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Low-dimensionality and predictability of solar wind and global
magnetosphere during magnetic storms
T. Živković,1 and K. Rypdal,1

Abstract. The storm indices Dst and SYM-H and the solar wind velocity v and in-
terplanetary magnetic field Bz show no signatures of low-dimensional dynamics in quiet
periods, but tests for determinism in the time series indicate that SYM-H exhibits a sig-
nificant low-dimensional component during storm time, suggesting that self-organization
takes place during magnetic storms. Even though our analysis yields no discernible change
in determinism during magnetic storms for the solar wind parameters, there are signif-
icant enhancement of the predictability and exponents measuring persistence. Thus, mag-
netic storms are typically preceded by an increase in the persistence of the solar wind
dynamics, and this increase is reflected in the magnetospheric response to the solar wind.

1. Introduction

Under the influence of the solar wind, the magnetosphere
resides in a complex, non-equilibrium state. The plasma
particles have non-Maxwellian velocity distribution, MHD
turbulence is present everywhere, and intermittent energy
transport known as bursty-bulk flows occurs as well [An-
gelopoulos et al., 1999]. The magnetospheric response to
particular solar events constitutes an essential aspect of
space weather while the response to solar variability in gen-
eral is often referred to as space climate [Watkins, 2002].
Theoretical approaches to space climate involve concepts
and methods from stochastic processes, nonlinear dynamics
and chaos, turbulence, self-organized criticality, and phase
transitions.

Self-organization can lead to low-dimensional behavior in
the magnetosphere [Klimas et al., 1996; Vassiliadis et al.,
1990; Sharma et al., 1993]. However, power-law dependence
observed in the Fourier spectra of the auroral electrojet
(AE) index is a typical signature of high dimensional col-
ored noise indicating multi-scale dynamics of the magneto-
sphere. In order to reconcile low-dimensional, deterministic
behavior with high-dimensionality, Chang [1998] proposed
that a high-dimensional system near self-organized critical-
ity (SOC) [Bak et al., 1987] can be characterized by a few
parameters whose evolution is governed by a small number
of nonlinear equations. Some magnetospheric models, like
the one presented in Chapman et al. [1998], are based on the
SOC-concept. Here a system tunes itself to criticality and
the energy transport across scales is mediated by avalanches
which are power-law distributed in size and duration.

On the other hand, it was suggested in Sitnov et al.
[2001] that the substorm dynamics can be described as a
non-equilibrium phase transition; i.e. as a system tuned ex-
ternally to criticality. Here, a power-law relation is given,
with characteristic exponent close to the input-output crit-
ical exponent in a second-order phase transition. In fact, it
is claimed in Sharma et al. [2003] that the global features of
the magnetosphere correspond to a first order phase transi-
tion whereas multi-scale processes correspond to the second-
order phase transitions.

The existence of metastable states in the magnetosphere,
where intermittent signatures might be due to dynamical
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phase transitions among these states, was suggested by Con-
solini and Chang [2001], and forced and/or self-organized
criticality (FSOC) induced by the solar wind was introduced
as a conceptual description of magnetospheric dynamics.
The concept of intermittent criticality was suggested by Bal-
asis et al. [2006] who asserted that during intense magnetic
storms the system develops long-range correlations, which
further indicates a transition from a less orderly to a more
orderly state. Here, substorms might be the agents by which
longer correlations are established. This concept implies a
time-dependent variation in the activity as the critical point
is approached, in contrast to SOC.

In the present paper we investigate determinism and pre-
dictability of observables characterizing the state of the
magnetosphere during geomagnetic storms as well as dur-
ing its quiet condition, but the emphasis is on the evolu-
tion of these properties over the course of major magnetic
storms. The measure of determinism employed here in-
creases if the system dynamics is dominated by modes gov-
erned by low-dimensional dynamics. Hence, the determin-
ism in most cases is a measure of low-dimensionality. For a
low-dimensional, chaotic system the predictability measure
increases when the largest Lyapunov exponent increases,
and hence is a really a measure of un-predictability. For
a high-dimensional or stochastic system it is related to the
degree of persistence in time series representing the dynam-
ics. High persistence means high predictability.

One of the most useful data tools for probing the magne-
tosphere during substorm conditions is the Kyoto AE minute
index which is defined as the difference between the AU in-
dex, which measures the eastward electrojet current in the
auroral zone, and the AL index, which measures the west-
ward electrojet current, and is usually derived from 12 mag-
netometers positioned under the auroral oval [Davies and
Sugiura, 1966]. The auroral electrojet, however, does not
respond strongly to the specific modifications of the mag-
netosphere that occur during magnetic storms. A typical
storm characteristic, however, is a change in the intensity of
the symmetric part of the ring current that encircles Earth
at altitudes ranging from about 3 to 8 Earth radii, and is
proportional to the total energy in the drifting particles that
form this current system [Gonzalez et al., 1994]. For the
study of storm dynamics the Dst and SYM-H indices are
both designed to measure the intensity of the storm-time
ring current. They are derived from similar data sources,
but SYM-H has the distinct advantage of having 1-min time
resolution compared to the 1-hour time resolution of Dst.
Wanliss [2006] has recommended that the SYM-H index be
used as a de facto high-resolution Dst index. The analysis
of these indices are central to this study, where SYM-H is
used whenever hourly time resolution proves inadequate.
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We also use minute data for the interplanetary magnetic
field (IMF) component Bz, as well as minute data for the
solar wind bulk velocity v along the Sun-Earth axis. These
data are both retrieved from the OMNI satellite database
and are given in the GSE coordinate system. Gaps of miss-
ing data in Bz and v are excluded from the analysis while
SYM-H data are analyzed for the entire period.

The typical magnetic storm consists of the initial phase,
when the horizontal magnetic field suddenly increases and
stays elevated for several hours, the main phase where this
component is depressed for one to several hours, and the re-
covery phase which also lasts several hours. The initial phase
has been associated with northward directed IMF (little en-
ergy enters the magnetosphere), but it has been discovered
that this phase is not essential for the storm to occur Akasofu
[1965]. In order to define a storm, we follow the approach of
Loewe and Prölss [1997], where the Dst minimum is a com-
mon reference epoch, the main-phase decrease is sufficiently
steep, and the recovery phase is also defined.

The remainder of the paper is organized as follows: sec-
tion 2 describes the data analysis methods employed. Sec-
tion 3 presents analysis results discerning general statistical
scaling properties of global magnetospheric dynamics using
minute data over several years and data generated by a nu-
merical model which produces realizations of a fractional
Ornstein-Uhlenbebck (fO-U) process. In particular we study
how determinism and predictability of the geomagnetic and
solar wind observables change over the course of magnetic
storms. Section 4 is reserved for discussion of results and
section 5 for conclusions.

2. Methods
2.1. Recurrence plot analysis

The recurrence plot is a powerful tool for the visualiza-
tion of recurrences of phase-space trajectories. It is very
useful since it can be applied to non-stationary as well as
short time series [Eckmann et al., 1987], and this is the na-
ture of data we use to explore magnetic storms. Prior to
constructing a recurrence plot the common procedure is to
reconstruct phase space from the time-series x(t), which has
the length N by time-delay embedding [Takens, 1981].

Suppose the physical system at hand is a deterministic
dynamical system describing the evolution of a state vector
z(t) in a phase space of dimension p, i.e. z evolves according
to an autonomous system of 1st order ordinary differential
equations;

dz

dt
= f(z), f : Rp →Rp (1)

and that an observed time series x(t) is generated by the
measurement function g : Rp →R,

x(t) = g(z(t)). (2)

Assume that the dynamics takes place on an invariant set
(an attractor) A ⊆ Rp in phase space, and that this set has
box-counting fractal dimension d. Since the dynamical sys-
tem uniquely defines the entire phase-space trajectory once
the state z(t) at a particular time t is given, we can define
uniquely an m-dimensional measurement function,

g : A → Rm, g(z) = (x(t), x(t+ τ), . . . , x(t+ (m− 1)τ)).

(3)

where the vector components are given by equation (2), and
τ is a time delay of our choice. If the invariant set A is
compact (closed and bounded), g is a smooth function and

m > 2d, the map given by equation (3) is a topological em-
bedding (a one-to-one continuous map) between A and Rm.
The condition m > 2d can be thought of as a condition for
the image g(A) not to intersect itself, i.e. to avoid that two
different states on the attractor A are mapped to the same
point in the m-dimensional embedding space Rp. If such an
embedding is achieved, the trajectory x(t) = g(z) (where
g(z) is given by equation (3)) in the embedding space is a
complete mathematical representation of the dynamics on
the attractor. Note that the dimension p of the original
phase space is irrelevant for the reconstruction of the em-
bedding space. The important thing is the dimension d of
the invariant set A on which the dynamics unfolds.

There are practical constraints on useful choices of the
time delay τ . If τ is much smaller than the autocorrelation
time the image of A becomes essentially one-dimensional. If
τ is much larger than the autocorrelation time, noise may de-
stroy the deterministic connection between the components
of x(t), such that our assumption that z(t) determines x(t)
will fail in practice. A common choice of τ has been the
first minimum of the autocorrelation function, but it has
been shown that better results are achieved by selecting the
time delay as the first minimum in the average mutual in-
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Figure 1. Recurrence plot for Bz. a) during quiet con-
ditions, b) during a magnetic storm.
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formation function, which can be percieved as a nonlinear
autocorrelation function [Abarbanel , 1996].

The recurrence plot analysis deals with the trajectories in
the embedding space. If the original time series x(t) has N
elements separated by the time delay τ , we have a time series
of N −m+ 1 vectors x(t) for t = τ, . . . , (N −m+ 1)τ . This
time series constitutes the trajectory in the reconstructed
embedding space.

The next step is to construct a (N−m+1)× (N−m+1)
matrix Ri,j consisting of elements 0 and 1. The matrix el-
ement (i, j) is 1 if the distance is ‖xi − xj‖ ≤ r in the
reconstructed space, and otherwise it is 0. The recurrence
plot is simply a plot where the points (i, j) for which the
corresponding matrix element is 1 is marked by a dot. For a
deterministic system the radius r is typically chosen as 10%
of the diameter of the reconstructed attractor, but varies for
different sets of data. For a non-stationary stochastic pro-
cess like a Brownian motion there is no bounded attractor
for the dynamics, and the diameter is limited by the length
of the data record. Examples of recurrence plots are shown
in Figure 1, obtained from Bz, when no storm is present in
a), and during a magnetic storm in b).

2.2. Empirical mode decomposition

The empirical mode decomposition (EMD) method, de-
veloped in Huang et al. [1998] is very useful on non-
stationary and nonlinear time series. EMD method can give
a change of frequency in any moment of time (instantaneous
frequency) and a change of amplitude in the system. How-
ever, in order to properly define instantaneous frequency, a
time series should have the same number of zero crossings
and extrema (or they can differ at most by one), and a lo-
cal mean should be close to zero. The original time series
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Figure 2. IFs obtained by EMD for Bz during a mag-
netic storm

usually does not have these characteristics and should be
decomposed into intrinsic mode functions (IF) for which in-
stantaneous frequency can be defined. Decomposition can
be obtained through the so-called sifting process. This is an
adaptive process derived from the data and can be briefly
described as follows: All local maxima and minima in the
time series s(t) are found, and all local maxima and min-
ima are fitted by cubic spline and these fits define the upper
(lower) envelope of the time series. Then the mean of the
upper and lower envelope m(t) is defined, and the difference
between the time series and this mean represents the first
IF, h(t) = s(t)−m(t), if instantaneous frequency can be ob-
tained, defined by some stopping criterion. If not, the proce-
dure is repeated (now starting from h(t) instead of s(t)) until
the first IF is produced. Higher IFs are obtained by sub-
tracting the first IF from the time series s(t) and the entire
previously mentioned procedure is repeated until a residual,
usually a monotonic function, is left. We use a stopping cri-
terion defined by Rilling et al. [2003], where η(t) < θ1 on
1−γ fraction of the IF, and η(t) < θ2, on the remaining frac-
tion of the IF. Here η = m(t)/a(t), a(t) is the IF amplitude,
and γ = 0.05, θ1 = 0.05, and θ2 = 0.5. By the above defi-
nitions, IFs are complete in the sense that their summation
gives the original time series: s(t) =

∑M

1
h(t) +R(t) where

M is the number of IFs and R is a residual. In Figure 2 we
show the IFs from EMD performed on the IMF Bz during
a magnetic storm.

In order to study stochastic behavior of a time series
by means of EMD analysis, we refer to Wu and Huang
[2004] who studied characteristics of white noise using the
EMD method. They derived for white noise the relation-
ship logEm = − log Tm, where Em and Tm represents em-
pirical variance and mean period for the m’th IF. Here,
Em = (1/N)

∑N

t=1
h(t)2, where h(t) is the m’th IF, and Tm

is the ratio of the m’th IF length to the number of its zero
crossings. Franzke [2009] analyzed telecommunication in-
dices and noticed a resemblance to autoregressive processes
of the first order AR(1), which are stochastic and linear pro-
cesses. For such processes log Em = ζ log Tm. For fractional

a)

b)

Figure 3. a) Average displacement vectors Vj in each
box j for a 2-dimensional projection of m-dimensional
embedding space. a) Lorenz system for m = 3. b) fO-U
for m = 8.
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Gaussian noise processes (H < 1) and fractional Brown-
ian motions (H > 1) we have the connection ζ = 2H − 2,
where H is the Hurst exponent, as shown by Flandrin and
Gonçalvès [2004]. A useful feature of the EMD analysis is
the possibility of extraction of trends in the time series [Wu
et al., 2007], because the slowest IF components should often
be interpreted as trends. This is an advantage compared to
the standard variogram or rescaled-range techniques [Beran,
1994], whose estimation of the scaling exponents is biased
by the trend.

2.3. A test for determinism

In this paper we employ a simple test for determinism,
developed by Kaplan and Glass [1992], where the following
hypothesis is tested: When a system is deterministic, the
orientation of the trajectory (its tangent) is a function of the
position in the phase space. Further, this means that a re-
current trajectories in the same box in phase space, will have
parallel directions since these are all functions of the same
position in the phase space. On the other hand, trajectories
in a stochastic system have directions which do not depend
on the position and are equally probable in any direction.
This hypothesis can only be tested on continuous flows, and
is not applicable to maps since consecutive points on the tra-
jectory may be very separated in the phase space. In this
context, a trajectory orientation is defined through a vector
of a unit length, whose direction is given by the displace-
ment between the point where trajectory enters the box j to
the point where the trajectory exits the same box. The dis-
placement in m-dimensional embedding space is given from
the time-delay embedding reconstruction:

∆x(t) = [x(t+ b)− x(t), x(t+ τ + b)− x(t+ τ), . . . ,

x(t+ (m− 1)τ + b)− x(t+ (m− 1)τ)], (4)

where b is the characteristic time the trajectory spends in-
side a box. The orientation vector for the kth pass through
box j is the unit vector uk,j = ∆xk,j(t)/|∆xk,j(t)|. The
estimated averaged displacement vector in the box is

Vj =
1

nj

nj∑
k=1

uk,j , (5)

where nj is the number of passes of the trajectory through
box j. If the embedding dimension is sufficiently high and
in the limit of vanishingly small box size, the trajectory di-
rections should be aligned and Vj ≡ |Vj | = 1. In the case
of deterministic dynamics and finite box size, Vj will not
depend very much on the number of passes nj , and Vj will
converge to 1 as nj → ∞. In contrast, for the trajectory
of a random process, where the direction of the next step
is completely independent of the past, Vj will decrease with

nj as Vj ∼ n−1/2
j .

In Figure 3a we show displacement vectors Vj averaged
over the passes through the box j, for a three-dimensional
embedding of the Lorenz attractor, in Figure 3b the same
is shown for a random process, in this case a fractional
Ornstein-Uhlenbeck (fO-U) process. These model sys-
tems will be used throughout this paper as archetypes of
low-dimensional and stochastic systems, respectively. The
Lorenz system has the form

dx/dt = a(y − x) (6)

dy/dt = −xz + cx− y
dz/dt = xy − bz,
with standard coefficient values a = 10, b = 8/3, and c = 28,
which give rise to a chaotic flow. The fO-U process is de-
scribed by the stochastic equation:

dSt = λ(µ− St) + σdWt, (7)

where dWt is a fractional Gaussian noise with Hurst expo-
nent H [Beran, 1994]. The drift (λ and µ) and diffusion
(σ) parameters are fitted by the least square regression to
the time series of the SYM-H storm index. This will be
explained in more detail in section 3.2.

The degree of determinism of the dynamics can be as-
sessed by exploring the dependence of Vj on nj . In practice,
this can be done by computation of the averaged displace-
ment vector

Ln ≡ 〈Vj〉nj=n, (8)

where the average is done over all boxes with same number n
of trajectory passes. As shown in Kaplan and Glass [1993],
the average displacement of n passes in m-dimensional phase
space for the Brownian motion is

Rn =
1√
n

(
2

m
)1/2 Γ[(m+ 1)/2]

Γ(m/2)
, (9)

where Γ is the gamma function. The deviation in 〈Vj〉 be-
tween a given time series and the Brownian motion can be
characterized by a single number given by the weighted av-
erage over all boxes of the quantity,

Λ(τ) ≡ 1∑
j
nj

∑
j

nj

〈Vj〉2(τ)−R2
nj

1−R2
nj

, (10)

where we have explicitly highlighted that the averaged dis-
placement 〈Vj〉(τ) of the trajectory in the reconstructed
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phase space depends on the time-lag τ . For a completely
deterministic signal we have Λ = 1, and for a completely
random signal Λ = 0.

All systems described by the laws of classical (non-
quantum) physics are deterministic in the sense that they
are described by equations that have unique solutions if the
initial state is completely specified. In this sense it seems
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Figure 7. a) Increments for the SYM-H index. b) In-
crements for the transformed signal tSYM-H.

meaningless to provide tests for determinism. The test de-
scribed in this section is really a test of low dimensionality.
The test is performed by means of a time-delay embedding,
for embedding dimension m up to a maximum value M ,
where M is limited by practical constraints. High M re-
quires longer time series in order to achieve adequate statis-
tics. A test that fails to characterize the system as determin-
istic for m ≤ M in reality only tells us that the embedding
dimension is too small, i.e. the number of degrees of free-
dom d of the system exceeds M/2. Such systems will in the
following be characterized as random, or stochastic.

In Figure 4a, we plot Ln versus n for a time series gen-
erated as a numerical solution of the Lorenz system. In
the same plot we also show the same characteristic for the
surrogate time series generated by randomizing the phases
of the Fourier coefficients of the original time series. This
procedure does not change the power spectrum or auto-
covariance, but destroys correlation between phases due to
nonlinear dynamics. For low-dimensional chaotic systems
such randomization will change Ln, as is demonstrated for
the Lorenz system in Figure 4a. We also calculate Λ ver-
sus τ for these time series and plot the results in Figure
4b. Again, Λ for the original and surrogate time series are
significantly different.

For the numerically generated fO-U process we observe in
Figure 5 that Ln and Λ for the original and surrogate time
series do not differ, demonstrating that these quantities are
insensitive to randomization of phases of Fourier coefficients
if the process is generated by a linear stochastic equation.

One should pay attention to the nature of the exper-
imental data used in the test of determinism. For low-
dimensional data contaminated by low-amplitude noise or
Brownian motions , the analysis results will depend on the
box size b, but the problem is solved by choice of sufficiently
large box size. For a low-dimensional system represented
by an attractor of dimension d the results may also depend
on the choice of embedding dimension m. The estimated
determinism Ln tends to increase with increasing m until
it stabilizes at Ln ≈ 1 as m approaches 2d. For a random
signal there is no such dependence on embedding dimension,
as demonstrate by example in Figure 6. Here we plot the
determinism L3 (Ln when n = 3) versus embedding dimen-
sion m for the Lorenz and fO-U time series. For compar-
ison we also plot this for geomagnetic storm index during
magnetic storm times. It converges to a value less than 1,
and for embedding dimensions higher than the Lorenz time
series. This indicates that the geomagnetic index during
magnetic storms exhibit both a random and a deterministic
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component, and that the dimensionality of this component
is higher than for the Lorenz system.

2.4. A test for predictability

This test is primarily developed for deterministic systems,
which have limited predictability if the attractor is chaotic.
Here we perform an analysis which is based on the diagonal
line structures of the recurrence plot. In our study we use
the average inverse diagonal line length:

Γ ≡ 〈l−1〉 =
∑

l

l−1P (l)/
∑

l

P (l), (11)

where P (l) is a histogram over diagonal lengths;

P (l) =

N∑
i,j=1

(1−Ri−1,j−1)(1−Ri+l,j+l)

l−1∏
k=0

Ri+k,j+k.

For a low-dimensional, chaotic deterministic system (for
which the embedding dimension is sufficient to unfold the
attractor) Γ is an analog to the largest Lyapunov exponent,
and is a measure of the degree of unpredictability.

For stochastic systems, the recurrence plots do not have
identifiable diagonal lines, but rather consists of a pattern
of dark rectangles of varying size, as observed in Figure 1.
For embedding dimension m = 1 such a dark rectangle cor-
responds to time intervals I1 = (t1, t1 + ∆t1) on the hori-
zontal axis and I2 = (t2, t2 + ∆t2) on the vertical axis, for
which the signal x(t) is inside the same ε-interval whenever
t is included in either I1 or I2. In this case the length of
unbroken diagonal lines l is a characteristic measure of the
linear size of the corresponding rectangle, and the PDF P (l)
a measure of the distribution of residence times of the tra-
jectory inside ε-intervals. For selfsimilar stochastic processes
such as fractional Brownian motions P (l) can be computed
analytically, and Γ computed as function of the selfsmilar-
ity exponent h. Since the residence time l inside an ε-box
increases as the smoothness of the trajectory increases (in-
creasing h), we should find that Γ(h) is a monotonically
decreasing function of h. In section 3.3 we compute Γ(h)
numerically for a synthetically generated fO-U process and
thus demonstrate this relationship between Γ and h. Hence
both Γ and h can serve as measures of predictability, but Γ is
more general, because it is not restricted to selfsimilar pro-
cesses or processes with stationary increments, and applies
to low-dimensional chaotic as well as stochastic systems.

3. Results

In Rypdal and Rypdal [2010] it is shown that the fluctu-
ation amplitude (or more precisely; the one-timestep incre-
ment) ∆y(t) of the AE index is on the average proportional
to the instantaneous value y(t) of the index. This gives
rise to a special kind of intermittency associated with mul-
tiplicative noises, and leads to a non-stationary time series
of increments. However, the time series ∆y(t)/y(t) is sta-
tionary, implying that the stochastic process x(t) = log y(t)
has stationary increments. Thus, a signal with stationary
increments, which still can exhibit a multifractal intermit-
tency, can be constructed by considering the logarithm of
the AE index. Similar properties pertain to the Dst and
SYM-H, although in these cases we have to add a constant
c1 before taking the logarithm, i.e. x(t) = log (c1 + c2y(t))
has stationary increments. Using the procedure described
in Rypdal and Rypdal [2010] the estimated coefficients are
c1 = 0.7725 and c2 = 0.0397. In Figure 7a we show the in-
crements for the original SYM-H data, while in Figure 7b we

show the increments for the transformed signal x(t), which
in the following will be denoted tSYM-H.

3.1. Scaling of storm- and solar wind parameters

In this section, we employ EMD and variogram analysis to
tSYM-H, IMF Bz and solar wind flow speed v. The EMD
analysis is used to compute intrinsic mode functions (IF)
for time intervals of 50000 minutes using data for the entire
period from January 2000 till December 2005. The empiri-
cal variance estimates E versus mean period T for each IF
component in tSYM-H, Bz, and v are shown as log-log plots
in Figure 8a. In section 2.2 we mentioned that Flandrin
and Gonçalvès [2004] has demonstrated that for fractional
Gaussian noise the slope ζ is equal to ζ = 2H − 2, where
H is the Hurst exponent. This estimate for the slope seems
valid for our data as well, as is shown in the figure from
comparison with the variogram, even though the time series
on scales up to 104 minutes are non-stationary processes
having the character of fractional Brownian motions [Ryp-
dal and Rypdal , 2010]. The results from the two different
methods shown in Figures 8a and 8b are roughly consistent,
using the relations h = H−1 and ζ = 2H−2, which implies
2h = ζ. In practice, we have calculated ζ from EMD as a
function of 2h for fractional Gaussian noises and motions
with self-similarity exponent h, and have derived a relation
ζ = 0.94 (2h) + 0.1143.

The variogram represent a second order structure func-
tion:

γt =
1

(N − t)
N−t∑
n=1

(sn+t − sn)2, (12)

which scales with a time-lag t as γt = t2h, h is denoted as
selfsimilarity exponent, and s is a time series. Note that a
Hurst exponent H > 1 implies that the process is a nonsta-
tionary motion, and if the process is selfsimilar, the selfsim-
ilarity exponent is h = H − 1. In our terminology a white
noise process has Hurst exponent H = 0.5 and a Brownian
motion has H = 1.5.

From Figure 8a we observe three different scaling regimes
for tSYM-H. For time scales less than a few hundred min-
utes it scales like an uncorrelated motion (h ≈ 0.5). On time
scales from a few hours to a week it scales as an antipersis-
tent motion (h ≈ 0.25−0.35 depending on analysis method),
and on longer time scales than a week it is close to a sta-
tionary pink noise (h ≈ 0). Similar behavior was observed
for logAE in Rypdal and Rypdal [2010], but there the break
between non-stationary motion and stationary noise (where
h changes from h > 0 to h ≈ 0) occurs already after about
100 minutes, indicating the different time scales involved
in ring current (storm) dynamics and electrojet (substorm)
dynamics.

Results for v indicate a regime with antipersistent motion
(h = 0.25) up to a few hundred minutes, and then an uncor-
related or weakly persistent motion (h = 0.5) up to a week.
On longer time scales than this the variogram indicates that
the process is stationary.

The exponent h for Bz can not be estimated from the
variogram since it is difficult to obtain a linear fit to the con-
cave curve in Figure 8b. The concavity is less pronounced
in the curve derived from the EMD method i Figure 8a
and ζ = 0.47, corresponding to an antipersistent motion
(h = 0.23) can be estimated on time scales up to a few hun-
dred minutes. Bz becomes stationary already after a few
hundred minutes, which is similar to the behavior in logAE,
as pointed out by Rypdal and Rypdal [2010]. In Rypdal and
Rypdal [2011] the concavity of the variogram follows from
modelling Bz as a (multifractal) Ornstein-Uhlenbeck pro-
cess with a strong damping term that confines the motion
on time scales longer than 100 minutes. Accounting for
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Figure 8. a) E vs. T , b) γk vs. k: stars are for tSYM-H,
diamonds for IMF Bz, and triangles for v. Note that a
generalization of the result ζ = 2H − 2 in Flandrin and
Gonçalvès [2004] yields 2h = ζ.

this confinement the “true” selfsimilarity exponent of the
stochastic term turns out to be h ≈ 0.5. Thus the antiper-
sistence derived from the EMD analysis may be a spurious
effect from this confinement. The conclusion in Rypdal and
Rypdal [2011] is that Bz and logAE behave as uncorrelated
motions up to the scales of a few hours and become sta-
tionary on scales longer than this. Moreover, the stochastic
term modelling the two signals share the same multifractal
spectrum. In comparison, tSYM-H and v are non-stationary
motions on scales up to a week before they reach the sta-
tionary regime.

3.2. Change of determinism during storm times

In Figure 9 we show Ln and Λ for tSYM-H and its sur-
rogate time-series with randomized phases of Fourier coef-
ficients. We observe that Ln and Λ for the surrogate time
series does not deviate from those computed from the orig-
inal tSYM-H, indicating that the dynamics of tSYM-H is
not low-dimensional and nonlinear. The same results are
obtained for IMF Bz and flow speed v.

In the following analysis we test for determinism in tSYM-
H, Bz and v for ten intense storms that occurred in the pe-
riod between 2000-2004. The reference point in our analysis
is the storm’s main phase, and then we analyze all the data
spanning the time interval three days before and after the
storm in tSYM-H, Bz and v.

We compute Ln for n = 4 with a time resolution of 12
hours. The choice of n = 4 from the Ln vs. n curve is a com-
promise between clear separation between low-dimensional
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Figure 9. a) Ln vs. n: square symbols are for tSYM-
H, and triangles are for this signal after randomization
of phases of Fourier coefficients. b) Λ(τ) vs. τ : squares
is for tSYM-H, and triangles are after randomization of
phases.

and stochastic dynamics and small error bars (which in-
crease with increasing n). In order to improve statistics for
L4, we compute determinism using data from all ten storms.
As a reference, we compute L4 for the fO-U process as well.
In Figure 10a we plot L4 for tSYM-H Bz, v, and fO-U, and
in Figure 10b the Dst index averaged over all ten storms
is plotted, since this index shows precisely when the storm
takes place. We can observe that L4 is essentially the same
for Bz, v and fO-U, and stays approximately constant during
the course of a storm. However, L4 for tSYM-H increases
during storm time.

3.3. Change of predictability during magnetic storms

Even though we deal with a predominantly stochastic sys-
tem, its correlation and the degree of predictability changes
in time, and our hypothesis is that such abrupt transitions in
the dynamics take place during events like magnetic storms
and substorms. We therefore employ recurrence plot quan-
tification analysis as a tool for detection of these transitions.

We compute the average inverse diagonal line length
Γ ≡ 〈l−1〉 as defined in equation (11), but the same re-
sults can be drawn from other quantities that can be de-
rived from the recurrence plot (see Marwan et al.(2007)).
Γ can be used as a proxy for the positive Lyapunov expo-
nent in a system with chaotic dynamics, and is sensitive to
the transition from regular to chaotic behavior, as can be
shown heuristically for the case of the Lorenz system, where
we use a = 10, b = 8/3, and c is varied from 20 to 40,
such that transient behavior is obtained. For c = 24.74 a
Hopf bifurcation occurs, which corresponds to the onset of
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Figure 10. a) L4 for IMF Bz (squares), v (triangles),
tSYM-H (diamonds), fO-U (stars). b) averaged Dst in-
dex.
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Figure 11. a) x component of the Lorenz system as a
function of the parameter c. b) Γ ≡ 〈l−1〉 as a function
of the parameter c.

chaotic flows. In Figure 11a we plot a bifurcation diagram
for the x component of the Lorenz system as a function of
the parameter c, while in Figure 11b we show Γ for the x
component again as a function of the parameter c. Similar
results have been obtained from the longest diagonal length,
when applied to the logistic map Trulla et al. [1996]. We
use embedding dimension m = 1, because the results do not
seem dependent on m and because, in the case of stochas-
tic or high-dimensional dynamics, a topological embedding
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Figure 12. Upper graph: Γ for Dst index for year 2001.
Lower graph: Dst index for the same period.
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Figure 13. a) Γ for tSYM-H, b) 2h for tSYM-H averaged
over ten storms. Error bars represent standard deviation
based on data from these ten storms. Time origin is de-
fined by the minimum of the Dst index in each storm.

cannot be achieved for any reasonable embedding dimension.
This fact demonstrates the robustness of the recurrence-plot
analysis, which responds to changes in the dynamics of the
system even if it is a stochastic or high-dimensional system
for which no proper phase-space reconstruction is possible.
Next, we show how Γ in Dst index varies during the year of
2001. That year two major storms occurred: one on March,
31st, and the other on November, 6th. We compute Γ over
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Figure 14. a) Γ for Bz, b) 2h for Bz averaged over the
same storms as in the previous figure.

windows of 24 hours (only 24 points since this index is only
given with hourly resolution).

In Figure 12 we display Γ and the Dst index itself as a
function of time and observe that predictability increases
(Γ decreases) around storm time. Similar conclusions were
drawn by Balasis et al. [2006]. Since reduction in Γ means
increase of predictability it may also be a signature of higher
persistence in a stochastic signal. This motivates plotting Γ
and 2h (computed as a linear fit from the variogram over the
time scales up to 12 hours) for both solar wind parameters
and tSYM-H. Figure 13a shows Γ for tSYM-H averaged over
10 magnetic storms while Figure 13b shows the same for 2h.
Also, in Figure 14 and Figure 15 the same characteristics
are plotted for Bz and v. In each of these parameters we
observe a slight increase of 2h, and a decrease of Γ, suggest-
ing increase of persistence and predictability during storms.
As a reference, Γ and 2h for hundred realizations of fO-U
were simulated with the coefficients in the stochastic equa-
tion fitted to model the tSYM-H signal. For these synthetic
data we find Γ = 0.4 and 2h = 1, in good agreement with
the results obtained from the tSYM-H time series. The rela-
tionship between Γ and h can be explored through numerical
realizations of fO-U processes. Figure 16 shows Γ computed
for varying h as a mean value of 100 realizations of such a
process for each h. For persistent motions (h > 0.5) there is
a linear dependence between Γ and h, and a best fit yields

Γ ≈ 0.72− 0.57h. (13)

This analysis shows the importance of Γ as a universal mea-
sure for predictability: in low-dimensional systems it is a
measure for the Lyapunov exponent, while for persistent
stochastic motions it is a measure of persistence through
the relation 13.

4. Discussion of results on determinism

The determinism (as measured by L4) of the storm index
tSYM-H has been shown to exhibit a pronounced increase
at storm time. A rather trivial explanation of this enhance-
ment would be that it is caused by the “trend” incurred by
the wedge-shaped drop and recovery of the storm indices as-
sociated with a magnetic storm. We test this hypothesis by
superposing such a wedge-shaped pulse to an fO-U process
and compute L4. Next, we take tSYM-H for ten storms and
for each set of data subtract the wedge-shaped pulse (com-
puted by a moving-average smoothing). The residual signal
represents the “detrended” fluctuations. The result is shown
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Figure 15. a) Γ for v, b) 2h for v averaged over the same
storms as in the previous figures.
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Figure 16. Γ vs. h for fO-U.
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in Figure 17 and reveals that the trend has no discernible
influence on the determinism while, on the other hand, we
observe that the enhancement of L4 around storm time per-
sists in the “detrended” fluctuations. This result suggests
that the increasing determinism during storms is a result
of an enhanced low-dimensional component in the storm in-
dices. As mentioned in section 2.3 for low-dimensional dy-
namics, nonlinearity may be important for the measure of
determinism. For a nonlinear, low-dimensional system the
destruction of nonlinear coupling by randomizing phases of
Fourier coefficients will in general reduce the determinism,
while for a linear, stochastic process we will observe no such
effect. But what role will nonlinearity play if it is intro-
duced in the deterministic terms of a stochastic equation?
The deterministic term in the fractional Langevin equation
representing the fO-U is a linear damping term. However,
the best representation of the damping/drift term in an fO-
U model for tSYM-H is not linear. Following Rypdal and
Rypdal [2011], if y =tSYM-H, the drift term is given as the
conditional probability density δy(t, δt) given that y(t) = y:

M(y, δt) = E[δy(t, δt) | y(t) = y]. (14)
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Figure 17. L4: triangles are derived from an fO-U pro-
cess with a “storm trend” imposed, diamonds are derived
from the “detrended” tSYM-H.
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Figure 18. The drift term in the fO-U equation com-
puted from tSYM-H. The smooth solid curve is a six-
order polynomial fit.

In fO-U M(y, δt) is a linear function of y, but a polyno-
mial fit to drift term derived from tSYM-H data requires a
sixth order polynomial, confirming the nonlinearity of the
tSYM-H process. This is shown in Figure 18. Next, we test
determinism for the nonlinear fO-U process, whose scaling
exponent h is estimated from the variogram of tSYM-H. Fig-
ure 19a shows Ln vs. n for numerical realizations of this pro-
cess compared with the same analysis after randomization of
the phases of the Fourier coefficients. The result reveals that
the nonlinear fO-U process is not more deterministic than its
randomized version. Next, we add the x-component of the
Lorenz attractor x = xL + 1.85xn, where xL is the solution
of the Lorenz system and xn is the nonlinear fO-U process,
both signals with zero mean and unit variance. Now Ln ver-
sus n decreases when the phases are randomized, as shown
in Figure 19b, which further lead us to the conclusion that
determinism is a measure of low-dimensionality.

5. Conclusions

The storm indices (Dst and SYM-H) and the solar wind
observables (flow velocity v and IMF Bz) show no clear
signatures of low-dimensional dynamics during quiet peri-
ods. However, low-dimensionality increases in SYM-H dur-
ing storm times, indicating that self-organization of the mag-
netosphere takes place during magnetic storms. This con-
clusion is drawn from the study of ten intense, magnetic
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Figure 19. Ln vs. n. a) diamonds are derived from nu-
merical solutions of the nonlinear fO-U. Triangles are
from these solutions after randomization of phases of
Fourier coefficients. b) diamonds are derived from nu-
merical solutions of the nonlinear fO-U with a solution of
the x component of the Lorenz system superposed. Tri-
angles are from the latter signals after randomization of
phases.
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storms in the period from 2000-2004. Even though our
analysis shows no discernible change in determinism dur-
ing magnetic storms for solar wind parameters, there is an
enhancement of the predictability of the solar wind observ-
ables as well as the geomagnetic storm indices during major
storms. We interpret this as an increase in the persistence
of the stochastic components of the signals.

There are, however, significant differences between Bz on
one hand, and v andDst/SYM-H on the other. While the
former is a non-stationary, slightly anti-persistent, motion
up to time scales of approximately 100 minutes, and a pink
noise on longer time scales, the latter are slightly persistent
motions on scales up to several days and noises on longer
time scales. These differences represent the different physics
and time constants of the storm ring current systems, but
also the different role the solar wind Bz and the velocity v
play in driving this current system. Magnetic storms are
typically preceded by an increase in the persistence of the
solar wind dynamics, and this increase is reflected in the
magnetospheric response to the solar wind driver.
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