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Abstract: We consider an operator of multiplication by a complex-valued potential in L2(R), to
which we add a convolution operator multiplied by a small parameter. The convolution kernel is
supposed to be an element of L1(R), while the potential is a Fourier image of some function from
the same space. The considered operator is not supposed to be self-adjoint. We find the essential
spectrum of such an operator in an explicit form. We show that the entire spectrum is located in a
thin neighbourhood of the spectrum of the multiplication operator. Our main result states that in
some fixed neighbourhood of a typical part of the spectrum of the non-perturbed operator, there are
no eigenvalues and no points of the residual spectrum of the perturbed one. As a consequence, we
conclude that the point and residual spectrum can emerge only in vicinities of certain thresholds in
the spectrum of the non-perturbed operator. We also provide simple sufficient conditions ensuring
that the considered operator has no residual spectrum at all.
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1. Introduction

Over the last 20 years, there has been growing interest in non-local operators since
they arise in various applications. Among such operators, there are convolution operators
with integrable kernels. They appear in population dynamics, ecological problems and
porous media theory. One of the interesting models of a nonlocal operator is a convolution
operator perturbed by a potential, i.e., an operator

(Lu)(x) =
∫
Rd

a(x− y)u(y) dy + V(x)u(x) in L2(Rd). (1)

While the spectra of the convolution operator and of the operator of multiplication by
the potential can be found and characterized very easily, the description of the spectrum
of their sum is a very non-trivial problem. At the same time, the spectral properties of
such sums are not only of pure mathematical interest, but are important also for many
applications. For instance, such operators arise in the mathematical theory of population
dynamics and it is important to know whether a given operator of the form (1) possesses
positive eigenvalues; such questions were studied in [1–4].

A more general problem regards the spectral properties of Schrödinger type operators,
which are perturbations of a given pseudo-differential operator by a potential; see [5–8]
and the references therein. The assumptions made in the cited papers ensured that the

Mathematics 2023, 11, 4042. https://doi.org/10.3390/math11194042 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11194042
https://doi.org/10.3390/math11194042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9631-1791
https://doi.org/10.3390/math11194042
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11194042?type=check_update&version=2


Mathematics 2023, 11, 4042 2 of 26

essential spectrum of the perturbed operator coincides with that of the unperturbed pseudo-
differential operator. The main results described the existence of the discrete spectrum
and Cwikel–Lieb–Rozenblum-type inequalities. A similar result was obtained in [9] for
perturbations of a rather general class of Schrödinger type operators defined on a σ-compact
metric space. In [10], various bounds were obtained for the number of negative eigenvalues
produced by a perturbation of an operator H0 under the assumption that the Markov
process with generator −H0 is recurrent.

In our recent works [11,12], we studied spectral properties of operator (1) assuming
that it was self-adjoint. The essential spectrum was found explicitly. We established several
sufficient conditions ensuring the existence of the discrete spectrum and obtained upper
and lower bounds for the number of points of the discrete spectrum. We also provided
sufficient conditions guaranteeing that the considered operator had infinitely many discrete
eigenvalues accumulating to the thresholds of the essential spectrum. The structure of
such sufficient conditions was quite different from similar well-known sufficient conditions
for differential operators perturbed by localized potentials. The reason is that in the latter
case, the unperturbed differential operator is unbounded and is perturbed by a bounded
multiplication operator. In the case of the operator in (1), both the convolution operator
and multiplication are equipollent and this essentially changes the spectral properties in
comparison with the classical model of perturbed elliptic differential operators.

It is well known that a small localized perturbation of a differential operator with a
non-empty essential spectrum can create eigenvalues emerging from certain thresholds
in this essential spectrum. There are hundreds of works, in which such bifurcation was
investigated for various models. Not trying to mention all such works, we cite only a few
very classical ones, where this phenomenon was first rigorously studied [13–16]. In view of
such results for differential operators, a natural and reasonable continuation of our studies
in [11,12] is to consider similar the issue for operators (1), i.e., to study the operator

(Lεu)(x) =
∫
Rd

a(x− y)u(y) dy + εV(x)u(x)

on L2(Rd), where ε is a small parameter. Here, again, the unperturbed operator and the per-
turbed one are equipollent and we naturally expect that the mechanisms of the eigenvalue’s
emergence from the essential spectrum can be rather different from ones for differential
operators. This is indeed the case; for instance, using the Fourier transform, we can replace
the operator Lε with a unitary equivalent one, in which the original convolution operator
is replaced by the multiplication operator, while the potential generates a convolution
operator with a small coupling constant:

(L̂εu)(x) = â(x)u(x) + ε
∫
Rd

V̂(x− y)u(y) dy.

Exactly this operator in the one-dimensional case (d = 1) is the main object of the study
in the present work. We succeed in dropping the condition of self-adjointness of the
operator and treating a general operator with a complex-valued potential and a general
convolution kernel. For such a general non-self-adjoint operator, we explicitly find its
essential spectrum; it turns out to be the union of the ranges of the potential and of the
Fourier image of the convolution kernel. Then, we show that the entire spectrum is located
in a thin neighbourhood of the spectrum of the unperturbed multiplication operator. Our
most nontrivial result states that in some fixed neighbourhood of a typical part of the
spectrum of the unperturbed operator, there are no eigenvalues and no residual spectrum.
As a consequence, we conclude that the eigenvalues and the residual spectrum can emerge
only in vicinities of certain thresholds in the essential spectrum of the unperturbed operator.
We also provide simple sufficient conditions ensuring that the considered operator has no
residual spectrum at all, and not only in the aforementioned vicinities.
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The issue of the existence and behaviour of possible eigenvalues and the residual
spectrum emerging from the aforementioned threshold is an interesting problem that
deserves an independent study. We shall present such a study in our next paper, which is
being prepared now.

2. Problem and Main Results

Let V = V(x) and a = a(x) be measurable complex-valued functions defined on R.
On the space L1(R), we introduce a Fourier transform by the formula

F [u](x) :=
∫
Rd

u(ξ)e−ix·ξ dξ

and then extend it to L2(R). We assume that the function a belongs to L1(R), while the
function V is an image of some function V̂ ∈ L1(Rd), i.e., V = F [V̂]. We let â(ξ) := F [a](ξ).

The paper is devoted to studying an operator in L2(R) defined by the formula

Lε := LV + εLa?, (La?u)(x) :=
∫
Rd

a(x− y)u(y) dy, (LVu)(x) := V(x)u(x),

where ε is a small positive parameter. This operator is bounded in L2(R); this fact can be
easily proved by literally reproducing the proof of Lemma 4.1 in [11]. Our main aim is to
describe the behaviour of the spectrum of this operator for sufficiently small ε.

Since the functions a and V are complex-valued, the operator Lε is non-self-adjoint. In
this paper, we follow a usual classification of the spectrum of a non-self-adjoint operator.
Namely, the spectrum σ( · ) of a given operator is introduced as a complement to its
resolvent set. The point spectrum σpnt( · ) is the set of all eigenvalues. The essential
spectrum σess( · ) is defined in terms of the characteristic sequences, i.e., λ ∈ σess(A) of a
closed operator A in L2(R) if there exists a bounded non-compact sequence un in L2(R)
such that (A− λ)un → 0 in L2(R) as n→ ∞. The residual spectrum σres( · ) is defined as

σres( · ) := σ( · ) \
(

σpnt( · ) ∪ σess( · )
)
.

We shall show in Section 4.3, see Lemma 8, that the residual spectrum is given by the formula

σres(A) = (σpnt(A∗))† \
(

σpnt(A) ∪ σess(A)
)
, (2)

where for an arbitrary set S ⊂ C, the set S† is obtained by the symmetric reflection with
respect to the real axis, i.e., S† := {λ : λ ∈ S}.

We first describe the essential spectrum of the operator Lε. In order to do this, we
introduce two curves in the complex plane as the ranges of the functions V and â:

Υ := {V(x) : x ∈ R}, γ := {â(x) : x ∈ R}.

Theorem 1. The spectrum of the operator Lε is located in a small neighbourhood of Υ, namely,

σ(Lε) ⊆
{

λ ∈ C : dist(λ, Υ) 6 ε‖a‖L1(R)

}
. (3)

For all ε the essential spectrum of the operator Lε is given by the identity

σess(Lε) = Υ∪ εγ. (4)

The sets Υ and γ are continuous closed curves in the complex plane that contain the origin.

Apart of the essential spectrum described in Theorem 1, the operator Lε can also
have point and residual spectra. Our second main result states that the eigenvalues of the
operator Lε and its residual spectrum can exist only in the vicinities of certain thresholds
on the curve Υ and they are absent in certain neighbourhoods of finite pieces of this
curve. In order to state such a result, we classify all points x0 ∈ R by a behaviour of the
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function V in their vicinities. Namely, given two pairs α = (α−, α+) and β = (β−, β+) with
α± ∈ C \ {0} and β± ∈ (0, +∞), a point x0 ∈ R is called a (β, α) threshold if there exists a
ρ-neighbourhood of the point x0 such that

V(x)−V0 = α±|x− x0|β±v±(x) as 0 6 ±(x− x0) 6 ρ, (5)

where v− ∈ C2[x0− ρ, x0], v+ ∈ C2[x0, x0 + ρ] are some complex-valued functions such that

v±(x0) = 1, |v′−(x)| 6 C on [x0 − ρ, x0], |v′+(x)| 6 C on [x0, x0 + ρ], (6)

where C is some constant independent of x.
A point x0 ∈ R is called regular if there exists a ρ-neighbourhood of the point x0

such that
V ∈ C2[x0 − ρ, x0 + ρ], V′(x0) 6= 0. (7)

Let S be a connected close piece of the curve Υ not containing the origin. We assume
that this piece is the image of finitely many disjoint segment Jj := [b−j , b+

j ] on the real
axis, i.e.,

S =
{

V(x) : x ∈ J
}

, V(x) /∈ S as x /∈ J :=
n⋃

j=1

Jj, (8)

where n ∈ N and b±j ∈ R are fixed numbers and b−j < b+
j . For δ > 0, we let

Sδ :=
{

λ ∈ C : dist(λ, S) 6 δ
}

.

By Br(y), we denote an open ball in the complex plane of a radius r centred at a point y.
Now, we are in a position to formulate our second main result.

Theorem 2. Let S be a connected close piece of the curve Υ not containing the origin and
obeying (8), each segment Jj contains only regular points and finitely many (β, α) thresholds,
and for each of such thresholds, we have β± < 1. Suppose that there exists a natural m such that for
each λ ∈ S, each of the segment Jj contains at most m points x such that V(x) = λ. Suppose also
that the generalize derivative a′ exists and

a ∈ L1(R) ∩W1
2 (R), esssup

(x,y)∈R2

0<|x−y|<1

|a′(x)− a′(y)|
|x− y|θ

< ∞, (9)

where θ ∈ (0, 1] is some fixed number. Then, there exists a sufficiently small δ > 0 such that for
all sufficiently small ε, the closed δ-neighbourhood Sδ of the set S intersects neither with the point
spectrum of the operator Lε, nor with its residual spectrum, i.e.,

σpnt(Lε) ∩ Sδ = ∅, σres(Lε) ∩ Sδ = ∅.

Our third result concerns the residual spectrum. It is well known that such a spectrum
is always absent for self-adjoint operators. In view of the absence of the residual spectrum
in the set Sδ stated in Theorem 2, there arises a natural question on sufficient conditions
ensuring the absence of the residual spectrum for the operator Lε. The answer to this
question is our third main result formulated in the following theorem.

Theorem 3. Assume that one of the following conditions holds:

V(x) = V(x), a(x) = a(−x), (10)

or
V(τx + $) = V(x), a(−τx) = a(x), x ∈ R, (11)
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for some $ ∈ R and τ ∈ {−1, +1}. Then, the residual spectrum of the operator Lε is empty for
all ε.

Let us briefly discuss the problem and the main results. The main feature of our
operator Lε is its non-self-adjointness, and in the general situation, both functions V and
a are complex-valued. The convolution operator is multiplied by the small parameter
and our operator Lε is to be treated as a perturbation of the multiplication operator by a
small convolution operator. As mentioned in the introduction, by applying the Fourier
transform to the operator Lε, we can reduce it to a unitarily equivalent operator, in which
the convolution and the potential parts interchange; then, we obtain a convolution operator
perturbed by a small potential. The results of this work serve as a first step in studying
how such a small perturbation deforms the spectrum of the unperturbed operator.

Our first result, Theorem 1, describes explicitly the location of the essential spectrum
of the operator Lε. It turns out to be the union of the essential spectra of the unperturbed
multiplication operator LV and of the perturbed operator εLa?. These parts of the essential
spectrum are the curves Υ and εγ. The latter curve is small and is located in the vicinity of
the origin. The spectrum of the operator Lε also satisfies inclusion (3), which means that
this spectrum is located in a thin tubular neighbourhood of the limiting spectrum Υ.

Our most nontrivial result is Theorem 2. It states that in a typical situation, there are
fixed neighbourhoods of finite pieces of the curve Υ, which contain no point and residual
spectra of the operator Lε. The choice of such finite pieces is characterized by the presence
of (β, α) thresholds, and these pieces are to be generated by regular point and finitely many
(β, α) thresholds with β± < 1. The latter condition means that the function V approaches
such threshold with a not very high rate; see (5). The fact that there should be finitely
many such thresholds is important and is employed essentially in the proof of Theorem 2.
Another important point is that the considered piece of the curve Υ should not pass the
origin; the presence of an additional curve εγ of the essential spectrum seems to play a
nontrivial role in the existence of the discrete and residual spectrum in the vicinity of the
origin. Assumption (9) is also essentially employed in the proof, and what can happen
once they are violated is an interesting open question. We conjecture that violation of these
conditions can dramatically change the spectral picture for the operator Lε.

We also observe that the second condition in (9) means that the first generalized
derivative a′ is Hölder-continuous almost everywhere, and this can be guaranteed by
assuming that the second generalized derivative a′′ exists and belongs to Lp(R) with some
p ∈ (1, +∞) including the case p = +∞. Indeed, if the second derivative is an element of
L∞(R), then the second condition in (9) is satisfied with θ = 1, while for 1 < p < +∞, it is
implied by the Hölder inequality:

|a′(x)− a′(y)| =
∣∣∣∣

y∫
x

a′′(t) dt
∣∣∣∣ 6 |x− y|1−

1
p ‖a′‖Lp(R).

An important consequence of Theorem 2 is that the eigenvalues and the points of the
residual spectrum can arise only in the vicinity of (β, α) thresholds, when at least one of the
numbers β+ and β− exceeds or equal to 1; in the case β+ = β− = 1, we should additionally
assume that α+ 6= −α− to avoid the case of a regular point. This means that typically,
the spectrum of the operator Lε is as follows: there is the essential spectrum described in
Theorem 1, and along the curve Υ, there are no eigenvalues and residual spectrum except
vicinities of the origin and (β, α) thresholds with β+ > 1 or/and β− > 1. In such vicinities,
the eigenvalues can indeed emerge; see an example in our recent work [12]. However, the
study of possible emerging eigenvalues in the general situation is a non-trivial problem,
which we postpone for our next paper.

Theorem 3 addresses one more question on the absence of the residual spectrum for
the operator Lε. In contrast to Theorem 2, here we aim to find cases where the residual
spectrum is completely absent rather than only in some neighbourhoods of some pieces of
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Υ. Condition (10) guarantees that the operator Lε is self-adjoint. Condition (11) is more
delicate and, in fact, it means that the operator Lε is PT -symmetric, namely,

PT (Lε)∗ = LεPT . (12)

Here T is the operator of the complex conjugation, i.e., T u = u. The symbol P is an
operator acting as

(Pu)(x) = u(τx + $). (13)

We also observe that once condition (12) holds for some other operator P , it also ensures the
absence of the residual spectrum for the operator Lε. Indeed, if λ and φ are an eigenvalue
and an associated eigenfunction of the adjoint operator (Lε)∗, then

LεPT φ = PT (Lε)∗φ = λPT φ. (14)

Hence, λ is an eigenvalue of the operator Lε, and by Formula (2), we see that the residual
spectrum of the operator Lε is empty.

3. Location of Spectrum and Essential Spectrum

In this section, we prove Theorem 1. We begin with checking identity (3). The spectrum
of the operator LV obviously coincides with Υ. As λ /∈ Υ, the inverse operator (LV − λ)−1

is the multiplication by (V − λ)−1 and it is easy to see that the norm of the operator
(LV − λ)−1 satisfies the estimate

‖(LV − λ)−1‖ 6 1
dist(λ, Υ)

. (15)

For λ /∈ Υ, we consider the resolvent equation

(Lε − λ)u = f

with an arbitrary f ∈ L2(Ω), and we rewrite it as

u + ε(LV − λ)−1La?u = (LV − λ)−1 f . (16)

By ‖ · ‖X→Y, we denote the norm of a bounded operator acting from a Banach space X
into a Banach space Y. As it was shown in the proof of Lemma 4.1 in [11], once a ∈ L1(R),
the operator La? is bounded in L2(R) and

‖La?‖L2(R)→L2(R) 6 ‖a‖L1(R). (17)

This estimate and (15) yield that as

ε‖(LV − λ)−1La?‖ 6 ε
‖a‖L1(R)

dist(λ, Υ)
< 1,

the inverse operator
(
I + ε(LV − λ)−1La?

)−1 is well defined, where I is the identity
operator. This allows us to solve Equation (16) and to find the resolvent of the operator Lε:

(Lε − λ)−1 =
(
I + ε(LV − λ)−1La?

)−1
(LV − λ)−1 as ε‖a‖L1(R) < dist(λ, Υ).

Hence, each point in the spectrum of the operator Lε satisfies the inequality
dist(λ, Υ) 6 ε‖a‖L1(R) and this proves inclusion (3).

In order to prove identity (4), we adapt the proof of Theorem 2.1 from [11] and below,
we reproduce the main milestones from the cited work. It follows from our assumptions on
a and V̂ that the functions V and â are bounded and continuous on R and decay at infinity.
We also observe the following unitary equivalence:
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(
1

(2π)
d
2
F
)
La?

(
1

(2π)
d
2
F
)−1

= Lâ,
(

1

(2π)
d
2
F
)
LV

(
1

(2π)
d
2
F
)−1

= LV̂?. (18)

Hence,
σ(Lεâ) = σess(Lεâ) = σ(Lεa?) = σess(Lεa?) = εγ,

σ(LV) = σess(LV) = σ(LV̂?) = σess(LV̂?) = Υ.
(19)

We are going to prove the inclusion

Υ∪ εγ ⊆ σess(Lε). (20)

We let

ϕn(x) :=


(2n)

1
2 as |x| < 1

n
,

0 as |x| > 1
n

for all natural n. For an arbitrary λ ∈ Υ, there exists x0 ∈ R such that V(x0) = λ. The
sequence ϕn(x− x0), normalized and non-compact in L2(R), is obviously a characteristic
one of the operator LV at the point λ. We also have:

‖La?ϕn( · − x0)‖2
L2(R) 62n

∫
R

dx

( x0+ 1
n∫

x0− 1
n

|a(x− y)| dy

)2

= 2n
∫
R

dx

( x+ 1
n∫

x− 1
n

|a(y)| dy

)2

62n

(
sup
x∈R

x+ 1
n∫

x− 1
n

|a(y)| dy

) ∫
Rd

dx

x+ 1
n∫

x− 1
n

|a(y)| dy

=2n

(
sup
x∈R

x+ 1
n∫

x− 1
n

|a(y)| dy

) ∫
Rd

dy|a(y)|
y+ 1

n∫
y− 1

n

dx

=‖a‖L1(R)

(
sup
x∈R

x+ 1
n∫

x− 1
n

|a(y)| dy

)
→ 0, n→ ∞,

where the latter convergence is due to the absolute continuity of the Lebesgue integral.
Hence, ϕn(x− x0) is a characteristic sequence of the operator Lε at λ and

σess(LV) ⊆ σess(Lε). (21)

By unitary equivalence (18) and identity (19), we similarly obtain σess(Lεa?) ⊆ σess(L), and
in view of (21), this proves (20).

It remains to show that
σess(Lε) \

(
Υ∪ εγ

)
= ∅.

If λ ∈ σess(Lε) \ (Υ ∪ εγ), there exists a bounded non-compact sequence un ∈ L2(R)
such that

fn := (L− λ)un → 0, n→ ∞. (22)

Since λ /∈
(

σess(LV) ∪ σess(Lεa?)
)
, in view of (19), the resolvents (LV − λ)−1 and

(Lεa? − λ)−1 are well defined and bounded. Then, we rewrite (22) as

1
V − λ

Lεa?un + un =
fn

V − λ
→ 0, n→ +∞, V(x) 6= λ, x ∈ R,

and we get
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(Lεa? − λ)un + V1Lεa?un =
λ

V − λ
fn, V1 :=

V
V − λ

,
1

V − λ
= − 1

λ
+

V1

λ

where we have used zero as in σess(LV) and, therefore, λ 6= 0. Applying, then, the resolvent
(La? − λ)−1 to the obtained identity, we finally find:

un = (Lεa? − λ)−1
(

λ

V − λ
fn −V1Lεa?un

)
.

Since the function V decays as infinity, the same holds for V1. This ensures the compactness
of the operator V1Lεa? in L2(R) and, hence, by the above identity, the sequence un is
compact, which is impossible. The proof is complete.

4. Absence of Point and Residual Spectrum

In this section, we prove Theorem 2. The proof consists of three main parts and we
present them as separate subsections. After the proof of Theorem 2, we provide the proof
of Theorem 3.

4.1. Absence of Embedded Eigenvalues

By our assumptions, the segment Jj contains only regular points and possibly finitely
many (β, α) thresholds. We denote the latter thresholds by x(j,i), i = 1, . . . , mj, j = 1, . . . , n,

while the symbols β
(j,i)
± and α

(j,i)
± stand for the corresponding values of β± and α±. The

mentioned structure of the segment Jj implies that the function V is continuous on each
of the segments Jj and is continuously differentiable on the same segments except the
(β, α) thresholds. It also follows from the definition of the (β, α) thresholds and the regular
points that

|V′(x)| > c0 > 0, x ∈ Jj \ {x(j,i), i = 1, . . . , mi}, j = 1, . . . , n, (23)

where c0 is a fixed constant independent of x. As x approaches one of the thresholds x(j,i),
the derivative V′ blows up in the sense |V′(x)| → +∞ as x → x(j,i).

It follows from (8) that there exists a small fixed δ0 such that

V(x) /∈ S as x ∈ [b−j − δ0, b−j ) ∪ (b+
j , b+

j + δ0], j = 1, . . . , n,

and, by (24),

dist(V(x), S) > c1|x− b±j | as 0 < ±(x− b±j ) < δ0, j = 1, . . . , n. (24)

with some fixed positive constant c1 independent of x and j. We can additionally choose δ0
small enough so that for all j = 1, . . . , n, the intervals [b−j − δ0, b−j ) ∪ (b+

j , b+
j + δ0] contain

only regular points and, if necessary, reducing the constant c0, we can extend estimate (23)
to J̃j, namely,

|V′(x)| > c0 > 0, x ∈ J̃j \ {x(j,i), i = 1, . . . , mi}, j = 1, . . . , n. (25)

Since S is a closed connected piece of the curve Υ, there exist two small fixed positive
numbers δ1 and c2 such that

dist(V(x), Sδ1 ) > c2 as x /∈ J̃ :=
n⋃

j=1

J̃j, J̃j := [b−j − δ0, b+
j + δ0]. (26)

We consider the eigenvalue equation for the operator Lε with the spectral parameter
ranging in Sδ1 :

(V − λ)ψ + εLa?ψ = 0. (27)
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Given an arbitrary measurable set X ⊆ R, by PX , we denote the operator of restriction to X.
This operator is considered as acting from L2(R) into L2(X) by the rule (PXψ)(x) := ψ(x),
x ∈ X. Representing the real axis as R = J̃ ∪ (R \ J̃) and using an obvious decomposition
L2(R) = L2( J̃)⊕ L2(R \ J̃), we denote

ψ J̃ := P J̃ψ, ψR\ J̃ := PR\ J̃ψ

and equivalently rewrite Equation (27) as a pair of two equations

(V − λ)ψ J̃ + εP J̃M J̃ψ J̃ + εP J̃MR\ J̃ψR\ J̃ = 0,

(V − λ)ψR\ J̃ + εPR\ J̃MR\ J̃ψR\ J̃ + εPR\ J̃M J̃ψ J̃ = 0,
(28)

where for an arbitrary measurable set X ⊆ R, the symbol MX denotes a convolution
operator acting from L2(X) into L2(R) by the rule

(MXψ)(x) :=
∫
X

a(x− y)ψ(y) dy, x ∈ R. (29)

The first equation in (28) is to be treated as that in L2( J̃), while the other equation is that
in L2(R \ J̃).

Owing to (26), the norm of the operator of multiplication by (V − λ)−1 in L2(R \ J̃) is
bounded uniformly in λ ∈ Sδ1 by the constant c−1

2 . Applying this operator to the second
equation in (28), we obtain an equivalent equation(

IR\ J̃ + ε(V − λ)−1PR\ J̃MR\ J̃
)
ψR\ J̃ + ε(V − λ)−1PR\ J̃M J̃ψ J̃ = 0, (30)

where IR\ J̃ is the identity operator in L2(R \ J̃) and by estimate (17) we immediately see
that (V − λ)−1PR\ J̃MR\ J̃ is a bounded operator in L2(R \ J̃), and (V − λ)−1PR\ J̃M J̃ is
a bounded operator from L2( J̃) into L2(R \ J̃); both operators are bounded uniformly
in λ ∈ Sδ1 . Hence, for sufficiently small ε, the operator IR\ J̃ + ε(V − λ)−1PR\ J̃MR\ J̃ is
invertible for each λ ∈ Sδ1 and the inverse operator

Q(ε, λ) :=
(
IR\ J̃ + ε(V − λ)−1PR\ J̃MR\ J̃

)−1

is bounded uniformly in ε and λ ∈ Sδ1 as an operator in L2(R \ J̃). Applying this operator
to Equation (30), we immediately find ψR\ J̃ :

ψR\ J̃ = −εQ(ε, λ)(V − λ)−1PR\ J̃M J̃ψ J̃ , (31)

and the operatorQ(ε, λ)(V−λ)−1PR\ J̃M J̃ from L2( J̃) into L2(R \ J̃) is bounded uniformly
in ε and λ ∈ Sδ1 . Substituting this formula into the first equation in (28), we arrive at a
single equation for ψ J̃ :

(V − λ)ψ J̃ + εP J̃M J̃ψ J̃ − ε2P J̃MR\ J̃Q(ε, λ)(V − λ)−1PR\ J̃M J̃ψ J̃ = 0. (32)

We observe that the second and the third terms in the above equation can be rewritten as

εP J̃M J̃ψ J̃ − ε2P J̃MR\ J̃Q(ε, λ)(V − λ)−1PR\ J̃M J̃ψ J̃ = εP J̃La?A(ε, λ)ψ J̃ ,

where A is an operator from L2( J̃) into L2(R) defined by the formula

A(ε, λ)ψ J̃ :=

{
ψ J̃ on J̃,

−εQ(ε, λ)(V−λ)−1PR\ J̃M J̃ψ J̃ on R \ J̃.
(33)

This operator is bounded uniformly in ε and λ ∈ Sδ1 , namely,

‖A(ε, λ)‖L2( J̃)→L2(R) 6 c3, (34)
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where c3 is a constant independent of ε and λ. Hence, Equation (32) becomes

(V − λ)ψ J̃ + εP J̃La?A(ε, λ)ψ J̃ = 0. (35)

Our main aim is to prove that there exists a fixed positive δ ∈ (0, δ1] such that for
λ ∈ Sδ, Equation (35) can have only trivial solutions. First, we are going to show that such
a statement holds for λ located on the curve Υ∩ Sδ1 ; such a curve obviously contains S.

We arbitrarily choose λ ∈ Υ ∩ Sδ1 and let z(j,i) be all points of the segment J̃j such
that V(z(j,i)) = λ. Here, the superscript j ranges in some subset of {1, . . . , n} and i ranges
from 1 to some natural number depending on j. Let us show that the total number of
points z(j,i) in each segment J̃j is bounded by some constant m̃ > m independent of j and λ
provided δ1 and δ0 are chosen small enough. Indeed, according to our assumptions, the
total number of the points z(j,i) located in the segment Jj is bounded by m and we only
need to estimate the total number of such points located in J̃j \ Jj. If λ is such that one of
the corresponding points z(j,i) is located in [b−j − δ0, b−j ) or in (b+

j , b+
j + δ0] for some j, then

each of the mentioned intervals can contain at most one point z(j,i). This will be ensured by
the inequality

V(x) 6= V(y) as x 6= y, x, y ∈ [b−j − δ0, b−j ) or x, y ∈ (b+
j , b+

j + δ0], (36)

which we are going to prove. The point b+
j can be regular or a (β, α) threshold, and in both

cases, owing to (5) and (7), for x ∈ (b+
j , b+

j + δ0] the function V can be represented as

V(x) = α0(x− b+
j )β0 v0(x), v0 ∈ C2[b+

j , b+
j + δ0],

provided δ0 is small enough. Here, α0 is some non-zero complex number, β0 ∈ (0, 1] is
some real number and v0 is some complex-valued function such that v0(b+

j ) = 1. Choosing

x, y ∈ (b+
j , b+

j + δ0] arbitrarily, we have

V
1

β0 (x)−V
1

β0 (y) =α
1

β0
0

(
(x− b+

j )v
1

β0
0 (x)− (y− b+

j )v
1

β0
0 (y)

)
=α

1
β0
0

(
(x− y)v

1
β0
0 (x) + (y− b+

j )
(

v
1

β0
0 (x)− v

1
β0
0 (y)

))
.

Applying the Lagrange rule, we obtain:

V
1

β0 (x)−V
1

β0 (y) = α
1

β0
0 (x− y)

(
v

1
β0
0 (x) + (y− b+

j )ṽ0(x, y)
)

, (37)

where ṽ0(x, y) is some function obeying the uniform estimate

|ṽ0(x, y)| 6 1
β0
‖v0‖

1
β0
−1

C[b+
j ,b+

j +δ0]
‖v′0‖C[b+

j ,b+
j +δ0].

Since each segment J̃j can contain only finitely many (β, α) thresholds and all other points
are regular, the right-hand side of this inequality can be estimated from the above by some
constant independent of j. Hence, in view of the identity v0(b+

j ) = 1, the expression in the
brackets on the right-hand side of (37) is close to 1 and can not vanish once we choose a
small enough δ0. This confirms inequality (36).

Let δ2 be a fixed positive number such that the intervals U(j,i) := J̃j ∩
(
z(j,i) − δ2, z(j,i) + δ2

)
are disjoint and each of these intervals contains no (β, α) thresholds except possibly that at z(j,i).
Assume that z(j,i) is a regular point and let x range outside U(j,i), but still in some bigger
neighbourhood of z(j,i). By the Lagrange rule, we then have

V(x)− λ = V(x)−V(z(j,i)) = (x− z(j,i))
(

Re V′(x(j,i)
r ) + i Im V′(x(j,i)

i )
)
,
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where x(j,i)
r and x(j,i)

i are some points between x and z(j,i). By inequality (25), we see that
for such x, the inequality holds:

|V(x)− λ| > c2|x− z(j,i)|. (38)

If z(j,i) is a (β, α) threshold, we choose δ2 small enough, so that in the interval U(j,i),
representation (5) holds true. This representation implies immediately that

|V(x)− λ| > c4|x− z(j,i)|

again for x outside U(j,i), but still in some bigger neighbourhood of z(j,i); here, c4 is a fixed
positive constant independent of x, j and i. This estimate and (38) imply the existence of a
positive constant c5 depending on δ2 but independent of the choice of λ such that

|V(x)− λ| > c5 > 0 as x ∈ J̃ \U, U :=
⋃
j,i

U(j,i). (39)

By χ(j,i) = χ(j,i)(x), we denote the characteristic functions of the intervals U(j,i), while
M0 is the set of the superscripts (j, i) such that either the point z(j,i) is regular or it is a (β, α)
threshold with at least one of β± obeying β± ∈ [ 1

2 , 1]. We return back to Equation (35) with
λ ∈ Υ ∩ Sδ1 and let ψ J̃ be its solution in L2( J̃). Since the function V − λ vanishes only
at the corresponding points z(j,i), which form a set of zero measures, we can rewrite this
equation as

ψ J̃ +
ε

V − λ
P J̃La?A(ε, λ)ψ J̃ = 0. (40)

The second term in this equation can be represented as follows:

1
V − λ

P J̃La?A(ε, λ)ψ J̃ = B0(ε, λ)ψ J̃ + B1(ε, λ)ψ J̃ , B1(ε, λ)ψ J̃ :=
1

V − λ
B2(ε, λ)ψ J̃ ,

where(
B0(ε, λ)ψ J̃

)
(x) :=

1
V(x)− λ ∑

(j,i)∈M0

χ(j,i)(x)
∫
R

a(z(j,i) − y)
(
A(ε, λ)ψ J̃

)
(y) dy, x ∈ J, (41)

(B2(ε, λ)ψ J̃)(x) := ∑
(j,i)∈M0

∫
R

(
a(x− y)− a(z(j,i) − y)χ(j,i)(x)

)(
A(ε, λ)ψ J̃

)
(y) dy, x ∈ J.

Let us show that B1(ε, λ) is a bounded operator in L2( J̃) and, moreover, its norm is
bounded uniformly in λ ∈ Υ ∩ Sδ1 . Indeed, as x ∈ J̃ \U, the function

(
B1(ε, λ)ψ J̃

)
(x)

reads as (
B1(ε, λ)ψ J̃

)
(x) =

1
V(x)− λ

∫
R

a(x− y)
(
A(ε, λ)ψ J̃

)
(y) dy.

Estimates (17), (34) and (39) then imply∥∥B1(ε, λ)ψ J̃
∥∥

L2( J̃\U)
6 c−1

5 ‖a‖L1(R)‖Aψ J̃‖L2( J̃) 6 c3c−1
5 ‖a‖L1(R)‖ψ J̃‖L2( J̃). (42)

As x ∈ U(j,i), (j, i) ∈ M0, the function
(
B1(ε, λ)ψ J̃

)
(x) is given by the formula

(
B2(ε, λ)ψ J̃

)
(x) =

1
V(x)− λ

∫
R

(
a(x− y)− a(z(j,i) − y)

)(
A(ε, λ)ψ J̃

)
(y) dy

=
1

V(x)− λ

∫
R

dy
(
A(ε, λ)ψ J̃

)
(y)

x−z(j,i)∫
0

a′
(
t + z(j,i) − y

)
dt.

(43)
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Using, then, the definition of the regular points and (β, α) thresholds and estimate (25), by
the Cauchy–Schwarz inequality and the uniform boundedness of the operatorA, we obtain:

∣∣(B1(ε, λ)ψ J̃
)
(x)
∣∣2 6

C
|x− z(j,i)|2

( ∫
R

dy
∣∣(A(ε, λ)ψ J̃

)
(y)
∣∣ |x−z(j,i) |∫
−|x−z(j,i) |

∣∣a′(t + z(j,i) − y
)∣∣ dt

)2

6
C

|x− z(j,i)|2
∥∥A(ε, λ)ψ J̃

∥∥2
L2(R)

∫
R

dy

( |x−z(j,i) |∫
−|x−z(j,i) |

∣∣a′(t + z(j,i) − y
)∣∣ dt

)2

6
C

|x− z(j,i)|
∥∥A(ε, λ)ψ J̃

∥∥2
L2(R)

∫
R

dy
|x−z(j,i) |∫
−|x−z(j,i) |

∣∣a′(t + z(j,i) − y
)∣∣2 dt

=
C

|x− z(j,i)|
∥∥A(ε, λ)ψ J̃

∥∥2
L2(R)

|x−z(j,i) |∫
−|x−z(j,i) |

dt
∫
R

∣∣a′(t + z(j,i) − y
)∣∣2 dy

6C‖a′‖L2(R)‖ψ J̃‖
2
L2( J̃),

(44)

where the symbol C stands for various constants independent of x, λ ∈ Υ and ψ J̃ . Integrat-
ing the obtained estimate over U(j,i) and summing up the result over (j, i) ∈ M0, we finally
arrive at the inequality ∥∥B1(ε, λ)ψ J̃

∥∥
L2(U)

6 c6‖ψ J̃‖L2( J̃),

where c6 is a constant independent of λ ∈ Υ∩ Sδ1 and ψ J̃ . This inequality and (42) imply
that the operator B1 is bounded in L2( J̃) and its norm is bounded uniformly in λ ∈ Υ∩ Sδ1 .

Let us study the function B0ψ J̃ defined in (41). If ψ J̃ is a solution of Equation (40) in the
space L2( J̃), then the function B1ψ J̃ is also an element of this space and, hence, B0(ε, λ)ψ J̃

is necessarily in L2( J̃). At the same time, as x ∈ U(j,i), this function reads(
B0(ε, λ)ψ J̃

)
(x) =

1
V(x)− λ

∫
R

a
(
z(j,i) − y

)(
A(ε, λ)ψ J̃

)
(y) dy (45)

and the integral is independent of x. The function (V(x)− λ)−1 has a singularity at the
point z(j,i) and since z(j,i) is either a regular point or a (β, α) threshold with at least one of
β± not less than 1

2 , this function is not an element of L2(U(j,i)). Hence, the only possibility
is that the integral in (45) necessarily vanishes. Then, B0ψ J̃ = 0 and Equation (40) becomes(

I J̃ + εB1(ε, λ)
)
ψ J̃ = 0,

where I J̃ is the identity mapping in L2( J̃). Since the operator B1 is bounded uniformly in
λ, for sufficiently small ε, the operator I + εB1(ε, λ) is boundedly invertible and the above
equation can have only the trivial solution. Therefore, Equations (35) and (40) also have
only the trivial solution as λ ∈ Υ∩ Sδ1 .

4.2. Reduction to System of Linear Algebraic Equations

We proceed to proving the existence of a small fixed positive δ 6 δ1 such that the set
Sδ \Υ contains no eigenvalues of the operator Lε. Namely, we are going to show that for
λ ∈ Sδ \Υ, Equation (35) possesses only the trivial solution. In this subsection, we make
the first important step in studying this equation, i.e., we reduce it to a system of linear
algebraic equations.

We choose a sufficiently small δ3 6 min
{ δ1

2 , 1
}

and introduce a finite covering of the
curve S by open balls Bδ3 (Pk) with centers at some points Pk ∈ S, k = 1, . . . , N, where
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N ∈ N is the number of the balls. By our assumptions, for each k, the point Pk is the image
of finitely many points in the segment Jj and, hence, the piece of curve B2δ3 (Pk) ∩Υ is the
image of finitely many segments in J̃j, namely,

B2δ3 (Pk) ∩Υ =
n⋃

j=1

N(j)
k⋃

i=1

{
V(x) : x ∈ I(j,i)

k

}
, Pk = V(Y(j,i)

k ), Y(j,i)
k ∈ I(j,i)

k ,

where I(j,i)
k ⊂ J̃j are some open intervals, N(j)

k are some given natural numbers, and Y(j,i)
k

are some points. Owing to inequality (25) and the assumed smoothness of the function V,
by choosing a small enough δ3, we can gain the following properties:

P1. The intervals I(j,i)
k are disjoint for different i, their lengths satisfy the estimate |I(j,i)

k | < 1

and all possible thresholds in the interval Jj are among the points Y(j,i)
k ;

P2. The end points of the intervals I(j,i)
k do not coincide with the (β, α) thresholds located

in the segment Jj, each of the intervals I(j,i)
k contains at most one (β, α) threshold and

the distance from this threshold to other intervals I(j,i)
k is at least c7δ3, where c7 > 0 is

a constant independent of δ3, k, j, i; the image of each end point of each interval I(j,i)
k

is located on ∂B2δ3 (Pk);

P3. If some interval I(j,i)
k contains a (β, α) threshold, then the corresponding identity (5)

holds true for the entire interval.

In what follows, given a curve and a point in the complex plane, we say that this
point is projected onto this curve orthogonally to some non-zero complex number if this
projection is made along the straight line orthogonal to the vector connecting the origin
and this non-zero complex number. We suppose an extra two properties of δ3.

P4. If a given interval I(j,i)
k contains only regular points, then for all λ ∈ Bδ3 (Y(j,i)

k ) \Υ,

there exists a unique projection of λ

V′(Y(j,i)
k )

onto the curve Γ(j,i)
k :=

{
V(x) : x ∈ I(j,i)

k
}

orthogonally to the number V′(Y(j,i)
k ) and the inequality holds:

Re
V′(x)

V′(Y(j,i)
k )

>
1
2

for all x ∈ I(j,i)
k ; (46)

P5. If a given interval I(j,i)
k contains a (β, α) threshold at Y(j,i)

k ∈ I(j,i)
k with corresponding

α± = α
(j,i)
±,k , then for all λ ∈ Bδ3 (Y(j,i)

k ) \Υ such that Re λ−Pk

α
(j,i)
±,k

> 0 there exists a unique

projection of λ

α
(j,i)
k,±

onto the curve

Γ(j,i)
k,± :=

{
V(x) : x ∈ I(j,i)

k,±
}

, where I(j,i)
k,± := I(j,i)

k ∩
{

x : ±(x−Y(j,i)
k ) > 0

}
orthogonally to the number α

(j,i)
k,± ; the functions v± = v(j,i)

k,± from (5) corresponding to

the (β, α) threshold at Y(j,i)
k satisfy the estimates

v(j,i)
k,± >

1
2

,
∣∣v(j,i)

k,± (x)
∣∣ 6 2,

∣∣ Im v(j,i)
k,± (x)

∣∣ 6 tan
πβ0

2
Re v(j,i)

k,± (x) as x ∈ I(j,i)
k,+ ,

|I(j,i)
k,± |‖(v(j,i)

k,± )′‖
C(I(j,i)

k,+ )
6

1

41+ 1
β0

,
(47)

where
β0 :=

1
2

min
k,j,i

{
β

(j,i)
k,+ ; β

(j,i)
k,−
}

. (48)
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We observe that the definition of intervals I(j,i)
k implies immediately that

|V(x)− λ| > δ3 as λ ∈ Bδ3 (Pk), x ∈ J̃ \ I(j)
k , j = 1, . . . , n, I(j)

k :=
N(j)

k⋃
i=1

I(j,i)
k . (49)

Property P4 can be equivalently formulated as follows: there exists a unique solution
to the equation

Re
V(Z)− Pk

V′(Y(j,i)
k )

= Re
λ− Pk

V′(Y(j,i)
k )

(50)

for all λ ∈ Bδ3 (Y(j,i)
k ) \ Υ. In view of the definition of a regular point, this equation is

uniquely solvable, since for Z close to Y(j,i)
k the quotient on the left hand side behaves as

V(Z)− Pk

V′(Y(j,i)
k )

= Z−Y(j,i)
k + O

(
(Z−Y(j,i)

k )2).
The latter identity also ensures the possibility of satisfying (46). We denote the unique
solution of (50) by Z(j,i)

k = Z(j,i)
k (λ).

Property P5 can be also equivalently formulated as follows: there exists a unique
solution to the equation

Re
V(Z±)− Pk

α
(j,i)
±,k

= Re
λ− Pk

α
(j,i)
±,k

(51)

for all λ ∈ Bδ3 (Y(j,i)
k ) \Υ obeying an additional condition Re λ−Pk

α
(j,i)
±,k

> 0. These equations

are again locally uniquely solvable owing to the definition of (β, α) threshold, which also
ensures (47). We denote the solutions of (51) by Z(j,i)

±,k = Z(j,i)
±,k (λ). We also let

Z(j,i)
±,k (λ) := Y j,i

k as Re
λ− Pk

α
(j,i)
±,k

6 0. (52)

In what follows, we consider Equation (35) for λ ∈ Ek,δ3 , where

Ek,δ3 := Bδ3 (Pk) \Υ. (53)

We rewrite this equation in form (40) and then we represent the second term in the latter
equation as

ψ J̃ + εB3,k(ε, λ)ψ J̃ + εB4,k(ε, λ)ψ J̃ = 0, (54)

B3,k(ε, λ) :=
n

∑
j=1

N(j)
k

∑
i=1

ξ
(j,i)
k

V − λ
P J̃La?A(ε, λ),

B4,k(ε, λ) :=
n

∑
j=1

N(j)
k

∑
i=1

1− ξ
(j,i)
k

V − λ
P J̃La?A(ε, λ),

where ξ
(j,i)
k are the characteristic functions of the intervals I(j,i)

k . It follows immediately from

the definitions of the operators B4,k and the function ξ
(j,i)
k and estimates (17), (34) and (49) that

‖B4,k‖L2( J̃)→L2( J̃) 6
c8

δ3
, (55)

where c8 is a constant independent of λ, k, δ3.
We proceed to studying the operators B3,k(ε, λ). Let M1 be the set of all superscripts

(j, i) such that the intervals I(j,i)
k , (j, i) ∈ M1, contain only regular points, while M2 is the set
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of all superscripts (j, i) such that the intervals I(j,i)
k , (j, i) ∈ M2, possesses a (β, α) threshold

at Y(j,i)
k ∈ I(j,i)

k . Bearing in mind Properties P4 and P5, we represent the operator B3,k as
a sum

B3,k(ε, λ) = B5,k(ε, λ) + B6,k(ε, λ)A(ε, λ), (56)

where B5,k(ε, λ) and B6,k(ε, λ) are operators in L2( J̃) defined by the formulas

B5,k(ε, λ) := ∑
(j,i)∈M1

φ
(j,i)
k `

(
Z(j,i)

k (λ), ε, λ
)

+ ∑
(j,i)∈M2

φ
(j,i)
k,+ `

(
Z(j,i)

k,+ (λ), ε, λ
)

+ ∑
(j,i)∈M2

φ
(j,i)
k,− `

(
Z(j,i)

k,− (λ), ε, λ
)
,

B6,k(ε, λ) := ∑
(j,i)∈M1

B(j,i)
6,k (ε, λ) + ∑

(j,i)∈M2

B(j,i)
6,k,+(ε, λ) + ∑

(j,i)∈M2

B(j,i)
6,k,−(ε, λ), (57)

where

φ
(j,i)
k :=

ξ
(j,i)
k

V − λ
, φ

(j,i)
k,± :=

ξ
(j,i)
k,±

V − λ
,

(
B(j,i)

6,k (ε, λ)ψ
)
(x) := ξ

(j,i)
k (x)

∫
R

a(x− y)− a
(
Z(j,i)

k (λ)− y
)

V(x)− λ
ψ(y) dy,

(
B(j,i)

6,k,±(ε, λ)ψ
)
(x) := ξ

(j,i)
k (x)

∫
R

a(x− y)− a
(
Z(j,i)

k,± (λ)− y
)

V(x)− λ
ψ(y) dy,

(58)

ξ
(j,i)
k,± are the characteristic functions of the intervals I(j,i)

k,± , and `(z, ε, λ), z ∈ R, is a bounded
linear functional on L2( J̃) defined as

`(z, ε, λ)ψ J̃ :=
∫
R

a(z− y)
(
A(ε, λ)ψ J̃

)
(y) dy.

In order to study the properties of the operators B5,k(ε, λ) and B6,k(ε, λ), we shall need
the following lemma.

Lemma 1. There exists δ4 > 0 independent of k such that for all λßnEk,δ3 , all k and all δ3 6 δ4
the estimates hold:

|V(x)− λ| > c9|x− Z(j,i)
k (λ)| as x ∈ I(j,i)

k , (j, i) ∈ M1,

|V(x)− λ| > c9|x− Z(j,i)
k,± (λ)| as x ∈ I(j,i)

k,± , (j, i) ∈ M2,
(59)

where c9 is a positive constant independent of δ3, x, λ, k, j and i.

Proof. We first consider the case (j, i) ∈ M1. By Equation (50), estimate (25) and the
Lagrange rule, we have:

|V(x)− λ| =
∣∣V′(Y(j,i)

k )
∣∣∣∣∣∣∣V(x)− Pk

V′(Y(j,i)
k )

− λ− Pk

V′(Y(j,i)
k )

∣∣∣∣∣
>
∣∣V′(Y(j,i)

k )
∣∣∣∣∣∣∣Re

V(x)− Pk

V′(Y(j,i)
k )

− Re
λ− Pk

V′(Y(j,i)
k )

∣∣∣∣∣
=
∣∣V′(Y(j,i)

k )
∣∣∣∣∣∣∣Re

V(x)− Pk

V′(Y(j,i)
k )

− Re
V(Z(j,i)

k )− Pk

V′(Y(j,i)
k )

∣∣∣∣∣ > c0

2

∣∣x− Z(j,i)
k

∣∣.
(60)
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We proceed to the case (j, i) ∈ M2. We shall prove the second inequality in (59) only
for x ∈ I(j,i)

k,+ ; the case of the interval I(j,i)
k,− can be treated in the same way. In the considered

case, the interval I(j,i)
k contains a (β, α) threshold at some internal point Y(j,i)

k . We first
suppose that Re λβ−1

+ 6 0. In view of (5) and (52), we have:

|V(x)− λ| >
∣∣α(j,i)

k,+

∣∣∣∣∣∣∣∣Re
V(x)− λ

α
(j,i)
k,+

∣∣∣∣∣∣ > C
∣∣x−Y(j,i)

k

∣∣β(j,i)
±,k > C

∣∣x−Y(j,i)
k

∣∣, (61)

where C is a constant independent of k, j, i and λ. This proves the second inequality in (59)
as Re λβ−1

+ 6 0.
Suppose that Re λβ−1

+ > 0. Then, we argue similarly to (60):

|V(x)− λ| =
∣∣α(j,i)

+,k

∣∣∣∣∣∣∣∣V(x)− Pk

α
(j,i)
+,k

− λ− Pk

α
(j,i)
+,k

∣∣∣∣∣∣
>
∣∣α(j,i)

+,k

∣∣∣∣∣∣∣∣Re
V(x)− Pk

α
(j,i)
+,k

− Re
V(Z(j,i)

+,k )− Pk

α
(j,i)
+,k

∣∣∣∣∣∣
>
∣∣α(j,i)

+,k

∣∣∣∣∣((x−Y(j,i)
k )β

(j,i)
k,+ Re v(j,i)

k,+ (x)
)′∣∣∣

x=ζ

∣∣∣∣∣x− Z(j,i)
k,+

∣∣
=
∣∣α(j,i)

+,k

∣∣∣∣∣β(j,i)
k,+ Re v(j,i)

k,+ (ζ) + (ζ −Y(j,i)
k ) Re(v(j,i)

k,+ )′(ζ)
∣∣∣ ∣∣x− Z(j,i)

k,+

∣∣∣∣ζ −Y(j,i)
k

∣∣1−β
(j,i)
k,+

,

where ζ is some point between x and Z(j,i)
k,+ . It follows from the first and fourth inequalities

in (47) and (48) that∣∣∣β(j,i)
k,+ Re v(j,i)

k,+ (ζ) + (ζ −Y(j,i)
k ) Re(v(j,i)

k,+ )′(ζ)
∣∣∣ > β

(j,i)
k,+

2
− |I(j,i)

k,+ |‖(v(j,i)
k,+ )′‖

C(I(j,i)
k,+ )

> β0 −
1

41+ 1
β0

>
β0

2
.

This inequality and the inequality |I(j,i)
k,+ | < |I

(j,i)
k | < 1, see Property P1, allows us to continue

the above estimating:

|V(x)− λ| >
β0
∣∣α(j,i)

+,k

∣∣
2

∣∣x− Z(j,i)
k,+

∣∣∣∣ζ −Y(j,i)
k

∣∣1−β
(j,i)
k,+

>
β0
∣∣α(j,i)

+,k

∣∣
2|I(j,i)

k,+ |
1−β

(j,i)
k,+

∣∣x− Z(j,i)
k,+

∣∣ > β0
∣∣α(j,i)

+,k

∣∣
2

∣∣x− Z(j,i)
k,+

∣∣.
The proof is complete.

Using this lemma and arguing as in (43) and (44), we easily see that the operators
B6,k(ε, λ) are bounded uniformly in ε and λ ∈ Ek,δ3 once δ3 6 δ4, namely,

‖B6,k(ε, λ)‖L2( J̃)→L2( J̃) 6 c10, (62)

where c10 is a constant independent of ε and λ. This inequality and (55), (34) yield that
the operator

G(ε, λ) :=
(
IJ + εB4,k + εB6,kA(ε, λ)

)−1

is well defined and bounded in L2( J̃) provided

ε 6
δ3

2(c8 + c10c3δ3)
, λ ∈ Ek,δ3 , 0 < δ3 6 δ4

and for such values of ε, δ3 and λ, it satisfies the estimate

‖G(ε, λ)‖L2( J̃)→L2( J̃) 6 2.
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We substitute identity (56) into Equation (54) and then apply the operator G(ε, λ)
to the resulting relation and use the definition of the operator B5,k. This implies one
more equation:

ψ J̃ + ε ∑
(j,i)∈M1

Φ(j,i)
k (ε, λ)`

(
Z(j,i)

k (λ), ε, λ
)
ψ J̃ + ε ∑

(j,i)∈M2

Φ(j,i)
k,+ (ε, λ)`

(
Z(j,i)

k,+ (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

Φ(j,i)
k,− (ε, λ)`

(
Z(j,i)

k,− (λ), ε, λ
)
ψ J̃ = 0,

(63)

where
Φ(j,i)

k (ε, λ) := G(ε, λ)φ
(j,i)
k , Φ(j,i)

k,± (ε, λ) := G(ε, λ)φ
(j,i)
k,± . (64)

We arbitrarily choose p ∈ {1, . . . , n} and i ∈ {1, . . . , N(p)
k } and if (p, q) ∈ M1, we apply the

functional `
(
Z(p,q)

k (λ), ε, λ
)

to Equation (63), while for (p, q) ∈ M2 we apply the functionals

`
(
Z(p,q)

k,± (λ), ε, λ
)

to the same equation. This gives the following identities:

`
(
Z(p,q)

k (λ), ε, λ
)
ψ J̃ + ε ∑

(j,i)∈M1

A(p,q,j,i)
k (ε, λ)`

(
Z(j,i)

k (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,+ (ε, λ)`

(
Z(j,i)

k,+ (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,− (ε, λ)`

(
Z(j,i)

k,− (λ), ε, λ
)
ψ J̃ = 0, (p, q) ∈ M1,

`
(
Z(p,q)

k,+ (λ), ε, λ
)
ψ J̃ + ε ∑

(j,i)∈M1

A(p,q,j,i)
k,+ (ε, λ)`

(
Z(j,i)

k (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,+,+ (ε, λ)`

(
Z(j,i)

k,+ (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,+,− (ε, λ)`

(
Z(j,i)

k,− (λ), ε, λ
)
ψ J̃ = 0, (p, q) ∈ M2,

`
(
Z(p,q)

k,− (λ), ε, λ
)
ψ J̃ + ε ∑

(j,i)∈M1

A(p,q,j,i)
k,− (ε, λ)`

(
Z(j,i)

k (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,−,+ (ε, λ)`

(
Z(j,i)

k,+ (λ), ε, λ
)
ψ J̃

+ ε ∑
(j,i)∈M2

A(p,q,j,i)
k,−,− (ε, λ)`

(
Z(j,i)

k,− (λ), ε, λ
)
ψ J̃ = 0, (p, q) ∈ M2,

(65)

where

A(p,q,j,i)
k (ε, λ) := `

(
Z(p,q)

k (λ), ε, λ
)
Φ(j,i)

k (ε, λ), A(p,q,j,i)
k,± (ε, λ) := `

(
Z(p,q)

k (λ), ε, λ
)
Φ(j,i)

k,± (ε, λ) (66)

as (p, q) ∈ M1 and

A(p,q,j,i)
k,± (ε, λ) := `

(
Z(p,q)

k,± (λ), ε, λ
)
Φ(j,i)

k (ε, λ), A(p,q,j,i)
k,[,\ (ε, λ) := `

(
Z(p,q)

k,[ (λ), ε, λ
)
Φ(j,i)

k,\ (ε, λ) (67)

as (p, q) ∈ M2, where the symbols [ and \ are to be independently replaced by ‘+’
or ‘−’. Identity (65) is a system of linear equations for the numbers `

(
Z(j,i)

k (λ), ε, λ
)

and `
(
Z(j,i)

k,± (λ), ε, λ
)
. Once we find these numbers, we can recover the function ψ J̃ for

Equation (63). If system (65) has only the trivial solution, this immediately implies that
ψ J̃ vanishes identically, and by Formula (31), Equation (27) can have only the trivial so-
lution; hence, the set Ek,δ3 contains no eigenvalues of the operator Lε. In order to prove
that system (65) has only the trivial solution, it is sufficient to show that all functions
A(p,q,j,i)

k,± (ε, λ) and A(p,q,j,i)
k,[,\ (ε, λ) are bounded uniformly in ε and λ. The proof of this fact is

our next important step.
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4.3. Trivial Solution and Absence of the Spectrum

In this subsection, we prove the uniform boundedness of the functions A(p,q,j,i)
k,± (ε, λ)

and A(p,q,j,i)
k,[,\ (ε, λ) and this will allow us to complete the proof of Theorem 2. We first rewrite

Formula (64) for the functions Φ(j,i)
k (ε, λ) and Φ(j,i)

k,± (ε, λ) as

Φ(j,i)
k (ε, λ) = φ

(j,i)
k − εG(ε, λ)

(
B4,k(ε, λ) + B6,k(ε, λ)

)
φ

(j,i)
k ,

Φ(j,i)
k,± (ε, λ) = φ

(j,i)
k,± − εG(ε, λ)

(
B4,k(ε, λ) + B6,k(ε, λ)

)
φ

(j,i)
k,± .

(68)

The prove of the uniform boundedness of A(p,q,j,i)
k (ε, λ), A(p,q,j,i)

k,± (ε, λ), A(p,q,j,i)
k,± (ε, λ),

A(p,q,j,i)
k,[,\ (ε, λ) is based on a series of the following lemmas.

Lemma 2. There exists δ5 > 0 such that as δ3 6 δ5, for all λ ∈ Ek,δ3 and (j, i) ∈ M1 the
estimates hold ∣∣∣∣ ∫

R

φ
(j,i)
k (x) dx

∣∣∣∣ 6 c11

δ3
,

where c11 is a constant independent of k, j, i, δ3 and λ.

Proof. We begin with representing the considered integral as

∫
R

φ
(j,i)
k (x) dx =

∫
I(j,i)
k

dx
V(x)− λ

=
1

V′(Z(j,i)
k )

∫
I(j,i)
k

V′(x)

V(x)− λ
dx +

1

V′(Z(j,i)
k )

∫
I(j,i)
k

V′(Z(j,i)
k )−V′(x)

V(x)− λ
dx.

(69)

The first integral in the right hand side of the above representation can be immediately
rewritten as ∫

I(j,i)
k

V′(x)

V(x)− λ
dx =

∫
Γ(j,i)

k

dt
t− λ

.

The above integral over the curve Γ(j,i)
k is holomorphic in λ ∈ Bδ3 (Pk) \Υ. As λ is such that

dist(λ, Υ) > δ3
2 , we have an obvious estimate∣∣∣∣∣

∫
Γ(j,i)

k

dt
t− λ

∣∣∣∣∣ 6 C
δ3

, (70)

where C is a constant independent of λ, k, j, i and δ3. We also easily find that

d
dλ

∫
Γ(j,i)

k

dt
t− λ

=
∫

Γ(j,i)
k

dt
(t− λ)2 =

1

∂−Γ(j,i)
k − λ

− 1

∂+Γ(j,i)
k − λ

, (71)

where ∂±Γ(j,i)
k are the end-points of the curve Γ(j,i)

k . Definition (53) of the set Ek,δ3 ensures that

1

|∂±Γ(j,i)
k − λ|

>
1
δ3

.
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Having this estimate and (70) in mind and integrating (71) with respect to λ, in view of (25),
we immediately find ∣∣∣∣∣ 1

V′(Z(j,i)
k )

∫
I(j,i)
k

V′(x)

V(x)− λ
dx

∣∣∣∣∣ 6 C
δ3

, (72)

where C is a constant independent of λ, k, j, i and δ3.
In order to estimate the second integral in the right hand side of (69), we employ

estimate (59) and the Lagrange rule:∣∣∣∣∣ 1

V′(Z(j,i)
k )

∫
I(j,i)
k

V′(Z(j,i)
k )−V′(x)

V(x)− λ
dx

∣∣∣∣∣ 6 C

|V′(Z(j,i)
k )|

sup
t∈I(j,i)

k

|V′′(t)|, (73)

where C is a constant independent of λ, k, j, i and δ3. According to the definition of the regular
points, the function V is twice continuously differentiable on Jj except for (β, α) thresholds,
which are denoted, we recall, by x(j,i). In the vicinity of the latter points, the first and the

second derivatives of the function V have singularities of orders O(|x − x(j,i)|β
(j,i)
± −1) and

O(|x− x(j,i)|β
(j,i)
± −2). According to Property P2, the minimal distance from the interval I(j,i)

k to
the nearest (β, α) threshold is at least c7δ3, and since the total number of the thresholds is finite,
we conclude on the existence of δ5 > 0 such that for δ3 6 δ5 the estimate

sup
t∈I(j,i)

k

|V′′(t)|

|V′(Z(j,i)
k )|

6
C
δ3

holds true, where C is a constant independent of δ3, k, j, i. Substituting this estimate
into (73), we obtain: ∣∣∣∣∣ 1

V′(Z(j,i)
k )

∫
I(j,i)
k

V′(Z(j,i)
k )−V′(x)

V(x)− λ
dx

∣∣∣∣∣ 6 C
δ3

,

where C is a constant independent of δ3, k, j, i. This estimate and (72) yield the desired
estimate from the statement of the lemma. The proof is complete.

Lemma 3. For all λ ∈ Ek,δ3 and (j, i) ∈ M2 the estimates hold∣∣∣∣ ∫
R

φ
(j,i)
k,± (x) dx

∣∣∣∣ 6 c12, (74)

where c12 is a constant independent of k, j, i, and λ but depending on δ3.

Proof. We provide the proof only for the integral with φ
(j,i)
k,+ ; the other case can be treated

in the same way. We first suppose that

Re
λ− Pk

α
(j,i)
+,k

6 0.

Then, by (61) and the assumed inequality β
(j,i)
k,+ < 1 we immediately obtain:∣∣∣∣∣∣

∫
R

ξ
(j,i)
k,± (x)

V(x)− λ
dx

∣∣∣∣∣∣ 6 C
∫

Γ(j,i)
k,+

dx

(x−Y(j,i)
k )β

j,i
k,+

6 C,
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where by C we denote some constants independent of λ, k, j, i and δ3.
Suppose now that

Re η > 0, where η :=
λ− Pk

α
(j,i)
+,k

. (75)

Owing to the third inequality in (47) and (48) the function

w(x) := (x−Y(j,i)
k )

(
v(j,i)

k,+ (x)
) 1

β
(j,i)
k,+

is well defined and

wβ
(j,i)
k,+ (x) =

(
x−Y(j,i)

k
)β

(j,i)
k,+ v(j,i)

k,+ (x) =
V(x)− Pk

α
(j,i)
k,+

. (76)

The assumed smoothness of v(j,i)
k,+ , see (5) and (6) yields that

w ∈ C2(I(j,i)
k,+ ), ‖w‖

C2(I(j,i)
k,+ )

6 C, (77)

where C is a constant independent of k, j, i. The first, second and fourth inequalities in (47)

and identity (5) imply that for x ∈ I(j,i)
k,+ , the estimates hold: |x−Y(j,i)

k,+ |

β
(j,i)
k,+

∣∣v(j,i)
k,+ (x)

∣∣ 1

β
(j,i)
k,+

−1∣∣(v(j,i)
k,+ )′(x)

∣∣β
(j,i)
k,+

6
∣∣(v(j,i)

k,+ )′(x)
∣∣β(j,i)

k,+
∣∣v(j,i)

k,+ (x)
∣∣∣∣I(j,i)

k,+

∣∣β(j,i)
k,+

6 2
∣∣(v(j,i)

k,+ )′(x)
∣∣β(j,i)

k,+
∣∣I(j,i)

k,+

∣∣β(j,i)
k,+

6
2

4
β
(j,i)
k,+
β0

+β
(j,i)
k,+

6
1

4β
(j,i)
k,+

<
1

2β
(j,i)
k,+

6
∣∣v(j,i)

k,+ (x)
∣∣β(j,i)

k,+ .

Hence,

|w′(x)| > C, x ∈ I(j,i)
k,+ ,

where C is a positive constant independent of x, k, j and i. We denote

Γ̃ :=
{

w(x) : x ∈ I(j,i)
k,+

}
, α̃ := α

(j,i)
k,+ , β̃ := β

(j,i)
k,+ .

We rewrite the considered integral as follows:

∫
R

φ
(j,i)
k,± (x) dx =

∫
I(j,i)
k,+

dx
V(x)− λ

=
1

w′(Z(j,i)
k,+ )

∫
I(j,i)
k,+

w′(x) dx
V(x)− λ

+
∫

I(j,i)
k,+

w′(Z(j,i)
k,+ )− w′(x)

V(x)− λ
dx.

Using, then, identity (76) and making the change in variable t = w(x) in the first integral in
the right hand side of the above identity, we obtain:∫

R

φ
(j,i)
k,± (x) dx =

1

α̃w′(Z(j,i)
k,+ )

∫
Γ̃

dt
tβ̃ − η

+
∫

I(j,i)
k,+

w′(Z(j,i)
k,+ )− w′(x)

V(x)− λ
dx. (78)

Owing to the above established smoothness of the function w, see (77), and the second
inequality in (59), by applying the Lagrangue rule, we immediately estimate the second
integral in the right hand side of the above identity:
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∣∣∣∣∣
∫

I(j,i)
k,+

w′(Z(j,i)
k,+ )− w′(x)

V(x)− λ
dx

∣∣∣∣∣ 6 C
∫

I(j,i)
k,+

|x− Z(j,i)
k,+ |

|V(x)− λ| dx 6 C, (79)

where the symbol C denotes various constants independent of δ3, λ, k, j and i.
Let us estimate the first integral in the right hand side of (78). Suppose that the point η

is located above the curve Γ̃. Then, we choose the branch of the analytic function zβ̃ with
the cut along the positive imaginary semi-axis and the argument of z ranging in (− 3π

2 , π
2 ].

Let z̃ be the end-point of the curve Γ̃ not coinciding with the origin. In the complex plane,
we introduce extra two curves:

Γ̃1 :=
{

z : z = e
− πi

β̃ s, s ∈ (0, |z̃|)
}

, Γ̃2 :=
{

z : |z| = |z̃|, arg z ∈ (−π, arg z̃)
}

.

Then, the closure of the union of these two curves and Γ̃ is a closed contour, and by the
Cauchy integral theorem, we obtain:∫

Γ̃

dt
tβ̃ − η

= −
∫
Γ̃1

dt
tβ̃ − η

−
∫
Γ̃2

dt
tβ̃ − η

= e
− πi

β̃

|z̃|∫
0

ds
sβ̃ + η

−
∫
Γ̃2

dt
tβ̃ − η

. (80)

Since λ ∈ Ek,δ3 , it follows from the definition of η in (75) and Property P2 that

|η| 6 δ3

|α̃| , |z̃|β̃ =
2δ3

|α̃| .

Hence, |tβ̃ − η| > δ3
|α̃| on the curve Γ̃2 and∣∣∣∣ ∫

Γ̃2

dt
tβ̃ − η

∣∣∣∣ 6 2π|α̃|
δ3

. (81)

Since Re η > 0 by (75), the first integral in the right hand side of the above identity can be
immediately estimated as∣∣∣∣∣e− πi

β̃

|z̃|∫
0

ds
sβ̃ + η

∣∣∣∣∣ 6
|z̃|∫
0

ds
sβ̃

=
1

1− β̃

1

|z̃|1−β̃
=

1
1− β̃

|α̃|
1
β̃
−1

(2δ3)
1
β̃
−1

6
C

δ
1

β0
−1

3

,

where C is a constant independent of δ3, k, j and i. This estimate (80) and (81), (80) prove
the uniform boundedness of the first integral in the right hand side of (78), and in view
of (79), we arrive at estimate (74) for φ

(j,i)
k,+ . The proof is complete.

Lemma 4. The function a is an element of C( J̃).

Proof. Since a ∈W1
2 (R), by the standard embedding theorems, we conclude that a ∈ C(R)

and this proves the lemma.

Lemma 5. As δ3 6 min{δ4, δ5}, for λ ∈ Ek,δ3 the estimates hold:

‖La?φ
(j,i)
k ‖L∞( J̃k) 6 c13, ‖La?φ

(j,i)
k,± ‖L∞( J̃k) 6 c13, (82)

‖La?φ
(j,i)
k ‖L2(R) 6 c13, ‖La?φ

(j,i)
k,± ‖L2(R) 6 c13, (83)

where c13 is a constant independent of λ, k, j, i but depending on δ3.

Proof. We fix k and some (j, i) in the corresponding set M1 and represent the function
La?φ

(j,i)
k as
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(
La?φ

(j,i)
k,±
)
(x) = a

(
x− Z(j,i)

k
) ∫

I(j,i)
k

φ
(j,i)
k (y) dy +

∫
I(j,i)
k

a(x− y)− a(x− Z(j,i)
k )

V(y)− λ
dy. (84)

By Lemmas 2 and 4, we immediately estimate the first integral in the right hand side of the
above identity: ∣∣∣∣a(x− Z(j,i)

k
) ∫

I(j,i)
k

φ
(j,i)
k (y) dy

∣∣∣∣ 6 c11

δ3
‖a‖C( J̃),

∥∥∥∥a
(
· −Z(j,i)

k
) ∫

I(j,i)
k

φ
(j,i)
k (y) dy

∥∥∥∥
L2(R)

6
c11

δ3
‖a‖L2(R).

(85)

To estimate the second integral in the right hand side of (84), we employ a representation
similar to (43):∫

I(j,i)
k

a(x− y)− a(x− Z(j,i)
k )

V(y)− λ
dy =

∫
I(j,i)
k

dy
V(y)− λ

y−Z(j,i)
k∫

0

a′
(
x− Z(j,i)

k − t
)

dt

and use then the Cauchy–Schwarz inequality and the first estimate from (59):

∣∣∣∣∣
∫

I(j,i)
k

a(x− y)− a(x− Z(j,i)
k )

V(y)− λ
dy

∣∣∣∣∣ 6 1
c9

∫
I(j,i)
k

1

|y− Z(j,i)
k | 12

∣∣∣∣∣∣∣∣
|y−Z(j,i)

k |∫
−|y−Z(j,i)

k |

∣∣∣a′(x− Z(j,i)
k − t

)∣∣∣2 dt

∣∣∣∣∣∣∣∣
1
2

dy

6
‖a′‖L2(R)

c9

∫
I(j,i)
k

dy

|y− Z(j,i)
k | 12

6 C,

∥∥∥∥∥
∫

I(j,i)
k

a( · − y)− a( · − Z(j,i)
k )

V(y)− λ
dy

∥∥∥∥∥
2

L2(R)

6C
∫
R

dx
∫

I(j,i)
k

dy

|y− Z(j,i)
k |

|y−Z(j,i)
k |∫

−|y−Z(j,i)
k |

∣∣∣a′(x− Z(j,i)
k − t

)∣∣∣2 dt

6C‖a′‖2
L2(R)

∫
I(j,i)
k

dy

|y− Z(j,i)
k |

|y−Z(j,i)
k |∫

−|y−Z(j,i)
k |

dt 6 C,

where by C we denote various constants independent of λ, k, j and i. These estimates (84) and (85)
prove the first inequalities in (82) and (83).

The proof of the second inequalities in (82) and (83) follows the same lines. Namely,
in (84), we just replace I(j,i)

k , Z(j,i)
k , φ

(j,i)
k by I(j,i)

k,+ , Z(j,i)
k,+ , φ

(j,i)
k,+ . Then, a corresponding analogue

of inequality (85) is implied by Lemmas 3 and 4, while estimating the second integral
literally reproduces the above argument. The proof is complete.

Lemma 6. As δ3 6 min{δ4, δ5}, for λ ∈ Ek,δ3 the estimates hold:∥∥B6,k(ε, λ)A(ε, λ)φ
(j,i)
k

∥∥
L2( J̃) 6 c14,

∥∥B6,k(ε, λ)A(ε, λ)φ
(j,i)
k,±
∥∥

L2( J̃) 6 c14,

where c14 is a constant independent of λ, k, j, i but depending on δ3.

Proof. In view of the definition of the operator B6,k in (57), it is sufficient to prove the
uniform boundedness of the norms
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∥∥B(p,q)
6,k (ε, λ)A(ε, λ)φ

(j,i)
k

∥∥
L2( J̃),

∥∥B(p,q)
6,k (ε, λ)A(ε, λ)φ

(j,i)
k,±
∥∥

L2( J̃), (p, q) ∈ M1,∥∥B(p,q)
6,k,[ (ε, λ)A(ε, λ)φ

(j,i)
k

∥∥
L2( J̃),

∥∥B(p,q)
6,k,[ (ε, λ)A(ε, λ)φ

(j,i)
k,±
∥∥

L2( J̃), (p, q) ∈ M2, [ ∈ {+,−}.
(86)

Bearing in mind the definition of the operators B(p,q)
6,k and B(p,q)

6,k,± in (58), the definition of
the operator A in (33), and inequalities (26) and (62), we can estimate the first of the above
norms as follows:∥∥B(p,q)

6,k (ε, λ)A(ε, λ)φ
(j,i)
k ‖L2( J̃) 6

∥∥B(p,q)
6,k (ε, λ)φ

(j,i)
k

∥∥
L2( J̃) +

∥∥B(p,q)
6,k (ε, λ)PR\ J̃A(ε, λ)φ

(j,i)
k

∥∥
L2( J̃)

6
∥∥B(p,q)

6,k (ε, λ)φ
(j,i)
k

∥∥
L2( J̃) + C

∥∥M J̃φ
(j,i)
k

∥∥
L2(R\ J̃),

where C is a constant independent of λ, ε, k, j, i and δ3. In the same way, we can estimate
other norms in (86) and, hence, it is sufficient to prove the uniform boundedness only for
the norms∥∥B(p,q)

6,k (ε, λ)φ
(j,i)
k

∥∥
L2( J̃),

∥∥B(p,q)
6,k (ε, λ)φ

(j,i)
k,±
∥∥

L2( J̃), (p, q) ∈ M1,∥∥B(p,q)
6,k,[ (ε, λ)φ

(j,i)
k

∥∥
L2( J̃),

∥∥B(p,q)
6,k,[ (ε, λ)φ

(j,i)
k,±
∥∥

L2( J̃), (p, q) ∈ M2, [ ∈ {+,−},∥∥M J̃φ
(j,i)
k

∥∥
L2(R\ J̃),

∥∥M J̃φ
(j,i)
k,±
∥∥

L2(R\ J̃).

(87)

The uniform boundedness of the latter two norms follows immediately from (83) and
definition (29) of the operatorM J̃ .

According to the definition of the operators B(j,i)
6,k in (58), the identity holds:(

B(p,q)
6,k (ε, λ)φ

(j,i)
k
)
(x) =ξ

(j,i)
k (x)

∫
I(j,i)
k

a(x− y)− a
(
Z(j,i)

k (λ)− y
)

(V(x)− λ)(V(y)− λ)
dy

=ξ
(j,i)
k (x)

a(x− Z(j,i)
k (λ))− a(0)

(V(x)− λ)

∫
I(j,i)
k

dy
V(y)− λ

+ ξ
(j,i)
k (x)

∫
I(j,i)
k

a(x− y)− a(x− Z(j,i)
k (λ))− a

(
Z(j,i)

k (λ)− y
)

+ a(0)

(V(x)− λ)(V(y)− λ)
dy

=ξ
(j,i)
k (x)

a(x− Z(j,i)
k (λ))− a(0)

(V(x)− λ)

∫
I(j,i)
k

dy
V(y)− λ

+ ξ
(j,i)
k (x)

∫
I(j,i)
k

dy
(V(x)− λ)(V(y)− λ)

x−Z(j,i)
k∫

0

(
a′(t + Z(j,i)

k − y)− a′(t)
)

dt.

Since ξ
(j,i)
k is the characteristic function of a bounded interval I(j,i)

k and a ∈ L1( J̃) by
Lemma 4, in view of Lemma 2, we immediately conclude that the first term in the right
hand side of the above identity is an element of L2(R) and it is bounded uniformly in λ, k,
j, i in the norm of this space. The norm of the second term is estimated by using (59) and
the second condition in (9):
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∫
R

∣∣∣∣∣ξ(j,i)
k (x)

∫
I(j,i)
k

dy
(V(x)− λ)(V(y)− λ)

x−Z(j,i)
k∫

0

(
a′(t + Z(j,i)

k − y)− a′(t)
)

dt

∣∣∣∣∣
2

dx

6 C
∫

I(j,i)
k

dx

∣∣∣∣∣
∫

I(j,i)
k

dy

|x− Z(j,i)
k ||y− Z(j,i)

k |

|x−Z(j,i)
k |∫

−|x−Z(j,i)
k |

∣∣∣a′(t + Z(j,i)
k − y)− a′(t)

∣∣∣ dt

∣∣∣∣∣
2

6 C
∫

I(j,i)
k

dx

∣∣∣∣∣
∫

I(j,i)
k

dy

|x− Z(j,i)
k ||y− Z(j,i)

k |

|x−Z(j,i)
k |∫

−|x−Z(j,i)
k |

|Z(j,i)
k − y|θ dt

∣∣∣∣∣
2

6 C
∫

I(j,i)
k

dx

∣∣∣∣∣
∫

I(j,i)
k

dy

|y− Z(j,i)
k |1−θ

∣∣∣∣∣
2

6 C,

where the symbol C stands for various constants independent of λ, k, j, i. Hence, the
functions B(p,q)

6,k (ε, λ)φ
(j,i)
k are bounded in L2(R) uniformly in λ, k, j, i. Similar boundedness

for remaining functions in (87) is established in the same way, and one should just use the
second estimate from (59) and Lemma 3. The proof is complete.

Lemma 7. As δ3 6 min{δ4, δ5}, for λ ∈ Ek,δ3 the estimates hold:∥∥B4,k(ε, λ)A(ε, λ)φ
(j,i)
k

∥∥
L2( J̃) 6 c15,

∥∥B4,k(ε, λ)A(ε, λ)φ
(j,i)
k,±
∥∥

L2( J̃) 6 c15,

where c15 is a constant independent of λ, k, j, i but depending on δ3.

Proof. Denoting

B(p,q)
4,k :=

1− ξ
(p,q)
k

V − λ
P J̃La?,

we observe that

B4,k =
n

∑
p=1

N(j)
k

∑
q=1
B(j,i)

4,k A(ε, λ). (88)

Then, using inequality (49) and the definition of the operator A(ε, λ), we obtain:

‖B(p,q)
4,k A(ε, λ)φ

(j,i)
k ‖L2( J̃) 6 C‖La?φ

(j,i)
k ‖L2(R), ‖B(p,q)

4,k A(ε, λ)φ
(j,i)
k,± ‖L2( J̃) 6 C‖La?φ

(j,i)
k ‖L2(R),

where the symbol C denotes some constants independent of λ, k, j and i. Applying, then,
estimates (83), we see that the norms in the above inequality are uniformly bounded, and
together with, (88) this completes the proof.

We substitute Formula (68) into (66) and (67) and apply Lemmas 6 and 7 and esti-
mate (82). This yields the desired uniform boundedness of the functions A(p,q,j,i)

k (ε, λ),

A(p,q,j,i)
k,± (ε, λ), A(p,q,j,i)

k,± (ε, λ), A(p,q,j,i)
k,[,\ (ε, λ) with some fixed sufficiently small δ3. All these

functions are bounded by some constant c16 independent of ε, λ ∈ Ek,δ3 , k, j, i. Hence, there
exists ε0 > 0 independent of k, λ, j, i such that as ε < ε0, system (65) possesses only trivial
solution simultaneously for all k. Therefore, there exists δ > 0 such that the set Sδ contains
no eigenvalues of the operator Lε.

In order to prove the absence of the residual spectrum, we first need to establish
Formula (2). By Ker( · ) and Ran( · ), we denote the kernel and the range of a given
closed operator.

Lemma 8. Identity (2) is true.
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Proof. Given a closed operator A in a Hilbert space H, let λ /∈ σess(A) ∪ σpnt(A). Then,
Ker(A − λ) = {0} and hence, the inverse operator (A − λ)−1 is well defined on the
range Ran(A − λ). This inverse operator is bounded. Indeed, if this operator was un-
bounded, this would mean the existence of a sequence un ∈ D(A) such that ‖un‖H = 1
and ‖(A− λ)un‖H → 0 as n→ ∞. Since λ /∈ σess(A), the sequence {un} is compact, and
choosing a subsequence if needed, we can suppose that un converges to some u∗ in H.
Then, by the closedness of the operator A and the normalization of un, we immediately
conclude that ‖u∗‖H = 1 and (A− λ)u∗ = 0, i.e., u∗ is an eigenfunction of A associated
with its eigenvalue λ. This is impossible, since λ /∈ σpnt(A) and, therefore, the inverse
operator (A− λ)−1 is bounded on the range Ran(A− λ). By [17] (Ch. 3, Sect. 2, Thm. 9),
this yields that the range Ran(A− λ) is closed. Hence, as λ /∈ σess(A)∪ σpnt(A), it belongs
to the spectrum σ(A) if and only if Ran(A− λ) = Ran(A− λ) 6= H, which is equivalent
to Ker(A∗ − λ) 6= {0}, i.e., if and only if λ is an eigenvalue of the adjoint operator A∗. This
completes the proof.

In view of Formula (2), we observe that the adjoint operator for Lε reads as

(Lε)∗ = LV + εLa∗?, a∗(z) := a(−z). (89)

This adjoint operator is of the same structure as Lε in particular, the essential spectrum of
the operator LV is just the complex conjugation of the curve Υ, namely,

σ(LV) = σess(LV) = Υ†.

Then, we choose the complex conjugation of the piece S of this curve and we see that it
also satisfies the assumptions of Theorem 2. The function a∗ obeys Assumption (9). Then,
lessening if needed the number δ, we conclude that the set (Sδ)† contains no eigenvalues of
the operator (Lε)∗. Then, Formula (2) implies that the set Sδ also contains no points of the
residual spectrum of the operator Lε and this completes the proof of Theorem 2.

4.4. Absence of Residual Spectrum

In this subsection, we prove Theorem 3. We recall Formula (89) for the adjoint operator
Lε and immediately see that Condition (10) guarantees the self-adjointness of the operator
Lε. This implies the absence of the residual spectrum.

Suppose that Condition (11) is obeyed. As it was stated in Section 2, see identities (12)–(14),
it is sufficient to check the validity of PT -symmetricity condition (12) with the operator
P given in (13). This can be carried out by straightforward calculations for an arbitrary
ψ ∈ L2(R) using conditions (11):

(
PT (Lε)∗ψ

)
(x) =PT

V(x)φ(x) + ε
∫
R

a(y− x)φ(y) dy


=V(τx + $)φ(τx + $) + ε

∫
R

a(y− τx− $)φ(y) dy

=V(τx + $)φ(τx + $) + ε
∫
R

a(τ(y− x))φ(τy + $) dy

=V(x)(PT φ)(x) + ε
∫
R

a(x− y)(PT φ)(y) dy = (LεPT φ)(x).

This completes the proof.
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