
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19728  | https://doi.org/10.1038/s41598-023-46951-x

www.nature.com/scientificreports

Constrained DFT‑based magnetic 
machine‑learning potentials 
for magnetic alloys: a case study 
of Fe–Al
Alexey S. Kotykhov 1,2, Konstantin Gubaev 3, Max Hodapp 4, Christian Tantardini 5,6,7*, 
Alexander V. Shapeev 1 & Ivan S. Novikov 1,2*

We propose a machine-learning interatomic potential for multi-component magnetic materials. In 
this potential we consider magnetic moments as degrees of freedom (features) along with atomic 
positions, atomic types, and lattice vectors. We create a training set with constrained DFT (cDFT) that 
allows us to calculate energies of configurations with non-equilibrium (excited) magnetic moments 
and, thus, it is possible to construct the training set in a wide configuration space with great variety of 
non-equilibrium atomic positions, magnetic moments, and lattice vectors. Such a training set makes 
possible to fit reliable potentials that will allow us to predict properties of configurations in the excited 
states (including the ones with non-equilibrium magnetic moments). We verify the trained potentials 
on the system of bcc Fe–Al with different concentrations of Al and Fe and different ways Al and Fe 
atoms occupy the supercell sites. Here, we show that the formation energies, the equilibrium lattice 
parameters, and the total magnetic moments of the unit cell for different Fe–Al structures calculated 
with machine-learning potentials are in good correspondence with the ones obtained with DFT. We 
also demonstrate that the theoretical calculations conducted in this study qualitatively reproduce the 
experimentally-observed anomalous volume-composition dependence in the Fe–Al system.

Magnetism is important to be explicitly taken into account for the successful computational prediction of many 
properties in single-component metals1–6 and multi-component alloys7–15. In particular, magnetic properties of 
the constituting elements of alloys affect the phase stability7–10. Furthermore, magnetism can be responsible for 
the unusual properties like negative thermal expansion11,12, anomalous volume-composition dependence13, and 
the so-called “half-metallic behavior” in perovskites14 or full-Heusler alloys15. In such multi-component alloys 
not only magnetism is a more complex physical phenomenon as compared to the single-component materials, 
the presence of magnetism in multi-component alloys also leads to extra difficulties for its computational stud-
ies. Steel, a workhorse of heavy industry, is an example of such a material; it has immense variety of applications 
and corresponding sub-types, possessing magnetic properties due to Fe being presented in their content. Steels, 
as well as other Fe-based alloys, can be characterized by different magnetic orders for which the electronic 
ground state can be substantially different. One of the most widely used methods for simulations of ground 
state properties of condensed matter is density functional theory (DFT). In magnetism, however, we are are 
often interested in excited state properties (e.g., excited magnetic moments), while, strictly speaking, DFT is a 
theory for the electronic ground state: the fundamental theorem of DFT relies on a minimization of the energy 
in the functional space of many-body electronic wavefunction, which is the Slater determinant that avoid the 
electronic localization due to the spreading of all electrons on the entire orbitals (i.e., Kohn–Sham equations).
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To overcome this problem constraints are introduced in the Kohn–Sham equations, either as soft constraints 
contributing a penalty function to the total energy16–18 or, as recently proposed, hard constraints solved self-
consistently using the Lagrangian multiplier method19.

Despite the success of different flavours of DFT calculations in investigating different materials during the last 
30 years they are still computationally expensive even when used them on modern supercomputers. Moreover, in 
computational studies of magnetic materials, including magnetic moments as an additional degree of freedom in 
the calculation of DFT energy, the computational time increases drastically. To overcome the limitations of DFT 
in size and time, requires alternative approaches. Effective interaction model (EIM) was proposed in Refs.20,21 
and applied to the Fe-Ni system. One approach that has gained massive interest in the computational materials 
community over the last 15 years are machine-learning interatomic potentials (MLIPs)22–32. The main idea behind 
MLIPs is their ability to avoid running the full DFT simulation by interpolating between a relatively small train-
ing set of carefully selected single-point DFT calculations. A MLIP that has been trained on configurations that 
are representative for the entire configurational space appearing in a simulation then approximates local DFT 
energies and forces with, in principle, arbitrary accuracy—contrary to (semi-)empirical interatomic potentials. 
The cited MLIPs (see e.g.22–32) have been developed for non- or ferromagnetic materials, which do not require 
taking into account magnetic degrees of freedom explicitly in the functional of MLIPs. In order to approximate 
DFT energies that strongly depend on the magnitude and direction of the magnetic field we must enrich the 
functional form of MLIPs with magnetic moment features which has been proposed in a number of works33–38. 
The open problem, however, is the generation of suitable training sets. We emphasize that in addition to the 
configurations with non-equilibrium atomic positions and lattice parameters we also need configurations with 
non-equilibrium magnetic moments for the proper fitting of magnetic MLIP. We discuss the creation of such a 
training set in the present work.

In this paper we generalize a single-component magnetic Moment Tensor Potential35 (one of the recently 
developed MLIPs with magnetic degrees of freedom, mMTP) to the case of multi-component magnetic materials. 
Here, we use the  recently developed cDFT approach19  to evaluate the magnetism of Fe-Al system by first-prin-
ciples calculations being such approach seen to efficiently describe magnetism in considering a potential-based 
formulation of the self-consistency problem19. These cDFT data will be subsequently used to generate a train-
ing set for fitting an mMTP, i.e. in addition to the configurations with equilibrium magnetic moments we also 
include the ones with non-equilibrium (or, perturbed) magnetic moments in the training set. An mMTP fitted 
to such a training set allows for equilibrating magnetic moments of a configuration starting from the perturbed 
ones. In other words, we consider magnetic moments on the same grounds as atomic positions: we generate a 
training set with both relaxed and perturbed atomic positions, fit a potential, and, finally, relax both (magnetic 
and “positional”) degrees of freedom of the structures with the trained potential.

We test our multi-component mMTPs on the system of Fe-Al with different concentrations and positions of 
Al and Fe. We demonstrate that the formation energies, the equilibrium lattice parameters, and the total mag-
netic moments of the unit cell predicted with the fitted mMTPs for various compounds of the Fe-Al alloy are in 
a good correspondence with the DFT ones. We also demonstrate that the theoretical calculations conducted in 
this paper reproduce the anomalous volume-composition dependence in the Fe-Al system shown in Ref.13 and 
experimentally observed39.

Results and discussion
Training set
The training set for magnetic Moment Tensor Potential (mMTP) fitting consists of different configurations of 
bcc Fe-Al in which the concentration of Al varies from 0 to 50% . We additionally include pure bcc-Al in the 
training set. The configurations in the training set consist of 16 atoms ( 2× 2× 2 conventional bcc cell). There 
are altogether 2012 configurations in the training set constructed as detailed below.

For constructing the training set we start from the 23 “parent” configurations taken from Ref.13. These con-
figurations differ the way Al occupies the supercell sites as given in Table 1. The notations for the supercell sites 
(as used in the first column of Table 1 where they denote the locations of the Al atoms) are shown in Figure 1.

Figure 1.   The 2× 2× 2 16-atomic supercell with the notations of atomic sites in Fe–Al structures.
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For generating the configurations for the training set we first conduct full geometrical optimization (relaxa-
tion) of the structures (i.e., we minimize energies with respect to atomic positions, lattice vectors, and magnetic 
moments) from the left column in Table 1. We took the Fe magnetic moments of 3 µB and the Al magnetic 
moments of 0 µB as an initial guess. After the minimization we added the configurations from the relaxation 
path to the training set (see Step 1 in Table 1). After that we compress and extend lattice vectors of equilibrium 
configurations by 1 % . Next, we take each of these configurations, and we apply random displacements to each 
coordinate of each atomic position in the range from −0.1 to 0.1 Å; we do it five times and obtain five configura-
tions from each equilibrium, compressed and extended configuration. For the resulting displaced configura-
tions we optimize magnetic moments (see Step 2 in Table 1). In Step 3, as opposed to Steps 1 and 2 in which we 
conduct DFT calculations without any constraints, we impose hard constraints on magnetic moments to obtain 
the configurations with non-equilibrium magnetic moments. In Step 3.1 we take each configuration from the 
previous step and five times randomly perturb each equilibrium atomic magnetic moment by increasing or 
decreasing this value by at most 15% , and calculate these configurations with cDFT (see Step 3.1 in Table 1). As 
a result, the maximum deviation from the equilibrium magnetic moment for the Fe atom could reach 0.4 µB , for 
the Al atom the maximum deviation could be 0.01 µB (in the configurations with both Fe and Al atom). In the 
case of pure Al we randomly perturb magnetic moments by the values from the range (−0.03, 0.03) µB . Finally, 
we randomly perturb equilibrium magnetic moments in the configurations obtained in Step 1 by increasing 
or decreasing their value by at most 50% and also conduct cDFT calculations for the configurations with non-
equilibrium magnetic moments, but with the equilibrium positions and lattice vectors (see Step 3.2 in Table 1). 
As a result, the maximum deviation from the equilibrium magnetic moment for the Fe atom could reach 1.3 µB , 
for the Al atom the maximum deviation could be 0.04 µB (in the configurations with both Fe and Al atom). In the 
configurations with pure Al we randomly perturb magnetic moments by the values from the range (−0.1, 0.1) µB . 
Thus, we obtain the training set including fully equilibrium configurations and the ones with perturbed atomic 
positions, lattice vectors, and magnetic moments. Number of configurations converged for each step and each 
structure is given in Table 1. The training set contains the total of 2012 configurations. We note that around 
80 % of Fe-Al configurations converged during the DFT (cDFT) calculations with the ABINIT code. We also 
emphasize that all the cDFT calculations with perturbed magnetic moments and equilibrium atomic positions 
and lattice parameters (at Step 3.2) were converged.

Table 1.   Construction of the training set. We first conduct full geometrical optimization (relaxation) of 
structures and get fully equilibrium structures and the ones from the relaxation path (Step 1). Next we displace 
atomic positions and lattice vectors and run DFT calculations with the optimization of magnetic moments 
(Step 2). Finally, we perturb magnetic moments in the configurations obtained after Steps 1 and 2 and get 
the configurations with non-equilibrium magnetic moments (Steps 3.1 and 3.2). The numbers of converged 
configurations for each step are given in the table. The total number of converged configurations is 2012.  
Number of configurations in the training set: 2012.

Structure Step 1 Step 2 Step 3.1 Step 3.2

Bcc-Al 3 15 75 14

Bcc-Fe 3 14 60 14

Fe15Al1−1 3 15 75 14

Fe14Al2−11’ 7 15 15 14

Fe14Al2−15 7 14 69 14

Fe14Al2−13 5 14 69 14

Fe14Al2−17 3 15 75 14

Fe13Al3−124 12 14 67 14

Fe13Al3−157 11 14 56 14

Fe13Al3−368 7 15 75 14

Fe12Al4−1245 5 11 55 14

Fe12Al4−1247 11 12 58 14

Fe12Al4−1357 10 15 45 14

Fe12Al4−1368 3 8 39 14

Fe11Al5−13681’ 5 6 30 14

Fe11Al5−12457 5 15 75 14

Fe10Al6−124568 0 0 0 0

Fe10Al6−123468 0 0 0 0

Fe10Al6−12341’5’ 18 15 72 14

Fe10Al6−124678 4 15 74 14

Fe9Al7−1234568 6 15 75 14

Fe8Al8−12345678 3 14 70 14

Fe8Al8−13682’4’5’7’ 3 15 69 14

Total: 134 286 1298 294
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For the verification of the fitted mMTPs we also generate a “verification” set. We start with the configurations 
obtained in Step 1 of constructing the training set, and perform Steps 2 and 3.2 (i.e., we perturb atomic positions 
and lattice parameters and optimize magnetic moments (Step 2) and we perturb magnetic moments at equilib-
rium lattice parameters and atomic positions (Step 3.2)). We thus obtain additional 336 configurations for the 
verification of the fitted mMTPs. Unlike for the training set, we omitted Step 3.1 for the purpose of generating 
the verification set (and we therefore do not call it “validation set”), because we are mostly concerned about the 
accuracy on equilibrium configurations.

Fitting and verification of the ensemble of mMTPs
The results of fitting and verification of the ensemble including five mMTPs are given in Table 2. It could be 
seen that the uncertainty in energy, force, and stress errors is small compared to the magnitude of the errors, 
and the fitting errors and the errors on the “verification” set are reasonable and typical for the periodic crystal 
systems. We use the fitted ensemble of five mMTPs for further computations of the values of interest because from 
Table 2 we see no overfitting of the ensemble of five mMTPs. However, it should be noted that the force error 
on the “verification” set is smaller than the fitting force error and the stress error on the “verification” set is two 
times larger than the fitting stress error. Both the difference between force and stress errors are beyond the 95 % 
confidence interval. The reason may be that we constructed the “verification” set without Step 3.1 as opposed to 
the training set. In order to check it out we carry out an additional fivefold cross-validation.

Fivefold cross‑validation
For the fivefold cross validation we combine the training and “verification” sets and create the total set of 2328 
configurations. Next we split this set into five non-overlapping parts and carry out cross-validation, i.e. we fit 
mMTPs on four parts and validate it on the fifth part. The results are given in Table 3. From the table we con-
clude that the fitting and validation errors are close to each other and are within 99% confidence interval, i.e., 
the training set was constructed correctly.

Formation energy, lattice parameter, and total magnetic moment for different Fe–Al 
compounds
For testing the predictive power of the ensemble of fitted mMTPs we compare the formation energies, the 
equilibrium lattice parameters, and the total magnetic moments of the unit cell predicted with the mMTPs and 
DFT (implemented in ABINIT) for different compounds of Fe–Al. Uncertainty of the errors estimation in all 
the mentioned quantities in figures and tables are provided with the 95 % confidence interval (i.e., 2-σ interval).

Formation energy is given in Fig. 2. The ensemble of mMTPs correctly reproduces the formation energy 
trend calculated with DFT: it decreases when the concentration of Al increases. The maximum error of the 
formation energy prediction is around 20 meV/atom for the Fe8Al8−13682’4’5’7’ structure. From Fig. 2 we find 
the configurations with minimum energy for a given concentration of Al, i.e., closest to the convex hull: pure 
bcc-Fe, Fe15Al1-1, Fe14Al2-13, Fe13Al3-368, Fe12Al4-1368, Fe11Al5-12457, Fe10Al6-124678, Fe9Al7-1234568, and 
Fe8Al8-12345678. We provide further results for these configurations below.

In Fig. 3 we compare the equilibrium lattice parameters calculated with the mMTPs and DFT. As for the 
formation energies, the mMTP- and DFT-provided equilibrium lattice parameters are close to each other, the 
maximum error in their prediction is about 0.014 Å(for the Fe11Al5-12457 structure). We also observe the 
anomalous lattice parameter/composition dependence in the Fe–Al structures. We, first, see the nearly linear 
increase of the lattice parameter up to the Al concentration of 18.75 %. When the Al concentration is between 

Table 2.   Fitting root-mean-square errors (RMSEs) and RMSEs obtained on the “verification” set for the 
ensemble of five mMTPs and uncertainty of the errors estimation (we provide it with the 95 % confidence 
interval, i.e., 2-σ interval). The obtained errors are reasonable and typical for the periodic crystal systems. The 
ensemble of fitted mMTPs was not overfitted.

Energy error (meV/atom) Force error (meV/Å) Stress error (GPa)

Fitting 3.65 ± 0.13 60 ± 3 0.42 ± 0.06

Verification 4.03 ± 0.05 48 ± 4 0.79 ± 0.10

Table 3.   Fivefold cross-validation of mMTPs. We provide uncertainty of the errors estimation within the 99% 
confidence interval, i.e., 3-σ interval. Fitting and validation errors are close to each other and are within 99% 
confidence interval.

Energy error (meV/atom) Force error (meV/Å) Stress error (GPa)

Fitting 2.8 ± 0.7 57 ± 4 0.36 ± 0.06

Validation 3.1 ± 1.7 51 ± 4 0.33 ± 0.06
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18.75 % and 31.25 % the values of lattice parameters are close to constant. Next (between 31.25 % and 37.5 %), 
we see the decrease in lattice parameter and, finally, another increase up to 50 %.

In Fig. 3 we also provide the experimental lattice parameters from the paper39. The experimental work39 has 
somewhat different lattice parameter dependencies for the differently processed samples (cast &quenched vs 
crushed ones), yet they both are anomalous, i.e., there is no linear dependency at more than 18.75 % Al concen-
tration for the crushed samples (and at more than 31.25 % Al concentration for the cast &quenched ones). The 
origin of this anomaly itself can be successfully attributed to the change in magnetic moments of Fe atoms (see 
Fig. 4), as was assumed in Ref.39 and theoretically verified in Ref.13, and in this paper.

Figure 2.   Formation energies for different compounds of Fe–Al predicted with the ensemble of mMTPs and 
DFT. The trend of formation energy was correctly reproduced with the ensemble of mMTPs, maximum error in 
formation energy prediction is 20 meV/atom for the Fe8Al8−13682’4’5’7’ structure.

Figure 3.   Lattice parameter dependencies on concentration of Al in the Fe–Al compounds computed with 
mMTP and DFT, and obtained experimentally (the experimental data are taken from Ref.39). The theoretical 
(mMTP and DFT) lattice parameters are close to each other: the maximum error in their prediction is 0.014 
Å. Both the theoretical and the experimental dependencies of lattice parameters on Al concentration are 
anomalous: they are nonlinear at more than 18.75 % of Al concentration (at more than 31.25 % for the crushed 
samples).
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Compositional dependencies of the total magnetic moment of the 16-atomic unit cell divided by the num-
ber of Fe atoms obtained with the ensemble of mMTPs and DFT are shown in Figure 4. The overall agreement 
between the mMTPs and DFT is very good: we see that the total magnetic moment of the unit cell decreases 
when the concentration of Al increases. The values of the total magnetic moments obtained with the mMTPs 
and DFT are also close to each other except for the Fe8Al8-12345678 structure: all the fitted mMTPs in the 
ensemble give zero magnetic moment whereas DFT gives 0.7 µB . Except for this discrepancy for the Fe8Al8
-12345678 structure, from the results of this subsection we conclude that the ensemble of mMTPs fitted to the 
DFT data essentially reproduces the variations in formation energies, lattice parameters, and total magnetic 
moments calculated with DFT.

Conclusion
In this paper we proposed the machine-learning interatomic potential with magnetic degrees of freedom (mag-
netic Moment Tensor Potential, mMTP) for prediction the properties of magnetic alloys. This potential was 
trained on data obtained with the recently developed method of cDFT calculations19 that allows us to compute 
energies of configurations with non-equilibrium (excited) magnetic moments and, thus, to consider magnetic 
moments as degrees of freedom along with atomic positions, atomic types, and lattice vectors. We verify the 
developed magnetic multi-component machine-learning potentials on the Fe-Al system. We, first, created a 
training set including fully equilibrium atomic positions, lattice vectors, magnetic moments and the perturbed 
ones for different concentrations of Fe and Al in the Fe-Al system. Next, we fitted the ensemble of five mMTPs to 
the cDFT data and compared the dependencies of formation energies, equilibrium lattice parameters, and total 
magnetic moments of unit cell on the concentration of Al atoms predicted with the ensemble of mMTPs and DFT. 
We concluded that the mentioned mMTP and DFT differences are minor. Both mMTPs and DFT reproduced 
anomalous volume-composition dependence in the Fe-Al system obtained theoretically in the previous studies 
and has been experimentally observed. The main difference between the mMTP and DFT results was found for 
the Fe8Al8-12345678 structure: the ensemble of mMTPs gave the local minimum with zero magnetic moments 
for the Fe atoms whereas DFT predicted the minimum with magnetic moments of 0.7 µB for the Fe atoms. Nev-
ertheless, the rest of the results obtained with DFT and mMTP are in good correspondence.

In future, we are planning to develop an active learning algorithm for mMTP. Our confidence of developing 
an efficient active learning algorithm stems from the fact that with cDFT we are able to treat magnetic moments 
on the same footing as atomic positions; and for learning on atomic positions/geometries various successful 
active learning algorithms already exist. With active learning, we see in principle no obstacle in applying our 
methodology to predict material defect properties of other multi-component systems, e.g., of high-entropy 
alloys. In Ref.40 we have developed an MTP-based algorithm for computing stacking fault energies, surface ener-
gies, and elastic constants, for (non-magnetic) bcc random alloys and used it to predict ductility of Mo–Nb–Ta 
over the entire composition space. Extending it to the case of magnetic alloys should be straightforward once 
we have developed an active learning algorithm, and this will allow us to screen for new materials with exotic 
mechanical properties over a much larger space of (magnetic and non-magnetic) metallic alloys than the space 
that can currently be approached with todays’s state-of-the-art methods. Finally, active learning will allow us to 
train mMTP during molecular dynamics simulations and apply it to investigating the processes and predicting 
the properties of magnetic materials at finite temperature.

Figure 4.   Total magnetic moment of unit cell divided by the number of Fe atoms for different compounds of 
Fe-Al computed with the ensemble of mMTPs and DFT. Both the mMTPs and DFT predict the decrease in total 
magnetic moment when the concentration of Al increases.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19728  | https://doi.org/10.1038/s41598-023-46951-x

www.nature.com/scientificreports/

Methodology
Magnetic multi‑component moment tensor potential (mMTP)
The concept of magnetic multi-component Moment Tensor Potential (mMTP) presented in the current research 
is based on the previously developed non-magnetic MTP for multi-component systems41,42 and magnetic MTP 
for single-component systems35.

The mMTP potential is local, i.e., the energy of the atomistic system is a sum of energies of individual atoms:

where i stands for the individual atoms in an Na-atom system. We note that any configuration includes lattice 
vectors L = {l1, l2, l3} , atomic positions R = {r1, . . . , rNa } , types Z = {z1, . . . , zNa } (we also denote Ntypes by the 
total number of atomic types in the system), and magnetic moments M = {m1, . . . ,mNa } . The energy of the 
atom Ei , in turn, has the form:

where ξ = {ξα} are the “linear” parameters to be optimized and Bα are the so-called basis functions, which are 
contractions of the descriptors25 of atomistic environment ni , yielding a scalar. The αmax parameter can be changed 
to provide potentials with different amount of parameters35.

The descriptors are composed of the radial part, i.e., the scalar function depending on the interatomic dis-
tances and atomic magnetic moments, and the angular part, which is a tensor of rank ν:

where ni stands for the atomic environment, including all the atoms within the Rcut distance (or less) from the 
central atom i, µ is the number of the radial function, ν is the rank of the angular part tensor, |rij| is the distance 
between the atoms i and j, zi and zj are the atomic types, mi and mj are the magnetic moments of the atoms.

The radial functions are expanded in a basis of Chebyshev polynomials:

Here c = {c
ζ ,β ,γ
µ,zi ,zj } are the “radial” parameters to be optimized, each of the functions φζ (|rij|) , ψβ(mi) , ψγ (mi) is 

a Chebyshev polynomial of order ζ , β and γ correspondingly, taking values from −1 to 1. The function φζ (|rij|) 
yields the dependency on the distance between the atoms i and j, while the functions ψβ(mi) and ψγ (mj) yield 
the dependency on the magnetic moments of the atoms i and j, correspondingly. The arguments of the functions 
φζ (|rij|) are on the interval (Rmin,Rcut) , where Rmin and Rcut are the minimum and maximum distance, corre-
spondingly, between the interacting atoms. The functions ψβ(mi) and ψγ (mj) are of the same structure, which 
we explain for the case of the former one. The argument of the function ψβ(mi) is the magnetic moment of the 
atom i, taking the values on the (−Mzi

max,M
zi
max) interval. The value Mzi

max itself depends on the type of atom zi , 
and is determined as the maximal absolute value of the magnetic moment for atom type zi in the training set. 
Similar to the conventional MTP, the term (Rcut − |rij|)

2 provides smooth fading to 0 when approaching the Rcut 
distance, in accordance with the locality principle (1).

We note that magnetic degrees of freedom mi from (4) are collinear, i.e., they can take negative or positive 
values as projection onto the Z axis (though the choice of the axis is arbitrary). This way, in comparison to non-
magnetic atomistic systems with N atoms, in which the amount of degrees of freedom equals 4N (namely 3N 
for coordinates and N for types), for the description of magnetic systems additional N degrees of freedom are 
introduced, standing for the magnetic moment mi of each atom. The amount of parameters entering the radial 
functions (Eq. 4) also increases in mMTP compared to the conventional MTP41,42. Namely, in MTP this number 
equals Nµ · Nφ · N2

types , while in mMTP it is Nµ · Nφ · N2
types · N

2
ψ . Thus, if we take Nψ = 2 (which is used in 

the current research), the amount of the parameters entering the radial functions would be four times more in 
mMTP then in MTP.

We denote all the mMTP parameters by θ = {ξ , c} and the total energy (1) of the atomic system by 
E = E(θ) = E(θ;M) = E(θ; L,R,Z,M).

Magnetic symmetrization of mMTP
The tensor (Eq. (4)) includes collinear magnetic moments in its functional form. However, it is not invariant with 
respect to the inversion of magnetic moments, i.e., E(θ;M) �= E(θ;−M) , while both original and spin-inverted 
configurations should yield the same energy due to the arbitrary orientation of the projection axis, which we 
further call the magnetic symmetry.

We use data augmentation followed by explicit symmetrization with respect to magnetic moments to train a 
symmetric mMTP as we discuss below. Assume we have K configurations in the training set with DFT energies 
EDFTk  , forces f DFTi,k  , and stresses σDFT

ab,k  ( a, b = 1, 2, 3 ) calculated. We find the optimal parameters θ̄ (fit mMTP) by 
minimizing the objective function:

(1)E =

Na∑

i=1

Ei ,

(2)Ei =

αmax∑

α=1

ξαBα(ni),

(3)
Mµ,ν(ni) =

∑

j

fµ(|rij|, zi , zj ,mi ,mj) rij ⊗ ...⊗ rij
︸ ︷︷ ︸

ν

times ,

(4)fµ(|rij|, zi , zj ,mi ,mj) =

Nφ∑

ζ=1

Nψ∑

β=1

Nψ∑

γ=1

cζ ,β ,γµ,zi ,zj
φζ (|rij|)ψβ(mi)ψγ (mj)(Rcut − |rij|)

2.
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where we , wf  , and ws are non-negative weights. By minimizing (5) we find such optimal parameters θ̄ that yield 
Ek(θ̄;M) ≈ Ek(θ̄;−M) , k = 1, . . . ,K  (the same fact takes place for the mMTP forces and stresses), i.e., we 
symmetrize the training set to make mMTP learn the required symmetry from the data itself—this is called 
data augmentation.

Next, we modify mMTP to make the energy used for the simulations (e.g., relaxation of configurations) to 
satisfy the exact symmetry:

That is, we substitute the mMTP energy (1) into (6) and get a functional form which satisfies the exact identity 
Esymm(θ̄;M) = Esymm(θ̄;−M) for any configuration. We also note that E(θ̄) ≈ Esymm(θ̄).

Constrained density functional theory calculations
We use the cDFT approach with hard constraints (i.e., Lagrange multiplier) as proposed by Gonze et al. in Ref.19. 
One way to formulate it is to first note that in a single-point DFT calculation we minimize the Kohn-Sham 
total energy functional E[ρ;R] with respect to the electronic density ρ = ρ(r) (here ρ combines the spin-up 
and spin-down electron densities), keeping the nuclei position R fixed. In other words, we solve the following 
minimization problem:

and from the optimal ρ∗ = argminE[ρ;R] we can, e.g., find magnetization m(r) = ρ∗
+ − ρ∗

− , where the sub-
scripts denote the spin-up ( + ) and spin-down (−) densities. The magnetic moment of the ith atom can be found 
by integrating m(r) over some (depending on the partitioning scheme) region around the atom:

Since the minimizer ρ∗ depends on R , mi are also the functions of R.
According to the cDFT approach19, we now formulate the problem of minimizing E[ρ;R] in which not only 

R, but also ρ is allowed to change only subject to constraints (7):

The algorithmic details of how this minimization problem is solved, and how the energy derivatives (forces, 
stresses, torques) are computed, are described in detail in Ref.19.

Computational details
We used the ABINIT code43,44 for DFT (and cDFT recently developed and described in Ref.19) calculations with 
6× 6× 6 k-point mesh and cutoff energy of 25 Hartree (about 680 eV). We utilized the PAW PBE method with 
the generalized gradient approximation. We applied constraints on magnetic moments of all atoms during cDFT 
calculations.

We fitted an ensemble of five mMTPs with 415 parameters in order to quantify the uncertainty of mMTPs 
predictions. For each mMTP we took Rmin = 2.1 Å, Rcut = 4.5 Å, MAl

max = 0.1 µB , and MFe
max = 3.0 µB . The 

weights in the objective function (5) were we = 1 , wf = 0.01 Å 2 , and ws = 0.001.

Data availability
We published the training set at (https://​gitlab.​com/​ivann​ovikov/​datas​ets_​for_​magne​tic_​MTP/-/​blob/​main/​
train​ing_​set.​cfg) and the “verification” set at (https://​gitlab.​com/​ivann​ovikov/​datas​ets_​for_​magne​tic_​MTP/-/​
blob/​main/​verif​icati​on_​set.​cfg).
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