic in 
ϕ , amounts to

〈 f 〉T
ϕ (R, Z) := 1

Nϕ

Nϕ−1∑
i=0

f i(R, Z) (11)

where f i(R, Z) := f (R, Z , ϕi) is the i-th toroidal plane with ϕi := 2π i/Nϕ .
We now seek to improve the accuracy of 〈 f 〉T

ϕ in the case that f is field-aligned and the number of toroidal planes Nϕ

is low. Our idea is simple: we first interpolate the function along the magnetic field-lines onto a large number of toroidal 
planes and only then use Eq. (11) to compute the average. In other words we increase the accuracy of the integration by 
artificially increasing the number of toroidal planes using the field-aligned property of f .

Let us insert Kϕ − 1 equidistant planes in the ϕ direction between each neighboring two original planes. The total 
number of planes is now Ntot

ϕ = Nϕ Kϕ and the grid distance δϕ = �ϕ/Kϕ .
We are now able to extend the numerical function f given on the coarse ϕ grid unto the fine ϕ grid via a linear 

interpolation along field-lines in between planes

f (R, Z ,ϕi + kδϕ) = Kϕ − k

Kϕ
T k−δϕ f i + k

Kϕ
T Kϕ−k

δϕ f i+1

In words, we pull the planes f i and f i+1 back to the in-between plane f i+k/Kϕ . Now, we can apply the simple toroidal 
average (11) on the fine grid

〈 f 〉ST
ϕ := 1

Kϕ Nϕ

Nϕ−1∑
i=0

Kϕ−1∑
k=0

Kϕ − k

Kϕ
T k−δϕ f i + k

Kϕ
T Kϕ−k

δϕ f i+1

= 1

Kϕ

⎡
⎣〈 f 〉T

ϕ +
Kϕ−1∑
k=1

Kϕ − k

Kϕ

(
T k−δϕ + T k+δϕ

)
〈 f 〉T

ϕ

⎤
⎦ (12)

The central step is to use that the pullback T−δϕ is linear that is T−δϕ f0 + T−δϕ f1 = T−δϕ( f0 + f1) [4]. This recovers the 
simple toroidal summation 〈 f 〉T

ϕ in Eq. (11). In the limit Kϕ → ∞ the discrete sum represents the integral

〈 f 〉ST
ϕ (R, Z) =

2π∫
0

w(ϕ) 〈 f 〉T
ϕ (R̄(ϕ), Z̄(ϕ))dϕ ≡ S�ϕ

(
〈 f 〉T

ϕ (R, Z)
)

(13)

with w(ϕ) a linear smoothing kernel

w(ϕ) = 1

�ϕ

⎧⎪⎨
⎪⎩

1 − ϕ
�ϕ for 0 < ϕ ≤ �ϕ

1 + ϕ
�ϕ for 0 ≥ ϕ ≥ −�ϕ

0 else

(14)

We note in passing that by using nearest neighbor or cubic interpolation schemes to extend f in-between toroidal planes we 
obtain different smoothing kernels w(ϕ), but 

∮
w(ϕ) = 1 holds in general. The toroidal average on field-aligned functions 

is obtained by simple toroidal summation Eq. (11) followed by a smoothing operation S�ϕ with smoothing kernel w(ϕ). 
We implicitly define the smoothing operation S�ϕ in Eq. (13) as an independent two-dimensional operation. In fact we 
will also refer to S�ϕ ( f (R, Z)) as a “partial flux-surface average”, seeing that it integrates a function on a part of the flux-
surface, which in 2d is just a line. Eq. (13) is thus suggestively denoted with the index “ST ” to stand for “toroidal average 
(T) followed by smoothing (S)”. If we slightly extend the definition of S�ϕ ( f ) to three-dimensional functions

S�ϕ ( f ) (R, Z ,ϕ) :=
2π∫
0

dϕ′w(ϕ′) f (R̄(ϕ′), Z̄(ϕ′),ϕ) (15)

then we can easily see that the smoothing operation commutes with toroidal averaging

〈 f 〉T S
ϕ = 〈

S�ϕ ( f )
〉T
ϕ

= S�ϕ

(
〈 f 〉T

ϕ

)
= 〈 f 〉ST

ϕ (16)
4
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Fig. 1. Plot of Eq. (18) for an example magnetic field equilibrium h = ψp(R, Z) and a high value for ε for better visibility. The black line indicates the 
separatrix ψp = 0.

Finally, we realize that for Nϕ → ∞ (and thus �ϕ → 0) Eq. (12) becomes the derivative of the integral over ϕ and thus 
lim�ϕ→0 〈 f 〉S T

ϕ = lim�ϕ→0 〈 f 〉T
ϕ = 〈 f 〉ϕ .

2.2. Line and surface integrals and the flux surface average

We start with the basic identities for a delta-function formulation in Section 2.2.1. This is then followed by area integrals 
in flux-aligned coordinates 2.2.2. Finally, we combine the results into a definition of the flux-surface average and show 
flux-surface averaged conservation equations in Section 2.2.3.

2.2.1. Dirac delta and area integrals
Recall that the Dirac delta-function has the property (in any dimension) [27]:∫

V

f (x)δ(h(x) − h′)dV =
∫

h=h′

f (x)

|∇h| dA (17)

which means that the delta-function can be used to express area integrals of the submanifold given by the level set of the 
function h(x). A numerically tractable approximation to the delta-function reads

δε(h(x) − h′) := 1

2πε2
exp

(
−
(
h(x) − h′)2

2ε2

)
(18)

where ε is a small, free parameter. In Fig. 1 we plot Eq. (18) for an example equilibrium. The chosen representation in 
Eq. (18) is very easy to implement and fast to evaluate. However, it must be mentioned that there are other more so-
phisticated numerical approximations to the delta-function, for example the ones presented in [21,20]. In particular, our 
representation (18) does not have compact support. We will discuss this further in Section 3.2.2.

Inserting Eq. (18) into the left-hand side of Eq. (17) thus yields a method to compute area integrals even if the coordinate 
system is not aligned to the area [19].∫

ψp,0

f (x)dA =
∫

f (x)|∇ψp|δε(ψp(x) − ψp,0)dV (19)

In our work we use Gauss-Legendre integration to represent this integral numerically.
Finally, recall the co-area formula

∫
�0

f (x)dV =
h0∫

0

⎛
⎝ ∫

h=h′

f (x)

|∇h| dA

⎞
⎠dh′ (20)

where �0 is the volume enclosed by the level set h = h0. The co-area formula can be viewed as a change of variables in 
the volume integral and we here obtain it by integrating Eq. (17) over h′ .
5
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Fig. 2. Plot of a flux-aligned grid (visible are the cell-centers, not the cell boundaries) for an example magnetic field equilibrium. In red we plot the 
separatrix ψp = 0. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2.2.2. Area integrals in flux-aligned coordinates
In a flux-aligned coordinate system one coordinate is given as a function of the magnetic flux ζ = ζ(ψp) while the 

other coordinates are the poloidal angle-like coordinate η and the toroidal angle ϕ . For simplicity, we will here assume 
ζ(ψp) = ζ0ψp with constant ζ0 > 0. Any function f (R, Z , ϕ) can be pulled back to flux-aligned coordinates by

F (ζ,η,ϕ) := f (R(ζ,η), Z(ζ,η),ϕ) (21)

which, numerically, is represented by a simple interpolation operation, for which we already discussed available methods at 
the end of Section 2.1.2.

The area 2-form is given by the interior product of the surface normal with the volume form [4]

dA = i
ψ̂p

· vol3, ψ̂p := ∇ψp

|∇ψp| (22)

In a flux-aligned coordinate system ∇ψp only has one component gζ ζ ∂ψp/∂ζ and we thus arrive at

dA =
√

gζζ
√

gdηdϕ = |ζ0||∇ψp|√gdηdϕ, (23)

where we used that gζ ζ = (∇ζ )2 = ζ 2
0 (∇ψp)2. In a flux-aligned coordinate system we can thus compute [2]∫

ψp,0

f (x)dA =
∮

F (ζ(ψp,0),η,ϕ)|ζ0||∇ψp|√gdηdϕ (24)

which next to Eq. (19) constitutes the second method to compute area integrals that we study in this work.
We note here that in order to compute line-integrals in two dimensions we use that 

√
g2D = √

g/R(ζ, η) and write∫
ψp,0

f (R, Z)ds =
∮

F (ζ,η)|ζ0||∇ψp|√g2D dη (25)

while the two-dimensional area integral is

∫
�

f (R, Z)dA =
ζ(ψp)∫
0

2π∫
0

F (ζ,η)
√

g2D dζdη (26)

where here � is the area enclosed by ψp .
In Fig. 2 we plot a flux-aligned grid for an example magnetic field equilibrium with a reduced resolution to increase 

visibility. We use the methods described in [23,8] to produce the grid. In particular, the grid can be constructed including 
6
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the metric elements up to machine precision. We choose the grid spacing such that the separatrix (ψp = 0) is reasonably 
discretized in the sense that grid cells are close to being quadratic. However, this choice leads to a poloidal over-resolution 
of the region close to the O-point (minimum of the flux-function), where grid cells are very small in the poloidal direction 
but large in the radial direction. This means that flux-surfaces close to the O-point are better resolved than flux-surfaces 
close to the separatrix.

Notice the coordinate singularities at the O-point and the X-point, which in principle could lower or prevent the con-
vergence of numerical integrals. As we will show in Section 3, the evaluation of integration formulas like Eq. (24) and the 
flux-surface averages in Section 2.2.3 converge well near the O-point but have reduced convergence rates near the X-point. 
Note also that we integrate close to but not including the singularities.

2.2.3. Flux surface average
We first define the volume flux label and its derivative by [2]

v(ψp,0) :=
∫

H(ψp(R, Z) − ψp,0)dV = 2π

ζ(ψp,0)∫
ζ(ψp,O )

∮ √
gdζdη, (27)

dv

dψp
=
∫

|∇ψp|−1 dA = 2π |ζ0|
∮

ζ(ψp)

√
gdη (28)

where ψp,O is the value of ψp at the O-point and H is a Heaviside function defined such that it is 1 in the interior and 
0 in the exterior of ψp,0. Notice that Eqs. (27) and (28) can be evaluated numerically in both a non-aligned or an aligned 
coordinate system.

Also pay attention to the orientation. We assume that the value of v increases if we go from the O-point towards the 
separatrix. That means that if ψp,O > ψp,X , then the signs of the definitions in Eq. (27) and (28) need to change, i.e. use 
H(ψp,O − ψp), integrate from 

∫ ζ(ψp,O )

ζ(ψp,0) and add a negative sign in Eq. (28). At the same time the following definition of the 
flux-surface average is independent of orientation.

The flux surface average is defined as a volume average over a small volume - a shell centered around the flux-surface 
- defined by two neighboring flux-surfaces [2,1]. With the help of the volume flux label (27) and the co-area formula (20)
we define

〈 f 〉 (ψp) := ∂

∂v

∫
f dV = 1∫ |∇ψp|−1 dA

∫
ψp

f (x)

|∇ψp| dA (29)

In a cylindrical coordinate system we can use Eq. (19) to write

〈 f 〉 =
∫
�

〈 f 〉ϕ (R, Z)δε(ψp(R, Z) − ψp,0) RdRdZ∫
�

δε(ψp(R, Z) − ψp,0) RdRdZ
(30)

In flux-aligned coordinates the flux-surface average simplifies to [2]

〈 f 〉 = 1∮ √
gdη

2π∮
0

〈 f 〉ϕ (ζ(ψp,0),η)
√

gdη (31)

We immediately see that the flux-surface average is particularly easy to compute in a flux-aligned coordinate system. Notice 
however that the volume element does appear (and depends on both ζ and η) and that the flux-surface average is not
simply an angle average.

From both Eq. (30) and Eq. (31) we implicitly define a “poloidal average” 〈 f 〉η , which commutes with the toroidal average

〈 f 〉 (ψp) := 〈〈 f 〉ϕ (R, Z)
〉
η
(ψp) = 〈〈 f (R, Z ,ϕ〉η (ψp,ϕ)

〉
ϕ

(ψp) (32)

where we slightly overburden the notation in different dimensions. Similar to the smoothing (or partial flux surface) opera-
tor S�ϕ the poloidal average always acts on the R and Z component of a function, while the toroidal average always acts on 
the ϕ component. An interesting question is, what happens if we apply the poloidal average to a partial flux surface average. 
Intuitively we expect 

〈
S�ϕ ( f )

〉= 〈 f 〉, since a partial average on a flux-surface should not change the complete integral over 
a flux-surface. It turns out however, due to the volume element, that the two expressions are only approximately equal〈

S�ϕ ( f (R, Z))
〉
η

≈ 〈 f (R, Z)〉η (33)

In section 3, we are going to show that for most practical applications �ϕ is small enough that the two sides can be 
considered equal. This is because the volume element varies very slowly in the poloidal direction. From this observation 
7
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also follows that in the numerical computation of the flux-surface average both 
〈
〈 f 〉T

ϕ

〉
as well as 

〈
〈 f 〉S T

ϕ

〉
should give 

(approximately) the same result. It is important to notice that this is irrespective of whether f is field-aligned or not. Also 
notice that in the limit lim�ϕ→0

〈
S�ϕ ( f )

〉= 〈 f 〉.
The flux-surface average (29) fulfills the identities [1,2]

〈μ f + λg〉 = μ 〈 f 〉 + λ 〈g〉 (34)〈
f (ψp)

〉= f (ψp) (35)

〈∇ · j〉 = d

dv
〈 j · ∇v〉 (36)

Flux-surface averages are an important diagnostic tool for three-dimensional plasma simulations, typically applied in 
post-processing of simulation data. Here, they are used to analyse the confinement of the simulated plasma based on mass, 
energy or angular momentum conservation [28,29]. These conservation laws are of the form ∂t X + ∇ · j X = �X for the 
quantity X with associated flux j X and dissipation/source �X . We can write

∂

∂t
〈X〉 + ∂

∂v

〈
j X · ∇v

〉= 〈�X 〉 (37)

where again v = v(ψp) is the volume flux label. The total flux of a given flux density j X through the flux surface ψp = ψp0

is given by

〈
j X · ∇v

〉 := J X =
∮

ψp=ψp0

j X · dA = dv

dψp

〈
j X · ∇ψp

〉
(38)

Notice that dA is oriented with respect to the volume flux label, that is it points away from the O-point. Once we have the 
flux-surface averaged equation (37) we can easily integrate over the volume flux label to get

∂

∂t

∫
�

X dV + 〈
j X · ∇v

〉
(v(ψp)) =

∫
�

�X dV (39)

where � is the region enclosed by the flux surface ψp . Here, we use the co-area formula (20) to get 
∫ v(ψp)

0 〈X〉 dv = ∫
�

X dV.
Notice here that in order to evaluate Eq. (37) or Eq. (39) it is necessary to compute the derivatives ∂ 〈 f 〉/∂v and integrals ∫ 〈 f 〉dv . Numerically, this can be done straightforwardly. First, a one-dimensional discretization of ψp must be chosen, for 

example Nψ equidistant values ψp,i between ψp,O and ψp,0 (or a discretization on Gaussian abscissas for a higher order 
result). Then the flux surface averages as well as dv/dψp can be computed for all ψp,i . Finally, a numerical difference and 
integration formula can be applied to the resulting one-dimensional quantities to obtain an expression for the derivative 
(dv/dψp)−1d 

〈
j X · ∇v

〉
/dψp and integral dv/dψp

∫ 〈X〉dψp .

2.3. Discussion

The main result regarding the toroidal average is Eq. (12). The necessary transformation operators T+δϕ and T−δϕ have 
to be constructed by integrating Eq. (6). Numerically, these operators then appear as interpolation matrices on the resulting 
points. Boundary conditions can for example be implemented by assuming perfect field-alignment of f outside the domain.

The flux-surface average defined in Eq. (29) can be evaluated on non-aligned grids with the help of Eq. (30) and on 
flux-aligned coordinates with Eq. (31). The flux-surface average can be interpreted as a poloidal followed by a toroidal av-
erage (32) and approximately commutes with the partial flux-surface average S�ϕ (33). Finally, we outline how to compute 
volume derivatives and integrals necessary in flux-surface averaged conservation laws like (37) and (39). Ordinary line and 
surface integrals in aligned coordinates are given by Eq. (25) and (26).

The main suggestion in this work is to use the formulas for aligned coordinates even if the field to integrate is given in 
non-aligned coordinates. To this end, first, a structured grid including the metric tensor must be constructed numerically. 
The pullback to aligned coordinates Eq. (21) is then numerically given by interpolation. We refer to this method as the 
grid-transform method.

We offer several grid generators in our C++ library Feltor [25]. These use the methods previously presented in [23,8]. 
In particular, the grid generators are fast, accurate and able to handle one or more X-points in or at the boundary of the 
domain of interest. The grid generators work with both analytically as well as numerically given functions ψp . In the context 
of magnetic confinement fusion in tokamaks, ψp can be given as an expansion in analytical basis functions that solve the 
associated Grad-Shafranov equations as represented in [30]. The first and second derivatives of ψp are then given via the 
corresponding derivatives of the basis functions, which can be computed analytically. If ψp is given on a discrete grid, the 
grid generator interpolates ψp and its derivatives at the integration points. This may be of particular interest to the level 
set method [19].
8
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The scenario in which we envisage the smoothed toroidal and flux-surface averages to be used are as a post-processing 
tool for three dimensional simulation data. Note that both the smoothed toroidal average as well as the flux surface average 
can be evaluated given solely the simple toroidal average. Thus, storage of the full three-dimensional fields can be avoided 
if during the simulation the simple toroidal average Eq. (11) of the quantities of interest is computed and stored in file. This 
is cheap to compute and can significantly lower the storage costs of simulation outputs since the memory requirement for 
two-dimensional fields is typically an order of magnitude lower than the full three-dimensional fields.

In this scenario the resolution of the data is a given constant and the task is to compute the smoothed toroidal and 
flux-surface averages as accurate as possible with the available data. In the next Section 3 we will analyse our methods 
with this philosophy in mind. The free parameters to tune in our two available methods are the width of the delta-function 
ε in the delta-function method, the resolution in η in the grid-transform method and in both methods the resolution in ψp , 
which influences the accuracy of volume derivatives and integrals.

Performance-wise, we compute Nψ volume integrals over the entire domain. Each of the volume integrals numerically 
corresponds to a reduction. In the delta-function method each reduction has NR N Z elements while in the grid-transform 
method only Nη � NR N Z elements are used. In the grid-transform method the flux-aligned grid has to be constructed 
which isn’t the case for the delta-function approach. The grid, however, has to be computed only once and we here assume 
that the construction time amortises if many integrals are evaluated. In total, we thus expect a performance gain of the 
grid-transform method over the delta-function method.

3. Numerical tests

We first discuss the toroidal average in Section 3.1. Afterwards, we test the methods to evaluate the line and surface 
integrals and the flux-surface average in Section 3.2. We briefly discuss the commutation between the smoothed toroidal 
and flux-surface average in Section 3.3.

3.1. Toroidal averages

First, we investigate the behavior of the smoothed toroidal average Eq. (12). In this section we use a magnetic field 
defined by Eq. (3) and [31]

ψp = cos [π(R − R0)/2] cos(π Z/2) I(ψp) = I0 (40)

with R0 = 3 and I0 = 10. We start by creating a hypothetical simulation result; a field-aligned function modulated along 
the toroidal direction

f (R, Z ,ϕ) = F (R, Z ,ϕ)exp

(
− ϕ2

2σ 2
ϕ

)
(41)

where F is a field-aligned function, invariant under the field line transformations

T+�ϕ F (z) = T−�ϕ F (z) = F (z) (42)

We can use these relations to numerically construct aligned structures by active transformations of a given field. Our idea 
is to initialize a two-dimensional field F (R, Z , ϕ0) in a given plane k = 0 and transform this field to all other planes using 
the recursive relations [11]

F (R, Z ,ϕk+1) = T−�ϕ F (R, Z ,ϕk+1) = T−�ϕ Fk(R, Z),

F (R, Z ,ϕk−1) = T−�ϕ F (R, Z ,ϕk−1) = T+�ϕ Fk(R, Z),

which is the statement that the two-dimensional function Fk in a plane k can be pulled back from the next/previous plane 
along the streamlines of B/Bϕ to obtain Fk±1. Note here that T±�ϕ f (R, Z , ϕk) = T±�ϕ fk±1(R, Z) �= T±�ϕ fk(R, Z).

In Fig. 3 we plot the result of such a process with

F (R, Z ,0) := B + A exp

(
− (R − R0)

2 + (Z − Z0)
2

2σ 2

)
(43)

with B = 0.2, A = 4, R0 = 3.5, Z0 = 0, σ = 0.05 and σϕ = 0.4π . Such a function is representative of an almost field-aligned 
structure with a parallel gradient that is much smaller than its perpendicular gradient.

We now discretize Eq. (41) with Nϕ = 10 toroidal planes and compute the simple toroidal average Eq. (11). The result is 
plotted in Fig. 4. We see that the toroidal average in such a situation is clearly under-resolved and shows corrugations in the 
two-dimensional plot. This behavior was previously reported as spurious oscillatory fields in Reference [11]. Starting from 
this result we can now apply our post-processing formula Eq. (11). We chose Kϕ = 10 and show the result in Fig. 5. Clearly, 
the corrugations vanish and the result is closer to what we expect the toroidal average of Fig. 3 to look like. In order to also 
9
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Fig. 3. Contour plot of the initial function Eq. (41) in three dimensions. The grey box shows the plotting area of the following two-dimensional plots.

Fig. 4. Plot of the simple toroidal average 〈 f 〉T
ϕ with Nϕ = 10 planes. The toroidal direction is under-resolved.

Fig. 5. Plot of the smooth toroidal average 〈 f 〉ST
ϕ with Nϕ = Kϕ = 10. With the field-aligned assumption we can fill the missing values and obtain a smooth 

picture.

formally show that Eq. (12) yields a more accurate result than the simple average Eq. (11) we now compare the two results 
to a highly resolved case with Nϕ = 200. We compute the relative error in the L2 norm and show the results in Table 1. 
We find that indeed for low resolution in ϕ , that is for Nϕ ≤ 20, the smoothed average 〈 f 〉S T

ϕ yields a superior result than 
〈 f 〉T

ϕ . For higher resolutions however, the simple average 〈 f 〉T
ϕ converges much faster than 〈 f 〉S T

ϕ , which even slows down 
in convergence. We reason the difference in behavior in the perpendicular resolution. The convergence of 〈 f 〉T

ϕ is entirely 
independent of NR and N Z and only depends on Nϕ . On the other side the evaluation of 〈 f 〉S T

ϕ requires interpolations in 
the R and Z directions. If the perpendicular resolution in R and Z is kept constant this error will eventually dominate.
10



M. Wiesenberger, R. Gerrú and M. Held Journal of Computational Physics 491 (2023) 112407
Table 1
Convergence table of the simple toroidal average and the smoothed toroidal average 
applied to the field-aligned f Eq. (41) with Kϕ = 10 for various values of Nϕ and 
constant values of NR = N Z = 150.

Nϕ 〈 f 〉T
ϕ Eq. (11) 〈 f 〉ST

ϕ Eq. (12)

error order error order

5 1.32e+00 n/a 7.06e-02 n/a
10 6.20e-01 1.09 1.76e-02 2.01
20 5.60e-02 3.47 4.40e-03 2.00
40 1.06e-05 12.37 1.30e-03 1.76
80 1.52e-07 6.12 6.88e-04 0.92

Fig. 6. Plot of the simple toroidal average of the toroidally aligned function Eq. (44) with Nϕ = 10.

Fig. 7. Plot of the smoothed toroidal average of the toroidally aligned function Eq. (44) with Nϕ = Kϕ = 10. The smoothing operation smears out the blob 
on the flux-surface.

It is interesting to also apply the smoothed toroidal average 〈 f 〉S T
ϕ to a function that is not field-aligned but toroidally 

aligned. We change the definition of f to

f (R, Z ,ϕ) = F (R, Z ,0)exp

(
− ϕ2

2σ 2
ϕ

)
(44)

We plot the result of 〈 f 〉T
ϕ in Fig. 6 and the result of 〈 f 〉S T

ϕ in Fig. 7. We find that in this case the simple average 〈 f 〉T
ϕ gives 

the better result than 〈 f 〉S T
ϕ . By the partial flux surface average inherent in the smoothing operator the Gaussian shape is 

smeared out. Formally, we compare the two algorithms in Table 2, with a reference solution using Nϕ = 400 and a relative 
11
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Table 2
Convergence table of the simple toroidal average and the smoothed toroidal average 
applied to the toroidally aligned f Eq. (44) with Kϕ = 10 for various values of Nϕ

and constant values of NR = N Z = 150.

Nϕ 〈 f 〉T
ϕ Eq. (11) 〈 f 〉ST

ϕ Eq. (12)

error order error order

5 3.33e-03 n/a 7.66e-01 n/a
10 9.02e-04 1.88 5.62e-01 0.45
20 2.29e-04 1.98 2.83e-01 0.99
40 5.71e-05 2.00 9.49e-02 1.58
80 1.39e-05 2.04 2.59e-02 1.87

error in the L2 norm. We find that both methods do converge but that the error constant of 〈 f 〉T
ϕ is much smaller than 

〈 f 〉S T
ϕ in this case.

In conclusion we can say that the smoothed toroidal average 〈 f 〉S T
ϕ is useful as a post-processing tool for cases where 

the toroidal direction is under-resolved and the function it is applied to is (close to) field-aligned. In all other cases the 
simple toroidal average 〈 f 〉T

ϕ is superior, in particular when the function is not field-aligned. As a rule-of-thumb we find 
that if corrugations are visible in two-dimensional plots of 〈 f 〉T

ϕ then the smoothed toroidal average is applicable and yields 
superior results.

3.2. Line and surface integrals and the flux surface average

We discuss two examples of which we know the analytical solution of a flux-surface average. In Section 3.2.1 we discuss 
the q-profile of the magnetic field and the divergence of the curvature operator K , which should vanish under the flux 
surface average. Thereafter, we construct a simple arc-length and area test without X-points in Section 3.2.2. Finally, we 
discuss integrals and derivatives with respect to the volume flux-label in Section 3.2.3.

3.2.1. Convergence of the flux-surface average
Our first test of accuracy for the numerical flux-surface average is the so-called safety factor. Assume that we pick a 

random field line in Eq. (6) and follow it (integrate it) for exactly one poloidal turn. The safety factor is defined as the ratio 
between the resulting toroidal angle (�ϕ) to the poloidal angle (2π ) [2]

q := �ϕ

2π
(45)

Since our magnetic field is symmetric in ϕ and we used one full poloidal turn this definition is independent of which 
fieldline we pick on a given flux surface. Also notice that with this definition q can be negative.

We define the geometric poloidal angle � as the field-line following parameter around the O-point at (R O , Z O )

� =
{

+arccos [(R − R O )/r] for R ≥ R O

−arccos [(R − R O )/r] for R < R O

with r2 := (R − R O )2 + (Z − Z O )2. We then have with B given by Eq. (3) B� = B · ∇� = −R0(ψR(R − R O ) + ψZ (Z −
Z O ))/(r2 R). We can then directly integrate any field-line as

dR

d�
= B R

B�

dZ

d�
= B Z

B�

dϕ

d�
= Bϕ

B�

from � = 0 to � = 2π . The safety factor results via

q ≡ 1

2π

∮
Bϕ

B�
d� (46)

Alternatively, the safety factor (46) can be formulated in terms of a flux surface average [2]

q(ψp) = 1

(2π)2 R0

dv

dψp

〈
Bϕ
〉

(47)

This yields a test for the flux-surface average. Eq. (46) can be computed to machine precision with the help of one of the 
high order ODE integrators in the Feltor library [24] and thus can count as a reference solution with which we can compare 
the implementations of Eq. (47) in terms of delta-functions and the grid-transform method.

In Fig. 8 we plot the result of such a test. We choose a resolution of NR = N Z = 240 points in the R-Z plane on which 
we discretize Bϕ and use the same ψp as in Fig. 2. We plot the highly accurate direct integration of Eq. (46) together with 
12
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Fig. 8. Plot of the safety factor for various methods as a function of the normalized poloidal flux ρp =√
(ψp − ψp,O )/ψp,O with ψp from Fig. 2. The black 

solid line is the (high accuracy) reference solution, the red dashed line is the result of Eq. (47) using Eq. (31) with Nη = 1920. The remaining lines represent 
Eq. (47) based on Eq. (30) using various values of ε based on h = 1

2 (hR max |∂ψp/∂R| + hZ max |∂ψp/∂ Z |), where hR and hZ are the grid distances in R
and Z . We choose NR = N Z = 240. The enlarged box shows the region 0.95 ≤ ρp ≤ 1.

Table 3
Safety factor convergence table with constant values of 
NR = N Z = 240 and Nψ = 96.

Nη q-profile

error order

480 5.25e-03 n/a
960 7.15e-04 2.88
1920 3.77e-05 4.24
3840 5.02e-06 2.91
7680 3.99e-06 0.33
15360 3.99e-06 -0.00

Eq. (47) for three different values of ε and one value of Nη = 1920, for a fixed number of points in ψp . Note that the safety 
factor diverges on the last closed flux surface (LCFS) at ρp = 1 and remains undefined outside of it. We immediately see 
that the delta-function method cannot accurately represent the region around the O-point (ρp = 0) and to a lesser degree 
also around the X-point (visible in the zoomed in region). This is because of the finite extension of the approximate delta-
function Eq. (18), which causes averaging effects close to the domain boundaries. The effect becomes smaller if the radius 
of the delta-function is decreased. However, we see that the delta-function method suffers from the fact that the ε value 
cannot be chosen arbitrarily small. This is because the delta-function needs to be numerically resolved on the given grid. If 
ε is chosen smaller than the resolution allows, oscillations appear (seen for ε/h = 0.05, cyan dash-dotted line).

An idea to remedy this problem is to interpolate the given function onto a finer grid with better resolution on which the 
fine delta-function can be resolved. However, recall from the end of Section 2.3 that the computational requirement for the 
delta-function method increases with NR N Z and the resolution needs to be increased in both R and Z . Furthermore, the 
cost for the interpolation is added to the already high computational cost of the delta-function approach. As pointed out 
at the end of Section 2.3 it is more efficient to use the grid-transform method, where the computational requirement only 
increases linearly in the poloidal resolution Nη .

In fact, in Fig. 8 we do not see visible differences between the grid-transform solution and the high-accuracy solution 
of Eq. (46). We therefore present the quantitative error defined as the relative error in the L2 norm over ρp in Table 3. 
There, we see that even for small values of Nη the error is below a range that we can possibly discern in a visual plot. 
Furthermore, we explicitly show that above a critical resolution in η the distance to the true solution does not further 
increase. This is the point where we reach the limit of the underlying given data. Further improvement can only be gained 
if the underlying resolution is increased.

Another possible test of the flux-surface average is the vanishing divergence of the curvature operator K := ∇ × (êϕ/B)

that is ∇ · K = 0, from which follows

〈
K · ∇ψp

〉= 0 (48)

In Fig. 9 we plot the result for the same parameters as in the previous Fig. 8 (except for the smallest ε value, which 
triggered too large oscillations and a ψp with only 1 X-point instead of 2). We see that the delta-function approach dete-
riorates close to the separatrix and that again oscillations appear for the small value ε/h = 0.1. The finite extension of the 
numerical delta-function introduces a smoothing effect over neighboring contour lines. The grid-transform method has a 
significantly lower error.
13
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Fig. 9. Plot of Eq. (48) as a function of normalized poloidal flux ρp =√
(ψp − ψp,O )/ψp,O with a ψp with 1 X-point. The analytical solution in black is 

zero. Labels and methods analogous to Fig. 8.

Table 4
Convergence of the arc-length and area of the ellipse given by 
ψ

ellipse
p = 0 (49) using Gauss-Legendre integration with 3 polyno-

mial coefficients in Eq. (25) and (26). We use Nη = 10Nψ .

Nψ

∫
ellipse ds

∫
ellipse dA

error order error order

6 2.78e-04 n/a 1.01e-06 n/a
12 2.56e-07 10.08 6.32e-08 3.99
24 1.38e-08 4.22 1.42e-09 5.48
48 4.20e-10 5.04 5.23e-13 11.40
96 2.67e-11 3.97 2.51e-15 7.70

As a final test we measure the time it takes to compute the curves in Fig. 9 on a single core of a Intel(R) Xeon(R) 
W-2133 CPU. The aligned curve took 1.29 · 10−3 s to compute while the three ε/h curves took on average 1.21 · 10−1 s to 
compute, which is slower by a factor 90. From our performance estimate at the end of Section 2.3 we expect a speedup 
of only NR N Z /Nη = 2402/1920 = 30 of the grid-transform method compared to the delta-function approach. However, this 
assumes that the implementation is perfectly memory bandwidth bound, which may not be the case for our implementa-
tion. Furthermore, these timings should be contrasted with the computation of the flux-aligned grid itself, which took 25 s. 
Here, we note however that we compute the flux-aligned grid to machine precision, which overly inflates the computation 
time and may not be necessary in practice. The latter time can be amortized over 25/0.121 = 200 flux surface average 
computations.

3.2.2. Line and area integrals
The argument could be made that the poor results of the delta-function approach compared to the grid-transform 

method in Section 3.2.1 are due to our too simplistic representation in Eq. (18). In this section we thus want to compare 
the grid-transform method to more sophisticated representations of the delta-function. We here apply the grid-transform 
method to a test presented in References [20,22] who use it to show the performance of their delta-function approaches. To 
this end we choose ψp of the form

ψ
ellipse
p (R, Z) := 1 −

(
R − R0

3/2

)2

−
(

Z

1/2

)2

(49)

The iso-contour ψellipse
p = 0 in R, Z forms an ellipse whose arc-length is given by the numeric value 7.26633616541076

and whose enclosed area is given by (9/8)π [20,22]. We show the result of the grid-transform method to compute the 
arc-length (25) and area (26) using f = 1 in Table 4. Relative errors are shown. We see irregular convergence behavior of 
order at least 4 in both quantities. The error of the area is smaller than that of the arc length and for Nψ = 96 is close to 
machine precision.

With Nη = 10Nψ we have that Nψ = 6 corresponds to a grid that resolves the arc-length at about h = 0.1 (the mesh 
size used in [20,22]). Note here that with second order polynomials from the Gauss-Legendre integration we have three 
coefficients per cell. Higher order methods can easily be constructed using higher order polynomials. We thus conclude that 
the grid-transform method yields errors several orders of magnitude smaller than the delta-function approaches in [20,22]
and converges with more than twice the convergence rate.

In the remaining part of this section we only use the grid-transform method to compute integrals.
14
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Table 5
Comparison of volume integration with flux surface average vol-
ume integration for NR = N Z = 150 and toroidally symmetric f
Eq. (44) with σϕ = ∞ (left). Volume error without X-point (right). 
We use Nη = 10Nψ and n = 3 in the Gauss-Legendre integration 
for ψp given in Eq. (40).

Nψ

∫ 〈 f 〉dv (incl. X-point)
∫

dv (excl. X-point)

error order error order

48 1.22e-03 n/a 1.16e-08 n/a
96 6.53e-04 0.90 2.12e-10 5.78
192 3.24e-04 1.01 3.44e-12 5.94
384 1.63e-04 0.99 4.33e-14 6.31

3.2.3. Volume integrals and derivatives
The flux surface average depends on the flux function ψp and so a volume derivative as mandated by the conservation 

equation (37) reads

d

dv
〈 f 〉 =

(
dv

dψp

)−1 d

dψp
〈 f 〉 (50)

and the volume integral∫
〈 f 〉 dv =

∫
〈 f 〉 dv

dψp
dψp (51)

Numerically, the derivative of the volume flux label dv/dψp is easily obtained via Eq. (28).
Once the flux-surface average is discretized on a given grid in ψp we can derive and/or integrate with respect to the 

volume flux-label. We here stay within a discontinuous Galerkin framework for high order derivative and integration for-
mulas [32] but note that any other consistent discretization of derivatives is equally valid.

We test this by first testing the volume integration of the toroidally symmetric f Eq. (44) (σϕ = ∞) with ψp given by 
Eq. (40). The total volume integral in the domain [2, 4] × [−1, 1] can be computed via Gauss-Legendre integration on the 
original grid without involving the flux surface average, i.e. 

∫
f dV can be computed to high accuracy and yields a test for ∫ 〈 f 〉dv = ∫ 1

0 〈 f 〉 (dv/dψp)dψp . The resulting relative errors are shown in Table 5 in the left columns. We observe that 
the convergence rate tends to first order convergence even though we expected a 6th order convergence due to the use of 
Gauss-Legendre integration in the (ζ, η) space. This reduction of convergence was observed in [8] and is due to the presence 
of the X-points in the four corners of the domain. The diverging volume element only allows reduced convergence rates.

The 6th order convergence is recovered if we stop the volume integration before we reach the X-points, i.e. we 
choose 

∫ 1
c 〈 f 〉 (dv/dψp)dψp with c > 0 to avoid the separatrix at ψp = 0 in Eq. (40). Unfortunately, we cannot compute 

an accurate solution for a non-trivial f so that for this test we choose f = 1. Then 
∫ 1

c dv = 4π
∫ R0+Rc

R0−Rc
Z(R)RdR with 

Z(R) = (2/π) arccos (c/ cos(π(R − R0)/2)) and Rc = (2/π) arccos(c), c = 1/7. The resulting relative errors and orders are 
shown in Table 5 in the right columns and shows approximately 6-th order convergence as expected.

In order to test the volume derivative we use the identity

〈
�ψp

〉= ∂

∂v

(
dv

dψp

〈
|∇ψp|2

〉)
(52)

which directly follows from Eq. (36). A convergence test with increasing number of points in ψp is shown in Table 6 for a ψp

with 2 X-points. Nη = 10Nψ . We show relative errors in the L2 norm. Again, we find approximately first order convergence 
even though we could expect second order from the used discretization of the derivative. We attribute this again to the 
diverging volume close to the X-points.

In the same Table 6 we show results if the X-points are avoided similarly to the previous example by restricting the 
grid to a maximum ψp < 0 value (i.e. avoiding the separatrix in Fig. 2). Then the expected second order convergence is 
recovered.

3.3. Smoothed toroidal and flux-surface average

Here, we test if the flux surface average applied to f gives a different result to S�ϕ ( f ) that is we want to numerically 
test Eq. (33). In Table 7 we show the relative error for different numbers of toroidal planes. We see that the error is fairly 
small even for the very low resolution of only 5 toroidal planes and converges with 2nd order. It is in fact not needed to 
apply the smoothing procedure to the toroidal average 〈 f 〉T

ϕ if one is only interested in the flux-surface average in Eq. (31).
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Table 6
Comparison of volume derivative with flux surface average for ψp

with 2 X-points as in Fig. 2. Approximately first order convergence 
is shown if values up to the X-points are computed (left). Second 
order is retained if the X-point is avoided (right).

Nψ 〈�ψp〉 (incl. X-point) 〈�ψp〉 (excl. X-point)

error order error order

12 9.09e-03 n/a 4.31e-04 n/a
24 1.46e-03 2.64 1.05e-04 2.03
48 6.63e-04 1.14 2.83e-05 1.89
96 4.96e-04 0.42 7.91e-06 1.84
192 2.98e-04 0.74 2.11e-06 1.91
384 9.43e-05 1.66 5.43e-07 1.96

Table 7
Comparison of the smoothed vs the normal flux surface 
average on the field (40) for constant values NR = N Z =
150, Nη = 1920, Nψ = 192. f is given by Eq. (44).

Nϕ 〈 f − S( f )〉/〈 f 〉
error order

5 2.06e-03 n/a
10 5.36e-04 1.94
20 1.51e-04 1.83
40 3.83e-05 1.97

4. Conclusions

In this contribution we suggest a smoothed toroidal average as a way to improve toroidal averages in simulations based 
on the flux-coordinate independent approach. The resulting formula (12) is easily applied in post-processing if the simple 
toroidal sum is stored during the simulation. We show that the algorithm can be interpreted as a partial surface average. 
Furthermore, we show the connection to the full flux-surface average in Eq. (33). In the presented numerical tests it is 
shown that the smoothed toroidal average leads to superior results to the simple toroidal average of field-aligned quantities.

Furthermore, we investigate flux-surface averages as well as general line and surface integrals on non-aligned grids by 
transforming quantities onto a flux-aligned grid. Numerical grid generators previously constructed in [23,8] can be used. 
The quantity to integrate can be transformed to the grid via simple interpolation. Once interpolated, the flux-surface aver-
age (31), the line integral (25) and the surface integral (24) can readily be computed in the flux-aligned coordinates. Our 
method is relevant for level set methods as well as three-dimensional simulations of plasma dynamics on non-aligned grids, 
in particular those using the FCI approach.

We compare the grid-transform method to one based on an approximation of the delta-function in an expression of 
the surface integral as a volume integral over the entire domain (30). It is shown in this paper that the grid-transform 
method is highly accurate and superior to the delta-function method in every quality measure. Due to the necessarily finite 
extension of the numerical delta-function the accuracy of the associated flux-surface average is lost close to the O-point and 
the separatrix. This problem is absent in the grid-transform method. A test of line and area integrals of an ellipse is shown. 
The grid-transform method shows far better error constants and order of convergence than methods proposed previously 
in the literature. Volume derivatives and integrals necessary in flux-surface averaged conservation laws can be accurately 
computed. However, the diverging volume element close to X-points reduces the order of convergence to 1 in those cases.

The methods shown in this work are applied to level-sets of toroidally symmetric functions. An extension to general 
non-toroidally symmetric surfaces in three-dimensions depends on a suitable and fast method to compute aligned grid 
coordinates but is otherwise immediate.
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Appendix A. Data access

All figures and tables in this paper can be reproduced using the Jupyter Notebooks within the dataset https://github .
com /mwiesenberger /averages. The necessary binary data was generated with the fully parallelized, bitwise reproducible and 
accurate Feltor library [24,25]. The library is freely available and interoperates readily with Python and the netCDF data 
format through our simplesimdb Python package available at https://pypi .org /project /simplesimdb/. Moreover, there is 
ample documentation available on our website https://feltor-dev.github .io
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[27] A.I. Saichev, W.A. Woyczyński, Distributions in the Physical and Engineering Sciences, Birkhäuser, Boston, 1997.
[28] B. Scott, J. Smirnov, Energetic consistency and momentum conservation in the gyrokinetic description of tokamak plasmas, Phys. Plasmas 17 (2010) 

112302, https://doi .org /10 .1063 /1.3507920.
[29] M. Wiesenberger, M. Held, Angular momentum and rotational energy of mean flows in toroidal magnetic fields, Nucl. Fusion 60 (9) (2020) 096018.
[30] A.J. Cerfon, J.P. Freidberg, “One size fits all” analytic solutions to the grad-Shafranov equation, Phys. Plasmas 17 (3) (2010) 032502, https://doi .org /10 .

1063 /1.3328818.
[31] S. Günter, Q. Yu, J. Krüger, K. Lackner, Modelling of heat transport in magnetised plasmas using non-aligned coordinates, J. Comput. Phys. 209 (1) 

(2005) 354–370, https://doi .org /10 .1016 /j .jcp .2005 .03 .021.
[32] J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods, 1st edition, Springer, New York, NY, 2008.
18

https://doi.org/10.1016/j.cpc.2018.12.006
http://refhub.elsevier.com/S0021-9991(23)00502-8/bib66A6B54538F562BB4876C569DEB4C200s1
http://refhub.elsevier.com/S0021-9991(23)00502-8/bib66A6B54538F562BB4876C569DEB4C200s1
http://refhub.elsevier.com/S0021-9991(23)00502-8/bibD2C1C013C493CA0085ED210FC7D99BE7s1
https://doi.org/10.1063/1.3507920
http://refhub.elsevier.com/S0021-9991(23)00502-8/bib793D7B628B553435389C4BD9468458C3s1
https://doi.org/10.1063/1.3328818
https://doi.org/10.1063/1.3328818
https://doi.org/10.1016/j.jcp.2005.03.021
http://refhub.elsevier.com/S0021-9991(23)00502-8/bibC664E9760A5EAA033B33FE48526BF43Es1

	Numerical evaluation of line, surface and toroidal integrals on level sets of toroidally symmetric functions
	1 Introduction
	2 Derivation of the algorithms
	2.1 Toroidal averages
	2.1.1 The magnetic field
	2.1.2 Field-alignment
	2.1.3 The smoothed toroidal or partial flux-surface average

	2.2 Line and surface integrals and the flux surface average
	2.2.1 Dirac delta and area integrals
	2.2.2 Area integrals in flux-aligned coordinates
	2.2.3 Flux surface average

	2.3 Discussion

	3 Numerical tests
	3.1 Toroidal averages
	3.2 Line and surface integrals and the flux surface average
	3.2.1 Convergence of the flux-surface average
	3.2.2 Line and area integrals
	3.2.3 Volume integrals and derivatives

	3.3 Smoothed toroidal and flux-surface average

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Data access
	References


